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	is review focuses on the contribution of white, brown, and perivascular adipose tissues to the pathophysiology of obesity and its
associatedmetabolic and vascular complications.Weight gain in obesity generates excess of fat, usually visceral fat, and activates the
in
ammatory response in the adipocytes and then in other tissues such as liver. 	erefore, low systemic in
ammation responsible
for insulin resistance contributes to atherosclerotic process. Furthermore, an inverse relationship between body mass index and
brown adipose tissue activity has been described. For these reasons, in recent years, in order to combat obesity and its related
complications, as a complement to conventional treatments, a new insight is focusing on the role of the thermogenic function of
brown and perivascular adipose tissues as a promising therapy in humans. 	ese lines of knowledge are focused on the design of
new drugs, or other approaches, in order to increase the mass and/or activity of brown adipose tissue or the browning process of
beige cells from white adipose tissue. 	ese new treatments may contribute not only to reduce obesity but also to prevent highly
prevalent complications such as type 2 diabetes and other vascular alterations, such as hypertension or atherosclerosis.

1. Introduction

Obesity is a multifactorial chronic disease with an increased
incidence in developed countries over the last decades.
Nowadays, it represents a worldwide epidemic [1]; in 2014,
39% of adults older than 18 years showed overweight, and
13% were obese. Obesity is a huge public health problem
due to the associated risk with developing other diseases
[2]. In this sense, 44% of diabetes cases worldwide, 23%
of ischemic heart disease, and 7–41% of certain cancers are
attributable to overweight and obesity. 	is occurs, at least
partially, because of the obesity-induced insulin resistance
and the fact that adipose tissue is not only an energy reservoir
but also a secretory endocrine organ of cytokines, hormones,
and proteins that a�ect the functionality of cells and tissues
all over the body [3].

In mammals, the adipose tissue is composed of at least
two kinds of adipose tissue, the white adipose tissue (WAT)

and the brown adipose tissue (BAT) which have di�erent
morphology, distribution, gene expression, and function.
WAT is themain energy reservoir and secretes a huge number
of hormones and cytokines that regulate metabolism and
insulin resistance [3, 4]. 	e development of obesity depends
not only on the balance between food intake and energy
expenditure but also on the balance between white adipose
tissue, as the main energy reservoir, and brown adipose tis-
sue, specialized in energy expenditure through nonshivering
thermogenesis via the mitochondrial uncoupling protein 1
(UCP-1). In addition, BAT could a�ect body metabolism
and alter insulin sensitivity [5, 6] as well as modifying the
susceptibility to develop obesity [7]. Moreover, in this review,
we also analyze the role of perivascular adipose tissue (PVAT)
in obesity and mainly its action in the associated vascular
complications. 	is tissue is located around the arteries and
other systemic vessels and depending on the vascular bed
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may have more or less characteristics of white or brown
adipose tissue.

2. Differential Morphology, Innervation, and
Distribution of Adipose Tissues

2.1. WAT. Adipocyte from WAT has a variable shape,
although it is classically spherical sized between 25 and
200�m. In addition, it has a peripheral and 
at nucleus
with a thin cytoplasm that contains a single large lipid drop,
which occupies 90% of the cell volume. It presents few
mitochondria and a small smooth and rough endoplasmic
reticulum. WAT is composed of adipocytes that are held
together by a poorly vascularized and innervated connective
tissue [8]. Sympathetic innervation has been described in
WAT, although relatively sparse compared to BAT [9]. As
occurs in BAT, WAT parasympathetic innervation is con-
troversial and, at the moment, there is a lack of evidence
in this regard [10–12]. Finally, the sensory innervation of
WAT is histologically known for decades, but its function
was revealedmore recently; it seems that sensory innervation
is essential in the regulation of sympathetic innervation by
forming feedback loops [13].

In addition to adipocytes, WAT contains macrophages,
leukocytes, �broblasts, cell progenitors, and endothelial cells.
	e presence of �broblasts, macrophages, and other leuko-
cytes, along with adipocytes, realizes the great variety of
proteins that are secreted by WAT under varying conditions.
White adipose tissue is distributed over the entire body and
has di�erent compartments that vary in terms of cell size
[14, 15], metabolic activity, and its potential role in insulin
resistance and other vascular complications associated with
obesity [16, 17].

In humans, two main depots of white adipose tissue
are di�erentiated: subcutaneous depot corresponding to the
adipose tissue located under the skin (80%of total fat) and the
visceral depot. 	ere are two types of visceral adipose tissue:
mesenteric and omental [18].	e �rst one is wrapped around
the intestine; the second one extends from the lower part of
the stomach, covering the abdomen, and is normally used in
the study of visceral fat. In obesity, ectopic lipid deposition
occurs mainly in liver, muscle, and heart. Over years, it is
well known that the subcutaneous and visceral adipose tissues
have di�erentmolecular, cellular, and anatomical features [19,
20]; for example, the irrigation of both tissues is di�erent [21],
and the mRNA levels of leptin in the subcutaneous adipose
tissue are increased as compared to the visceral adipose tissue
[19]. 	ese tissues are also di�erent in terms of the capacity
for fatty acid mobilization [22]. 	us, omental fat is more
sensitive to the lipolytic e�ects of catecholamines and less
sensitive to the antilipolytic e�ects of insulin; therefore, this
tissue has a greater capacity for fatty acid mobilization and
release into the portal circulation than the subcutaneous
reservoir [21, 23].

2.2. BAT. 	e brown adipose tissue consists of brown
adipocytes and remaining stroma vascular fraction (SVF)
including adipocyte cell progenitors [8]. 	us, the brown
adipocyte has a polygonal shape with an oval and centered

nucleus on a large cytoplasm that contains multiple and
small lipid droplets. It has a large number of mitochondria
and an underdeveloped endoplasmic reticulum. In addition,
BAT is highly vascularized and innervated [8]. While the
sympathetic innervation of BAT is evident [24–26], the
parasympathetic innervation is controversial and it seems to
be con�ned to the mediastinal [27] and pericardial BAT [28].
In addition to sympathetic and parasympathetic innervation,
it has been described that BAT has sensory innervation;
however, the information about the role of this innervation
is scarce [29–31].

Originally, it was thought that theBATwas only present in
humans during the neonatal period. However, more recently,
data have shown that adults retain some metabolically active
depots of BAT that respond to cold and sympathetic acti-
vation of the nervous system [32]. Such depots are UCP-
1 positive and are detected by positron emission tomog-
raphy (PET) [32]. Currently, in humans, brown adipose
tissue has been detected in cervical, supraclavicular, paraver-
tebral, mediastinal, para-aortic, and adrenal regions [32]. In
addition, small groups of brown adipocytes inside of the
skeletal muscle were also found in mice [7]. On the other
hand, recent data have shown that brown adipocytes found
inside white adipose tissue depots are not derived from
myf5 lineage, such as the classic brown adipocytes of the
interscapular tissue of rodents, and are known as “beige” or
“brite cells” [33–35]. 	ese cells are positive for UCP-1, with
high respiratory capacity, with characteristics of both white
and brown adipose tissues and being highly responsive to
the polypeptidic hormone irisin [36]. In this sense, it has
recently been shown that the exercise-induced irisin secreted
by skeletal muscle induces the “browning” of subcutaneous
white adipose tissue. However, this protein has little e�ect on
the classic brown adipocytes isolated from the interscapular
reservoir [37]. 	ese results suggest that the responsiveness
to irisin might be a selective feature of beige cells localized
inside of subcutaneous white adipose tissue and improve
metabolic and vascular complications associated with obesity
[37–40]. Besides its implication in thermogenesis, recent
studies have shown that brown adipose tissue could be
involved in the reduction of triglyceride and glucose levels
and also serve as a source of adipokines playing a di�erent
role in the in
ammatory response as compared to WAT
[41–43].

2.3. PVAT. Perivascular adipose tissue is located around
the coronary artery (or epicardial adipose tissue), the aorta
(periaortic adipose tissue), and other systemic vessels as
well as the microcirculatory bed of the mesenteric, muscle,
kidney, and adipose tissue, with the exception of the brain
circulation [44]. It joins the adventitious layer without any
laminar structure or organized barrier. Depending on the
vascular bed, PVAT may have more or less characteristics of
white or brown adipose tissue. 	us, it has been described
that PVAT from the abdominal artery would be essentially
white adipose tissue; the PVAT in human coronary arteries
would have an intermediate phenotype between brown and
white adipose tissues and the PVAT from thoracic aortic
artery would be very similar to the brown adipose tissue
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[45, 46]. Functionally, similar to BAT, it has been described
that lipid clearance and maintenance of intravascular tem-
perature were impaired in response to cold exposure in mice
lacking PVAT [47]. Vascularization and innervation of the
PVAT considerably vary with location and this could explain
the di�erent functional features of PVAT. Indeed, it has been
shown that PVAT of human saphenous vein also receives
direct sympathetic innervation [48].

3. Adipose Tissues as Endocrine Organs

3.1. WAT. 	e white adipose tissue is not only an energy
reservoir but also a secretory organ of certain molecules that
have endocrine, paracrine, and autocrine actions [49]. Some
of these molecules secreted by adipocytes are involved in
the regulation of body weight (leptin, adiponectin), in the
local in
ammation generated in obesity (TNF-�, IL-6, and
IL-1�), in vascular function (Ang II and PAI-1), or in breeding
(estrogens, among others).

Leptin is a hormone mainly secreted by the adipocytes
that plays an important role in the regulation of body
weight through its central e�ects on appetite and peripheral
e�ects on the regulation of energy expenditure [50]. 	e
vast majority of obese patients present high concentrations
of leptin that are increased depending on the degree of
adiposity and hyperinsulinemia, which is referred nowadays
as leptin resistance [51]. 	is hyperleptinemia has been
involved in the insulin resistance showed by obese subjects
through alterations in insulin receptor phosphorylation [52].
Another hormone secreted by adipocytes that participates
controlling food intake is adiponectin. In several studies,
hypoadiponectinemia has been observed in patients with
obesity, diabetes mellitus, and coronary artery disease [53,
54]. In addition to its antidiabetogenic and antiatherogenic
e�ect, it also has an inverse relationship with other risk
factors such as blood pressure, total cholesterol, and low den-
sity lipoproteins (LDL) [55, 56]. Cross-sectional population
studies show that low adiponectin concentrations or high
leptin levels are related to an increase in the metabolic and
cardiovascular risk [57–59].

Di�erent cell types including the adipocytes secrete
several proin
ammatory cytokines. 	ey have paracrine or
autocrine actions and participate in the local in
ammatory
response that occurs in the adipocytes of obese patients. It
has been described that the levels of TNF-� in the adipocyte
are positively correlated with the size of the adipose depots
[60]. In addition, the levels of mRNA of TNF-� are increased
in adipose tissue of several murine models of obesity and
diabetes and obese patients, linking such increase with the
development of insulin resistance [61, 62]. On the one hand,
TNF-� activates lipolysis and inhibits the expression of
LPL and GLUT-4 as a mechanism addressed to reduce the
excessive size of fat depots. However, high levels of TNF-
� in adipose tissue could account for any of the metabolic
alterations associated with obesity such as insulin resistance.
	us, TNF-� increases free fatty acid levels reducing insulin
sensitivity, and, in the liver, it has an inhibitory e�ect on
insulin action increasing the hepatic glucose production
[63]. 	us, the neutralization of TNF-� using monoclonal

antibodies reduces the glucose levels in the murine diabetic
KKAy model [64] and improves the glycemic control in
insulin resistant subjects [65]. Similarly, treatment with anti-
TNF-� antibodies for six weeks reduced the fasting hyper-
glycemia and glucose intolerance and improved insulin sensi-
tivity in visceral white adipose tissue,mainly in gonadal depot
from 52-week-old BATIRKOmice, which shows an increased
adiposity associated with a severe brown fat lipoatrophy [66].
In this mouse model, treatment with anti-TNF-� antibodies
reduced activation of NF-�B in both adipose tissues and
the expression of proteins controlled by this transcription
factor both in the gonadal white adipose tissue and brown
adipose tissue and in the aorta [66]. In addition, vascular
insulin resistance and dysfunction were reversed by the
treatment with anti-TNF-� antibodies [66]. Angiotensin and
plasminogen activator inhibitor 1 (PAI-1) are also molecules
secreted by adipocytes whose gene expression is increased in
obesity [67, 68], showing a deleterious e�ect on vascular func-
tion. Moreover, another component of the renin-angiotensin
system, also present in adipocytes, is angiotensin II, which
has a positive e�ect on the di�erentiation of adipose tissue
and regulates adiposity owing to their lipogenic actions [69].
In relation to PAI-1 secretion by adipose tissue, an increased
production in visceral fat has been observed as compared to
subcutaneous fat. In fact, PAI-1 levels were increased in the
central obesity related to its associated vascular alterations
[68].

3.2. BAT. Brown adipose tissue is also an endocrine organ
like WAT and secretes di�erent cytokines, hormones, and
other factors such as TNF-�, adiponectin, and leptin. How-
ever, there are a large number of molecules that are also
secreted by BAT. Many of these, including �broblast growth
factor type 21 (FGF21), are required to cold adaptation and
adrenergic stimulation [70–72]. In addition, FGF21 can also
act directly on brown adipose tissue, regardless of the adren-
ergic control, opening new pathways to explore mechanisms
that control body fat [73]. Other proteins secreted by BAT
such as adipsin, FGF2, IGF-1, prostaglandins, and adenosine
have autocrine actions.

In addition, BAT secretes other proteins such as IL-
6 and neurotrophic factors including BDNF (brain-derived
neurotrophic factor) and nerve growth factor (NGF), which
could have di�erent roles in BAT as compared to WAT [74,
75]. NGF secretion occurs mainly by brown preadipocyte
proliferation, which promotes sympathetic innervation trig-
gering greater norepinephrine stimulation. Other paracrine
factors, besides the neurotrophic, synthesized by BAT are
vascular endothelial growth factor (VEGF), angiotensinogen,
and nitric oxide.	e expression of VEGF is increased during
the proliferation and di�erentiation of brown adipocytes, in
order to maintain a high level of vascularization. Both nora-
drenaline and cold exposure induce an increased expression
of VEGF in BAT [76]. On the other hand, nitric oxide (NO)
producedmainly by endothelial nitric oxide synthase (eNOS)
might be responsible for the physiological regulation of blood

ow as well as for thermogenesis in BAT, and the authors also
suggest that eNOS activity and expression may be controlled
by sympathetic nerve activity [77].
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Unlike the white adipose tissue that is quickly in�ltrated
by in
ammatory cells in response to high-fat diet-induced
obesity, brown adipose tissue does not appear to accumulate
such in�ltrate of macrophages [78]. 	is may be due to the
larger number of mitochondria of BAT, which allows fatty
acid metabolism through �-oxidation. However, in WAT,
the ability to metabolize lipids would be exceeded, having
lipotoxic e�ects, triggering the in
ammatory response and
facilitating the in�ltration of macrophages and immune cells
[79]. In this sense, another group has recently demonstrated
that the macrophages from brown adipose tissue do not have
the same expression pro�le of cytokines and chemokines as
those from white adipose tissue [79].

3.3. PVAT. 	e PVAT like other adipose depots releases
adipocytokines, such as adiponectin, leptin, IL-6, and TNF-
�. PVAT establishes a communication with the other layers
of the vessel wall through the vasa vasorum, being di�erent
from the actions of the other adipose tissues.Moreover, PVAT
activity has direct paracrine action in vascular smoothmuscle
cells from media layer and endothelial cells from intima
layer [80]. 	us, the main endocrine actions of PVAT on
vascular cells are the regulation of vessel tone in physiological
conditions and vessel remodeling in pathophysiological con-
ditions [80]. In this regard, in
ammatory cells in PVATmight
be implicated in the recruitment and/or proliferation of
adventitial myo�broblasts and �nally contribute to vascular
remodeling. 	erefore, in response to vascular damage or
high-fat diet, PVAT produces proin
ammatory adipocy-
tokines upregulation and adiponectin downregulation [81,
82]. In addition, the prochemotactic activity of PVAT due to
the accumulation of in
ammatory cells between the PVAT
and the adventitia layer of human atherosclerotic aortas has
been described [82]. In contrast to other adipose depots,
PVAT cells secrete greater amounts of angiogenic factors. So,
hepatocyte growth factor (HGF) is mainly secreted by PVAT
cells and induces endothelial cell growth and cytokine release
from smooth muscle cells [83].

4. Role of Adipose Tissues in
Obesity-Induced Inflammation and Its
Associated Vascular Complications

4.1. WAT. 	ere are numerous di�erences between visceral
and subcutaneous adipose tissues related to adipokine secre-
tion [84]. In this sense, peripheral obesity is characterized by
an accumulation of subcutaneous adipose tissue and is more
frequent in women.	is type of obesity is not associated with
an increased risk of related pathologies [85]. However, central
or abdominal obesity is more common in men and consists
of an accumulation of visceral adipose tissue. 	is type of
obesity has been associated, through epidemiological studies,
with a higher risk of diseases such as insulin resistance, type 2
diabetes, and hypertension, greatly increasing cardiovascular
risk [86].

Under obesity, diet excess and obesity itself produce
an accumulation of lipids in adipocytes, triggering cellu-
lar stress and the activation of JNK and NF-�B pathways

[87, 88]. 	ese in
ammatory signaling pathways regulate
the phosphorylation of proteins and di�erent transcrip-
tional events that lead to an increase in the production of
proin
ammatory molecules, including TNF-�, IL-6, leptin
and resistin, chemokines such as monocyte chemoattractant
protein 1 (MCP-1), and other proatherogenic mediators, such
as PAI-1. Endothelial adhesion molecules (e.g., ICAM-1 and
VCAM-1) and chemoattractant molecules (e.g., CCX) bind
to integrins and chemokines receptors (CCR), respectively,
and they favor the recruitment of monocytes and other
in
ammatory cells to the adipose tissue. Internalized mono-
cytes di�erentiate to macrophages and amplify the in
am-
matory response producing many of the same in
ammatory
cytokines and chemokines described above [89] (Figure 1).
Some recent articles have also suggested that T cells could
play an important role in both the production of proin-

ammatory cytokines and the recruitment of macrophages
to the adipose tissue in obese patients [90]. 	e lympho-
cytes in�ltration precedes the population of monocytes in
response to high-fat diet and could provide proin
ammatory
mediators, which promote the recruitment and activation of
macrophages (Figure 1). Cytotoxic T lymphocytes CD8+ are
highly enriched in the adipose tissue of mice subjected to
high-fat diet, which is consistent with the signi�cant increase
of CD8+ cells in obese patients [90]. 	us, mice de�cient
in CD8 were partially resistant to develop high-fat diet-
induced obesity, while the transfer of CD8+ cells aggravated
in
ammation of adipose tissue [90].

Besides fat and in
ammatory cells, other cell types could
participate in the in
ammatory response. 	us, the adipose
tissue is vascularized with multiple capillaries in contact
with each adipocyte [91]. In this sense, for fat expansion,
microcirculation could play a key role in adipose tissue
in
ammation. 	us, leukocytes will not adhere to a normal
nonstick endothelium, while endothelium expresses adhe-
sion molecules and binds leukocytes upon high-fat diet
administration [92]. Endothelial cells from adipose tissue
could increase adhesion proteins, such as ICAM-1, VCAM-
1, E-selectin, and P-selectin in response to an increased
adiposity and thus promote the adhesion of in
ammatory T
cells and monocytes [93].

Increased adiposity activates in
ammatory response not
only in adipocytes but also in the liver through the portal
vein [94] (Figure 1). 	is suggests that lipid accumulation in
the liver or steatosis may induce a subacute in
ammatory
response in this organ, which is similar to the local in
am-
mation observed in adipose tissue that follows lipid accumu-
lation in the adipocyte [94–96]. Proin
ammatory molecules
produced in abdominal fat through the portal circulation
could be responsible for the onset of liver in
ammation. In
addition, in the fatty hepatocyte, activation of NF-�B and
an increase in the expression of cytokines occur, including
TNF-�, IL-6, and IL-1� [94]. Proin
ammatory cytokines
are involved in the development of insulin resistance and
activate the resident hepatic macrophages (Kup�er cells). In
obesity, increased adiposity does not increase the number
of Kup�er cells but its activation occurs [94]. In the liver,
there are di�erent cells types involved in local in
ammation
and insulin resistance such as immune and endothelial cells
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(ICAM-1, VCAM-1, E-selectin, P-selectin) 
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(↑ TG, ↓ HDL, ↑ glucose)

↑ TNF-�, ↑ IL-6, ↑ IL-1�, ↑ Ang II, ↑ PAI-1

Hepatic insulin resistance and 
in�ammation

Peripheral insulin resistance
Vascular insulin resistance
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Figure 1: Contribution of white adipose tissue to obesity and its associated metabolic and vascular complications. Obesity is a
proin
ammatory state of low grade. Adipocytes, in�ltrated macrophages, and lymphocytes in addition to endothelial cells from capillaries
close to adipocytes contribute to local in
ammation inWAT. In obesity an increase of lipid accumulation takes place in adipocytes, triggering
cellular stress and the activation of JNK andNF-�Bpathways leading to local in
ammation in the adipocyte.	e in
ammation can go through
the portal vein to the liver and �nally to other peripheral tissues like vascular tissues where it can produce atherosclerosis, hypertension, and
vascular insulin resistance.

[95]. 	erefore, the proin
ammatory and proatherogenic
mediators, which are produced by the adipose tissue and
liver and associated with immune cells, generate a systemic
in
ammation that produces insulin resistance in skeletal
muscle and other peripheral tissues. In the vascular tissue,
insulin resistance could help to initiate the atherogenic
process [96] (Figure 1).

In this sense, it has been described that novel and rel-
evant adipokines as visfatin and dipeptidyl peptidase 4
(DPP-4) are produced by white adipose tissue that might
have great impact on cardiovascular complications associated
with obesity. So, visfatin had strongly been related to pro-
in
ammatory factors in severe obesity [97], a novel marker
of hypertension in advanced age patients [98] and a predictor
of in
ammation and endothelial injury in several metabolic
diseases [99]. In this regard, it has been demonstrated
that visfatin/Nampt might exert direct deleterious actions
on the cardiovascular system, including cell proliferation,
monocyte/macrophage activation and recruitment, vascular
in
ammation, and remodeling, all of which leading to the
development of atherosclerotic lesions [99]. In addition,
DPP4 is also positively correlated with adiposity [100] and
insulin resistance in diabetic patients [101, 102]. DPP-4 is a
ubiquitous enzyme that regulates incretins and consequently
is related to the pathophysiology of Type 2 Diabetes Mellitus.

DPP4 is mainly secreted by adipocytes and endothelial cells
and acts as a regulatory protease for cytokines, chemokines,
and neuropeptides involved in in
ammation, immunity, and
vascular function [103].

4.2. BAT. In mice, the activation of brown adipose tissue
reduces adiposity and protects from the high-fat diet-induced
obesity [104, 105]. 	us, the loss of BAT mass [5], such as
the severe brown lipoatrophy induced by the insulin receptor
deletion in that tissue [66, 105], or the loss of UCP-1 [106]
confers susceptibility to obesity in mice. In recent years, it
has been described that the amount of BAT was inversely
correlated with the body mass index in humans, especially in
aged people [32]. In addition, it has recently been shown that
BAT could protect against multiple diseases associated with
ageing [8]. 	us, individuals with smaller depots of BAT are
more susceptible to accumulate WAT and to increase body
weight showing an increased risk of developing metabolic
and vascular alterations [96, 107].

Besides thermogenesis, recent studies have demonstrated
that BAT could have a leading role in lipid and carbohydrate
metabolism (Figure 2). Firstly, brown adipose tissue may be
involved in the reduction of elevated triglyceride concentra-
tions and therefore in the reduction of obesity in humans [41,
108]. 	us, triglyceride-rich lipoproteins (TRLs) carry lipids
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Obesity

BAT

↑ TG, ↓ HDL ↑ glucose↓ thermogenesis

↓ energy expenditure

↑ proin�ammatory cytokines

Impaired lipid metabolism Impaired glucose metabolism↑ visceral adiposity

and adipokines

↑↑ metabolic and vascular complications

mass or activity)

Figure 2: Contribution of brown adipose tissue to obesity and its associatedmetabolic and vascular complications. One of the possible causes
that induce the development of obesity could be a decrease in the amount and activity of the brown adipose tissue. In this situation, there
would be an alteration of functions that perform brown adipose tissue on lipid metabolism and carbohydrate as well as the expression pro�le
of cytokines and adipokines, favoring obesity and the related metabolic and vascular complications.

within circulation, where a portion of fatty acids can be liber-
ated by LPL [109]. Other peripheral organs such as white adi-
pose tissue and skeletal muscle capture fatty acids, while the
remnant cholesterol-rich particles are removed by the liver
[109]. In addition, high levels of triglycerides and cholesterol-
rich remnant particles, as in diabetic dyslipidemia, represent
risk factors to develop cardiovascular diseases [110, 111]. It
has been described that the increased activity of BAT by
short exposures to cold could control the metabolism of the
TRLs in mice, by regulating the removal of these lipoproteins
and the excess of circulating lipids [41] and thus decreasing
the levels of triglycerides and slightly increasing HDL levels
(Figure 2). 	us, fatty acids are e�ciently introduced into
the brown adipose tissue due to a metabolic program that
pushes TRLs to a highly e�cient uptake of fatty acids. 	is
process associatedwith an increase in the expression ofVEGF
[112] leads to an increase of lipoprotein permeability, allowing
triglycerides to come out of the capillaries.	e BAT switched
on by norepinephrine not only activates the fatty acid release
from triglycerides and a greater production of VEGF but
also increases the expression of LPL [41, 113]. 	erefore, LPL
degrades triglycerides and allows that fatty acids may be
available through plasma membrane transporters as CD36.
In addition, it has been shown in humans that activation
of BAT by cold exposure increases its oxidative metabolism,
reducing triglyceride content and contributing decisively to

energy expenditure [114]. 	erefore, the activation of BAT
would be able to correct the hyperlipidemia, improving the
deleterious e�ects of obesity and dyslipidemia such as insulin
resistance or the atherogenic process. So, this year, it has
been described that BAT activation reduces plasma triglyc-
eride and cholesterol levels and attenuates diet-induced
atherosclerosis development in an experimental model [42].
Initial studies suggest that BAT activation in humans may
also reduce triglyceride and cholesterol levels, but potential
antiatherogenic e�ects should be assessed in future studies
[42, 114].

On the other hand, it has also been described that BAT
could regulate carbohydrate metabolism [41] (Figure 2). 	e
mitochondria from BAT use pyruvate for combustion when-
ever UCP-1 is activated by fatty acids [115]. In addition,
glucose transporters GLUT-1 and GLUT-4, may be involved
in the glucose uptake by BAT since the activity and expression
of both transporters are augmented by both cold exposure
and norepinephrine [41, 116–118].

4.3. PVAT. Perivascular adipose tissue that extends from
adventitious layer is a key modulator of the vascular function
in both thin animal models and subjects. However, in patho-
logical conditions especially obesity-related cardiovascular
diseases, the bene�cial e�ects of PVAT on vascular functions
are impaired (PVAT dysfunction) and transformed into
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↑ leptin,
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migration of VSMC
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recruitment of immune cells

Figure 3: Contribution of perivascular adipose tissue to obesity and its associatedmetabolic and vascular complications. Perivascular adipose
tissue depending on its location interacts with the endothelium, vascular smooth muscle cells, and immune cells. In the same way, there are
certain mediators that would be involved in the vascular disorders associated with obesity, such as hypertension and atherogenesis.

detrimental roles [119]. So, the perivascular tissue increases its
size, creating an environment of hypoxia that could decrease
the production of adiponectin, which has protective e�ects
against atherogenesis and other vascular complications [46]
(Figure 3). Like other adipose tissue depots, PVAT also
secretes many biologically active substances that can act in
both autocrine and paracrine fashion. PVAThas also a proven
role in vascular in
ammation [119–121]. On the other hand,
it has been described that diet-induced weight loss reverses
obesity-induced PVAT dysfunction through a mechanism
involving reduced in
ammation and increased nitric oxide
synthase activity within PVAT [122].

In addition, in obesity and metabolic syndrome, PVAT
loses its vasoregulatory capability due to a decreased release
of vasodilator adipokines and a simultaneous increase in
vasoconstrictor factors release [123]. 	us, the perivascular
adipose tissue has anticontractile properties that are lost in
obesity [44, 124] (Figure 3). It has also been described that
an increased PVAT could be positively correlated with the
amount of intra-abdominal adipose tissue [125].	erefore, in
obesity and atherosclerosis, PVAT, in addition to increase its
size, can be in�ltrated by immune cells, such as macrophages
and T lymphocytes [78, 126]. 	e accumulation of T lym-
phocytes could favor the expansion of adipose tissue due to
adipogenesis stimulation by increased 15d-PGJ2 production
and PPAR-� activation [127]. However, macrophages do not
a�ect PVAT expansion but produce cytokines that alter
its adipokine secretion [82]. 	us, lower adiponectin levels
[124] and elevated leptin levels [81, 127], proin
ammatory
cytokines and chemokines [128–130], and reactive oxygen
species (ROS) [44, 131] and esteri�ed fatty acids [104] have

been described in PVAT from both obese patients and animal
models of obesity (Figure 3).

However, it has been described that the in
ammatory
properties of the epicardial adipose tissue are independent
of obesity [132]. In this regard, recent studies in mice have
also shown that the PVAT surrounding the thoracic aorta
artery is very similar to BAT in terms of morphology and
gene expression pro�le [78]. In addition, perivascular adipose
tissue in the thoracic aorta together with BAT is more resis-
tant to in
ammation induced by high-fat diet [78] (Figure 3).
Moreover, the PVAT that has thermogenic properties similar
to BAT in rodents and beige fat in humans together with
the triglyceride clearance might inhibit the development of
atherosclerosis [47]. It would be interesting to check if the
perivascular adipose tissue in obese patientswith andwithout
cardiovascular disease has a similar morphology and gene
expression pro�le to BAT in the studiedmurinemodels.	us,
the activation of BAT phenotype in PVAT could be bene�cial
in order to prevent vascular diseases associated with obesity,
such as hypertension and atherogenesis.

5. New Perspectives in the
Treatment of Obesity

An early indication for the treatment of obesity along with
caloric restriction is physical exercise in dosed way appro-
priate to the physical condition of each patient. 	ere are
considerable evidences that caloric restriction increases the
life expectancy [133] and reduces the risk of developing
diabetes, cardiovascular disease, degenerative disorders, and
some types of cancer [133, 134]. In addition to caloric
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restriction, there are evidences showing that an energy
balance maintained for several months, which includes an
increase in energy expenditure, tends to be e�ective in
lowering adiposity. 	is reduction occurs mainly in visceral
fat, which possesses the highest lipolytic activity as compared
to adipose tissue from other regions [135]. In addition,
people with a good physical condition have greater lipolysis
than those inactive [136]. Another aspect that enhances the
physical exercise in obese patients is the lipid pro�le. First,
it raises HDL levels and therefore lowers the LDL/HDL ratio
and cardiovascular risk [137]. In addition, exercise increases
the size of the LDL and HDL particles leading to a less
atherogenic lipid pro�le than those small LDL and HDL
particles, typical of obese patients [138]. Moreover, a regular
physical exercise also decreases triglyceride levels in those
individuals with initially high values, through an improve-
ment in insulin sensitivity [138, 139]. Physical exercise also
produces an increase in oxidative potential and thus pro-
motes themetabolismofmore lipids and carbohydrates in the
aerobic way, producing very desirable peripheral adaptations.
	erefore, the physical exercise normalizes metabolic pro�le
and allows the reduction of morbidity and mortality due to
these causes [140, 141].

In addition to the role played by peripheral tissues,
energy homeostasis is strongly controlled by the Central
Nervous System (CNS). Several areas of the brain that con-
stitute cognitive and autonomic brain systems form networks
involved in the control of food intake and thermogenesis,
also contributing to energy homeostasis [142]. 	ese net-
works include the dopamine mesolimbic circuit, the opioid,
endocannabinoid, and melanocortin systems. 	e activity
of all these pathways is modulated by peripheral factors
such as hormones derived from adipose tissue and the gut,
which access the brain via the circulation and neuronal
signaling pathways to inform the central nervous system
about energy balance and nutritional status. 	e balance
between food intake and energy expenditure is achieved via
a highly coordinated communication between the executive,
reward, and autonomic circuits in the brain and circulating
homeostatic signals [143].

Changes in energy stores induced by food deprivation,
overfeeding, or excess physical activity lead to adaptations
in the controls of energy intake and expenditure that oppose
them. 	ese changes are signaled to reward and autonomic
SNS circuits by peripheral hormones, such as leptin and
ghrelin. Leptin, whose production varies with the size of the
adipocytes in WAT [144], can initiate its central actions via
the hypothalamus and VTA (ventral tegmental area) [145,
146]. Similarly ghrelin, also in
uenced by the nutritional
status, can also act on the hypothalamus, VTA, and the
DVC (dorsal vagal complex) [147, 148]. 	ese regulatory
processes seem particularly e�ective preventing the reduc-
tion in energy/fat reserves which seem resolutely “defended.”
Such a reduction leads to regulatory responses that promote
energy intake [149, 150] and reduce energy expenditure [151],
which unpins the di�culty in an individual’s ability to combat
obesity [152]. 	e antiobesity agents whose mechanism is
based on the control of CNS present a moderate e�cacy in
the long term [153]; moreover, these agents produce many

central compensation and side e�ects such as headache,
dizziness, fatigue, nausea, dry mouth, cough, constipation,
paresthesias, taste alterations, insomnia, elevation in heart
rate and memory, or cognitive changes [154, 155].

In recent years, several antiobesity drugs designed to limit
energy intake have been withdrawn from the market due to
serious adverse e�ects [156]. Nowadays, only two drugs are
approved speci�cally forweight loss by theUSFDA: the lipase
inhibitor (Orlistat) that is also approved by the European
Medicines Agency but has a limited long-term e�ectiveness
[157] and the recently approved novel selective agonist of
the serotonin 2C receptor (Lorcaserin) [158]. 	us, more
e�orts are needed to develop new antiobesity agents. In this
regard, strategies designed to increase lipid mobilization and
oxidation could be very useful in the treatment of obesity and
associated diseases. In this sense, there are some antidiabetic
medications in the market that promote weight loss and
improve cardiovascular outcomes [159]. So, inhibition of
DPP4 enzyme activity increases endogenous intact glucagon-
like peptide-1 (GLP-1), thereby stimulating insulin secretion
that subsequently lowers blood glucose. 	erefore, multiple
DPP4 inhibitors have been developed for treating type 2
diabetes [160]. Although various gliptins are known to be
neutral on body weight in type 2 diabetic patients, the e�ect
on body fat mass has not been fully elucidated in humans
and animals yet [161–163]. However, recently it has been
described that fat loss by the DPP4 inhibitor evogliptin, in
contrast to exenatide, might likely be mediated by increased
energy expenditure and alteration in white adipose tissue
metabolism from obese mice [100].

Other pharmacologic treatments for type 2 diabetes
are PPAR� agonists as thiazolidinediones (TZDs) because
PPAR� regulates multiple pathways involved in the patho-
genesis of diabetes, obesity, and atherosclerosis. Previous
studies have proposed that these antidiabetic agents might
also present diverse pleiotropic e�ects, such as improvement
of the lipid pro�le [164], endothelial dysfunction [165], and
decreased in
ammation [166]. In order to avoid side e�ects
associated with TZDs, new drugs have been developed
targeting di�erent PPAR isotypes (dual agonists) and more
selective PPAR� partial agonists [167, 168]. 	is year, a new
thiazolidinedione, CQ-1777, partial PPAR� agonist improved
obesity-associated insulin resistance and dyslipidemia with
atheroprotective e�ects in atherosclerosis mice model. More-
over, CQ-1777 did not a�ect body weight, food consumption,
fat accumulation, or bone density [169].

In order to �ght this global epidemic represented by
obesity and its associated metabolic and cardiovascular com-
plications, the pharmacological activation of the SNS does
not appear to be useful due to negative side e�ects [170]; sci-
entists must join e�orts to advance the knowledge of brown
adipose tissue and its promising therapeutic potential against
obesity and related complications [169–171]. It has been
described that adaptive response of brown adipose tissue
to a moderate and intermittent stress through sympathetic
activation could increase the proliferation and di�erentiation
of brown adipocyte progenitors and increase mitochondrial
mass and UCP-1 expression in this tissue [172]. All of those
e�ects, along with the stimulation of BAT depots in white
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adipose tissue or skeletal muscle [173–176], could increase
energy expenditure and reduce oxidative stress in visceral
adiposity. However, some clinical trials performed with �3-
AR agonists have not achieved a signi�cant response in terms
of weight loss and energy balance [177–180]. Interestingly,
transplantation of brown adipose tissue (0.1–0.4 g) to the vis-
ceral cavity inmice is able to prevent weight gain and improve
the glucidic homeostasis in obese mice subjected to high-
fat diet [181]. As it has been described, activation of brown
adipose tissue deposits in humans, which are composed of
beige adipocytes [35], could open a new research line to
determine if this type of cells may have some therapeutic po-
tential. In recent years, it has been proposed that fat browning
can be used as a therapeutic tool for metabolic disorders
and cardiovascular diseases. Firstly, adaptive changes of
skeletal muscle in response to exercise include adjustments
in the production and secretion of myokines that induce
myogenesis and fat browning together with a concomitant
increase in energy expenditure [182]. Although exercise has
been the most common factor for fat browning [183], there
are some other factors implicated. So, browning of WAT can
be achieved by several di�erent means [173] including CNS
activation modulating sympathetic output to WAT and the
recruitment and activation of immune cells. Moreover, WAT
browning can be reached by direct action onwhite adipocytes
or beige precursor cells through the activation of PPAR�
[184], PPAR� [185], FGF21 [186], IL6 [187], natriuretic pep-
tides [188], beta aminoisobutyric acid (BAIBA) [189], gamma
aminoisobutyric acid, or JAK inhibition [190]. Recently, two
novel factors as musclin and TFAM have been proposed for
fat browning [190].Musclin is amyokine produced bymuscle
during exercise [191], activates PPAR�, and, therefore, indu-
ces WAT browning having bene�cial metabolic and cardiac
e�ects [190, 191]. TFAM is a transcription factor involved
in mitochondrial biogenesis and, therefore, has also been
involved in WAT browning [190].

In addition to musclin, irisin, another novel adipomyok-
ine, is involved in the browning of WAT during exercise in
mice models [37]. However, the impact of irisin on white-to-
brown transdi�erentiation in humans has been heavily ques-
tioned [192, 193]. In the last years, it has been proposed that
irisin can exert cardioprotector e�ects [194, 195] and improves
endothelial function due to the activation of the AMPK-
eNOS signaling pathway [40]. Finally, �-lipoic acid promotes
mitochondrial biogenesis and brown-like remodeling in cul-
tured white subcutaneous adipocytes from overweight/obese
donors [196].

6. Conclusions

Finally, given the capacity of brown adipose tissue in
energy expenditure and the e�ects on carbohydrate and lipid
metabolism, as well as their potential resistance to in
amma-
tion together with perivascular adipose tissue, new perspec-
tives for the treatment of obesity could focus on the design
of new drugs or di�erent regimes or therapies that increase
the amount and function of brown adipose tissue not only to
combat obesity but also to prevent type 2 diabetes and other
associated vascular and metabolic disorders.
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