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Summary. The differential rotation of a rapidly rotating spherical shell of 
incompressible fluid of low viscosity subject t o  large-scale mixing is investi- 
gated by considering the dynamical behaviour of axial filaments of fluid. 
Owing to the gyroscopic constraints expressed by the Proudman-Taylor 
theorem and the Ertel theorem, each filament retains its coherence and 
undergoes little change in its potential vorticity over time-scales of typical 
displacements perpendicular to the rotation axis. The form of the profile of 
the latitudinal variation of the mean zonal flow velocity depends on several 
factors, including the coupling between the fluid shell and the underlying 
surface and the thickness of the shell, strong positive jets being found near 
the equator when the fluid shell is thin and at mid-latitudes when the shell is 
thick. It is’remarkable that such a simple model can reproduce many of the 
observed features of the differential rotation of the Earth, Jupiter, Saturn and 
the Sun. 

1 Introduction 

Differential rotation in a partially or wholly fluid astronomical body such as a planet or star 
is associated with energetic processes involving the transformations between gravitational 
potential energy, kinetic energy and thermal energy. In the absence of the internal or 
external energy sources required to drive these processes, the body would rotate rigidly at a 
constant rate R, (say) about its fixed axis of maximum moment of inertia through its centre 
of mass. Relative to that frame of reference, all components of the Eulerian flow velocity 
u(R,  8, X, t )  = (w, -u ,  u )  would vanish, where ( R ,  8, X) are spherical polar coordinates of a 
general point, R being distance from the centre of mass, 8 co-latitude and X east-longitude. 
Relative to any other frame which rotates steadily with constant angular speed w with 
respect to this basic frame about the polar axis, including an inertial frame, for which 
w = -no, we have (w, - u ,  u )  = (0,  0, - w R  sin 0). 

A major objective in the construction of theoretical models of hydrodynamical motions 
in planetary and stellar atmospheres and interiors is the determination from first principles 
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of the magnitude and distribution of the mean differential rotation, as specified by 

R. Hide and I. N. James 

where the length of time T over which the average is taken is long in comparison with typical 
time-scales associated with u(R, 0, X, t )  but is otherwise arbitrary. (We are here following a 
conventional notation of using an overbar to denote time average and square bracket to 
denote longitudinal average.) 

The dependence of [ii] on R and 6' would of course emerge from a full solution of the 
governing equations of hydrodynamics, thermodynamics and (in the case of electrically 
conducting fluids) electrodynamics, under appropriate boundary conditions. But these 
equations are highly intractable and have only been solved in simplified cases. Possibly the 
most advanced work in this connection is that done by dynamical meterologists in their 
numerical studies of the general circulation of the Earth's atmosphere, in which are repro- 
duced [fi(R, @)] and other principal features of atmospheric flow. 

The Earth's atmosphere is the only natural system for which observations are sufficient 
to enable direct determinations of a(R, 0)  to be made (see, e.g. Lorenz 1967). On average 
it rotates faster than the solid Earth; [ii] (if measured relative to the underlying surface) 
is found to be positive nearly everywhere, with an average value of about 10 m s-l, but with 
negative values in certain regions, including the Trade Winds at low levels in the tropics. The 
highest values of [ii] in the troposphere, about 30 m s-', are associated with mid-latitude jet 
streams. 

In the cases of the atmospheres of Jupiter and Saturn, observations of the motions of 
markings on the visible surface of dense cloud going back many decades provide limited 
information about the dependence of [ u ]  at the (horizontally variable) cloud level as a 
function of t and 0. Both planets have strong equatorial jet-streams at their visible surfaces, 
which attain speeds as high as about lOOm s-l relative to the deep interior for Jupiter and 
400ms-'  for Saturn (see, e.g. Gehrels 1976, 1983), the speeds of rotation of these 
interiors having been determined from radioastronomical Observations. The jet streams are 
positive (i.e. westerly) in direction, and this implies that they must be produced by non- 
axisymmetric processes, involving the action of local west- east pressure gradients (Hide 
1969). 

Comparable information on the dependence of [ u ]  on 0 and t for the solar atmosphere 
can be obtained from observations of sunspot motions and from spectroscopic data (see, 
e.g. Howard & Harvey 1970). The visible surface of the Sun rotates most quickly at the 
equator and [ u ]  exhibits a general decrease with distance from the equator that is more 
gradual than the corresponding latitudinal variation of zonal flow at the visible surfaces of 
Jupiter and Saturn. Some theories of the origin of magnetic fields of planets and stars 
invoke differential rotation in their electrically conducting fluid interiors as the main 
amplification process, but there are no direct observations of [ u ]  in these regions (see, e.g. 
Moffatt 1978; Parker 1979). 

Departures from axial symmetry in the pattern of relative motion of a rapidly rotating 
fluid are to be expected even when the boundary conditions are axisymmetric (Hide 1982). 
But the correct quantitative representation of the effects of non-axisymmetric features on 
the magnitude and form of the differential rotation is by no means straightforward and 
presents serious technical difficulties. Some of these can be overcome by the introduction of 
a 'mixing hypothesis', which leads to considerable theoretical simplifications without sacri- 
ficing essentials. In the present paper we investigate differential rotation in a rotating 
spherical shell of incompressible fluid by assuming that non-axisymmetric motions act in 
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Differential rotation in fluids 303 

such a way as to smooth out latitudinal gradients in potential vorticity (see equation 3.1). 
The latitudinal profile of fi depends inter alia on the thickness of the shell, exhibiting strong 
jets near the equator when the shell is thin and at mid-latitudes when the shell is thick. 

Differential rotation in geophysical and astrophysical systems has been the subject of 
numerous theoretical studies and a comprehensive and critical review of previous work lies 
beyond the scope of the present paper. Many relevant references can be found in recent 
papers by Stewart & Thomson (1977), Glatzmeier & Gilman (1981), Busse (1982), Busse & 
Hood (1982), Rudiger (1982), Schmidt (1982) and in Gehrels (1976, 1983). The very simple 
model discussed in this paper was developed over ten years ago as an improvement on one 
proposed much earlier by Rossby (1947). He considered the effects of horizontal mixing of 
radial filaments of fluid on the profile of mean zonal flow and derived expressions for such 
profiles on the assumption that mixing eliminates gradients of the vertical component of 
absolute vorticity poleward of a certain arbitrary latitude. In our model, in keeping with the 
constraints of the Proudman-Taylor theorem, we consider the behaviour of axial filaments of 
fluid (see Hide 1966), assuming that each filament retains its coherence and, owing to the 
weakness of frictional effects, undergoes little change in its potential vorticity (see equation 
3.1) over time-scales of typical displacements perpendicular to the rotation axis. These 
displacements are associated with local pressure gradients which, in a rapidly rotating fluid, 
act at right-angles to the displacements. We publish this work now because of the growing 
interest in differential rotation, particularly in planetary atmospheres. It is remarkable that 
such a simple model can reproduce many of the observed features of the differential rotation 
of the Earth, Jupiter, Saturn and the Sun. (Whether or not internal dynamical processes such 
as those studied in this paper can account for the enormous value of the super-rotation of 
the atmosphere of Venus, at over 10 times the speed of the underlying planet, is a matter 
for further investigation. Gold & Soter (1971), for example, argue that such high values 
cannot be explained without invoking the action of external couples and have developed a 
model based on the action of the Sun’s gravitational field on non-axisymmetric density 
variations associated with thermal tides.) 

2 The Proudman-Taylor theorem and Ertel’s potential vorticity theorem 

The Eulerian continuity and momentum equations governing the flow of an incompres- 
sible fluid of variable density p^(l + 9) relative to a frame of reference which rotates with 
steady angular velocity h relative to an inertial frame are as follows: 

v . u  = 0 

and 

aupt + (2  fz + 6) x = -v(p + ‘ / z ~ . ~ )  + g9 + F (2.2) 

where 6 V x u ,  the relative vorticity, t denotes time, g is the acceleration due to gravity 
plus centripetal effects, pVP is equal to the pressure gradient minus gp^ and F represents 
frictional effects due to viscosity (and in the case of an electrically conducting fluid, 
Lorentz forces due to the presence of electric currents within the fluid). 

Equation (2.1) is a satisfactory representation of the full mass continuity equation, 
a p / a t  + V . (pu)  = 0 only when the speed of sound greatly exceeds the absolute motion 
(not the relative motion), see Hide (1969), but for the sake of simplicity in the present 
work we shall ignore effects due to compressibility. Equation (2.2) incorporates the 
so-called Boussinesq approximation, which is valid when accelerations are so small in 
comparison with g that density variations can be neglected in all but the buoyancy term 
(see, e.g. Pedlosky 1979). 
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304 R. Hide and I. N. James 
Equation (2.2) expresses the balance of forces acting on individual fluid elements. The 

corresponding torque balance is expressed by the vorticity equation, obtained by taking 
the curl of equation (2.2); thus: 

at /at + (u.  v) i - ((2 ii + t ) .  v)  = - g x vi++ v x F. 

Now introduce a quantity known as the potential vorticity and defined as (2h+ S> .VA 
where A is any scalar quantity satisfying aA/at + (u . V)A 3 DAlDt = 0. By equation (2.3) 
we have 

(2.3) 

Di(2  8 + i )  -VA}/Dt = - (g x 00) 1 VA + V x F . VA, (2.4) 

which reduces to Ertel’s theorem expressing the conservation of potential vorticity by indivi- 
dual fluid elements 

D{(2 8 + i )  . VA)/Dt = 0 (2.5) 

when effects due to density inhomogeneities and friction are negligible (cf  Gill 1982, Hide 
1983 and Pedlosky 1979). 

In regions where the relative acceleration and frictional terms in equation (2.2) are much 
smaller than the Coriolis term, quasi-geostrophic flow occurs, characterized by the approxi- 
mate balance 

2 h x  u +-VP+gb.  (2.6) 

The corresponding vorticity equation (cf equation 2.3) is 

( ? h J 7 ) u + g x V l Y ,  (2.7) 

the first two components of which comprise the familiar ‘thermal wind equation’. In the 
limit of strictly geostrophic flow of a homogeneous fluid, the last equation gives the 
Proudman-Taylor theorem 

(2h. V)u = 0, (2.8) 
implying axial coherence of the motion (cf Hide 1971). 

3 Mathematical model 

We envisage the configuration illustrated in Fig. 1, in which a fluid layer is of depth d and 
whose outer radius is a. The fluid is taken to be homogeneous, incompressible and inviscid. 
The whole system is supposed to be rotating rapidly, so that motions in the fluid layer 
will be constrained by the Proudman-Taylor theorem. As a result, the fluid will move as 
coherent filaments aligned parallel to the rotation axis. The potential vorticity of a filament 
will be defined as 

4 =(If (3.1) 

where { is the axial component of 2 fi + I, its absolute vorticity, and I its length. By 
equation (2.5) with A equal to the axial distance of a point from one of the bounding 
surfaces divided by I ,  we have Dq fDt = 0. 

In this section we shall describe the flow which results if non-axisymmetric eddy motions 
are assumed thoroughly to mix potential vorticity, so that q becomes uniform. Less extreme 
assumptions are considered in Section 5. 

In view of the relevance of the Proudman-Taylor theorem, the distance r of a fluid fila- 
ment from the rotation axis is a natural coordinate to use. However, it Will prove more 
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Differential rotation in fluids 305 

Figure 1. The configuration under consideration. A thick fluid shell of outer radius a overlies a core 
(shaded) of radius (a-d) .  Symmetry about the equator is assumed. Fluid filaments a distance r from the 
rotation axis are distinguished by their latitude @ a t  the surface of the planet. 

convenient to work in terms of the latitude of the filament at the planet’s outer surface 

@ = c0s-l (ria) = n/2 - 8. (3.2) 

When ( a - d )  < r < a filaments are no longer in contact with the core of the planet. The 
‘critical latitude’ Cp* at which r = a - d  separates regions of different flow regime and is the 
basic variable parameter of the system. It is related to a and d by 

d/a =, 1 - cos @*. (3.3) 

The length of the fluid filament is given by 

1 = a  {sin@ -(sin2@ -sin2@*)”*), 

I = a  sin@, 
(3.4) 

Let us assume that non-axisymmetric eddy processes result in a large-scale mixing of 
potential vorticity. If we consider the zonally averaged flow, denoted by square brackets, the 
absolute vorticity of an element can be expressed in terms of the rotation rate a ( r )  of a 
cylindrical shell of fluid of radius r: 

1 d  

r dr 
[ t ]  = - - { a ( r ) r Z ) .  (3.5) 

Transforming the independent variable from r to @, and substituting into the zonally 
averaged form of (3.1) leads to 

d a  
2Q-cot@ - = [ q l a l .  

d@ 
The filament length I is a known function of @ (see equation 3.4), and the so differential 
equation (3.6) can, in principle, be solved to yield a. 

Our hypothesis is that q should be well-mixed meridionally, so that [ q ]  is constant with 
respect to variations of @. For the moment, we shall allow the possibility that [ q ]  may have 
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different values in the polar (i.e. @ > @*) and equatorial (@ < @*) regions. Denoting these 
values by 4 ,  and 4 ,  respectively, we derive the basic equations describing the flow as a func- 
tion of latitude: 

R. Hide and I, N. James 

d52 

d@ 
252 -co t$  - =aq,{sin@-(sin2$-sin2@*)'/2}, 

d52 
2 R - c o t # - = a q e s i n @ ,  

d$ 

Elementary integration techniques yield the solutions to these equations: 

A {sin3$ - (sin2@ -  in^$*)^'^} + B 
R =  

cos2$ 

Csin3$ +D 
52= 

cos2q5 ' @ < @*. i 

(3.7) 

(3.8a) 

(3.8b) 

The constants A and Care proportional to the potential vorticities qp and q, ,  while B and D 
are constants of integration. All these constants can be defined in terms of $*, given suitable 
boundary conditions. 

A sufficient set of boundary conditions is obtained by requiring 52 to be continuous at 
@ = q5*, and also that 52 should be finite as @ + 7r/2. The constants A and Care replaced by 
setting 52, = 52(7~/2) and 52, = 52(0). Using these boundary conditions we obtain 

252, (1 - C O S ~ $ *  - sin3@* + (sin2$ -  in'@*)^'^} 
3 (1 - cos @*) cos2$ 

9 

(3.9) 

5 2 =  

{2a2,(1 - c0s3@* -sin3#*) - 3C2,(1-cos@*)) sin3@ +3C2,(1 -cos@*) 

3 (1 - cos @*) sin3@* cos2@ 
5 2 =  

All the angular velocities in these expressions can be scaled by 52,. Consequently two 
independent parameters remain to be determined, namely @* and R,/Rp. In the next 
section we shall mention some ways of determining 52,/52,. 

4 Some equatorial jets 

An indication of the possible zonal flow profiles given by the expressions (3.9) is gained by 
determining Re/Rp and @* arbitrarily. Fig. 2 illustrates some typical results. The solid curves 
are for S l e  = 1.5 Q,, with $* varying between 10" and 70". The dashed curves are for 
@* = 30" and various values of 52,/52,. For $ > @*, the curves of course do not depend on 
Re. Clearly, for small values of $* and rather large values of a,, an equatorial jet structure 
is produced. Its shape can be reminiscent of the Jovian jet with the the characteristic slight 
reduction of the super-rotation at the equator, and a rapid drop of the zonal velocity around 
q5 = $*. For larger values of @*, the maximum super-rotation occurs at mid-latitudes (though 
always where $ < @*). 

The choice of 52, can be rendered less arbitrary. Suppose that before the mixing ensues, 
the atmosphere is in a state of solid body rotation at some initial rotation rate 52i. If there is 
no friction at the planetary core, the total angular momentum of the atmosphere will be 
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Figure 2. A series of flow profiles obtained from equation (2.9). The solid curves are for ne = 1.5 np and 
various values of @*. The dashed curves are for @* = 30" and a range of ne. Note the discontinuity of 
a n / a @  at @ = @*. 

conserved. This principle can be invoked to yield an expression for Re in terms of Ri and 
@* : 

a, - (1 - cosS@*) ni 
a,, 5 sin3@* 52, 3 (1 - cos @*) sin3@* 

2(1- C O S ~ @ *  - sin3@*) (1 - C O S ~ @ * )  
- -  - -  

The results of applying this formula to formulae (3.9) are shown in Fig. 3 .  The solid curves 

'" r 

I 
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t 
D L  L 

I 
1.1 

5 6 7  

rn _I, 
2 5  

n / n ,  
Figure 3. A series of flow profiles assuming no interaction with the core, and conservation of angular 
momentum for a state of initial solid body rotation, rate nj. The solid curves are for ni = 1.5 nP and 
various @* ; the dashed curves are for @* = 20" and various ni. 
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show the effects of varying @* for 52i = 1.5 LIP. The critical latitude @* was held at 20" and 
Ri varied to obtain the dashed curves. When f l i  is held constant and @* varied, the strength 
of the jet increases as it narrows. For large @*, the maximum is in mid-latitudes, but is 
located on the equator when @* is sufficiently small. This is accentuated when 52i is 
increased. 

This procedure is unsatisfying, since it still leaves two free parameters at our disposal. We 
have merely replaced 52, by Ri, which is equally arbitrary unless further assumptions can be 
justified. 

If some weak frictional coupling with the core is presumed, an atmosphere which is 
initially co-rotating with the core at angular velocity 52, will evolve until the net torque 
exerted on the core is zero. This constrains the flow for @ > @* and in fact serves to deter- 
mine LIP in terms of 52, and @*. Referring to equation (3.9b), the flow in this region is 
independent of 52,. Consequently, without further assumptions, 52, is undetermined and 
the equations remain incomplete. In any case, the resulting flow for @> @* will only be a 
solution provided the drag is very ineffective, compared to the mixing process, in modifying 
the potential vorticity of the atmosphere. We shall comment on these assumptions in the 
next section. 

Until this point, q p  and q,, the potential vorticities of the polar and equatorial latitudes, 
have been, in general, different. Indeed, the discontinuity in dZ/dq5 at @ = @* will greatly 
inhibit mixing across the critical latitude, assuming the planet is rapidly rotating. The effect 
is similar to the formation of a region of stagnant fluid when rapidly rotating barotropic 
flow passes over a sufficiently high isolated hill. Fluid is trapped over the hill, with little 
mixing with the embedding flow. Unless some external torque is acting on the fluid in the 
equatorial region, it is difficult to argue that no diffusion of potential vorticity across 
@ = @* will occur. After a sufficiently long time, it must be presumed that qp = 4 , .  

Such a constraint enables 52, to be determined in terms of Rp and @*, and so we obtain 
a single parameter family of solutions. Clearly, Z is continuous at @ = @*; furthermore, our 
boundary conditions took 52 to be continuous at @ = @*. It follows that continuity of 4 is 
obtained by requiring d52/d@ to be continuous at @ = @*. Calculating dQ/d@ from (3.9) 
and setting @ = @* enables this condition to be written, after some tedious algebra, as: 

R. Hide and I. N. James 

52, - 2(1-c0s3@*) _ -  
np 3(1- cos @*) 

Inspection, of this formula reveals that Q2,/RP lies in the range 2/3-2 for all @*. Re exceeds 
QP for @* G 68.5". The family of solutions is illustrated by Fig. 4. When @* is less than 30" 
or so, a set of blunt profiled equatorial jets results. The equatorial acceleration increases as 
the jet narrows. For large @*, smooth profiles with a mid-latitude maximum are obtained. 

This set of solutions is perhaps the most satisfactory obtained in this section. Neverthe- 
less, the 'equatorial acceleration' is enormous, with a, near 2 R p  for profiles of a realistic 
shape. The observed value of Re is 1.008 Rp for Jupiter and 1.04 fLP for Saturn. 

5 Limited mixing hypothesis 

In this section, we present an elaboration of our model which permits jets of more moderate 
velocity, but with widths comparable to those observed on Jupiter and Saturn. This is 
achieved at the expense of a second disposable parameter. In addition to the geometrical 
parameter @*, our second parameter may be thought of as summarizing the dynamical 
properties of the mixing eddies. 
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Figure 4. Flow profiles assuming the equatorial and polar potential vorticities are equal (qe = q p )  for 
various values of @*. 

We suppose that there is some frictional coupling between the core and the atmosphere 
for @ > @*; the core is regarded as being very massive and rotating at an angular velocity 
52, (so that its angular momentum is effectively infinite). In the region @< @*, only radial 
diffusion of potential vorticity takes place. The evolution of potential vorticity may be 
written as 

The first term represents the tendency of the atmosphere to spin up on a time-scale 7, until 
it rotates with the core. r is a function of @ and will clearly be infinite for @ < @*.D repre- 
sents some diffusion operator which parameterizes radial mixing by the eddies. For the sake 
of simplicity, we assume that T is constant for @ > @* and D = KV2.  If K/a2 < r-’, the 
mixing will be confined to a narrow range of latitudes of width 

A@ = 0 {(kr)1’2/a) (5.2) 

in the steady state. The complementary case, K / a 2 .  r-’, was commented upon in the 
previous section when ap was related to i2, by the requirement of no net torque on the 
core. 

Rather than attempt a full solution of the time dependent diffusion problem defined by 
(.5.1), we shall adapt the model described in Section 3 by assuming that mixing in the region 
@ > @* only extends to some latitude @ m ,  rather than to the pole. Clearly, (@m-@*) = O(A@). 
The solutions (2.8) are reworked, this time applying the boundary condition of S2 and 
d52/d@ continuous at @ = @* and @ = Grn and assuming a(@,) = QC. The algebra is entirely 
straightforward; we quote the expressions for the constants A,  B, C and D in formulae (3.8) 
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310 R. Hide and I.  N.  James 
for the sake of completeness: 

A = ac cos2@, / [sin3@, - (sin2@, -  sin'^*)^'^ -M 1,  
B =AM, 

(5.3a) 

(5.3b) 

C =  SZ; cos@*/3 sin2@* - 2s1*/3 sin @*, (5.3c) 

D = 52" (cosz@* (213) sin2@*] - 

where 

M = 3 cosZ@, [sin 4, - (sin2#, - ~ i n ~ @ * ) " ~ ] / 2  + sin r p ,  [sin3@, - (sin2@, -  in^@*)^'^], 

[cos @* sin @*]/3, (5.3d) 

(5.4a) 

a* a(@*) = ( A  sin3@* tB)/cos@*, (5.4b) 

[A(3 cos2@* sin @* t 2 sin4@*) t 2B] sin @* 
Q$ dQ(@*)/d@ = (5.4c) 

C O S ~ @  

It might be thought that the simplest case of all would be to set @, = @*, so that mixing 
is entirely confined to the equatorial latitudes. In this case, SZ$ is clearly zero and a* = Q c .  
Hence, from (3.8d) and (5.3d) 

a, = D = S Z c  [ 1 - (sin2@*)/3]. (5.5) 

52, is always less than ac, and becomes smaller as @* increases. No equatorial jet can result. 
However, as soon as @,-@* becomes non-zero, a, increases and becomes positive. For 

values of @, slightly in excess of @*, it is possible to  produce some very realistic jets with a 
small super-rotation of a few per cent, and widths of around 10" of latitude. Some examples 
are shown in Fig. 5. The strength of the jet increases both with @, -@* and with @*. When 
@, is sufficiently close to @* (or, equivalently, when @* is large enough) a characteristic 
retardation is seen actually on the equator, with the maximum located a little way either 
side of the equator. Such features are observed both on Jupiter and Saturn (see Gehrels 
1976,1983). 

Although this form of the model t a n  be tuned to produce realistic jets, the need to 
adjust two parameters leaves it somewhat unsatisfactory. Further progress requires an 
independent determination of @*, together with more detailed discussions of the nature of 
the eddy motions and of the core-atmosphere coupling, so that realistic bounds can be 
placed on @,-@*. Nevertheless, the model serves to demonstrate that eddies in a rapidly 
rotating shell of barotropic fluid have no difficulty in forming equatorial jets. Rather the 
problem is to identify the mechanisms which would oppose the tendency to mix potential 
vorticity and so reduce the strengths of the jets to more acceptable values. 

6 Concluding remarks 

A detailed discussion of the zonal flow in the fluid regions of particular planets and stars 
would require solutions of the full hydrodynamic equations, with explicit representation 
of energy sources, mixing processes and coupling with bounding surfaces, a task of con- 
siderable magnitude even with the aid of the most modern computers. In our investigation 
of the simple model introduced in this paper we have found a remarkable range of 
apparently relevant flow types by varying just two basic parameters. This indicates that the 
model could provide a useful basis for further work in which effects we have neglected in 
the first instance, such as compressibility, baroclinicity, and (in the case of electrically 
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2 

0 9 8  099 100 101 I 0 2  I 0 3  101. I05 
n / n p  

Figure 5. Flow profiles obtained using the hypothesis that potential vorticity mixing in the polar region 
extends only to latitude dm. The solid curves show the effect of varying @,,, when @* is set to 10". For 
the dashed curves, @* was varied, but keeping &-@* = 3". 

conducting fluids such as the solar atmosphere and interior and planetary cores) magneto- 
hydrodynamics effects are systematically taken into account. The assumption of coherence 
of axial fluid filaments is weakened by the presence of density inhomogeneities (see Hide 
1977), and in some circumstances, notably when there is a strong stable vertical gradient of 
potential density, it is more likely that it is the gradient of the vertical component of 
potential vorticity that tends to be smoothed out by large-scale mixing, as in the case 
discussed by Rossby (1947), rather than that of the axial component. 

Late note 

Ideas similar to some of those introduced in the present paper have been employed in an 
investigation by Rhines & Young (1 9821, a report of which has just appeared. 
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