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Differential Sensitivity Theory Applied

to Movement of Maxima Responses

by P. J. Maudlin, C. V. Parks, and D. G. Cacuci

Differential sensitivity theory (DST) is a recently developed methodology

to evaluate response derivatives dR/dct by using adjoint functions which corres-

pond to the differentiated (with respect to an arbitrary parameter a) linear

1 2or nonlinear physical system of equations. ' However, for many prob\emSj

where responses of importance are local maxima such as peak temperature, power,

or heat flux, changes in the phase space location of the peak itself are of

interest. This summary will present the DST procedure for predicting phase space

3
shifts of maxima responses as applied to the MELT-III fast reactor safety code.

An adjoint version of the MELT-III code has been developed to allow

evaluation of dR/dot via DST methodology. The adjoint system solved is of

the iutm

L* u* - s*. (1)

where L_ , u , and s are the adjoint operator, function, and source,

respectively. The general sensitivity expression is of the form

h BT, (2)

t V
where s is the source term for the differentiated physical system and BT denotes

boundary terms.

Consider a peak fuel response

R - // T(r,z,t) 6(r-r ) 6(z-z ) 6(t-t ) dVdt, (3)JJ o o o
t V



where the phase space location (r ,z ,t ) is dependent on a. For brevity,

consider only response shifts in the time domain. As shown in Ref. 5, an

expression for dt /da can be derived:

da

9_/dR.
t \

32T

3t2

(4)

Note that a similar expression involving other maxima responses and phase-

space variables can be derived.

The denominator of Eq. (4) is easily evaluated from the solution of the physical

problem. The numerator of Eq. (4) is best obtained by differentiating Eq. (3):

9 8*
dVdt + g|- (BT),

t V

where 3u /3t satisfies
o

(5)

(6)

Note that for the response of Eq. (3), the only non-zero term of s is

6(r-r ) 6(z-z ) 6(t-t ). Thus, the only non-zero term of 3s /3t is

-6(r-r ) 6(z-z ) 6'(t-t ), and so Eq. (6) can be solved with the adjoint

MELT code by correctly specifying the adjoint source. The 6'(t-t ) term

used in the adjoint source was numerically applied in a manner consistent

with the definition of Ref. 6.



An FFTF protected transient involving a $.23/s ramp reactivity

insertion with scram on high power was selected for investigation. The

peak fuel temperature occurred at t • .87s. Adjoint calculations were

performed for solution of Eqs. (1) and (6) from which dR/dot and dt /dot

were obtained via Eqs. (2) and (4)-(5). Figure 1 shows a profile of the

portion of the adjoint solution of Eq. (6) associated with the coolant

energy conservation equation. The ripple at t ̂  .87s is caused by the

adjoint source while the contour changes at t ̂  .5s are related to a source

connected with the reactor trip. Table I shows results for the parameters

which cause the greatest time shift in the response. The second and third

columns show the first-order DST predictions for the response magnitude change

and the time shift. The fourth and fifth columns indicate magnitude changes

and time shifts obtained by direct recalculation with a + Ace as input. The

results provide adequate validation of the time shifts predicted with DST

methodology.

In conclusion, it should be noted that only two adjoint calculations

were necessary to calculate the response magnitude change and time shift for all

the MELT parameters. This summary has shown that once the adjoint code is

available, only a simple source modification is needed to allow prediction

of the phase space movement of maxima responses.



Table I. Sensitivity Comparison Featuring a Peak

Fuel Temperature Response

Input
Parameter,a

DST

AR
Aa/a

Ato
Aa/a

Recalculat ion

AR Ato
Aa/a Aa/a

Initial Fuel 10.2
Temperature

Scram Power 1.27

Initial Power -0.08

Fuel -17.71
Conductivity

K
.5%

K
.3%

K
.4%

K
5%

0.021

0.012

-0.012 -

-0.024

10.0

1.3

- .1

K
.5%

K
.3%

K

-18.3

.4%

K
5%

0.02

0.01

-0.01

s
.5%

s
.3%

.4%

-0.025 f=r
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Fig. 1. Adjoint profile corresponding to
the coolant energy conservation
equation.


