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Abstract

Two�stage stochastic programs with random right�hand side are considered�

Optimal values and solution sets are regarded as mappings of the expected re�

course functions and their perturbations� respectively� Conditions are identi�ed

implying that these mappings are directionally di	erentiable and semidi	eren�

tiable on appropriate functional spaces� Explicit formulas for the derivatives are

derived� Special attention is paid to the role of a Lipschitz condition for solution

sets as well as of a quadratic growth condition of the objective function�
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� Introduction

Two�stage stochastic programming is concerned with problems that require a here�
and�now decision on the basis of given probabilistic information on the random data
without making further observations� The costs to be minimized consist of the direct
costs of the here�and�now �or �rst stage� decision as well as the costs generated by the
need of taking a recourse �or second stage� decision in response to the random environ�
ment� Recourse costs are often formulated by means of expected values with respect
to the probability distribution of the involved random data� In this way� two�stage
models and their solutions depend on the underlying probability distribution� Since
this distribution is often incompletely known in applied models� or it has to be approx�
imated for computational purposes� the stability behaviour of stochastic programming
models when changing the probability measure is important� This problem is studied
in a number of papers� We only mention here the surveys ���	� ��
	 and the papers ��	�
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���	� ��
	� ���	� ��	� ���	 and ���	� The paper ��	 contains general results on continuity
properties of optimal values and solutions when perturbing the probability measures
with respect to the topology of weak convergence� Quantitative continuity results of
solution sets to two�stage stochastic programs with respect to suitable distances of
probability measures are derived in ���	 and ��	� Asymptotic properties of statistical
estimators of values and solutions to stochastic programs are derived in ��
	� ���	� ���	�
They are based on directional di�erentiability properties of the underlying optimization
problems with respect to the parameter that carries the randomness ���
	� ���	� or the
probability measure ����	�� These directional di�erentiability results for values �in ���	�
and solutions �in ��
	� ���	� lead to asymptotic results via the so�called delta�method �
For a description of the delta�method we refer to Chapter � in ���	� ���	� to ���	 for
an up�to�date presentation and to ��	 for a set�valued variant� These papers illumi�
nate the importance of the Hadamard directional di�erentiability �for single�valued
functions� and of the semidi�erentiability �for set�valued mappings� in the context of
asymptotic statistics�
The present paper aims at contributing to this line of di�erential stability studies� The
results in ��
	� ���	 apply to fairly general stochastic optimization models� but impose
conditions that are rather restrictive in our context� The present paper deals with
special two�stage models and� using structural properties� avoids certain assumptions
that complicate or even prevent the applicability of those general results to two�stage
stochastic programs� Such assumptions are the �local� uniqueness of solutions and
di�erentiability properties of perturbed problems� which are indispensable in ��
	� ���	�
Before discussing this in more detail� let us introduce the class of two�stage stochastic
programs� we want to consider�

minfg�x� �Q��Ax� � x � Cg������

where g � IRm � IR is a convex function� C � IRm is a nonempty closed convex set� A
is a �s�m��matrix and Q� is the expected recourse function with respect to the �Borel�
probability measure � on IRs�

Q��y� �
Z
IRs

�Q�� � y���d��������

�Q�t� � inffhq� ui � Wu � t� u � �g �t � IRs�������

Here q � IR �m are the recourse costs� W is an �s� �m��matrix and called the recourse
matrix� and �Q�� � Ax� corresponds to the value of the optimal second stage decision
for compensating a possible violation of the �random� constraint Ax � �� To have the
problem ����� � ����� well�de�ned� we assume

�A�� posW � fWu � u � IR �m
�g � IRs �complete recourse��

�A�� MD � ft � IRs � W T t � qg �� � �dual feasibility��

�A��
Z
IRs

k�k��d�� �� ��nite �rst moment��

The assumptions �A�� and �A�� imply that �Q is �nite� convex and polyhedral on
IRs� Due to �A�� also Q� is �nite and convex on IRs �cf� ���	� ���	�� Observe that�
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in general� an expected recourse function Q� may be nondi�erentiable on a certain
union of hyperplanes in IRs and that� indeed� di�erentiability properties of Q� depend
on the degree of smoothness induced by the measure � �cf� ���	� ���	� ��	� ���	 and
Remark ����� Another observation shows that the uniqueness of solutions to ����� is
guaranteed only if the constraint set C picks just one element from the relevant level
set of g�	��Q��A 	�� This set may be large since Q��A 	� is constant on translates of the
null space of the matrix A �see Example ��� in ��	�� Proposition ��� below provides
some more insight into the structure of the solution set to ����� and elucidates the role
of the set�valued mapping ��y� �� argminfg�x� � x � C�Ax � yg in this respect�
Note that assumption �A�� could be relaxed by introducting the set K � fy � IRs �
Q��y� � ��g� Then �A�� and �A�� imply that K is a closed convex polyhedron and
that Q� is convex and continuous on K �cf� ���	�� Now �A�� can be replaced by the
condition K 
 A�C� �relatively complete recourse�� and much of the work done in this
paper carries over to this more general setting by using spaces of functions de�ned on
K instead of IRs�
Let KC denote the set of all convex functions on IRs which forms a convex cone in the
space C��IRs� of all continuous functions on IRs� KC will serve as the set of possible
perturbations of the given expected recourse function Q� � KC � We de�ne

��Q� �� inffg�x� �Q�Ax� � x � Cg�
��Q� �� argminfg�x� �Q�Ax� � x � Cg

and regard � and � as mappings from KC into the extended reals and the set of all
closed convex subsets of IRm� respectively�
In this paper we develop a sensitivity analysis for the mappings � and � at some given
function Q�� The stochastic programming origin of the model ����� takes a back seat
and our results are stated in terms of general conditions on Q� and its perturbations
Q� We identify conditions such that the value function � has �rst� and second�order
directional derivatives and the solution�set mapping � is directionally di�erentiable at
Q� into admissible directions� Here� admissibility means that the direction belongs to
the radial tangent cone to KC at Q�� i�e��

T r�KC �Q�� � f��Q�Q�� � Q � KC � � 	 �g�
ensuring that the di�erence quotients are well�de�ned� For v belonging to T r�KC �Q��
the Gateaux directional derivatives of � and � at Q� and �Q�� �x�� �x � ��Q��� respec�
tively� are de�ned as

���Q�� v� � lim
t���

�

t
���Q� � tv�� ��Q����

����Q�� v� � lim
t���

�

t�
���Q� � tv�� ��Q��� t���Q�� v���

���Q�� �x� v� � lim
t���

�

t
���Q� � tv�� �x��

if the limits exist� The third limit is understood in the sense of �Painlev�e�Kuratowski�
set convergence �e�g� ��	�� Recall that the lower and upper set limits of a family �St�t��
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of subsets of a metric space �X� d� are de�ned as

lim inf
t���

St � fx � X � lim
t���

d�x� St� � �g�
lim sup
t���

St � fx � X � lim inf
t���

d�x� St� � �g�

Both sets are closed and the lower set limit is contained in the upper limit� If both limits
coincide� the family �St�t�� is said to converge and its limit set is denoted by lim

t���
St�

For sequences of sets �Sn�n�IN the de�nitions of set limits are modi�ed correspondingly�
We also derive conditions implying that the limits de�ning the directional derivatives
exist uniformly with respect to directions v belonging to compact subsets of certain
functional spaces� The limits are then called ��rst� or second�order� Hadamard di�
rectional derivatives and semiderivatives for set�valued maps� respectively� The cor�
responding directional derivatives are de�ned on tangent cones to the cone of convex
functions in certain functional spaces� For more information on concepts of directional
di�erentiability and multifunction di�erentiability we refer to �	� ���	 and to ��	� ��	�
���	� ���	� respectively�
Let us �x some notations used throughout the paper� k 	 k and h	� 	i denote the norm
and scalar product� respectively� in some Euclidean space IRn� B�x� r� denotes the open
ball around x � IRn with radius r 	 �� d�x�D� denotes the distance of x � IRn to the
set D � IRn� for a real�valued function f on IRn� rf denotes its gradient in IRn and the
�n� n��matrix r�f its Hessian� if f is locally Lipschitzian near x � IRn� 
f�x� denotes
the Clarke subdi�erential of f at x� f ��x� d� denotes the directional derivative of f at
x in direction d if it exists� for x � C� T �C� x� denotes the tangent cone to C at x� i�e��
T �C� x� � lim inf

t���

�
t
�C � x� � clf��y � x� � y � C� � 	 �g� where cl stands for closure�

for x � C� � � T �C� x�� T ��C� x� �� denotes the second order tangent set to C at x in
direction �� i�e�� T ��C� x� �� � lim inf

t���

�
t�
�C�x� t�� �note that T ��C� x� �� is closed and

convex� see ���	 for further properties��
In our paper� we use the following linear metric spaces of real�valued functions on IRs�
The space C��IRs� of continuous functions on IRs equipped with the distance

d��f� �f� �
�X
n��

��n
kf � �fk��n

� � kf � �fk��n

� where

kfk��r � max
kyk�r

jf�y�j� for f� �f � C��IRs� and r 	 ��

the space C����IRs� of locally Lipschitzian functions on IRs with the metric

dL�f� �f� �
�X
n��

��n
kf � �fk��n � kf � �fkL�n

� � kf � �fk��n � kf � �fkL�n
� where

kfkL�r � sup
n jf�y�� f��y�j

ky � �yk � kyk � r� k�yk � r� y �� �y
o
�

� supfkzk � z � 
f�y�� kyk � rg� for f� �f � C����IRs� and r 	 ��

the space C��IRs� of continuously di�erentiable functions on IRs with the metric d�f� �f� �
d��f� �f��d��rf�r �f�� f� �f � C��IRs�� and the space C����IRs� of functions in C��IRs�
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whose gradients are locally Lipschitzian on IRs equipped with the distance d�f� �f� �
d��f� �f� � d��rf�r �f� � dL�rf�r �f� for all f � C����IRs��
The sensitivity analysis of the mappings � and � is carried out by exploiting structural
properties of the optimization model ������ We obtain novel di�erentiability properties
of solution sets and extend our earlier results on directional di�erentiability of optimal
values in ���	 considerably� As one might expect� the basic ingredients of our analy�
sis are a Lipschitz continuity result for solution sets with respect to the distance in
C����IRs� �Theorem ���� and a quadratic growth condition near solution sets �Theo�
rem ����� Both theorems extend earlier results in ��	 to more general situations for
the �rst stage costs g and constraint set C� All results in the paper apply to the
linear�quadratic case� i�e�� to linear or convex quadratic g and polyhedral C� Indeed�
all results are formulated as general as possible and most of them are accompanied by
illustrative examples� The second�order analysis of � in Section � utilizes some ideas
from ���	 and ���	� but its proof is entirely di�erent and its Gateaux di�erentiability
part is valid for nondi�erentiable directions �Theorem ����� It is also elaborated that
the Hadamard directional di�erentiability properties require the C��topology for the
�rst�order result and the C��topology for the second�order one �Theorem ����� while
the C����topology is needed for the semidi�erentiability of the solution�set mapping �
�Theorem ��
�� All results on di�erentiability properties of � in Section � are new and
do not follow from recent sensitivity results �as e�g� ��	� ��	� �
	� ���	� ���	� see also the
survey ��	 for further references��
The results of Sections � and � have direct implications to asymptotic properties of
values and solution sets of two�stage stochastic programs when applying nonparametric
estimation procedures to approximate Q�� For a discussion of some of the related
aspects we refer to ���	� where the delta�method is utilized and a central limit theorem
for all selections belonging to a Castaing representation of the approximate solution
sets is derived� Further applications to asymptotics are beyond the scope of this paper
and will be done elsewhere�

� Basic directional properties

The �rst step in our analysis of directional properties consists in establishing results
on the lower Lipschitz continuity of � and on the directional uniform quadratic growth
of the objective near its solution set� Both results become important for our method
of deriving directional di�erentiability properties for the optimal value function � and
the solution set mapping � at some given expected recourse function Q�� Their proofs
are based on a decomposition of the program

minfg�x� �Q�Ax� � x � Cg������

with Q belonging toKC � into two auxiliary problems� The �rst one is a convex program
with decisions taken from A�C� and the second represents a parametric convex program
which does not depend on Q�





Proposition ��� Let Q � KC and ��Q� be nonempty� Then we have

��Q� � inff��y� �Q�y� � y � A�C�g � ��Ax� �Q�Ax�� for any x � ��Q�� and

��Q� � ��Y �Q��� where

Y �Q� �� argminf��y� �Q�y� � y � A�C�g�
��y� �� inffg�x� � x � C�Ax � yg� and

��y� �� argminfg�x� � x � C�Ax � yg �y � A�C���

Moreover� � is convex on A�C� and dom � is nonempty�

Proof� Let �x � ��Q�� Then we have

��Q� � g��x� �Q�A�x� � ��A�x� �Q�A�x� � inff��y� �Q�y� � y � A�C�g�
For the converse inequality� let  	 � and �y � A�C� be such that

���y� �Q��y� � inff��y� �Q�y� � y � A�C�g� 

�
�

Then there exists a �x � C such that A�x � �y and g��x� � ���y� � �
�
� Hence�

��Q� � g��x� �Q�A�x� � ���y� �Q��y� �


�
� inff��y� �Q�y� � y � A�C�g� �

Since  	 � is arbitrary� the �rst statement has been shown� In particular� x � ��Ax�
and Ax � Y �Q� for any x � ��Q� � Hence� it holds that ��Q� � ��Y �Q��� Conversely�
let x � ��Y �Q��� Then x � ��y� for some y � Y �Q�� Thus Ax � y and g�x� � ��y� �
��Ax� implying

g�x� �Q�Ax� � ��Ax� �Q�Ax� � inff��y� �Q�y� � y � A�C�g
� ��Q� and x � ��Q��

Since the convexity of � is immediate� the proof is complete� �

In the following� it will turn out that Lipschitzian properties of the solution set mapping
y �� ��y� and a quadratic growth property of g near ��y� are essential� For the linear�
quadratic case we are in a comfortable situation in this respect� Namely� we have the
following

Proposition ��� Let g be linear or convex quadratic� C be convex polyhedral and as�

sume dom� to be nonempty� Then � is a polyhedral multifunction which is Hausdor�

Lipschitzian on its domain dom� � A�C�� i�e�� there exists a constant L 	 � such that

dH���y�� ���y�� � Lky � �yk� for all y� �y � A�C��

where dH denotes the �extended� Hausdor� distance on subsets of IRm�

Moreover� for each r 	 � there exists a constant ��r� 	 � such that

g�x� � ��Ax� � ��r�d�x� ��Ax���� for all x � C �B��� r��

�Here � and � are de�ned as in Proposition �����
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Proof� The Lipschitz property of � is shown in ���	� Theorem ���� To prove the second
statement� let g be of the form g�x� � hHx� xi� hc� xi� where H is symmetric� positive
semide�nite and c � IRm� For each y � A�C� we �x some z�y� � ��y�� An elementary
characterization of solution sets to convex quadratic programs with linear constraints
yields that

��y� � fx � C � Ax � y�Hx � Hz�y�� hc� xi � hc� z�y�ig�
Due to the Lipschitz behaviour of convex polyhedra �cf� ���	�� there exists a constant
L� 	 � such that

d�x� ��y�� � L��kHx�Hz�y�k� jhc� xi � hc� z�y�ij��
for all y � A�C� and x � C with Ax � y� Using the decomposition H � H

�

�H
�

� �

where H
�

� denotes the square root of H� and the representation hc� xi � hc� z�y�i �

g�x�� ��y�� kH �

�xk� � kH �

� z�y�k�� one arrives at the estimate

d�x� ��y�� � L��kH �

�k�� � kxk� kz�y�k�kH �

� �x� z�y��k� g�x�� ��y��

for all y � A�C� and x � C with Ax � y�
Now� let r 	 � and let us �x some element �x � C � B��� r� and a correspond�
ing z�A�x� � ��A�x�� For each y � A�C� we now select z�y� � ��y� such that
kz�y� � z�A�x�k � d�z�A�x�� ��y��� Since � is Hausdor� Lipschitzian on A�C�� this
implies kz�y�� z�A�x�k � LkA�x� yk for all y � A�C�� Hence� there exists a constant
K�r� 	 � such that kz�Ax�k � K�r� for all x � C �B��� r�� Thus our estimate contin�

ues to d�x� ��Ax��� � �L�r��kH �

� �x�z�Ax��k���g�x����Ax���� for all x � C�B��� r�
and some constant �L�r� 	 �� Furthermore� the equation

g
��
�
�x� z�y��

�
�

�

�
g�x� �

�

�
g�z�y��� �

�
kH �

� �x� z�y��k�

implies kH �

� �x � z�y��k� � ��g�x� � ��y��� for all y � A�C�� x � C with Ax � y�
Therefore� we �nally obtain

d�x� ��Ax��� � �L�r����g�x�� ��Ax�� � �g�x�� ��Ax����

� �L�r�maxf�� K�r�g�g�x�� ��Ax��

for all x � C �B��� r�� where K�r� �� sup
x�C�B���r�

�g�x�� ��Ax��� �

Due to the above proposition� the main results in this section apply to the linear�
quadratic case� Although this case represents the main application of our results� the
assumptions of the following theorems are formulated in terms of general conditions on
the mapping � in order to gain generality and clarity� The �rst theorem states �lower�
Lipschitz continuity of � at Q� and supplements Theorem ��� in ��	�

Theorem ��� Let Q� � KC � ��Q�� be nonempty� bounded and Q� be strongly convex

on some open� convex neighbourhood of A��Q��� Let �x � ��Q�� and assume that there

exist a constant L 	 � and a neighbourhood U of �y with f�yg � A��Q�� such that

d��x� ��y�� � Lk�y � yk� for all y � A�C� � U�






Then there exist constants �L 	 �� � 	 � and r 	 � such that

d��x� ��Q�� � �LkQ�Q�kL�r
whenever Q � KC and kQ�Q�kL�r � ��

Proof� We may assume that U is open� convex and that Q� is strongly convex on U �
Let V be an open� convex� bounded subset of IRm such that ��Q��  V and A�V �  U �
It follows from Proposition ��� in ��	 �where a slightly di�erent terminology is used�
that there exists a constant � 	 � such that � �� ��Q�  V whenever Q � KC and

supfkzk � z � 
�Q �Q���y�� y � cl A�V �g � ��

Let r 	 � be chosen such that cl A�V �  �B��� r�� Hence� we have � �� ��Q�  V

whenever Q � KC � kQ�Q�kL�r � �� Then Proposition ��� yields the relation ��Q� �
��Y �q��� where Y �Q� � argminf��y��Q�y� � y � A�C�g� Since Q� is strongly convex
on U � there exists a constant � 	 � such that

�ky � �yk� � ��y� �Q��y�� ����y� �Q���y��� for all y � U�

Let Q � KC with kQ � Q�kL�r � � and let �y � Y �Q�� Since y belongs to A�V �  U �
we obtain

�k�y � �yk� � ���y� �Q���y�� ����y� �Q���y�� � ���y� �Q��y�� ����y� �Q��y��

� �Q�Q����y�� �Q�Q����y�

and� hence�

k�y � �yk � �

�

�Q�Q����y�� �Q�Q����y�

k�y � �yk � �

�
kQ�Q�kL�r�

The proof can now be completed as follows� Let Q � KC be such that kQ�Q�kL�r � ��
Then

d��x� ��Q�� � d��x� ��Y �Q��� � sup
y�Y �Q�

d��x� ��y��

� L sup
y�Y �Q�

k�y � yk � L

�
kQ�Q�kL�r� �

Remark ��� The proof shows that a Lipschitz modulus of � can be chosen as the
quotient of a Lipschitz constant to � and a strong convexity constant to Q��
From the proof it is immediate that replacing the local Lipschitz condition on � by
stronger conditions like

sup
x����y�

d�x� ��y�� � Lk�y � yk or

dH����y�� ��y�� � Lk�y � yk� for all y � A�C� � U�

leads to corresponding stronger Lipschitz continuity properties of solution sets� Because
of Proposition ���� all of this applies to the linear�quadratic case� However� it is worth

�



mentioning that the theorem also applies to more general problems such that the
corresponding solution sets ��y� enjoy Lipschitzian properties� Conditions ensuring
Lipschitz behaviour of � can be derived from stability results for the corresponding
parametric generalized equation

� � rL�x� �� y� �NC�IRs�x� �������

which describes the �rst order necessary optimality condition� Here L�x� �� y� �� g�x��

�T �Ax � y� is the Lagrangian function� rL�x� �� y� �

�rg�x� � AT�

Ax� y

�
� where g is

assumed to be continuously di�erentiable� and NC�IRs is the normal cone map of convex
analysis� Such stability results are presently available for broad classes of parametric
generalized equations �e�g� ���	� ���	� ���	�� A typical recent result in this direction�
which applies to our situation for twice continuously di�erentiable g� is Theorem ��
in ���	� It says that the solution set mapping of the parametric generalized equation
����� is pseudo�Lipschitzian around ��x� ��� �y� if the adjoint generalized equation

� � r�L��x� ��� �y�w� �D�NC�IRs��x� ����rL��x� ��� �y���w�������

has only the trivial solution w� � ��
Here D�NC�IRs��x� ����rL��x� ��� �y�� is the Mordukhovich coderivative ����	� of the nor�
mal cone multifunction at the point ��x� ����rL��x� ��� �y�� belonging to the graph of
NC�IRs� Translating this into our framework� we obtain that the mapping � is pseudo�
Lipschitzian around ��x� �y� if the following two conditions are satis�ed�

�a� There exists an element �x belonging to the relative interior of C such that A�x � �y
�Slater condition��

�b� the equations Aw�
� � � and � � r�g��x�w�

� � ATw�
� � D�NC��x� ����rg��x� �

AT ����w�
�� have only the trivial solution w�

� � �� w�
� � �� �Here ��x� ��� is a solution

of ����� for y � �y��

The next example shows that the theorem also applies to instances of two�stage stochas�
tic programs with nonpolyhedral convex constraint sets C�

Example ��� In ����� � ����� let m � �� s � �� g�x� � �� A � ��� ��� q � ��� ���
W � ������� � be the uniform distribution on ���

�
� �
�
	 and C � f�x�� x�� � IR� �

x�� � x�g� Then we have �Q�t� � jtj� Q��y� �
R
IR

j� � yj��d�� �
�
y� � �

	
� y � ���

�
� �
�
	

jyj otherwise
�

��Q�� � f��� ��g and Q� is strongly convex on ���
�
� �
�
�� For y � A�C� � IR� we have

��y� � fx � C � Ax � yg � f�y� x�� � IR� � x�� � yg � fyg � ��py�py	
and� hence d���� ��� ��y�� � y for all y � IR�� Thus Theorem ��� applies for �x � ��� ���

Example ��� shows that Theorem ��� gets lost if Q� fails to be strongly convex on some
neighbourhood of A��Q��� Our next result establishes a su�cient condition for the
uniform quadratic growth near solution sets�

�



Theorem ��� Let Q� � KC � ��Q�� be nonempty� bounded and Q� be strongly convex

on some open convex neighbourhood U of A��Q��� Assume that there exists a constant

L 	 � such that

dH���y�� ���y�� � Lky � �yk� for all y� �y � A�C��

and� for each r 	 � there exists a constant ��r� 	 � such that

g�x� � ��Ax� � ��r�d�x� ��Ax���� for all x � C �B��� r��

Then� for some open� bounded neighbourhood V of ��Q�� and each v � T r�KC �Q���
there exist constants c 	 � and � 	 � such that the following uniform growth condition

holds�

g�x� � �Q� � tv��Ax� � ��Q� � tv� � cd�x� ��Q� � tv����

for all x � C � V and t � ��� ���

Proof� Let v � T r�KC � Q�� and V be an open� bounded subset of IRm such that
��Q��  V and A�V � � U � As in Theorem ��� we choose � 	 � such that � ��
��Q�� tv�  V and� in addition� that Q�� tv is strongly convex on U for all t � ��� ��
�with a uniform constant � 	 ��� For each t � ��� �� Proposition ��� then yields that
��Q� � tv� � ��yt�� where yt is the unique minimizer of the strongly convex function
��Q��tv on A�C� and� moreover� we have �ky�ytk� � ��y���Q��tv��y����Q��tv��
for all y � A�C� � U � Now� we choose r 	 � such that V � B��� r� and continue for
each x � C � V and t � ��� �� as follows�

d�x� ��Q� � tv��� � d�x� ��yt��
�

� ��d�x� ��Ax��� � dH���Ax�� ��yt��
��

� �
� �

��r�
�g�x�� ��Ax�� � L�kAx� ytk�

�

� �
� �

��r�
�g�x����Ax���L�

�
���Ax���Q��tv��Ax����Q��tv��

�

� �max
n �

��r�
�
L�

�

o
�g�x� � �Q� � tv��Ax�� ��Q� � tv��

Putting c�� � �maxf �
��r�

� L
�

�
g completes the proof� �

The following examples show that the quadratic growth condition gets lost even for
the original problem� i�e� t � �� if either the Lipschitz condition for � or the strong
convexity property for Q� are violated�

Example ��� Consider again the set�up of Example ��� It holds that dH���y�� ����� �

�y� � y�
�

� � for all y � IR� � A�C�� and � is not Hausdor� Lipschitzian on A�C��
Supposed there exists a neighbourhood V of ��Q�� � f��� ��g and a constant � 	 �
such that the growth condition

�d�x� ��Q���
� � �kxk� � Q��x��� ��Q�� � x��� for all x � C � V�

is satis�ed� Since the sequence �� �
n
� �p

n
�� belongs to C �V for su�ciently large n � IN �

this would imply �� �
n�

� �
n
� � �

n�
for large n� which is a contradiction�

��



Example ��� In ����� � ����� let m � s � �� g�x� � �� A � �� C � IR� q � ��� ���
W � ������ and � be the probability distribution on IR having the density

f��z� �

� jzj� z � ���� �	
� otherwise

Then Q��y� �
R
IR

j� � yj��d�� �
�

�
�
jyj� � �

�
� y � ���� �	

jyj otherwise
�

��Q�� � f�g� and there is no neighbourhood of ��Q�� where Q� is strongly convex�
It is clear that the quadratic growth condition fails to hold� since the inequality �x� �
Q��x� � ��Q�� � �

�
jxj� cannot be true for some � 	 � and all x belonging to some

neighbourhood of x � ��
With the linear function v�x� � �x �x � IR� we obtain for all t � ��� �	 that ��Q��tv� �
fptg �cf� Example ��
�� Hence� the lower Lipschitz property of � has got lost� too�

Since the strong convexity and later also the strict convexity of the expected recourse
function Q� �on certain convex subsets of IRs� form essential conditions in most of our
results� we record a theorem �Theorem ��� in ��
	� that provides a handy criterion to
check these properties for problem ����� � ������

Proposition ��	 Let V  IRs be open convex and assume �A��� �A��� Consider the

following conditions�

�A��� intMD � ft � IRs � W T t � qg �� ��
�A�� � is absolutely continuous on IRs�

�A��� � satis�es �A�� and there exist a density f� for � and a constant

� 	 � such that f��z� � � whenever d�z� V � � ��

Then �A��� and �A�� imply that Q� is strictly convex on V if V is a subset of the

support of �� and �A���� �A��� imply that Q� is strongly convex on V �

In addition� it is shown in ��
	 that under �A�� � �A�� the condition �A��� is also
necessary for the strict convexity of Q�� For extended simple recourse models �i�e�
W � �H��H� with some nonsingular �s� s��matrixH� �A��� is equivalent to q��q� 	 �
�componentwise�� where q � �q�� q�� and q�� q� � IRs� This may be used to check
strict or strong convexity properties in the Examples �� and ����

� Directional derivatives of optimal values

In this section� we study �rst� and second�order directional di�erentiability properties of
the optimal value function � on its domain KC � We begin with the �rst�order analysis
and show that � as a mapping fromKC to the extended reals is Hadamard directionally
di�erentiable at some given expected recourse function Q� � KC � Here KC is regarded
as a subset of C��IRs�� Recall that � is Hadamard directionally di�erentiable at Q� on

��



KC i� for all sequences �vn� converging to some v in C��IRs� and all sequences tn � ��
such that the elements Q� � tnvn belong to KC the limit

���Q�� v� � lim
n��

�

tn
���Q� � tnvn�� ��Q���

exists� Since the condition Q� � tnvn � KC means that vn � �
tn
�Qn � Q�� for some

Qn � KC � the limit v belongs to the tangent cone T �KC �Q�� toKC atQ� in C
��IRs�� In

���	� ���	 this property is also called Hadamard directional di�erentiability tangentially
to KC �

Proposition ��� Let Q� � KC and assume that ��Q�� is nonempty� bounded� Then

� is Hadamard directionally di�erentiable at Q� on KC and it holds for all v �
T �KC �Q���

���Q�� v� � minfv�Ax� � x � ��Q��g�
If� in addition� Q� is strictly convex on some open convex neighbourhood of A��Q���
we have

���Q�� v� � v��y�� where f�yg � A��Q���

Proof� Arguing similarly as in the proof of Propostion ��� in ���	 there exists a
neighbourhood N of Q� in C��IRs� such that ��Q� is nonempty for all Q � KC � N �
Let �tn� and �vn� be sequences such that tn � ��� vn � v in C��IRs� and Q� � tnvn
belongs to KC for all n � IN � Then Q� � tnvn � KC � N for su�ciently large n � IN �
Let xn � ��Q� � tnvn� for those n � IN � Since � is Berge upper semicontinuous at Q�

����	�� the sequence �xn� has an accumulation point x � ��Q�� and we obtain

lim sup
n��

�

tn
���Q� � tnvn�� ��Q���

� lim sup
n��

�

tn
�g�xn� � �Q� � tnvn��Axn�� g�xn��Q��Axn��

� lim sup
n��

vn�Axn� � v�Ax��

where the last inequality follows from the uniform convergence of �vn� to v on bounded
subsets of IRs� In order to show the reverse inequality for lim inf� let x � ��Q��� Then

lim inf
n��

�

tn
���Q� � tnvn�� ��Q���

� lim inf
n��

�

tn
�g�x� � �Q� � tnvn��Ax�� g�x��Q��Ax��

� lim inf
n�� vn�Ax� � v�Ax��

This completes the proof of the �rst part� The second part is an immediate conclusion�
since A��Q�� is a singleton whenever Q� is strictly convex on some of its open� convex
neighbourhoods� �

��



The preceding result can also be proved by using the methodology of Theorem ����� in
���	� There the compactness of the constraint set is assumed and Gateaux directional
di�erentiability of � at Q� together with its Lipschitz continuity is shown� Here we
prefer a direct two�sided argument� which will also be used in the subsequent second�
order analysis of �� Namely� we will �rst derive an upper bound for the second�order
Hadamard directional derivative of � at some Q� � KC � where KC is equipped with
the C����topology� Secondly� we identify conditions implying that the upper bound
coincides with the Gateaux directional derivative of � at Q� for all directions taken
from T r�KC �Q���

Lemma ��� Let y � IRs� Q� � KC � tn � ��� �Qn� be a sequence in KC such that

vn �� �
tn
�Qn � Q�� � v in C����IRs� and let ��n� be a sequence converging to � in IRs�

Then we have lim sup
n��

�
tn
�vn�y � tn�n�� vn�y�� � max

���v�y�
h�� �i�

Proof� Each function vn is locally Lipschitzian on IRs and� hence� Lebourg�s mean
value theorem for Clarke�s subdi�erential ���	� implies the existence of elements �yn
belonging to the segments �y� y � tn�n	 such that

�

tn
�vn�y � tn�n�� vn�y�� � fh�� �ni � � � 
vn��yn�g�

The convergence vn � v in C����IRs� implies that

supfk�k � � � 
�vn � v��y�� kyk � rg ��
n�� �

holds for any r 	 �� This yields

dH�
vn��yn�� 
v��yn�� � supfk�k � � � 
�vn � v���yn�g ��
n�� ��

Here dH denotes the Hausdor� distance and the inequality is a consequence of general
properties of the subdi�erential �cf� Lemma ��� in ��	�� Hence� there exist elements
��n belonging to 
v��yn� such that

�

tn
�vn�y � tn�n�� vn�y�� � k�nkdH�
vn��yn�� 
v��yn�� � h��n� �ni

and� for some �� � 
v�y��

lim sup
n��

�

tn
�vn�y � tn�n�� vn�y�� � lim sup

n��
h��n� �ni � h��� �i

� max
���v�y�

h�� �i�

Here� the identity follows from the upper semicontinuity of 
v�	�� This completes the
proof� �

Proposition ��� Let Q� � KC and assume that ��Q�� is nonempty� bounded� Let g

be twice continuously di�erentiable� Q� be strictly convex on some open convex neigh�

bourhood of A��Q�� and twice continuously di�erentiable at �y� where f�yg � A��Q���

��



Let �x � ��Q��� tn � �� and �Qn� be a sequence in KC such that vn �� �
tn
�Qn�Q��� v

in C����IRs�� Then

lim sup
n��

�

t�n
���Q� � tnvn�� ��Q��� tn�

��Q�� vn��

� inffhrg��x�� zi� hrQ���y�� Azi� �

�
hr�g��x�� �� �i

�
�

�
hr�Q���y�A��A�i� max

���v��y�
h�� A�i � � � S��x�� z � T ��C� �x� ��g�

where S��x� �� f� � T �C� �x� � hrg��x�� �i� hrQ���y�� A�i � �g� T �C� �x� is the tangent

cone to C at �x and T ��C� �x� �� the second order tangent set to C at �x in direction ��

Proof� Let � � S��x� and z � T ��C� �x� ��� Then there exists a sequence �zn� such that
zn � z and �x � tn� � �t�nzn � C for all n � IN � Using Proposition ���� this allows for
the following estimate

��Q� � tnvn�� ��Q��� tn�
��Q�� vn�

� g��x� tn� � t�nzn� �Q��A��x � tn� � t�nzn�� � tnvn�A��x � tn� � t�nzn��

� g��x��Q��A�x�� tnvn�A�x�

� �g��x� tn� � t�nzn�� g��x�� tnhrg��x�� �i	
��Q��A��x � tn� � t�nzn���Q��A�x�� tnhrQ��A�x�� A�i	
�tn�vn�A��x � tn� � t�nzn��� vn�A�x�	�

After dividing by t�n and using Lemma ��� the limes superior as n � � of the right�
hand side can be bounded above by

hrg��x�� zi� �

�
hr�g��x��� �i � hrQ��A�x�� Azi

�
�

�
hr�Q��A�x�A��A�i� max

���v�A�x�
h�� A�i�

Taking the in�mum on the right�hand side yields the assertion� �

We notice that the upper second�order Hadamard directional derivative
lim sup
n��

�
t�n
���Q��tnvn����Q���tn���Q�� vn�� is nonpositive� since � is concave on KC

and� hence� the inequality ��Q��tnvn����Q�� � ��Qn����Q�� � ���Q��Qn�Q�� �
tn�

��Q�� vn� is valid� We also note that the upper bound is nonpositve� since ��� ��
belongs to S��x�� T ��C� �x� �� � S��x�� T �C� �x��
Next we consider particular perturbations Qn of Q�� namely� Qn �� Q� � �tn�Q�Q��
for some Q � KC � � 	 � and su�ciently large n � IN � Then vn � ��Q � Q�� �
T r�KC �Q��� In the following result we give conditions implying that the second�order
�Gateaux� directional derivative exists and coincides with the upper bound of the
previous proposition� The result extends those in ���	 although its proof parallels in
parts that of Theorem ��� in ���	�

��



Theorem ��� Let Q� � KC and assume that ��Q�� is nonempty� bounded� Let g be

twice continuously di�erentiable� Q� be strictly convex on some open convex neighbour�

hood of A��Q�� and twice continuously di�erentiable at �y� where f�yg � A��Q��� Let

�x � ��Q��� v � T r�KC �Q�� and assume that

�i� d��x� ��Q� � tv�� � O�t� for small t 	 �� and

�ii� the second�order set S���x� �� �� fz � T ��C� �x� �� � hrg��x�� zi� hrQ���y�� Azi � �g
is nonempty for each � � S��x��

Then the second�order Gateaux directional derivative of � at Q� in direction v exists

and it holds that

����Q�� v� � lim
t���

�

t�
���Q� � tnv�� ��Q��� t���Q�� v��

� inf
n�
�
hr�g��x��� �i� �

�
hr�Q���y�A��A�i� v���y�A�� � � � S��x�

o
�

Moreover� the in�mum is attained at some �� � S��x� having the property that

����Q�� v� �
�
�
v���y�A����

�Here S��x� and T ��C� �x� �� are de�ned as in the previous result� v���y� �� is the directional
derivative of v at �y in direction � and O�t� denotes a real quantity such that �

t
jO�t�j is

bounded as t� ����

Proof� �i� implies that there exist constants L 	 �� � 	 � and elements x�t� �
��Q� � tv� such that kx�t� � �xk � Lt for all t � ��� ��� By expanding g and Q� and
using Proposition ��� we obtain

��Q� � tv�� ��Q��� t���Q�� v�

� g�x�t�� �Q��Ax�t�� � tv�Ax�t��� g��x��Q��A�x�� tv�A�x�

� hrg��x�� x�t�� �xi� �

�
hr�g��x��x�t�� �x�� x�t�� �xi

�hrQ��A�x�� A�x�t�� �x�i� �

�
hr�Q��A�x��A�x�t�� �x��� A�x�t�� �x�i

�t�v�Ax�t��� v�A�x�� � o�kx�t�� �xk���
Moreover� we have that o�kx�t���xk�� � o�t�� where o�s� denotes a real quantity having
the property �

s
o�s� � � as s� ��� Since the optimality of �x implies

hrg��x�� x�t�� �xi� hrQ��A�x�� A�x�t�� �x�i � �

for any t � ��� ��� we have

�

t�
���Q� � tv�� ��Q��� t���Q�� v��

� �

�

D
r�g��x�

�

t
�x�t�� �x��

�

t
�x�t�� �x�

E

�
�

�

D
r�Q���y�A

��
t
�x�t�� �x�

�
� A

��
t
�x�t�� �x�

�E

�
�

t

�
v
�
A�x � tA

��
t
�x�t�� �x�

��
� v�A�x�

�
� o����

�����

�



Now take a sequence �tn� tending to �� in such a way that

lim inf
t���

�

t�
���Q� � tv�� ��Q��� t���Q�� v��

� lim
n��

�

t�n
���Q� � tnv�� ��Q��� tn�

��Q�� v��
�����

and that �n �� �
tn
�x�tn�� �x� ��

n��
��� The latter is possible since k �

tn
�x�tn�� �x�k � L for

n � IN su�ciently large� Then �� � T �C� �x� and Proposition ��� yields

v��y� � ���Q�� v� � lim
n��

�

tn
���Q� � tnv�� ��Q���

� lim
n��

�

tn
�g��x� tn�n� � �Q� � tnv��A��x� tn�n��� g��x��Q��A�x��

� hrg��x�� ��i� hrQ��A�x�� A��i� v�A�x��

This implies �� � S��x�� From ����� and ����� we obtain

lim inf
t���

�

t�
���Q� � tv�� ��Q��� t���Q�� v��

� lim
n��

n�
�
hr�g��x��n� �ni� �

�
hr�Q���y�A�n� A�ni� �

tn
�v��y � tnA�n�� v��y��

o

�
�

�
hr�g��x���� ��i� �

�
hr�Q���y�A��� A��i� v���y�A����

Here we have used the fact that v is Hadamard directionally di�erentiable and Clarke
regular ���	�� i�e� v���y� �� � max

���v��y�
h�� �i� From Proposition ��� we obtain

lim sup
t���

�

t�
���Q� � tv�� ��Q��� t���Q�� v��

� inf
n
hrg��x� zi� hrQ���y�� Azi� �

�
hr�g��x��� �i�����

�
�

�
hr�Q���y�A��A�i� v���y�A�� � � � S��x�� z � T ��C� �x� ��

o

� inf
n�
�
hr�g��x��� �i� �

�
hr�Q���y�A��A�i� v���y�A�� � � � S��x�

o
�

The latter equality is due to �ii� and to the fact that the necessary optimality condition
for �x yields

hrg��x�� zi� hrQ���y�� Azi � �� for all z � T ��C� �x� ��� � � S��x��

Hence� the limit lim
t���

�
t�
���Q� � tv� � ��Q�� � t���Q�� v�� exists and is equal to the

in�mum subject to � � S��x�� Moreover� this in�mum is attained at �� � S��x�� For the
remainder of the proof we put a��� �� v���y�A�� and

B��� ��
�

�
hr�g��x��� �i� �

�
hr�Q���y�A��A�i� for all � � IRn�

��



Since S��x� is a �convex� cone� we have S��x� � �S��x� for any � 	 � and thus

� � f��� �� B����� � a������ B����� a����

� ��B���� � �a����� �B���� � a������ for all � 	 ��

In case of B���� 	 �� the quadratic function f vanishes at � � � with the property
f ���� � �B���� � a���� � � and the �nal assertion is shown� If B���� � �� the fact that
� � f��� � �a����� a���� holds for any � 	 �� implies a���� � �� Thus ����Q�� v� � � �
�
�
a���� and the proof is complete� �

The proof shows that the previous theorem remains true when replacing condition
�ii� by the condition that both in�ma in ����� coincide� Next we state a more handy
criterion implying that ����Q�� v� exists for any direction v � T r�KC �Q���

Corollary ��� Let Q� � KC and assume that ��Q�� is nonempty� bounded� Let g be

twice continuously di�erentiable� Q� be strongly convex on some open convex neigh�

bourhood of A��Q�� and twice continuously di�erentiable at �y where f�yg � A��Q���
Let �x � ��Q�� and assume that

�i�� there exist a constant L 	 � and a neighbourhood U of �y such that

d��x� ��y�� � Lk�y � yk for all y � A�C� � U � where

��y� �� argminfg�x� � x � C�Ax � yg� y � A�C��

�ii� the second�order set S���x� �� � fz � T ��C� �x� �� � hrg��x�� zi�hrQ���y�� Azi � �g
is nonempty for each � � S��x��

Then the second�order Gateaux directional derivative of � at Q� exists for any direction

v � T r�KC �Q�� and the formula for ����Q�� v� in Theorem ��� holds true�

Moreover� condition �ii� is satis�ed if C is polyhedral and �i�� is satis�ed for any �x �
��Q�� if� in addition to the polyhedrality of C� g is linear or �convex� quadratic�

Proof� Let v � T r�KC �Q��� Theorem ��� then says that there exist constants �L 	 ��
� 	 �� r 	 � such that

d��x� ��Q� � tv�� � �LkvkL�rt whenever kvkL�rt � ��

Hence� the strong convexity of Q� and condition �i�� imply that condition �i� of the
previous theorem is satis�ed and that the �rst part of the assertion is shown� If C
is polyhedral� we have T ��C� �x� �� � T �T �C� �x�� �� and thus � � T ��C� �x� �� for any
� � T �C� �x�� Hence� �ii� is satis�ed� If C is polyhedral and g is linear or �convex�
quadratic� Proposition ��� implies �i�� to hold for any �x � ��Q�� � ���y�� �

Let us consider two illustrative examples to provide some insight into the bene�t and
limits of the previous results�

Example ��� We revisit Example �� and know that condition �i�� is satis�ed for
�x � ��� ��� Furthermore� it holds that T �C� �x� � IR� � IR and

T ��C� �x� �� �

���
��
IR�� �� 	 �

fx� � IR � x� � ���g � IR� �� � �
� for any � � T �C� �x��

�




Hence� �ii� and the general assumptions of Corollary �� are satis�ed and ����Q�� v�
exists for any v � T r�KC �Q��� It holds that �

���Q�� v� �
�
�
v���� ����� where �� � ����� ���� �

argminf��� � v���� ��� � ���� ��� � IR�� IRg� Let us �nally replace the function g�x� � �
by g�x� � x�� Then ��y� and ��Q�� remain unchanged� S��x� � f� � T �C� �x� �
hrg��x�� �i � �g � f�g � IR� and condition �ii� is violated� But� since we have

inf
n
hrg��x�� zi� hrQ���y�� Azi� �

�
hr�g��x��� �i

�
�

�
hr�Q���y�A��A�i� v���y� A�� � � � S��x�� z � T ��C� �x� ��

o
� inffz� � ��� � v���� ��� � � � S��x�� z � T ��C� �x� ��g
� inffz� � z� � ��� � �� � IRg � ��

both in�ma in ����� coincide� the result holds true and we have

����Q�� v� �
�

�
v���� �� � � for any v � T r�KC �Q���

Example ��� Here we revisit Example ���� and have

Q��y� �
�

�
jyj� � �

�
� for all jyj � �� and ��Q�� � f�g� ��Q�� �

�

�
�

For the function v�x� � �x �x � IR� and t � ��� �� we obtain

��Q� � tv� � inffQ��x�� tx � x � IRg� and
��Q� � tv� � argminfQ��x�� tx � x � IRg

� fx � IR � Q�
��x� � t� Q��x�� tx � ��Q� � tv�g � fptg�

��Q� � tv� �
�

�
��� t

�

� ��

Then ���Q�� v� � � and �
t�
���Q� � tv� � ��Q�� � ���Q�� v�� � ��

�
t�

�

� � Hence� �
has no second�order directional derivative at Q� in direction v� Note that there is no
neighbourhood of �x � � where Q� is strongly convex�

Finally� we aim at showing that � is even second�order Hadamard directionally di�er�
entiable at Q� when equipping KC with a suitable topology� To this end we need a
certain counterpart of Lemma ��� for the corresponding limes inferior� Since this is not
available for nonsmooth functions� it is a natural idea to consider the space C��IRs��
to restrict � to the subset KC �C� and to equip KC �C� with the C��topology� Then
we are able to show that the assumptions of Corollary �� even imply the second�order
Hadamard directional di�erentiability of � at Q��

Theorem ��� Let Q� � KC �C� and assume that ��Q�� is nonempty� bounded� Let g

be twice continuously di�erentiable� Q� be strongly convex on some open convex neigh�

bourhood of A��Q�� and twice continuously di�erentiable at �y where f�yg � A��Q���
Let �x � ��Q�� and assume the conditions �i�� and �ii� of Corollary �� to hold�

Then the second�order Hadamard directional derivative of � at Q� exists in any di�

rection v belonging to the tangent cone T �KC � C��Q�� in C��IRs�� i�e�� for any such

��



v� and all sequences tn � �� and �Qn� in KC such that vn �� �
tn
�Qn � Q�� � v in

C��IRs� the limit

����Q�� v� � lim
n��

�

tn
���Q� � tnvn�� ��Q��� tn�

��Q�� vn��

exists� and it holds

����Q�� v� � inf
n�
�
hr�g��x��� �i� �

�
hr�Q���y�A��A�i� hrv��y�� A�i � � � S��x�

o
�

where S��x� � f� � T �C� �x� � hrg��x�� �i� hrQ���y�� A�i � �g�

Proof� Let v � T �KC � C��Q��� tn � �� and �Qn� be a sequence in KC such that
vn � �

tn
�Qn � Q�� � v in C��IRs�� Condition �i�� together with Theorem ��� then

imply that there exist constants L 	 �� r 	 �� n� � IN and elements xn � ��Q�� tnvn�
such that

kxn � �xk � LtnkvnkL�r� for all n � IN� n � n��

Since the sequence �vn� converges in C
��IRs�� the norms kvnkL�r are uniformly bounded

and we have kxn � �xk � O�tn�� Expanding g and Q� as in the proof of Theorem ���
we obtain analogously to ������ for all n � n��

�

t�n
���Q� � tnvn�� ��Q��� tn�

��Q�� vn��

� �

�

D
r�g��x�

� �

tn
�xn � �x�

�
�
�

tn
�xn � �x�

E

�
�

�

D
r�Q���y�A

� �

tn
�xn � �x�

�
� A

� �

tn
�xn � �x�

�E

�
�

tn

�
vn
�
�y � tnA

� �

tn
�xn � �x�

��
� vn��y�

�
� o����

Putting �n �� �
tn
�xn � �x� and using the mean value theorem for vn we may continue

with some �yn � ��y� �y � tnA�n	 as follows�

�

t�n
���Q� � tnvn�� ��Q��� tn�

��Q�� vn��

� �

�
hr�g��x��n� �ni� �

�
hr�Q���y�A�n� A�ni� hrvn��yn�� A�ni� o����

Arguing as in the proof of Theorem ��� and using vn � v in C��IRs� we arrive at the
estimate

lim inf
n��

�

t�n
���Q� � tnvn�� ��Q��� tn�

��Q�� vn��

� �

�
hr�g��x���� ��i� �

�
hr�Q���y�A��� A��i� hrv��y�� A��i

��



for some element �� � S��x��
Furthermore� we conclude from �ii� and Proposition ��� that

lim sup
n��

�

t�n
���Q� � tnvn�� ��Q��� tn�

��Q�� vn��

� inf
n�
�
hr�g��x��� �i� �

�
hr�Q���y�A��A�i� hrv��y�� A�i � � � S��x�

o
�

Hence� the desired limit exists and the proof is complete� �

Let us �nally note that all minimization problems appearing as bounds or formulas for
second�order directional derivatives represent convex programs� Those in the results
���� �� and ��� have convex cone constraints� which are polyhedral if C is polyhedral�
Moreover� the solution sets of the convex minimization problems in ���� �� and ��� are
nonempty� Indeed� we show next that these solution sets represent certain derivatives
of the set�valued mapping � at the pair �Q�� �x��

� Di�erentiability of solution sets

It is well�known that second�order di�erentiability properties of optimal values in per�
turbed optimization are intrinsic for establishing the di�erentiability of solutions �see
e�g� ��	�� We also pursue this approach and derive conditions implying directional
di�erentiability properties of the solution set mapping by exploiting the results of the
previous section� Our �rst results in this direction concern Gateaux directional di�er�
entiability� and complement Theorem ��� and its corollary�

Theorem ��� Assume that the general conditions on g� Q� and C of Theorem ��� are

satis�ed� Let �x � ��Q��� v � T r�KC �Q�� and suppose the conditions �i� and �ii� of

Theorem ��� to be satis�ed� In addition� assume that

�iii� there exist a neighbourhood V of ��Q�� and constants c 	 �� � 	 � such that the

uniform growth condition

g�x� � �Q� � tv��Ax� � ��Q� � tv� � cd�x� ��Q� � tv����

for all x � C � V and t � ��� ��� is satis�ed�

Then the Gateaux directional derivative of � at the pair �Q�� �x� into direction v exists

and it holds that

���Q�� �x� v� � lim
t���

�

t
���Q� � tv�� �x�

� argmin
n�
�
hr�g��x��� �i� �

�
hr�Q���y�A��A�i� v���y�A�� � � � S��x�

o
�

��



Proof� Let M��x� v� denote the solution set in the assertion� First we show that
lim sup
t���

�
t
���Q� � tv�� �x� �M��x� v��

Let � � lim sup
t���

�
t
���Q� � tv�� �x�� Then there exists a sequence �tn� �n� converging to

���� �� such that �n � �
tn
���Q� � tnv� � �x� and� thus� �x � tn�n � ��Q� � tnv� for all

n � IN �
Hence� analogously to the proof of Theorem ��� we deduce that � belongs to S��x��
In view of Theorem ��� it remains to show that �

�
hr�g��x��� �i� �

�
hr�Q���y�A��A�i�

v���y�A�� � ����Q�� v�� By expanding g and Q� as in the proof of Theorem ���� we
obtain analogously to ������

��Q� � tnv�� ��Q��� tn�
��Q�� v�

� g��x� tn�n� �Q��A��x� tn�n��� g��x��Q��A�x� � tn�v�A��x� tn�n��� v�A�x��

� �

�
t�nhr�g��x��n� �ni� �

�
t�nhr�Q���y�A�n� A�ni

� tn�v�A��x� tn�n��� v�A�x�� � o�ktn�nk���

After dividing by t�n and taking the lim
n�� on both sides of the inequality� we obtain the

desired estimate� In a second step we show that

M��x� v� � lim inf
t���

�

t
���Q� � tv�� �x�

or� equivalently� that it holds for any � �M��x� v��

lim
t��

�

t
d��x� t�� ��Q� � tv�� � ��

Let � � M��x� v� and �tn� be a sequence with tn � ��� We have to show that
lim
n��

�
tn
d��x�tn�� ��Q��tnv�� � �� Since � � S��x�� there exists an element z � S���x� ��

and a sequence �zn� converging to z with �x � tn� � t�nzn � C for all n � IN � Hence� it
su�ces to show that

lim
n��

�

tn
d��x� tn� � t�nzn� ��Q� � tnv�� � ��

Condition �iii� implies the following estimate for all su�ciently large n � IN �

cd��x � tn� � t�nzn� ��Q� � tnv��
�

� g��x� tn� � t�nzn� � �Q� � tnv��A��x� tn� � t�nzn��� ��Q� � tnv��

By expanding g and Q� as in the proof of Theorem ��� and using the fact that � belongs
to S��x�� we may continue

� t�nhrg��x�� zni�
�

�
t�nhr�g��x��� � tnzn�� � � tnzni

�t�nhrQ���y�� Azni� �

�
t�nhr�Q���y��A�� � tnzn��� A�� � tnzn�i

����Q� � tnv�� ��Q��� tn�
��Q�� v��

�tn�v�A��x� tn� � t�nzn��� v�A�x�� � o�t�nk� � tnznk���

��



After dividing by t�n and taking the lim sup
n��

on both sides of the latter inequality� we

obtain

lim sup
n��

c

t�n
d��x� tn� � t�nzn� ��Q� � tnv��

�

� hrg��x�� zi� hrQ���y�� Azi� �

�
hr�g��x��� �i

�
�

�
hr�Q���y�A��A�i � ����Q�� v� � v���y�A�� � ��

where we made use of z � S���x� ��� � �M��x� v� and Theorem ���� This completes the
proof� �

Complementing Corollary �� we provide a result on the directional di�erentiability of
� at Q� into any direction v � T r�KC �Q���

Theorem ��� Assume that the general conditions on g� Q� and C of Corollary ��
are satis�ed� Let �x � ��Q�� and assume that

�i��� there exists a constant L 	 � such that

dH���y�� ���y�� � Lky � �yk� for all y� �y � A�C��

and� for each r 	 �� there exists a constant ��r� 	 � such that

g�x� � ��Ax� � ��r�d�x� ��Ax���� for all x � C � B��� r��

where ��y� � inffg�x� � x � C�Ax � yg and

��y� � argminfg�x� � x � C�Ax � yg� y � A�C��

�ii� the second�order set S���x� �� � fz � T ��C� �x� �� � hrg��x�� zi�hrQ���y�� Azi � �g
is nonempty for each � � S��x��

Then the Gateaux directional derivative ���Q�� �x� v� of � at the pair �Q�� �x� exists for
any direction v � T r�KC �Q�� and satis�es the formula in Theorem ����
Moreover� condition �ii� is satis�ed if C is polyhedral� and �i��� is satis�ed if C is

polyhedral and g is linear or �convex� quadratic�

Proof� Let v � T r�KC �Q��� Since Q� is strongly convex on some open convex neigh�
bourhood of A��Q��� we infer from condition �i��� and Theorem ��� that condition �iii�
of Theorem ��� is satis�ed� Moreover� condition �i��� implies �i�� and� thus� Corollary ��
says that the second�order directional derivative ����Q�� v� exists� Hence� the �rst part
of the assertion follows from the proof of the previous theorem� If C is polyhedral�
we have � � S���x� �� for any � � S��x�� and if� in addition� g is convex quadratic�
Proposition ��� implies condition �i��� to hold� �

We note that Example ��
 shows that� in general� the directional di�erentiability prop�
erty of � gets lost at those pairs �Q�� �x�� �x � ��Q��� where Q� is not strongly convex
on some neighbourhood of A��Q���

��



Finally� we turn to directional di�erentiability properties of � where the derivatives
exist uniformly with respect to directions taken from compact sets of certain functional
spaces� For our �rst result we consider the space C��IRs� and equip the set KC � C�

with the C��topology�

Proposition ��� Let Q� � KC � C� and assume that the general conditions on g�

Q� and C in Proposition ��� are satis�ed� In addition� we suppose condition �ii� of

Theorem ��� to be satis�ed� Let �x � ��Q��� tn � ��� and �Qn� be a sequence in KC

such that vn �� �
tn
�Qn �Q��� v in C��IRs��

Then the upper set limit of the sequence � �
tn
���Q�� tnvn�� �x� of closed convex subsets

in IRm� i�e�� lim sup
n��

�
tn
���Q� � tnvn�� �x��� is contained in the closed convex set

argmin
n�
�
hr�f��x��� �i� �

�
hr�Q���y�A��A�i� hrv��y�� A�i � � � S��x�

o
�

Proof� Let Dn �� �
tn
���Q�� tnvn�� �x� for all n � IN and let �� belong to the upper set

limit lim sup
n��

Dn� Then there exist a subsequence �again denoted by �Dn�� and elements

�n � Dn such that �n � ��� Since �x�tn�n � ��Q��tnvn� � C� we have that �� � T �C� �x��
As in the proof of Theorem ��� we deduce that hrg��x�� ��i � hrQ��A�x�� A��i � � and�
thus� �� � S��x�� By expanding g and Q� as in the proof of Theorem ���� we also obtain
analogously to ������

��Q� � tnvn�� ��Q��� tn�
��Q�� vn�

� g��x� tn�n� �Q��A��x� tn�n��� g��x��Q��A�x�� tnvn�A�x�

� �

�
t�nhr�g��x��n� �ni� �

�
t�nhr�Q��A�x�A�n� A�ni

� tn�vn�A��x � tn�n��� vn�A�x�� � o�ktn�nk���

After dividing by t�n and taking the lim sup
n��

on both sides of the inequality� we obtain

as in the proof of Theorem ���

lim sup
n��

�

t�n
���Q� � tnvn�� ��Q��� tn�

��Q�� vn��

� �

�
hr�g��x���� ��i� �

�
hr�Q��A�x�A��� A��i� hrv�A�x�� A��i�

Hence� we may conclude from �ii� and Proposition ��� that �� belongs to the set
argminf�

�
hr�g��x��� �i� �

�
hr�Q���y�A��A�i� hrv��y�� A�i � � � S��x�g and we are done�

�

Remark ��� The upper limit of the sequence � �
tn
���Q�� tnvn�� �x� in Proposition ���

is nonempty if the mapping d��x� ��	�� from KC into the extended reals has the Lips�
chitzian property of Theorem ��� at Q�� Indeed� we may select xn � ��Q� � tnvn�

for large n � IN � such that for some constants �L 	 � and r 	 �� k�x � xnk �
d��x� ��Q� � tnvn�� � �LtnkvnkL�r� Hence� the sequence � �

tn
�xn � �x�� is bounded and

��



has a convergent subsequence whose limit belongs to lim sup
n��

�
tn
���Q� � tnvn�� �x�� If

the Lipschitz property of d��x� ��	�� is violated� the upper set limit may be empty� This
is illustrated by Example ��
� in which we have �x � �� ��Q�� tnv� � fptng and� thus�
�
tn
���Q� � tnv�� �x� � ft�

�

�
n g�

In order to establish the semidi�erentiability of � at a pair �Q�� �x� belonging to the
graph of �� it remains to show� according to Proposition ���� that the solution set

argmin
n�
�
hr�g��x��� �i� �

�
hr�Q���y�A��A�i� hrv��y�� A�i � � � S��x�

o

is contained in the lower set limit lim inf
n��

�
tn
���Q��tnvn���x�� where vn �� �

tn
�Qn�Q���

Qn � KC � for all n � IN � and �vn� converges to v� To this end� a uniform quadratic
growth condition of the objective functions g�	� � �Q� � tnvn��A 	�� for large n � IN �
is signi�cant� In view of Theorem ���� the uniform strong convexity of Q� and its
approximations Qn� for large n � IN � is decisive for the growth condition� The next
example and the following result show that the approximations Qn do not maintain
the strong convexity property of Q� in general if the sequence �Qn� converges to Q�

in C��IRs�� but that the situation is much more advantageous when considering the
C����topology�

Example ��� Let Q��y� � y�� for all y � IR� and Qn be the following di�erentiable
convex functions

Qn�y� �� max
n
���y � �

n

o�
�max

n
�� y � �

n

o�
� for all y � IR� n � IN�

Note that Qn�y� � �� for all y � �� �
n
� �
n
	� and Qn is not strongly convex for each n � IN �

but �Qn� converges to Q� in C��IRs��

Lemma ��� Let Q� � KC � C����IRs� be strongly convex on some bounded convex set

U � IRs �with some constant � 	 ���
Then there exists a neighbourhood N of Q� in C����IRs� such that each function Q

belonging to N is strongly convex on U with constant �
�
�

Proof� The strong convexity of Q� on U �with constant � 	 �� is equivalent to the
condition hrQ��y��rQ���y�� y� �yi � �ky� �yk�� for all y� �y � U � Let r 	 � be chosen
such that cl U � B��� r� and let N be a neighbourhood of Q� in C����IRs� having the
property kr�Q� � Q�kL�r � �

�
� for all Q � N � Let y� �y � U with y �� �y� Then we

obtain for any Q � N �

� � hrQ��y��rQ���y�� y � �yi
ky � �yk�

�
hrQ�y��rQ��y�� y � �yi

ky � �yk� �
hr�Q� �Q��y��r�Q� �Q���y�� y � �yi

ky � �yk�

� hrQ�y��rQ��y�� y � �yi
ky � �yk� �

kr�Q� �Q��y��r�Q� �Q���y�k
ky � �yk�

� hrQ�y��rQ��y�� y � �yi
ky � �yk� � kr�Q� �Q�kL�r

��



and� hence

�

�
ky � �yk� � hrQ�y��rQ��y�� y � �yi�

This means that Q is strongly convex on U with constant �
�
� �

Now we are able to show that the solution set mapping � is semidi�erentiable on
KC �C��� at some pairs �Q�� �x�� �x � ��Q��� into any direction v from the tangent cone
T �KC �C����Q�� to KC �C����IRs� at Q� in C

����IRs�� The assumptions are essentially
the same as in Theorem ����

Theorem ��� Let Q� � KC � C��� and assume that ��Q�� is nonempty� bounded�

Let g be twice continuously di�erentiable� Q� be strongly convex on some open convex

neighbourhood U of A��Q�� and twice continuously di�erentiable at �y� where f�yg �
A��Q��� Assume that� for each r 	 �� there exist constants L 	 � and ��r� 	 � such

that the following condition �i��� is satis�ed for ��y� � inffg�x� � x � C�Ax � yg and

��y� � argminfg�x� � x � C�Ax � yg �y � A�C���

�i��� dH���y�� ���y�� � Lky � �yk� for all y� �y � A�C��

g�x� � ��Ax� � ��r�d�x� ��Ax���� for all x � C �B��� r��
Then the solution set mapping � from KC � C��� into IRm is semidi�erentiable at any

pair �Q�� �x�� �x � ��Q��� such that S���x� �� is nonempty for each � � S��x�� and into

any direction v � T �KC � C����Q��� i�e�� for any such �x and v� tn � ��� and �Qn� in
KC � C��� with vn �

�
tn
�Qn �Q��� v in C����IRs� the set limit

D��Q�� �x� v� � lim
n��

�

tn
���Q� � tnvn�� �x�

exists� The semiderivative D��Q�� �x� v� is equal to the set

argmin
n�
�
hr�g��x��� �i� �

�
hr�Q���y�A��A�i� hrv��y�� A�i � � � S��x�

o
�

Moreover� � is semidi�erentiable at any pair �Q�� �x�� �x � ��Q��� into any direction

v � T �KC � C����Q�� if C is polyhedral� Condition �i��� is satis�ed if C is polyhedral

and g is linear or �convex� quadratic�

Proof� Let �x � ��Q�� be such that S���x� �� is nonempty for each � � S��x��
v � T �KC � C����Q��� and vn � �

tn
�Qn � Q�� � v in C����IRs�� where tn � ��

and �Qn� is a sequence in KC � C���� We may assume that U is bounded� Since
�Qn� converges to Q� in C����IRs�� we obtain from Lemma ��� that there exists an
n� � IN � such that Qn is strongly convex on U for each n � n� with a uniform constant
� 	 �� Moreover� we choose n� su�ciently large such that ��Qn� is nonempty� for each
n � n�� Arguing as in the proof of Theorem ���� we obtain a constant c 	 � and a
neighbourhood V of ��Qn� such that the growth condition

g�x� �Qn�Ax� � ��Qn� � cd�x� ��Qn��
�

�



holds for all x � C � V and n � n��
Let �� � S��x� be a minimizer of the function �

�
hr�g��x��� �i � �

�
hr�Q���y�A��A�i �

hrv��y�� A�i subject to � � S��x�� Because of Proposition ��� it remains to show that ��
belongs to the lower limit lim inf

n��
�
n
���Q� � tnvn� � �x� � lim inf

n��
�
tn
���Qn� � �x�� Since

�� � S��x�� there exists an element z � S���x� ��� and a sequence �zn� converging to z with
�x � tn �� � t�nzn � C for all n � IN � As in the proof of Theorem ��� it su�ces to show
that

lim
n��

�

tn
d��x� tn�� � t�nzn� ��Qn�� � ��

By using the above growth condition and by expanding the function g and Q�� we
obtain as in the proof of Theorem ���

cd��x� tn �� � t�nzn� ��Qn�� � g��x� tn�� � t�nzn� �Qn�A��x� tn �� � t�nzn��� ��Qn�

� g��x� tn�� � t�nzn� �Q��A��x � tn�� � t�nzn��� g��x��Q��A�x�

����Qn�� ��Q��� tn�
��Q�� vn�� � tn�vn�A��x � tn�� � t�nzn��� vn�A�x��

and

lim sup
n��

c

t�n
d��x� tn�� � t�nzn� ��Qn��

�

� hrg��x�� zi� hrQ���y�� Azi� �

�
hr�g��x���� ��i

�
�

�
hr�Q���y�A��� A��i � ����Q�� v� � hrv��y�� A��i � ��

This implies �� � lim inf
n��

�
tn
���Qn�� �x� and the semidi�erentiability of � at �Q�� �x� in

direction v is shown� The remaining part of the assertion follows as in the proof of
Theorem ���� �

For the linear�quadratic case� the essential assumptions in Theorem ��
 are the strong
convexity of Q�� and the smoothness properties of Q� and its perturbations Q� respec�
tively� While criteria for strong convexity were already discussed in Section �� we now
close this section by adding some comments on C���� and C��properties of expected
recourse functions�

Remark ��� Assume �A�� � �A�� and � to have a density with respect to the Lebesgue
measure on IRs� Then the function Q� in ����� is continuously di�erentiable on IRs and

its gradient is of the form rQ��y� �
	P

i��
di��y � Bi�IR

s
���� for all y � IRs� where Bi�

i � �� � � � � �� are certain basis submatrices of the recourse matrix W such that the
simplicial cones Bi�IR

s
��� i � �� � � � � �� are linearity regions of �Q and di is the gradient

of �Q on int Bi�IR
s
��� i � �� � � � � � �cf� ���	� ���	�� Denoting by F� the distribution

function of � and using the formula

��y �B�IRs
��� � F�	��B���B��y�� for all y � IRs�

for any nonsingular �s� s��matrix B� C���� and C��properties of Q� may thus be formu�
lated in terms of Lipschitz and di�erentiability properties of the distribution functions

��



F�	��Bi� to the linear transforms � � ��Bi�� i � �� � � � � �� of the measure ��
The distribution function F� of a probability measure � on IRs is locally Lipschitzian
if all one�dimensional marginal distribution functions of � are locally Lipschitzian �cf�
���	� ��	�� F� is continuously di�erentiable if � has a continuous density function and
all one�dimensional marginal distribution functions of � are continuously di�erentiable
�cf� ���	� ��	�� If � has a continuous density function� then ��B has a continuous den�
sity for any nonsingular �s� s��matrix B� too� Hence� we may conclude� for instance�
that Q� belongs to C����IRs� �and C��IRs�� if � has a �continuous� density and the
above�mentioned conditions on the one�dimensional marginal distribution functions
for F�	B belonging to C����IRs� �and C��IRs�� respectively� are satis�ed for any nonsin�
gular �s� s��matrix B� This criterion is particularly useful for probability distributions
� which have the property that all one�dimensional marginal distributions of � and
all linear transforms � �B� for all nonsingular matrices B� belong to the same class of
measures� For instance� all multivariate normal and all logarithmic concave probability
measures �e�g� ���	� form classes having this property�
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