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Abstract

Pyramidal neurons are the most common cell type and are considered the main output neuron in most mammalian
forebrain structures. In terms of function, differences in the structure of the dendrites of these neurons appear to be crucial
in determining how neurons integrate information. To further shed light on the structure of the human pyramidal neurons
we investigated the geometry of pyramidal cells in the human and mouse CA1 region—one of the most evolutionary
conserved archicortical regions, which is critically involved in the formation, consolidation, and retrieval of memory. We
aimed to assess to what extent neurons corresponding to a homologous region in different species have parallel
morphologies. Over 100 intracellularly injected and 3D-reconstructed cells across both species revealed that dendritic and
axonal morphologies of human cells are not only larger but also have structural differences, when compared to mouse. The
results show that human CA1 pyramidal cells are not a stretched version of mouse CA1 cells. These results indicate that
there are some morphological parameters of the pyramidal cells that are conserved, whereas others are species-specific.

Key words: comparative neuroanatomy, dendrites, hippocampal formation, intracellular injections, principal neurons, 3D
reconstructions
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Introduction

Pyramidal neurons are the most common cell type and
the main projection neurons in the cerebral cortex (neo-
cortex and allocortex). Therefore, most of the information
processed in a given cortical region is transferred through
the pyramidal cell axons to other cortical or subcortical
regions. The dendritic spines of pyramidal cells are the main
postsynaptic target of excitatory glutamatergic synapses. In
turn, pyramidal cell axons constitute the main source of these
synapses in both the neocortex and the hippocampal formation
(reviewed in DeFelipe and Fariñas 1992; Anderson et al. 2007;
Cenquizca and Swanson 2007). In general, the dendritic
structure of these neurons can be described as follows
(DeFelipe and Fariñas 1992): from the upper pole of the cell
body arises a prominent apical dendrite directed radially toward
the pia mater, giving off a number of oblique collaterals that
usually terminate in an apical tuft. From the base of the
soma, several laterally or downward-directed dendrites emerge
forming the basal arbor. The axon also emerges from the base
of the cell or from the origin of a basal dendrite; this axon
is directed downwards and may give off several collaterals.
There are large variations in the pyramidal cell structure
depending on the layer, cortical region, and species where the
pyramidal cell is located. For example, pyramidal cells in the
associative temporal and prefrontal lobe of primates exhibit
greater dendritic complexity than those in other sensory areas
(Elston et al. 2001; Jacobs et al. 2001; Bianchi et al. 2013).
Rodents also show regional and layer variations in pyrami-
dal cell structure, although these variations are much less
pronounced than in humans (Benavides-Piccione et al. 2002;
Benavides-Piccione et al. 2006; Ballesteros-Yáñez et al. 2010;
Mohan et al. 2015; van Aerde and Feldmeyer 2015; Rojo et
al. 2016; Deitcher et al. 2017). Furthermore, a number of
studies have shown differences in morphology and intrinsic
electrophysiological characteristics of pyramidal cells located
at depth versus superficially in the pyramidal cell layer of the
CA1 region of the hippocampus (Bannister and Larkman 1995;
Jarsky et al. 2008; Lee et al. 2014; Valero and de la Prida 2018).
Since the dendritic tree structure influences the biophysical and
computational properties of neurons, differences in pyramidal
cell structure are not only important determinants of variations
of the functional organization of the cerebral cortex (reviewed
in Stuart and Spruston 2015) but are also highly relevant from
the evolutionary point of view (DeFelipe 2011).

Nevertheless, a constraint on comparing neurons in human
versus other species is the question of the homology of
the areas between species. One of the most evolutionary
conserved archicortical region is the hippocampus (e.g.,
Stephan and Andy 1970), a brain structure critically involved in
the formation, consolidation, and retrieval of memory. However,
no detailed morphological studies of human CA1 pyramidal
cells are available. Thus, to further shed light on the structure
of human pyramidal neurons and possible differences between
species, in the present study we investigated the geometry of
pyramidal cells in the CA1 region of the human and mouse
hippocampus. Furthermore, CA1 is of particular interest since,
during the course of evolution, it is clear that the human
pyramidal cell layer became much less densely packed than
that of the mouse (Fig. 1). This process may not be due to a
brain size scaling effect since, for example, the extent of the
pyramidal cell layer in the CA1 region of the elephant or the
giraffe (which have larger brains) is smaller than that of the

human (Defelipe’s laboratory unpublished observations; see
also Slomianka et al. 2011 and Patzke et al. 2013). This process,
sometimes called “corticalization” of the human CA1 pyramidal
cell layer because it resembles a neocortical cytoarchitecture,
most probably has fundamental functional and hodological
consequences: The basal and apical dendrites of human
pyramidal cells are intermixed in the pyramidal cell layer,
whereas in the mouse the basal and apical dendritic domains
are basically separated (basal dendrites in the stratum oriens;
apical dendrites in the stratum radiatum). In the present study,
over 100 intracellularly injected cells thatwere 3D-reconstructed
from confocal microscopy images were examined. The main
finding is that CA1 pyramidal neurons show characteristic
cell morphology. Human cells are not only larger but also
have a different structural organization compared to mouse
pyramidal cells for particular morphological features. However,
there are some other morphological variables that, despite
differing in their absolute values, show similar patterns of
distribution between the two species. The possible implications
of these structural differences between human and mouse are
elaborated in the “Discussion”.

Materials and Methods

Tissue Preparation

Human brain tissue was obtained at autopsy from the
Unidad Asociada Neuromax—Laboratorio de Neuroanatomía
Humana, Facultad de Medicina, Universidad de Castilla-La
Mancha, Albacete, Spain, and Laboratorio Cajal de Circuitos
Corticales Universidad Politécnica de Madrid-Consejo Superior
de Investigaciones Científicas (CSIC), Madrid, Spain. The tissue
was obtained following national laws and international ethical
and technical guidelines on the use of human samples for
biomedical research purposes. In this study, we used coronal
sections of the human hippocampus at the level of the
hippocampal body (Insausti and Amaral 2012) of two cases
obtained within a postmortem interval of 2–3 h; one male
(AB1) aged 45 and one female (AB2) aged 53. These cases were
used as controls in a previous study unrelated to the present
investigation (Domínguez-Álvaro et al. 2018). Upon removal, the
brains were immersed in cold 4% paraformaldehyde in 0.1 M
phosphate buffer (PB), pH 7.4, and sectioned into thick coronal
slabs to facilitate fixation. Small blocks from the hippocampal
formation were then extracted and transferred to a second
solution of 4% paraformaldehyde in PB for 24 h at 4 ◦C. Then,
vibratome sections (300 μm) of the CA1 region were obtained in
the coronal plane.

Mouse tissue samples were obtained from C57BL/6 adult
(8-week-old) male mice (n=9; id6, id7, id8, id10, id14, id15, id20,
id21, and id68). All animals were overdosed by intraperitoneal
injection of sodium pentobarbitone and were perfused via the
heart with phosphate-buffered saline (0.1 M PBS) followed by 4%
paraformaldehyde in PB. Their brains were then removed and
further immersed in 4% paraformaldehyde for 24 h. Coronal sec-
tions (200 μm) were obtained with a vibratome, which included
the dorsal CA1 region (Paxinos and Franklin 2004).

Intracellular Injections and Immunocytochemistry

Human and mouse sections were prelabeled with 4′,6-diamidi-
no-2-phenylindole (DAPI; Sigma, St Louis,MO), and a continuous
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Figure 1. (A and B) Low-power photomicrographs of Nissl-stained coronal brain sections from human (A) and mouse (B) at the same magnification to illustrate
differences in brain size. (C and D) Higher magnification images of boxed areas shown in (A) and (B) showing the CA1 hippocampal field of the human (C) and
mouse (D) at the same magnification, respectively. (E and F) Higher magnification photomicrographs from CA1 human (E) and mouse (F) pyramidal cell layer shown
in (C) and (D), respectively, to illustrate differences in the arrangement of cells. Scale bar (in panel F) is equal to 1000 μm in (A) and (B); 120 μm in (C) and (D); 60 μm in

(E) and (F). alv means alveus; so, stratum oriens; py, stratum pyramidale; sr, stratum radiatum; slm, stratum lacunosum moleculare.

current was used to inject individual cells with Lucifer yellow
(LY; 8% in 0.1M Tris buffer, pH 7.4) in the pyramidal cell layer
of the CA1 field of the human (Fig. 2) and mouse (Fig. 3) hip-
pocampus.We did not distinguish between superficial and deep
CA1 pyramidal cells. However, we injected approximately in the
middle of the CA1 pyramidal cell layer of the dorsal hippocam-
pus in the mouse and at the level of the hippocampal body in
the human. Regarding regional limits we specifically avoided

CA1/CA2 and CA1/subiculum border cells. LY was applied to
each injected cell by continuous current until the distal tips of
each cell fluoresced brightly, indicating that the dendrites were
completely filled and ensuring that the fluorescence did not
diminish at a distance from the soma. Following the intracellular
injections, the sections were immunostained for LY using rabbit
antisera against LY (1:400 000; generated at the Cajal Institute)
diluted in stock solution (2% bovine serum albumin, 1% Triton
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Corticosteroids and Cortical Thickness Across the Lifespan Benavides-Piccione et al. 733

Figure 2. Confocal microscopy images of human neurons injected with LY in the hippocampus. (A and B) Labeled pyramidal cells (green) and DAPI staining (blue) in

different regions of the human hippocampus, including CA1, CA2, CA3, and the dentate gyrus (DG) region. (C) Higher magnification image of the boxed region shown in
(B). (D) 3D-reconstructed cells superimposed on the confocal image shown in (C). (E and F) High-magnification image z projection showing an injected CA1 pyramidal
cell (E) and the 3D reconstruction of the same cell (F). Scale bar (in panel F) is equal to 1100 μm in (A) and (B); 460 μm in (C) and (D); 100 μm in (E) and (F).

X-100, and 5% sucrose in PB). The sections were then incubated
in biotinylated donkey anti-rabbit IgG (1:100; Amersham, Buck-
inghamshire, UK) and streptavidin-conjugated Alexa fluor 488
(1:1000; Molecular Probes, Eugene, OR, USA). Finally, the sections
were washed andmounted with ProLong Gold Antifade Reagent
(Invitrogen Corporation, Carlsbad, CA, USA). See Elston et al.
(2001) and Benavides-Piccione et al. (2013) for further details of
the cell injection methodology.

Cell Reconstruction and Quantitative Analysis

Sections were imaged with a Leica TCS 4D confocal scanning
laser attached to a Leitz DMIRB fluorescence microscope.
Fluorescent labeling profiles were imaged, using an exci-
tation wavelength of 491 nm to visualize Alexa fluor 488.
Consecutive stacks of images at high magnification (×63
glycerol; voxel size, 0.240×0.240×0.29 μm3 for human cells
and 0.120×0.120×0.13 μm3 for mouse cells) were acquired
to capture dendrites along the apical and basal dendritic

arbors. Since intracellular injections of the pyramidal cell were
performed in 200- and 300-μm-thick coronal sections, the part
of the dendritic arbor nearest the surface of the slice fromwhich
the cell soma was injected (typically at a depth of ∼30 μm from
the surface) was lost. The slices were of sufficient thickness
in each species so as to include all dendrites that run toward
the depth of the slice. Using a similar method of intracellular
injection, Krimer et al. (1997) estimated that the reconstruction
of neurons represented approximately two-thirds of the total
dendritic arbor of pyramidal cells.Nonetheless, it is important to
mention that the percentage of the basal arbor and apical arbor
included within the section may vary in each cell, depending on
how parallel the main apical dendrite runs with respect to the
surface of the slice. In the present study, neurons were included
in the analysis if they showed a main apical dendrite of at least
200 μm in length in both human and mouse cells. Furthermore,
dendrites that ran for further than∼ 900 μm from the somawere
not properly filledwith dye, and therefore distal apical dendrites
(apical tufts) of human cells were not included in the analysis.
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Figure 3. Confocal microscopy images of mouse neurons injected with LY in the hippocampus. (A) DAPI staining. (B) Labeled pyramidal cells in the CA1 hippocampal
field. (C) Higher magnification photomicrographs of the image shown in (B). (D) 3D-reconstructed cells superimposed on the confocal image shown in (C). (E and F)
High-magnification image z projection showing an injected CA1 pyramidal cell (E) and the 3D reconstruction of the same cell (F). Scale bar (in panel F) is equal to

750 μm in (A) and (B); 300 μm in (C) and (D); 50 μm in (E) and (F).

The following numbers of cells were sampled from each case:
human AB1 (31 cells) and AB2 (23 cells), and mouse id6 (4 cells),
id7 (9 cells), id8 (3 cells), id10 (6 cells), id14 (10 cells), id15 (2 cells),
id20 (7 cells), id21 (4 cells), and id68 (5 cells).

Data points of neuron morphology of each pyramidal cell
included in the analysis (54 human cells and 50 mouse cells;
Fig. 4) were extracted in 3D using Neurolucida 360 (MicroBright-
field, VT, USA). Briefly, the apical and basal dendrites, as well
as the axon and soma, were reconstructed through manually
traced 3D points, delimiting the different segments that form
the cell arbor. These points have an associated diameter that
automatically provides the information of the varying thickness
of the dendrite at that particular point and varies along the
length of the dendrite. Axons were only traced if they were
included within the section over a length of at least 50 μm. The
soma was defined through a set of connected points tracing the
contour of the soma in 2D.The cellswere traced by three experts,
and two additional experts re-examined the reconstructions
searching for possible mistakes.

Several morphological variables were extracted using
Neurolucida software. Some of the features measured did not
depend on the entirety of the reconstructed cell and can thus be
considered as full measurements: mean soma area (estimated
by measuring the area of the maximum perimeter of the soma);
dendritic/axonal average segment diameter, segment length,
segment surface area, and segment volume; as well as axonal
varicosity density (defined as a swelling of the axon exceeding
the typical variation in diameter of the adjacent axonal shafts
per axonal length) and intervaricosity distance (defined as
distance between two adjacent axonal varicosities). However,
other morphological variables did depend on the entirety of
the cell, and, thus, may only partially describe the cell and can
be considered “non-full” measurements: area and volume of
the dendritic arbor (2D and 3D convex hulls), total number of
dendrites, total number of nodes, total dendritic length, total
dendritic surface area, and total dendritic volume.

Values are expressed as total numbers, per branch order
segment and as a function of the distance from soma (Sholl
analysis). Only dendritic segments that were completely recon-

structed were included in the analysis. All statistical analyses
were performed using GraphPad Prism version 5.00 forWindows
(GraphPad Software, San Diego, CA, USA). When morphological
parameters were presented as mean values, the Kruskal–Wallis
test was used to compare between the groups. The reported P-
values were corrected formultiple testing with Dunn’s post-test.
Measurements reported as a function of the distance from the
soma were analyzed using Friedman test. Mann–Whitney test
was used for pairwise comparisons.Differenceswere considered
to be significant when P< 0.05. Measurements are reported
as mean± standard error of mean (SEM), unless otherwise
indicated.

Results

Human CA1 Pyramidal Cells

Fifty-four pyramidal cells were analyzed in the CA1 field of the
human hippocampus. These cells presented a mean cell body
area of 350± 9.7 μm2.

Apical Dendrites

The apical arbor emerged from the soma of the cells and was
composed of a prominent main apical dendrite, which gave off
a number of oblique collaterals but the apical tufts were not
labeled (see Materials and Methods section for further details).
The extent of the apical dendrites ranged from 230 to 800 μm
with the number of collaterals ranging from 6 to 33. The api-
cal arbor included the thickest and longest segments, which
belonged mainly to the main apical dendrite, whereas collat-
eral dendrites showed segments that were slightly thinner and
longer than basal segments (Fig. 5A–D).

The main apical dendritic shaft could be followed in all
labeled neurons for at least the first 200 μm. The structure of
this portion of the apical dendrite varied: Some cells had an
ascending course without branching (22%), while others bifur-
cated once (24%), twice (30%), or three times (24%). According to
these features, fourmain patterns of apical shaft branchingwere
observed in human cells (Fig. 6A). The dendrogram showed that
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Figure 4. Drawings of the apical (blue) and basal (red) dendritic arbors of CA1
pyramidal neurons from the human and mouse. Each cell is identified with a

code that indicates the type of apical branching pattern: a, 0 bifurcations; b, 1
bifurcation; c, 2 bifurcations; and d, 3 bifurcations—within the first 200 μm (see
Fig. 6 and Supplementary Figs S1 and S5 for further details).

a number of these cells branched further, with the structure
of the apical arbor being more complex the further away the
branching occurred (Supplementary Figure S1a–d). The average
diameter of the main apical dendrite before any bifurcation
occurred was 5.74±0.18 μm. When apical dendrite branching
occurred, the diameter decreased as the branch order increased

(Fig. 5E). Regarding the length of dendritic segments, they
increased as branch order segment increased (only dendritic
segments that were complete—and by definition excluded
incomplete endings—were included in this analysis; Fig. 5F).
However, due to large differences in diameter between dendritic
orders, the surface area of the dendritic segment values
per order were similar (Fig. 5G). Furthermore, the dendritic
volume of these segments decreased toward higher orders
(Fig. 5H).

Regarding collateral dendrites of the apical shaft, branches—
as they emerged from the main apical dendrite—showed an
average diameter of 1.33±0.02 μm up to the first bifurcation
and slightly decreased in the following branch orders (Fig. 5E).
The mean length of the dendritic segments increased as
the branch order increased (Fig. 5F). Similarly, surface area
of the dendritic segments and their volume also increased
toward higher orders (Fig. 5G,H). Segments were then further
classified according to branching segments (meaning a segment
that bifurcates) and terminal segments (meaning a segment
that ends): Branching segments followed a similar pattern of
diameter distribution as described above, whereas terminal
segments showed similar thinner diameters regardless of their
branch order (Fig. 7A,B). Regarding dendritic length, for both
branching and terminal segments, it increased as the branch
order segment increased, although terminal segments were
much longer (Fig. 7C,D). Similarly, the surface area of both
branching and terminal dendritic segments and their volume
also increased toward higher orders, and terminal segments
had a much larger area and volume than branching segments
(Fig. 7E–H).

Basal Dendrites

The basal dendritic arbor showed 6.37±0.25 primary branches
that emerged from the soma with an average diameter of
1.98±0.04 μm up to the first node and slightly decreased
in diameter as the branch order segment increased (Fig. 5E).
The mean length of the dendritic segments that composed
the basal arbor increased as the branch order increased
(Fig. 5F). Similarly, surface area of the dendritic segments and
their volume also increased toward higher orders (Fig. 5G,H).
When segments were classified according to their position
within the arbor, branch segment diameter again decreased
as branch order increased, while—as occurred with collat-
eral dendrites—all segments that ended were of a simi-
lar diameter regardless of the branch order they belonged
to (Fig. 7A,B). Regarding the length of branch segments, it
increased as branch order increased, while terminal seg-
ments length decreased as branch order increased and
was longer than branch segment length (Fig. 7C,D). Simi-
larly, the surface area and volume of branch segments also
increased toward higher orders, while terminal segments
surface area and volume decreased toward higher orders and
were larger than branch segments surface area and volume
(Fig. 7E,F).

When morphological variables were measured according to
their distance from the soma, it was revealed that the den-
dritic diameter gradually decreased as follows: from 7.19±0.21
to ∼ 1.5 μm along the first 400 μm and remaining similar at
further distances in themain apical compartment (Fig. 8A); from
1.87±0.33 to ∼1 μm along the first 50 μm from the soma and
then remaining similar at further distances apical collateral
dendrites; and from 2.36±0.20 to ∼ 1 micron along the first
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Figure 5. (A–D) Graphs showing human dendritic segment average diameter (A), segment length (B), segment surface area (C), and segment volume (D), expressed per
cell (purple) and per dendritic compartment: apical arbor, including main apical dendrite and apical collateral dendrites together (gray); main apical dendrite alone
(black); apical collateral dendrites alone (blue); and basal dendritic arbor (red). (E–H) Graphs showing same morphological variables as in (A–D): dendritic segment

average diameter (E), segment length (F), segment surface area (G), and segment volume (H), expressed per branch order (1, 2, 3, etc.) and per dendritic compartment:
main apical dendrite (black), apical collateral dendrites (blue), and basal arbor (red). Measurements are reported as mean±SEM. Only dendritic segments that were
complete, and thus excluding incomplete endings, were included in this analysis. Statistical significance of the differences is shown in Supplementary Tables 1 and 2.

60 μm and remaining similar at further distances in the basal
dendrites (Fig. 8A).

Additional Dendritic Variables

Additional morphological variables were measured to further
describe the cell, although this was limited by the partial recon-
struction of the neurons. Thesemeasurements included the size

of the dendritic arbor (2D and 3D convex hulls), number of nodes,
number of endings, dendritic length, dendritic area, and volume
expressed as total numbers and as a function of the distance
from the soma (Sholl analysis) (Supplementary Figure S2 and
S3). These measurements showed, for example, that the
peak number of nodes in the basal arbor was located at
∼40 μm and rapidly decreased (Supplementary Figure S3),
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Figure 6. Representative examples of reconstructed pyramidal cells from human (A) and mouse (B) CA1 hippocampal field at the same magnification to illustrate
differences in cell size. Main apical dendrite is shown in black, apical collateral dendrites in blue, and basal arbor in red. Axons (if traced) are represented in green.
Note that each representative neuron in (A) and (B) includes the prevalence percentage of the corresponding pattern shown in (C). (C) Schematic representation showing

different main apical branching patterns: a, 0 bifurcations; b, 1 bifurcation; c, 2 bifurcations; d, 3 bifurcations (measured within the first 200 μm).

which interestingly coincided with the location where basal
dendritic diameter reached a constant value (∼50 μm; Fig. 8A).
However, in apical collateral dendrites, the distribution of nodes
was different. The peak number of nodes was found to be
located at 70 μm from the soma and progressively decreased
(Supplementary Figure S3), whereas the apical collateral den-
dritic diameter reached a constant value at ∼40 μm. Both basal
and collateral dendrites showed similar distributions (Fig. 8A).

Axon

Regarding the axon, it emerged either from the soma (66%)
or from the initial portion of a basal dendrite (44%). It had
a mean average diameter of 3.92±0.42 μm that gradually
decreased to reach ∼0.9 μm at a distance of ∼70 μm from
the soma and for the remaining distances (Fig. 8A). In the

case that the axon emerged from the dendrite, its diameter
was thinner (1.88± 0.25 μm; Supplementary Figure S4) and the
dendrite from which it emerged was almost always the thickest
basal dendrite at its initial portion (4.97±0.27 μm compared to
1.98±0.04 μm). The distance from the soma to the initiation of
the axonwithin the dendrite was 12.10± 1.44 μm. In 4 pyramidal
cells, the axons were of sufficient length (419.20± 75.26 μm) to
include 1–4 axonal collaterals showing 70 axonal varicosities.
Human axons gave off collaterals at a distance of 135.6±38.4,
135.1± 7.5, 219.8± 43.5, and 267.2± 41.8 μm for the first, second,
third, and fourth collaterals, respectively. The axonal varicosity
density was 1.74±0.23, 1.06± 0.02, 1.39± 0.08, and 1.31± 0.03
varicosities per 10 μm in the first, second, third, and fourth
collaterals, respectively. The axonal intervaricosity distance was
6.53±1.26, 3.45±0.06, 3.75± 0.17, and 3.77± 0.68 μm in the first,
second, third, and fourth collaterals, respectively.
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Figure 7.Graphs showing human branching (left column) and terminal (right column) dendritic segment diameter (A and B), segment length (C and D), segment surface
area (E and F), and segment volume (G and H) for apical collateral dendrites (blue) and basal dendrites (red). Measurements are reported as mean±SEM. Only dendritic
segments that were complete, and thus excluding incomplete endings, were included in this analysis. Main apical dendrite was not included in the graph since no
complete terminal segments were reconstructed for human neurons. Statistical significance of the differences is shown in Supplementary Tables 3 and 4.

Mouse CA1 Pyramidal Cells

Fifty mouse pyramidal cells were analyzed in the CA1 field.
These cells presented a mean cell body area of 137±3.0 μm2.

Apical Dendrites

An apical arbor emerged from the soma and was composed
of a prominent main apical dendritic shaft which gave off a

number of oblique collaterals (14 to 31) during its ascending
trajectory toward the pia mater. The extent of the apical shaft
varied from 220–480 μm, including the apical tufts in most of
the cases (∼70%). The main apical shaft had the thickest and
longest segments (Fig. 9A,D), whereas collateral dendrites had
segments that were slightly thinner and longer than basal
dendritic segments. The structure of the apical arbor as it
emerged from the soma was mainly formed by a main apical
dendrite that ran without branching to the beginning of the
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Figure 8.Graphs showing dendritic diameter distribution as a function of the dis-
tance from soma in human (A) and mouse (B) for main apical dendrites (black),
collateral dendrites (blue), basal dendrites (red), and axon (green).Measurements
are reported as mean±SEM. Statistical significance of the differences is shown

in Supplementary Tables 5 and 6. Please note that these graphs are not on the
same scale.Human andmouse data comparison is shown in one graph in Fig. 13.

apical tuft, which appeared at a distance of 232.6± 4.33 μm from
the cell body. However, 40% of them bifurcated once, whereas
only one cell bifurcated twice and another one bifurcated three
times before the beginning of the apical tuft. Thus, two main
groups of cells were observed according to this feature: one
without bifurcations and one with one bifurcation (Fig. 6 and
Supplementary figure S5). The average diameter of the main
apical shaft before any bifurcation occurred was 1.82± 0.05 μm.
In the case that the apical dendrite branched before the apical
tuft, the diameter decreased to 1.19± 0.04 μm (Fig. 9E). Apical
tufts also decreased in diameter as branch order increased. The
segment diameters of the same branching order were similar
regardless of whether they belonged to the apical tuft or not.
Regarding the length of branch segments, they decreased as
branch order increased in the main apical dendrite but not in
the apical tufts. Segments were shorter at the tuft (Fig. 9F). The
surface area and volume of the branch dendritic segments also
showed decreasing values in the main apical dendrite toward
higher orders (Fig. 9G,H). The terminal segments of apical tufts
(only acquired for branch orders 3 and 4) were thinner than
branching segments (0.8± 0.02 and 0.6± 0.04 μm, respectively;
Fig. 10A,B).

Collaterals of apical dendrites had an average diameter of
0.71±0.01 μmas they emerged from themain apical dendrite up
to the first node and slightly decreased in the following branch
orders (Fig. 9E). The mean length of the dendritic segments
remained quite similar in the different branch orders (Fig. 9F).
Similarly, the surface area of the dendritic segments and their
volume also remained similar in the different branch orders
(Fig. 9G,H). When segments were classified according to branch
and terminal segments, branch collateral segments followed
a similar pattern of diameter distribution as described above,
whereas terminal segments had similar diameters regardless of
their branch order (Fig. 10A,B). Regarding the segment length,
branch segments slightly increased while terminal segments
decreased as branch order increased and were longer in terms
of absolute values (Fig. 10C,D). Similarly, surface area and the
volume of branch segments increased while terminal segments
surface area and volume decreased toward higher orders and
were larger in terms of absolute values (Fig. 10E–H).

Basal Dendrites

The basal dendritic arbor had 3.04±0.16 primary basal branches
with an average diameter of 1.19±0.04 μm up to the first
node, with the diameter decreasing somewhat to values that
approximated 0.6 μm as the branch order increased (Fig. 9E).
The mean length of the dendritic segments that composed the
basal arbor increased as the branch order increased (Fig. 9F).
Similarly, the surface area and volume of the dendritic segments
also increased toward higher orders (Fig. 9G,H). When segments
were classified according to their position within the arbor as
branching segments or terminal segments, the branch segment
diameter again decreased as branch order increased (Fig. 10A),
while all terminal segments had a similar diameter regardless
of the branch order they belonged to (Fig. 10B). Regarding the
length and surface area, for short branching segments, they did
not change as branch order segment increased but decreased
for terminal segments (Fig. 10C-F). Volume of the dendritic
segments decreased toward higher orders, both in branching
and terminal segments (Fig. 10G,H).

When morphometric variables were measured according to
the distance from the soma, the diameter gradually decreased
from 3.12± 0.15 to ∼0.6 μm along the length of the main apical
dendrite (Fig. 8B); in the apical collateral dendrites the diameter
decreased from 0.80±0.07 to ∼0. 6 μm along the first 30 μm and
then remained similar at further distances (Fig. 8B). In the case
of the basal dendrites, it decreased from 1.36±0.07 to ∼ 0.6 μm
along the first 40 μm and then remained similar at further
distances (Fig. 3E).

Additional Dendritic Features

Additional morphological dendritic non-full measurements
including total values and measurements as a function
of the distance from soma (Sholl analysis) are displayed
in Supplementary figures S6 and S7. As the graphs shows
the distribution of these parameters differs between main
apical, apical collaterals, and basal arbors. For example, these
measurements showed that the peak number of nodes in the
basal arbor was located at ∼ 30 μm and rapidly decreased
(Supplementary Figure S7), which interestingly coincided with
the location where basal dendritic diameter reached a constant
value (∼40 μm; Fig. 8B). However, similar to humans, in apical
collateral dendrites, the distribution of nodes was different. The
peaknumber of nodeswas located at∼ 50 μm from the somaand
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Figure 9. (A–D) Graphs showingmouse dendritic segment average diameter (A), segment length (B), segment surface area (C), and segment volume (D), expressed per cell
(purple) and per dendritic compartment: apical arbor, including main apical dendritic shaft and apical collateral dendrites together (gray); main apical dendritic shaft
only (black); apical collateral dendrites only (blue); and basal dendritic arbor (red). (E–H) Graphs showing same morphological variables as in (A–D): dendritic segment

average diameter (E), segment length (F), segment surface area (G), and segment volume (H), expressed per branch order (1, 2, 3, etc.) and per dendritic compartment:
main apical dendrite (black), apical collateral dendrites (blue), and basal arbor (red). Branch order segments inmain apical dendrite are shown as belonging to themain
apical shaft itself (1, 2, and 3) or belonging to the apical tuft (2t, 3t, and 4t). Measurements are reported as mean±SEM. Only dendritic segments that were complete,
and thus excluding incomplete endings, were included in this analysis. Statistical significance of the differences is shown in Supplementary Tables 7 and 8.

progressively decreased (Supplementary Figure S7),whereas the
apical collateral dendritic diameter reached a constant value at
∼ 30 μm (Fig. 8B).

Axon

The axons emerged mainly from the soma, although 20% of
them emerged from the initial portion of a basal dendrite.

The mean axonal diameter was 1.18±0.05 μm and gradually
decreased to ∼0.5 μm along the first ∼40 μm and then
remained similar at further distances (Fig. 8B). In the cases
that the axon emerged from the dendrite, its diameter was
thinner (0.85± 0.23 μm; Supplementary Figure S4). Similar to
our observations in human cells, the dendrite from which the
axon emerged was found to be the thickest basal dendrite at
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Figure 10. Graphs showing mouse branching (left column) and terminal (right column) dendritic segment diameter (A and B), segment length (C and D), segment
surface area (E and F), and segment volume (G and H) for apical collateral dendrites (blue) and basal dendrites (red). Main apical dendrite includes values for the third
and fourth tuft orders. No complete terminal segments were found for other orders. Measurements are reported as mean±SEM. Only dendritic segments that were
complete, and thus excluding incomplete endings, were included in this analysis. Main apical dendrite is included in the graph for the third and fourth tuft complete

terminal segments, which were reconstructed for mouse neurons. Statistical significance of the differences is shown in Supplementary Tables 9 and 10.

its initial portion (2.4± 0.18 μm compared to 1.19± 0.04 μm
mean dendritic thickness). The distance from the soma to
the initiation of the axon arising from the dendrites was
3.75±0.50 μm.

Human Versus Mouse Cell Comparisons

Human pyramidal cell bodies were larger (∼350 μm2) compared
tomouse (∼140 μm2). Regarding the apical shaft, its length in the

human varied from 230 to 800 μm (not including the apical tuft),
whereas in the mouse it varied from 220 to 480 μm (including
the apical tuft).

Mean values of dendritic segment diameter, length, surface
area, and volume were much greater in the human than in the
mouse (Fig. 11A,C,E,G). In both species, the main apical dendrite
was the thickest, followed by the basal dendrites, and then the
apical collateral dendrites. It should be noted that the human
main apical shaft was much thicker than any other dendrite. In
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Figure 11. Left column: Graphs showing human versus mouse comparisons for dendritic segment average diameter (A), segment length (C), segment surface area
(E), and segment volume (G), expressed per cell (purple) and per dendritic compartment: apical arbor, including main apical dendrite and apical collateral dendrites
together (gray); main apical dendrite alone (black); apical collateral dendrites alone (blue); and basal dendritic arbor (red). Solid bars represent human neurons and

outlined bars represent mouse neurons. Right column: Graphs showing human versus mouse comparisons of mean dendritic segment diameter (B), segment length
(D), segment surface area (F), and segment volume (H), for apical collateral dendrites (blue) and basal dendrites (red), expressed per mean branching (“B”) and terminal
(“T”) segments. Measurements are reported as mean±SEM. Only dendritic segments that were complete, and thus excluding incomplete endings, were included in
this analysis. Statistical significance of the differences is shown in Supplementary Tables 11 and 12.
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Figure 12. Graphs showing human and mouse comparisons for dendritic segment average diameter (A), segment length (B), segment surface area (C), and segment
volume (D), expressed per branch order (1, 2, 3, etc.) and per dendritic compartment: main apical dendrite (black), apical collateral dendrites (blue) and basal arbor
(red). Solid bars represent human neurons and outlined bars represent mouse neurons.Measurements are reported as mean±SEM. Only dendritic segments that were
complete, and thus excluding incomplete endings, were included in this analysis. Statistical significance of the differences is shown in Supplementary Table 13.

both species, the length of segments (between branch points)
was the largest in apical dendrites, followed by the collateral
apical dendrites, and the basal dendrites. This was also the case
for surface area and volume in the mouse but not in the human,
which showed similar values between compartments.

The structure of the apical arbor of the two specieswas differ-
ent, showing a more complex structure with four main patterns

of apical branching patterns compared to two main patterns
in the mouse (Fig. 6). The average diameter of the main apical
shaft before any bifurcation was thinner in the mouse (∼2 μm)
compared to the human (∼5.5 μm; Fig. 12A). In both species,
when the apical dendrite branched, the diameter decreased as
the branch order increased (Fig. 12A). The length of dendritic
segments increased as the branch order increased in the human,
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Figure 13.Graph showing human andmouse comparisons of dendritic diameter

distribution as a function of the distance from soma in human (filled circles)
and mouse (open circles) for main apical dendrites (black), collateral dendrites
(blue), basal dendrites (red), and axon (green). Measurements are reported as
mean±SEM. Statistical significance of the differences is shown in Supplemen-

tary Table 14.

whereas it decreased as branch order increased in the mouse
(Fig. 12B). As a consequence, the surface area of dendritic seg-
ments also showed a differential trend between the two species
(Fig. 12C). The volume of main apical dendritic segments was
much larger in the human compared to themouse, although the
trend of decreasing values toward higher orders was observed in
both species (Fig. 12D).

Regarding collaterals of apical dendrites, primary branches
showed an average diameter of ∼1.33 in the human and
∼ 0.7 μm in themouse up to the first node and slightly decreased
in the following branch orders in both species (Fig. 12A). The
length of dendritic segments increased as the branch order
increased in the human,whereas it remained relatively constant
in the mouse (Fig. 12B). Thus, differential trends were also
observed for surface area of the dendritic segments and their
volume between the two species (Fig. 12C,D).

The primary dendrites of basal dendritic arbors had an aver-
age diameter of ∼ 2 μm compared to ∼ 1.2 μm in the mouse
and slightly decreased in diameter as branch order increased
in both species (Fig. 12A). The length of the dendritic segments
that composed the basal arbors increased in both species as the
branch order increased, although absolute values were smaller
in the mouse (Fig. 12B). Similarly, the surface area and volume
of the dendritic segments also increased toward higher orders,
although the differences between orders were higher in the
human (Fig. 12C,D).

When dendritic diameters were compared according to their
distance from the soma, both the human and themouse showed
similar patterns of distribution of values in the different den-
dritic compartments, although absolute values of diameters
differed greatly (Fig. 13): In the human main apical dendrite,
the diameter decreased from ∼7 to ∼ 1.5 μm along the first
400 μm and remained similar at further distances, whereas in
the mouse the diameter decreased from ∼3 to ∼0.6 μm along
the length of the main apical dendrite. In the case of collateral
apical dendrites, the diameters decreased from ∼ 1.8 to ∼ 1 μm
along the first 50 μm in the human and from ∼0.8 to ∼ 0.6 μm

along the first 30 μm in themouse.Regarding the diameter of the
humanbasal dendrites, it decreased from∼ 2 to∼ 1 μmalong the
first 60 μm,whereas in the mouse this diameter decreased from
∼1.3 to ∼0.6 μm along the first 40 μm but then remained similar
at further distances in both species.

Axons emerged both from the soma (66%) and the initial
portion of a basal dendrite (44%) in human, whereas in mouse
∼20% of the axons were found to emerge from a basal dendrite.
In humans, the axon emerging from the soma had a mean
average diameter of 3.9 μm,whereas in themouse this diameter
was 1.17 μm. The axon diameter gradually decreased to 0.9 μm
at a distance from the soma of 70 μm in the human, whereas in
the mouse it decreased to ∼ 0.5 μm along the first 40 μm (Fig. 13;
Supplementary Figure S4). When the axon emerged from a den-
drite, its diameter was found to be thinner (∼1.8 μm in human;
∼0.85 μm in mouse). In both species, the dendrite from which it
emerged was found to be the thickest basal dendrite at its initial
portion (∼5 and ∼2.4 μm in human and mouse, respectively).
The distance from the soma to the initiation of the axon from
the dendrite was ∼12 μm in human and ∼4 μm in mouse.

The comparison of measurements regarding the size (2D and
3D convex hulls), number of nodes, dendritic length, dendritic
area, and dendritic volume expressed as total values are dis-
played in Figure 14,which shows that these variableswere larger
in most compartments of the human neurons. As a function of
the distance from the soma, basal dendritic structure showed a
higher peak complexity of nodes in humans, whereas collateral
dendrites showed a similarmaximumnumber of nodes between
the species (Figs 15 and 16). The number of intersections, den-
dritic length, surface area, and volume, expressed as a function
of the distance from the soma,was also larger in both apical and
basal human dendrites compared to the mouse (Figs 15 and 16).
See Table 1 for a summary comparing some measurements of
the main variables.

Discussion

The main finding in the present study is that CA1 pyramidal
neurons in the two species show characteristic cell mor-
phologies. Human CA1 pyramidal neurons exhibit distinctive
morphological complexity, which bears important computa-
tional implications. Human cells are not only larger but also
have a structurally different organization compared to mouse
cells regarding a number of morphometric features. However,
there are some other morphological variables that have similar
organizations in the two species although they do differ in their
absolute values.

Differences Between Human and Mouse CA1 Pyramidal
Cells

One obvious difference that often goes unnoticed is that,
because of the corticalization of the human pyramidal cell
layer of CA1, the connections must be different to those of
rodents. Indeed, the stratum oriens is usually described in
rodents as the layer occupied by basal dendrites of the pyramidal
cells. Therefore, the excitatory connections with the basal
dendrites are mostly restricted to this layer. Since the excitatory
connections with the apical dendrites are restricted to the
stratum radiatum and stratum lacunosum-moleculare, there
is a clear stratification of excitatory connections in the rodent
CA1. However, in the human CA1, basal dendrites and apical
dendrites are mostly intermingled, meaning that the apical tree
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Figure 14. Graphs showing human and mouse comparisons of 2D (A) and 3D (B) convex hull, number of nodes (C), dendritic length (D), dendritic surface area (E), and
dendritic volume (F), all expressed as total values, sorted by cell (purple) and by dendritic compartment: apical arbor, includingmain apical dendrite and apical collateral
dendrites together (gray); main apical dendrite alone (black); apical collateral dendrites alone (blue); and basal dendritic arbor (red). Solid bars represent human
neurons and outlined bars represent mouse neurons.Measurements are reported asmean±SEM. Statistical significance of the differences is shown in Supplementary

Table 15.

of one cell overlaps the basal tree of the other cell. Therefore,
the excitatory inputs of the human pyramidal neurons do not
follow this stratified pattern of connections. Certainly, these
differences in the pattern of connections have a number of
important functional consequences, although their significance
has not yet been fully addressed.

Regarding pyramidal cell morphometry, in all compartments
of the human neurons, the convex hull, dendritic length, den-

dritic area, and volume of cells were larger than in mouse. In
terms of function, the size and extent of dendritic arbors relate
to the sampling strategies of cells and mixing of inputs from
multiple sources: cortical and subcortical afferents and local
cortical excitatory and inhibitory inputs (e.g., Lund et al. 1993;
Malach 1994; Elston et al. 1999; Elston 2003). Importantly, the
extent of the differences was not always proportional between
the two species. For example, soma size was 2.5 times bigger in
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Figure 15. Graphs showing human and mouse comparisons of number of nodes (A), dendritic intersections (B), dendritic length (C), dendritic surface area (D), and
dendritic volume (E) distribution as a function of the distance from soma in human (filled circles) and mouse (open circles) for main apical dendrites (black) and
collateral dendrites (blue). Measurements are reported as mean±SEM. Statistical significance of the differences is shown in Supplementary Table 16.

humans, whereas the basal extent was 1.5 times larger (Table 1).
Thus, there is no linear scaling between the dendritic charac-
teristics of human and mouse pyramidal cells analyzed in the
present work.

It is worth noting that the differences found at the neuronal
level between mice and human are ∼2-fold, whereas the differ-
ence in the brain size between these two species is ∼ 2800-fold
(mouse brain volume = 0.5 cm3; human brain volume = 1,400

cm3; see e.g., Hofman, 2014). Indeed, biophysical constraints
limit the size of neurons in all species, as the cable properties
of the dendritic tree filter “dampens” the synaptic input that
impinges on it. Consequently, dendrites are typically no more
than ∼2 space constants (λ) long. Otherwise, distal synapses
would not have an impact on the cell’s output (even in the non-
linear case; see recent work by Moldwin and Segev (2019) that
specifically addresses the computational limitation on memo-
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Figure 16. Graphs showing human and mouse comparisons of number of nodes (A), dendritic intersections (B), dendritic length (C), dendritic surface area (D) and
dendritic volume (E) distribution as a function of the distance from soma in human (filled circles) and mouse (open circles) for basal dendrites. Measurements are
reported as mean ± SEM. Statistical significance of the differences is shown in Supplementary table 16.

ry/generalization tasks due to the dendritic cable length). Addi-
tionally, the large dendritic trees of human cells had complex
patterns of branching in the apical and basal dendrites that were
not found in themouse. In particular, several branching patterns
were observed in the human main apical shaft compared to
the mouse main apical shaft, which usually did not bifurcate

or bifurcated once. In addition, there were about double the
number of stem (primary) basal dendrites and also double the
number of basal terminal endings in human versus mouse.
Regarding the structure of apical arbors, previous studies have
shown in the rat that pyramidal cells that can be distinguished
by the morphology of their apical dendrites often have different
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Table 1 Summary of some measurements (mean±SEM) to illustrate the percentage increase of human values compared to mouse including
soma size (estimated by measuring the area of the maximum perimeter of the soma), number of primary dendrites, basal extent (measured as
the maximum concentric sphere centered on the cell body), distance from the soma of the maximum number of basal nodes (peak), average
segment diameter of first- and second-order dendritic segment (in main apical shaft, apical collateral and basal), average segment length of
first- and second-order dendritic segment (in main apical shaft, apical collateral and basal), average branching and terminal dendritic segment
diameter (in apical collateral and basal), average branching and terminal dendritic segment length (in apical collateral and basal), average
diameter at 10 μm Sholl distance (in main apical shaft, apical collateral, basal, axon emerging from soma, and axon emerging from dendrite),
and average diameter of basal dendrites containing an emerging axon, for human and mouse.

Human Mouse % Difference

Area of the maximum perimeter of the soma (µm 2 ) 350±9.7 137±3.0 255
Number of primary basal dendrites 6.37±0.25 3.04± 0.15 209
Basal extent (µm) 300 190 158
Distance peak basal nodes (µm) 40 30 133
Segment diameter first-order main apical (µm) 5.74±0.18 1.82± 0.05 302
Segment diameter second-order main apical (µm) 3.31±0.15 1.19± 0.04 278
Segment diameter first-order apical collateral (µm) 1.33±0.02 0.71± 0.01 187
Segment diameter second-order apical collateral (µm) 1.07±0.01 0.65± 0.005 165
Segment diameter first-order basal (µm) 1.98±0.04 1.19± 0.04 166
Segment diameter second-order basal (µm) 1.50±0.02 0.88± 0.02 170
Segment length first-order main apical (µm) 84.77± 10.75 157.6±13.54 54
Segment length second-order main apical (µm) 130.9± 21.08 124±14.60 105
Segment length first-order apical collateral (µm) 60.99± 2.36 60.48±1.33 101
Segment length second-order apical collateral (µm) 99.4±2.94 64.54±1.45 154
Segment length first-order basal (µm) 16.63 ±0.80 11.48±0.98 145
Segment length second-order basal (µm) 48.32± 3.28 33.64±3.30 144
Segment branching diameter apical collateral (µm) 1.41±0.02 0.81± 0.01 175
Segment terminal diameter apical collateral (µm) 0.96±0.004 0.65± 0.002 148
Segment branching diameter basal (µm) 1.63±0.01 0.90± 0.01 181
Segment terminal diameter basal (µm) 1.01±0.005 0.64± 0.005 159
Segment branching length apical collateral (µm) 25.32± 0.80 14.57±0.64 174
Segment terminal length apical collateral (µm) 147.1± 1.64 77.9± 0.78 188
Segment branching length basal (µm) 20.55± 0.66 16.43±0.73 125
Segment terminal length basal (µm) 169.2± 1.78 93.51±1.76 180
Average diameter at 10 µm Sholl main apical distance (µm) 7.19±0.21 3.12± 0.15 230
Average diameter at 10 µm Sholl collateral distance (µm) 1.87±0.33 0.80± 0.07 234
Average diameter at 10 µm Sholl basal distance (µm) 2.36±0.20 1.36± 0.07 173
Average diameter at 10 µm Sholl axon distance emerging

from soma (µm)

3.92±0.42 1.18± 0.05 332

Average diameter at 10 µm Sholl axon distance emerging from

dendrite (µm)

1.88±0.25 0.85± 0.23 221

Average diameter of basal dendrites containing an emerging

axon (µm)

4.97±0.27 2.4±0.18 207

firing patterns and seem to form distinct synaptic subnetworks
(Wang et al. 2006; Feldmeyer 2012). Also, it has been shown in the
rat somatosensory cortex that themorphological information of
apical dendrites allows for a classification of pyramidal cells that
largely corresponded to classes that were defined previously
based on other neuronal and synaptic properties, such as long-
range projects and synaptic innervations (Wang et al. 2018).
Additionally, it has been shown in the rat hippocampus that
neurons exhibiting different firing patterns have distinct physi-
ological and morphological identities (Graves et al. 2012). Thus,
it is likely that the various morphological types of branching
patterns observed within and between the human and mouse
give rise to different electrophysiological firing patterns.

In human pyramidal cells, the dendritic segments were
thicker, longer, and had greater surface area and volume than
in the mouse, in all compartments of the neuron. The human
main apical dendrite was much thicker than any other dendrite,
leading to a much larger surface area and volume than any
other human dendrite. Furthermore, in the human, the length
of segments in themain apical dendrite showed different trends

as the branch order increased: It increased in the human,
whereas it decreased in themouse. Dendritic length of collateral
segments increased as the branch order increased in the human,
whereas it remained relatively constant in the mouse. Also,
human terminal dendritic segments, both in basal and collateral
dendrites, were larger than in mice and nonproportionally
elongated (with respect to the nonterminal branches) when
compared to the mouse. Altogether, these results show that
human CA1 pyramidal cells are not a stretched version of
mouse CA1 cells. Human cells havemore complex dendritic tree
and larger variable values that do not scale similarly between
human and mouse. These differences in the geometrical design
must reflect differences in cortical processing of information
because the pattern of dendritic branching influences dendritic
compartmentalization and, thus, the processing of information
within their arbors (Rall 1959; Koch et al. 1982; Segev and
London 2000; Poirazi and Mel 2001; London and Haüsser 2005;
Spruston 2008; van Elburg and van Ooyen 2010 and see recent
work on monkey V1 dendrites by Amatrudo et al. 2012 and by
Luebke 2017, comparing mice and monkey dendritic topology).
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Thus, the distinct properties observed in human and mouse
pyramidal cells affect how they process information, enabling
functional specialization of the neuronal networks in each
species. Specifically in humans, the large and more complex
structured pyramidal cells will allow for a greater capacity of
the cells to perform a larger number of computations. These
structural complexities potentially endow human CA1 neuron
with multiple semi-independent, dendritic subunits. In this
scenario, local synaptic inputs to a particular dendritic subtree
may trigger there local nonlinearity (e.g., N-Methyl-D-aspartate
[NMDA] spike) independent of such local nonlinearities in other
dendritic subunits in the same CA1 neuron. Such multiple non-
linear subunits, enabled by the multitude dendritic branches in
human CA1, are expected to enhance the computational/mem-
ory capacity of the neuron. Indeed, the connection between
the increased morphological complexity in human versus
mouse neurons and the enhanced computation capabilities in
human neurons was recently demonstrated by Eyal et al. 2016
for human neocortical L2/3 pyramidal neurons (see also
Gómez González et al. 2011; Beaulieu-Laroche et al. 2018). Also,
the differential expression of ion channels between human and
rodents has been shown to contribute to differences in neuronal
physiology (Kalmbach et al. 2018). This is in linewith recentwork
that has shown that larger dendritic trees enable pyramidal
neurons to track activity of synaptic inputswith higher temporal
precision, due to fast action potential kinetics (Goriounova et al.
2019).

Regarding axons, they were twice thicker in the human than
in mouse and emerged both from the soma and the initial
portion of a basal dendrite. In the mouse, the proportion of
axons emerging from a basal dendrite was lower (see also
Thome et al. 2014). In any case, the location of the origin of
the axon is important since the spike initiation location may
impact not only excitability but also the backpropagation of
action potentials and synaptic integration (reviewed in Kole and
Brette 2018). In this regard, the distance from the soma to the
initiation of the axon in the dendrite was proportionally further
away in humans—the axons emerged at a distance of around
three-fourth of the length of the first-order dendrite compared
to one-third in the case of the mouse. Taken together, these
results show that differences between species are not only just
in terms of size but also in the architecture of their cellular
components, indicating that the structural designs of pyramidal
cells in human and mouse are different.

Similarities in CA1 Pyramidal Cells Between Human
and Mouse

Regarding similarities, there were several variables that differed
in their absolute values but showed similar patterns of distri-
bution between the two species. For example, in both species,
the main apical shaft was the thickest, followed by the basal
dendrites, and then the apical collateral dendrites. In the case
that the apical dendrite branched, the diameter decreased as the
branch order increased. In both species, differences in thickness
between basal and collateral dendrites were mainly due to the
larger diameter of the first- and second-order basal dendrites,
whereas terminal segments were of the same thickness regard-
less of their branch order, both in collateral and basal dendrites.
In both species, apical dendrites had the largest segments, fol-
lowed by collateral dendrites, and then basal dendrites. Nodes
were located close to the soma, at the same proportional dis-
tance (13–15%) from the extent of the basal dendrites. The

maximum branching complexity of basal dendrites was higher
and closer to the soma than that of collateral dendrites. The
length of segments that branched was much smaller than that
of terminal segments, both in collateral and basal dendrites.
Also, in both species the terminal segments in the basal den-
drites were longer than those of the collateral dendrites. Some
of these similarities have also been observed in other species
and cortical areas. For example, in the visual cortex of the rat
(Larkman 1991), it was also shown that most basal dendritic
branching occurred close to the soma, such that terminal seg-
ments were much longer than intermediate segments; terminal
segments showed only a narrow range of diameters; collateral
dendrites tended to be less highly branched but were otherwise
extremely similar to basal trees; and the terminal segments
tended to be thinner than those of basal or proximal oblique
trees. In Bannister and Larkman (1995) the analysis of dendritic
branching patterns of pyramidal neurons in the CA1 field of the
rat, similar to observations in the present work, showed that
the majority of branch points occurred close to the origin of
the tree, and both basal and oblique terminal segments were
generally much longer than intermediate segments. However,
they observed that basal and oblique trees had similar branching
patterns, which was not the case for the mouse and human CA1
cells, nor for the rat visual cortex (see above).

Regarding the axon, in the case that it emerged from the
dendrite, its diameter was thinner in both species. Also, the
dendrite from which it emerged was the thickest basal dendrite
at its initial portion (∼5 and∼ 2.4 μm thick, in human andmouse,
respectively). These results suggest that there are some mor-
phological parameters of the pyramidal cells that are conserved
across species. Importantly, there is a functional segregation of
CA1 pyramidal cells along the longitudinal axis—dorsoventral in
rodents and anteroposterior in primates—and the proximodistal
axis—proximal and distal are portions of CA1 that are adja-
cent to CA2 and subiculum, respectively (Igarashi et al. 2014;
Strange et al. 2014; Soltesz and Losonczy 2018). Further studies
along these axes and in other cortical regions and species would
be necessary to elucidate which of these similarities might be
considered as basic elements of the design of pyramidal cells
and which are adaptations to particular regions. Finally, since
the dendritic spines of pyramidal cells are key dendritic ele-
ments that contribute actively to the integration of information
and synaptic plasticity (Hausser et al. 2000; Anderson et al. 2007;
Harvey and Svoboda 2007; Spruston 2008; Yuste 2010), future
studies on the density, distribution, andmorphology of dendritic
spines are necessary to further understand the processing of
these cells within neuronal circuits. Also, the number of semi-
independent dendritic subunits depend on the degree of elec-
trical decoupling between dendritic subunits (Eyal et al. 2018),
and these depend on the specific axial andmembrane resistivity
and on themembrane capacitance, as well as on the diameter of
the respective dendritic branches. Further physiological studies
on CA1 neurons would enable to obtain the cable parameters
of human CA1 neurons and, consequently, to study via detailed
cable models, if indeed the number of functional nonlinear
dendritic subtrees is large in human CA1 neurons, as is strongly
indicated by their highly complex dendritic tree.

Methodological Considerations

The mice used in the study are still relatively young at
8 weeks, whereas we used two middle-aged human cases
(45 and 53 years). Thus, it is possible that age may have an
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effect on some of the dendritic parameters assessed (see
Benavides-Piccione et al. 2013 and references contained
therein). Nevertheless, the differences between the mouse
and human neurons are so large that most likely these
differences represent species-specific differences rather than
age-related differences. Indeed, Jacobs et al. (1997) studied
the pyramidal cell structure of neurologically normal indi-
viduals ranging in age from 14 to 106 years using the Golgi
method. They found that dendritic values were relatively
stable after 40 years of age. Another possible limitation
when comparing mice and human neurons is that human
brain has been fixed by immersion, whereas mouse brains
have been fixed by intracardial perfusion. However, as previ-
ously discussed (Benavides-Piccione et al. 2002), we did not
find any obvious difference between the two methods of
fixation.

Furthermore, since 3D reconstructions do not include
complete basal and apical arbors (see Materials and Methods
for further details), results from variables that do depend on
the entirety of the cell (2D and 3D convex hulls, total number
of dendrites, nodes, intersections, total dendritic length, surface
area, and volume) should be interpreted with these technical
limitations on mind. On the contrary, morphological variables
that do not depend on the entirety of the reconstructed cell
(soma area, segment diameter, segment length, segment surface
area, and segment volume) do not have these restrictions and
thesemeasurements can be reliably compared. Finally, although
we reconstructed a relatively large number of reconstructed
human pyramidal cells (n=54), they came from only two
individuals. This limited number of cases was due to the
difficulties in obtaining human tissue with the optimal quality
of fixation required for these experiments. Nevertheless,
the results obtained in the present study are robust due to
the large number of dendritic morphological characteristics
that were analyzed. In addition, there are no other similar
studies performed in the normal human hippocampus. Thus,
the present study represents a further step toward the
characterization of human brain microorganization, although
it would be necessary to confirm with a larger number of
individuals.

Supplementary Material

Supplementary material is available at Cerebral Cortex online.
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