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D I F F E R E N T I A L T O P O L O G I C A L R E S T R I C T I O N S 

C U R V A T U R E A N D S Y M M E T R Y 

KARSTEN GROVE k CATHERINE SEARLE 

A basic question one asks in Riemannian geometry is: how are geo-

metric properties of a manifold reflected in its topology? An analogous 

question in transformation groups is: what topological restrictions are 

forced on a manifold by the existence of an effective action of a large 

group? In this work, we consider a combination of these two problems, 

namely: 

Classify positively curved manifolds with large isometry groups. 

One measurement for the size of a transformation group, G X M —> 
M, is the dimension of its orbit space, M/G, also called the cohomo-
geneity of the action. This dimension is clearly constrained by the di-

mension of the fixed point set, M G, of G in M. In fact, dim(M/G) > 
dim(M G) + 1 for any non-trivial action. In light of this we define the 

fixed point cohomogeneity of an action by 

(0.1) cohom fix(M, G) = dim(M/G) - dim(M G) > 1, 

that is, as the codimension of M in M/G. Note that if M = 0, then, 

by convention, cohomfix(M,G) = cohom(M,G) + 1. Thus, (M,G) has 

minimal fixed point cohomogeneity one, if either M is homogeneous, or 

G acts transitively on a normal sphere to some component of M G. In 

the latter case we say that M is fixed point homogeneous. 

Recall tha t simply-connected homogeneous manifolds of positive sec-

tional curvature have been classified in Berger [7]1, Aloff, Wallach [?], 

[?], and Berard-Bergery [?]. As one of our main results, we provide a 
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complete classification of fixed point homogeneous manifolds of postive 

sectional curvature (cf. Theorem 2.8). As a special case, we obtain: 

T h e o r e m A . Any simply-connected, fixed point homogeneous man-
ifold of positive sectional curvature is dijfeomorphic to either S n, CP'm, 
HP k orCaP2. 

Another measurement for the size of G X M —> M is the dimension, 

dim(G) of G relative to dim(M). From a dual point of view, G is large 

if dim(M) is small relative to G. This viewpoint is related to repre-

sentation theory. In a sense, the most basic linear representations of a 

compact Lie group, G, are those of lowest dimension. Thus motivated, 

we may also interpret the above problem in the following manner: 

For a given compact Lie group, G, classify the low-dimensional 
positively curved manifolds, M, on which G can act (almost) 
effectively by isometries. 

Recall tha t any connected, compact Lie group, G is finitely covered 

by a group G = T k X G\ X ... x Gj, where each GÌ, i = 1,...,l, is simple. 

Our classification of positively curved manifolds with maximal symme-

try rank in [?] can be viewed as an answer to the above problem when 

G = T is abelian. In this paper, we consider the remaining building 

blocks, i.e., the simple Lie groups and, in particular, the classical ones. 

If for each compact Lie group, G, we set 

rep^(G) = min{n\Gacts (almost) effectively by isometries 

on some M n with sec(M n) > 0}, 

then another main result of this paper can be stated as (cf. Theorems 

3.7, 3.9, 3.11, 3.12, 3.13): 

T h e o r e m B . Let G be a connected, compact, simple Lie group other 

than EQ, Er, or Eg. Then 

(i) rep^(G) = min{dim(G/H)\H C G closed subgroup }, 

(ii) any positively curved (almost) G-manifold, M, with dim(M) 
< 2rep^(G) — e(G) is dijfeomorphic to a positively curved ho-
mogeneous manifold, where e(G) is a small number depending on 
G. 
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The key reduction used in the proof of this result is tha t any 

G X M —7- M satisfying the assumptions of Theorem B is either ho-

mogeneous, of cohomogeneity one or of fixed point cohomogeneity one. 

In an analagous curvature free setting we refer to the work initiated by 

W.-Y. Hsiang in [?] (see also [?]). 

Recall that , except for the examples due to Eschenburg [?], [?] and 

Bazaikin [?], all known positively curved manifolds are homogeneous 

(up to diffeomorphism). Thus, Theorem B provides another motivation 

for the systematic work initiated here. Indeed, for most, if not for all 

groups G, the conclusion in (ii) will almost certainly fail when dim(M) 
is sufficiently large. It is quite likely that methods as developed in this 

paper, when applied to the lowest dimensional manifolds, M, where the 

theorem fails, will yield enough structure on M so as to propose po-

tentially new examples of manifolds with positive curvature. However, 

we will refrain from pursuing this issue here. The following are simple 

consequences of Theorem B. 

Corollary C. Let G/H be a homogeneous space of positive curva-
ture. If M is a positively curved manifold with dim(M) = dim(G/H) 
on which G acts (almost) effectively by isometries. Then M is dif-
feomorphic to a positively curved homogeneous manifold (which is not 
necessarily G/H). 

In this generality, the conclusion of Corollary C fails if the symmetry 

group G of M is replaced by the smaller group H. However, for the 

rank-one symmetric spaces, we have the following result. 

Corollary D . Let G/H be a compact rank-one symmetric space 
(CROSS). If M is a positively curved manifold on which H acts (almost) 
effectively by isometries, and dim(M) = dim(G/H) > 16, then M is 
diffeomorphic to a CROSS. 

In both of these corollaries, the conclusion holds for manifolds with 

dimension larger than dim(G/H). However, Corollary D fails in di-

mension 7 = dim(Sp(2)/Sp(l)), namely each Aloff-Wallach example 

W7 = SU(3)/T kj admits an Sp(l) action but is not a CROSS. All in 

all, one might thus be tempted to phrase the main results of this paper 

as follows: any potentially new example of a manifold of positive curva-

ture must have significantly smaller symmetry group than those of the 

known examples. 

The point of departure for our investigations is to analyse transfor-

mation groups G X M —7- M directly via the geometry of their orbit 
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spaces X = M/G. These spaces form a particularly beautiful subclass 

of the so-called Alexandrov spaces, and our work is, to a large extent, 

propelled by the recent progress in this area. Of particular importance 

to us is the fact that if M has positive curvature, then so does X. This 

becomes especially restrictive if X has non-empty boundary, since in 

that case X is contractible by the Cheeger-Gromoll-Meyer Soul the-

orem adapted to Alexandrov spaces (cf. [?]). Other restrictions are 

obtained via Alexandrov-Toponogov type angle comparisions when ap-

plied to triangles in X with vertices at singular points. 

We arrive at our results when these geometric methods, together 

with critical point theory for distance functions (cf. e.g. [?]), are com-

bined with known results from Lie theory and representation theory. 

For general facts about representation theory, we refer the reader to [?]. 

All claims about dimensions of representations and inclusions among Lie 

groups follow easily from the theory in [?]. For facts about subgroups 

of exceptional Lie groups, we refer to [?]. Finally, we occasionally need 

to compute the normalizer of a subgroup in some specific examples. 

For general methods as to how to do this, we refer for example to [?], 

in particular to paragraph 3. We wish to thank Wu-Yi Hsiang and 

W. Ziller for numerous illuminating conversations in which they shared 

their views and expertise on the latter subjects. 

1. A lexandrov g e o m e t r y of orbit spaces 

Throughout this paper M will denote a complete, connected Rie-

mannian n-manifold, and G a compact Lie group which acts (almost) 

effectively on M by isometries. The orbit space X = M/G is equipped 

with the orbital distance metric from M. 

Although we are primarily interested in positively curved manifolds, 

the natural setting for our methods applies to manifolds, M, whose 

sectional curvature is bounded from below, i.e., sec(M) > k. It is well 

known that there are many geometrically equivalent formulations of the 

condition sec(M) > k, some of which involve distances only (cf. e.g. [?], 

[?] and [?]). It is therefore easy to see, that , in this distance comparision 

sense, X is curved from below as well, in fact, curv(X) > k. Thus, X 
is an example of a so-called Alexandrov space, and 

(1.1) dim(X) = cohom(M, G) 

by definition of the cohomogeneity of the action G X M —> M. 
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The local and infinitesimal structure of general Alexandrov spaces 

is tied to spaces of directions (cf. [?], [?]). In the case of orbit spaces 

X = M/G, these are described as follows. For p G M, we denote its 

orbit in M by G(p), and when viewed as a point in X by p. The space 
of directions, S p X at p G X, consists exclusively of geodesic directions. 

Moreover, 

(1.2) S p X = S p /G p, 

where S p~ is the unit normal sphere to G(p) at p, and G p = fg G G : gp = 
pg is the isotropy group of p. Note that p is a euclidean point of X, i.e., 

S p X = S m - , where S m - is the unit ( m — l)-sphere, m = dim(X), 
if and only if G(p) is a principal orbit in M. We denote the set of 

such points by M e, and call it the regular part of M. Correspondingly, 

M s = M — M e is called the singular part of M. 

As a first application of comparision theory, we show how curv(X) > 

k imposes restrictions on the singular set M s, via X s = M s/G. For 

simplicity, we confine ourselves to the case where k > 0, since otherwise 

the diameter of X must be invoked. 

Extent L e m m a 1.3. For any choice of (q + 1) distinct points 

po, ....,p q G X = MJ G one has 

, ^i=oxt q S p i X (=) ^ 

whenever curv(X) t=\ 0. 

Proof. Join each pair of points from fpo, ...,p q g by a segment 

in X, and add up all angles between pairs of segments with common 

endpoints. This is carried out in two different ways: (i) takes the sum 

for each triangle and then add up over all triangles; (ii) takes the sum 

at each point and then add up over all points. Thus 

( q ) Y:q i = 0 xt q S p i X > Wangles > n ( q+1 ) , 

where (i) and curv(X) > 0 have been used for the right-hand inequality, 

and (ii) together with the definition of the q-extent (the maximal average 

distance between q points, cf. [?]) have been used in the left-hand 

inequality. q.e.d. 

In this form, (1.3) is a powerful simple generalization of one of the 

key ideas applied in [?]. Note that S p and hence xt q S p is smaller the 
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more singular p is. Thus (1.3) yields quantitative restrictions on the 

number of singular orbits of various types when sec(M) > 0. For ex-

ample, there can be at most two points po> pi G X with diamS pt < § if 

curv(X) > 0. In the slightly more restrictive case in which 

diam(S pt) < j , M can be described as follows: 

Equivariant Sphere T h e o r e m 1.4. Let M be a closed manifold 
with sec(M) > 0 on which G acts (almost) effectively by isometries. 
Suppose po,pi G M are points such that diamS p-t < ^, i = 0 , 1 . Then 
M can be exhibited as 

M = D(G(p o))\jD(G(pl)), 
E 

where D(G(p i)), i = 0,1 are tubular neighborhoods of the p i-orbits and 
E = dD(G(po)) = dD(G(pi)). In particular, M is homeomorphic to a 
sphere if G(p i) = p i, i.e., if p i, i = 0,1 are isolated fixed points for G 
and diamS pt < ^ . 

Proof. Let p £ M — (G(po) S G(p\)) be chosen arbitrarily. Since 

curv(X) > 0, it follows from the assumption that Z(co, c\) > -| for any 

segment c i from p to p i, i = 0,1. In M this means that p is a regular 

point for the distance functions, dist(G(p i), •), i = 0 , 1 , and the claim 

follows from the isotopy lemma (cf. e.g. [?]). q.e.d. 

Note that only curv(X) > 0, not sec(M) > 0, is used in the proof. 

In particular, the structure of any closed manifold of cohomogeneity one 

with finite fundamental group is recovered in (1.4). 

Even when the singularities of X = M/G are too mild for (1.3) to 

apply (e.g. when diamS p-t > -| and thus IT), they often yield interesting 

restrictions in a different way. The most remarkable one of these arises 

when X has non-empty boundary. Here p G dX C X s by definition, 

if dS p X / 0. This inductive definition is anchored by the simple fact 

that the only compact 1-dimensional orbit spaces (Alexandrov Spaces) 

are closed intervals and circles. 

Now suppose that dX / 0 and curv(X) > 0. Then the Soul theorem 

adapted to Alexandrov spaces by Perelman [?] asserts that : 

(1.5) dist(dX, •) : X —> R is strictly concave. 

In particular, this tells us the following: 

(1.6) there is a unique point pi G X at maximal distance from dX, 
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(1.7) for any p £ X — (dX S{p i} ) and segments c , c\ from p to 9 X , 

and p i , respectively, one has Z(co, ci) > -|, 

(1.8) X is contractible. 

If 7T : M —» M / G = X is the quotient map, we let Mg C M s denote 

the subset defined by Mg = K~1d(X). Moreover, for any subset A 
of M (or of X), and any r > 0 we use D(A,r) to denote the closed 

r-neighborhood of A. Correspondingly, S(A,r) is the set of points at 

distance r to A and B(A, r) = D(A, r) — S (A, r). 

As a fairly straightforward consequence of (1.2), (1.6) and (1.7) com-

bined with critical point arguments for dist(Mß, •) and dist(G(pi), •) (via 

dist(dX, •) and dist(pi, • )) (cf. e.g. [?] or [?]) one derives the following 

basic: 

Soul L e m m a 1.9. Suppose M is a closed manifold with sec(M) > 

0, on which a compact Lie group G acts (almost) effectively by isome-
tries, such that d(M/G) / 0. Then, 

(i) there is a unique orbit, G(p\) C M at maximal distance from 

Mg C M, 

(ii) for any p G M — (Mg S G(pi)), the intersections Mg T M G p and 

G(pi)M p are nonempty, 

(iii) M ~ , T Mg, e) S E D(G{pl)), where E = dD(G{pl)) ~ S{Md, e), 

(iv) Mg/G is homeomorphic to S pJG pl. 

R e m a r k 1.10. The key point in (1.9) is that curv(X) > 0, 

not sec(M) > 0. If we have only curv(X) > 0, we can apply similar 

arguments with somewhat weaker conclusions, since dist(dX, •) is now 

only concave, rather than strictly concave. Hereafter, we will refer to 

the orbit, G(p\), in (1.9) as the "soul"-orbit of G. 

Another context in which orbit spaces with non-empty boundary 

play a significant role is in the following result from [?] (for related 

result cf. [?]). 

Fixed point L e m m a 1.11. Let M be a positively curved almost-
effective G-manifold with G connected and with principal isotropy sub-
group H. If the connected component, HQ, of H is a maximal connected 
subgroup of G, and d{{G/HQ)/HQ) / 0, then either M G / 0, or else G 
acts transitively on M. 
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R e m a r k 1.12. The condition d{[G / HQ)/ HQ) / 0 occurs quite 

frequently: for example (G, Ho) a symmetric pair will satisfy this con-

dition, as will often (G,Ho), where Ho is maximal. Note however that 

this is not true for example with (Sp(2), Sp(l)), where Sp(l) is maximal. 

In Section 3 we will also need some basic facts about closed man-

ifolds of cohomogeneity one which we recall here for convenience. If 

dim(M/G) = 1, then M/G is either a circle or an interval. In the 

first case, all orbits are principal and IT : M —> X = M/G is a fibra-

tion. Since we are interested in positively curved manifolds here, only 

the second case can arise by the Bonnet-Myers theorem. All interior 

points of the interval correspond to the principal orbits, E = G/H, 

and the endpoints of the interval correspond to two exceptional orbits 

B i = G/K i, i = 0,1. In terms of this data, M is exhibited as the union 

of tubular neighborhoods DB i —> B i,i = 0 , 1 , with common boundary 

dDBo ~ dDBx ~ E. In particular, i : E = G/H - • G/K i = B i, 
i = 0 , 1 , are bundles with sphere fibers K i/H = S l'. 

Conversely, given 

K0 

C C 

(1.13) H G, K i/H = S l 1 i = 0 , l , 

c c 
Kt 

we can reconstruct a cohomogeneity one G-manifold as 

(1.14) M=(G xKo D ( l + 1 ) ) ( J (G xKl D^+iy). 
G/H 

Note that given the isomorphism classes of bundles DB i ^ B i, different 

possibilities for M can arise via different glueing maps dDBo ~ dDB\. 
Such glueing maps are G-equivariant, and are determined by an element 

n G N(H) (cf. (2.6)). In the description (1.13) above, this simply 

corresponds to replacing only one of the K^s by its conjugate nK i n~l. 
We further note that under the assumption that the manifold in question 

is simply-connected, H is connected, when K i/H / S1, i = 0,1. The 

case of finite extensions H of Ho and (possibly of) K i, i = 0,1 in G 
is possible only if one of the K i/H is a circle. Before we confine our 

investigation to specific groups, we state one more useful general fact. 
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Synge ( type) L e m m a 1.15. Let M be a positively curved manifold 

and V and W two non-intersecting, totally geodesic submanifolds of M. 

Then dim(V) + dim(W) < dim(M). 

In our context, the submanifolds V and W in (1.15) will arise as 

fixed point sets for transformation groups K C G. Although we will 

not use it here, we remark that (1.15) holds for orbits spaces as well, 

and even general Alexandrov spaces (cf. [?]). 

We point out that the utility of the methods developed in this section 

is amplified by the obvious fact that they also apply to all subgroups of 

a given transformation group. Since we are primarily interested in large 

groups, this will play a significant role as we proceed. 

2. F ixed point h o m o g e n e o u s manifolds 

In this section we will classify (up to equivariant diffeomorphism) 

positively curved, fixed point homogeneous manifolds, tha t is, mani-

folds, M, for which the fixed point cohomogeneity 

(2.1) cohom fix(M, G) = dim(M/G) - dim(M G) 

is minimal, i.e., equal to 1. 

We need only consider the case in which M / 0. If Bo is a compo-

nent of M G with maximal dimension, i.e., dim(B0) = dim(M G), then 

clearly the codimension of Bo in X = M/G is one more than the co-

homogeneity of any normal sphere to Bo under the induced G-action. 

Thus, if cohomfix(M,G) = 1, we see that G acts transitively on the 

normal spheres to Bo. In particular, Bo is a component of dX. More-

over, for e > 0 sufficiently small, the e-neighborhood of Bo in X is a 

smooth manifold with boundary Bo, and all orbits in B{BQ, e) — BQ are 

principal. As a special case of the Structure Lemma (1.9), we derive the 

following (cf. also (1.4)): 

Structure T h e o r e m 2.2 . Let M be a positively manifold with an 
(almost) effective, isometric G-action of fixed point cohomogeneity one 
and M G / 0. If Bo is a component of M G with maximal dimension, 
then the following hold: 

(i) There is a unique orbit, B\ = G{p\) ~ G/G pl, at maximal dis-

tance to Bo (the "soul" orbit). 

(ii) All orbits in M — (B S Bi ) are principal and diffeomorphic to 
S — G JH, the normal sphere to BQ. 



d i f f e r e n t i a l t o p o l o g i c a l r e s t r i c t i o n s 539 

(iii) There is a G-equivariant decomposition of M, as 

M = DB0\JDB1, 
E 

where DBo, DB\ are the normal disc bundles of Bo, B\, respec-
tively, in M, with common boundary E when viewed as tubular 
neighborhoods. 

(iv) All G pl-orbits in the normal sphere S to B\ at p\ are principal 
and dijfeomorphic to G pl/H. Moreover, Bo is dijfeomorphic to 

S /G pl. 

We leave the details of the proof to the reader and point out only 

that if dimBo > 0 then Bo = dX. However, if M G is finite, and hence 

Bo is a point, then X is an interval and Bo is one of the boundary 

points. The other boundary point is either another fixed point for G (in 

fact, the only other one), or else the orbit at maximal distance from Bo 
(cf. (1.4)). In either case, (2.2) holds as stated. 

Note that implicitly in (2.2), we have exhibited two spherical fiber 

bundles: 

(2.3) K/H -> S l -> S l/K ~ B0i 

(2.4) K/H -> S k ~G/H -+G/K ~ Bi, 

where K = G pl is the isotropy group of the soul orbit. This already 

imposes severe topological restrictions due to Browder [?], from which 

it is possible to deduce that , at least cohomologically, any M as in (2.2) 

looks like a finite quotient of a rank-one symmetric space. Utilizing the 

restrictions on the pair (G, H) expressed in (2.4), we will in fact obtain 

such a description (Theorem (2.8)) up to (equivariant) diffeomorphism. 

To acheive this, we need the following: 

Uniquenes s L e m m a 2.5. Let M and M be two (Riemannian) G-
manifolds with structure as in (2.2), i.e., there exist components BQ C 
M G,B C M G and orbits Bx C M, Bx C M , such that (ii)-(iv) of 
(2.2) hold. If, in addition, the bundles DB\ —> B\ and DB\ —> B\ are 
G-equivalent, then M and M are G-dijfeomorphic. 

Proof. We will show that under the assumptions above, any 

G-equivariant bundle isomorphism f : DB\ —> DB\ extends to a G-
equivariant diffeomorphism from M to M. To do this, we will extend 



540 k a r s t e n g r o v e & c a t h e r i n e s e a r l e 

the restriction h = fj : E —> E to a G-equivariant bundle map g : 

DBQ —T- DBQ. Namely, let g be the unique radial extension of h. Then 

it clearly follows that , F = g S h f : DB0 E DBX - • DB \JE DBX is a 

G-equivariant homeomorphism, Fj : M S BQ —> M — Bo is a diffeomor-

phism, and so is Fj : Bo —> Bo (in fact gjBo ~ h/G). To check that 

g : D B ^ DBQ is a diffeomorphism, it therefore suffices to see that it is 

linear on each fiber. Since isometries of the standard sphere S = G/H 

are restrictions of linear maps of R k+1 D D k+1
1 the desired linearity is 

an immediate consequence of the following useful fact: 

S u b l e m m a 2 .6 . Let G be a connected, compact Lie group, and H 
a closed subgroup. Then for any G-equivariant map F : G/H —> G/H, 
there is an n G N(H) C G such that 

F(gH) = gnH. 

Moreover, F is an isometry for any homogeneous metric on G/H which 

is induced from an Ad(N(H))-invariant metric on G. 

Proof. Set F{H) = nH. Then F(gH) = gnH for all g G G, by 

equivariance. However, this is only well-defined if nHn~l = H. The 

following simple calculation: 

dist(F(giH), F(g2H) = dist(ginH, g2nH) 

= dist(n~ g^ g ̂  nH, H) 

= dist(gï giH, nHn~ ) 

= dist(g2H, g\H) 

proves the isometry claim. q.e.d. 

In order to fully exploit the Structure Theorem (2.2) and the Unique-

ness Lemma (2.5), we shall now use the restrictions imposed on G by 

the requirement that G/H = S (cf. also (2.4)). In fact, using the 

classification of groups that can act transitively on spheres (cf. [?], [?], 

[?] and [?]), we can assume, (by possibly replacing G by a subgroup) 

that the pair (G, H) is one of the following: 
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(a k+1)(G1H) = (SO(k+l)1SO(k)) 

(b m+1)(G, H) = (SU(m + l),SU(m)) 

(c m+1)(G, H) = (Sp(m + l),Sp(m)) 

(d)(G1H) = (G2lSU(3)) 

(e)(G,H) = (Spin(7),G2) 

(f)(G,H) = (Spin(9),Spin(7)) 

( k > l ) , 

(k = 2 m + 1 > 3) 

(k = Am + 3 > 7) 

(k = 6), 

(k = 7), 

(k = 15). 

The strategy is now to assume that M is a fixed point homogeneous, 

positively curved G-manifold, where G is one of the groups in (2.7), and 

H is the corresponding principal isotropy subgroup. In each case, we 

determine all potential "soul"-isotropy groups K, such that H C K C G 
satisfies (2.4). For those K which cannot be excluded on the basis of the 

Structure Theorem (2.2), we find an explicit model M with the same 

slice representation at the soul orbit and then apply the Uniqueness 

Lemma (2.5). 

We know that if cohomfix(M,G) = 1, M G / 0 and G is one of 

the groups listed in (2.7), then codim(M ) = n, 2n, 4n, 7, 8, or 16 corre-

sponding to the cases (a n), (b n), (c n), (d), (e), or ( f ) , respectively. We 

have used this fact in the formulation of our first main result. 

Classification T h e o r e m 2.8. Let M be a closed, connected, fixed 
point homogeneous Riemannnian manifold. Then M supports an effec-
tive and isometric G-action, where G is one of the groups SO(n), SU(n), 
Sp(n),G2,Spin(J), or Spin{9) and codimM G = n, 2n, 4n, 7, 8, or 16, 

respectively. If moreover, sec(M) > 0, then M is G-equivariantly dif-
feomorphic to one of the following: 

(a n) S m, RP m ( m > n), or in addition, when n = 2, S m/Z q (q > 3) 

or CP m; 

(b n) S m, S m /Z q ( m > 2n) or CP m ( m > n), or in addition, when 

n = 2, S m/T ( r C SU(2),(m > 5)), CP m/Z2 (m odd) or HP m; 

(c n) S m, S m/Y ( r C Sp{\), m > An), CP m ( m > 2n), CP m/Z2 

( m > 2n odd) or HP m ( m > n ) ; 

(d) S m, or RP m ( m > 7); 

(e) S m or RP m ( m > 8); or 
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(f) S m, RP m (m > 16) or CaP2, 

where G in case (a n) is SO(n), etc. as in (2.7). 

Proof. First note that the least restrictive cases are (a2)1 (b2) = 

(ci) and ( f ) . By abuse of formalism, this is because (a k) =>• (a k+i), 

(b l) => (fl+i), (c m) => (c m + i ) , and ( b ) => (d) => (e) by standard 

representation theory. Since (a ̂ ) was proven in [?], we will discuss only 

the cases (b2) and (f) here, and leave the remaining more restrictive 

cases to the reader. 

Case (b2)- Let B be a component of M SU(2> with codimBo = 4, 

and B\ the corresponding soul orbit. SU (2) acts freely on 

M — (Bo S B\ ), and the structure of M is determined by the slice repre-

sentation of the isotropy group K = G pl at p\ G B i , according to (2.2) 

and (2.5). For K, there are the following possibilities: 

(i) K = SU(2), 

(ii) K = T1 = S\ (ii)' K = N(Tr) (NiT^/T1 ~ Z 2 ) , 

(iii) K = {1g, (iii)' K = r ( r finite). 

Subcase ( i) . Bx = {pig C M SU(2\ and SU(2) acts freely on the 

tangent sphere S l to M at p\. Consequently, l = 4m — 1, the action 

of SU(2) = Sp(l) on T p1M ~ R m ~ H m is the Hopf action (cf. [?, 

Sec. 5]), and B0 ~ S l/SU{2) = HP m~l. Now take M = HP m with 

the obvious SU(2) = Sp(l)-act ion fixing B\ = HP m~l and the point 

pi = Bi at maximal distance from HP m~l. By the Uniqueness Lemma 

(2.5), M is SU(2)-diffeomorphic to HP m. 

Subcase ( i i ) . Bx = SU(2)/S1 ~ CP1 and K = S1 acts freely 

on the normal sphere S l to B i in M at p i . In particular, l = 2m — 3 

and S2m~3 - • S m - z /S 1 = CP m~2 ~ B is the Hopf map. By the slice 

theorem, the normal bundle DB\ C V\ —> B\ to B\ in M is isomorphic 

to 

SU{2) xSi R 2 m" 2 - • SU(2)/S1. 

Now take M = CP m with the natural action of U(m + 1). The SU (2)-
action on M given via the standard inclusion SU(2) C U(m + 1) obvi-

ously fixes Bo = CP m~2 and acts canonically on B\ = CP1 at maximal 

distance from CP m~2. By the slice theorem, the normal bundle to B\ 
in M is SU(2)-equivalent to the normal bundle of B\ in M. Hence by 

(2.5), M and CP m are SU(2)-diffeomorphic. 
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Subcase ( i i i) . B\ ~ SU(2), and SU(2) acts freely on M — B0. 
Since K = {1}, BQ ~ S l the normal sphere to B\ in M at p i . Again 

by the slice theorem, the normal bundle DB\ C V\ —> B\ of B\ in M is 

trivial. Now take M = S l*SU(2) = S l+/i with the obvious SU (2)-action 
fixing Bo = S l and acting by left multiplication on B\ = SU(2) ~ S 3 at 

maximal distance from S in S + 4 . By (2.5), M is SU(2)-diffeomorphic 

to S l+4. 

Subcase ( i i ) ' . If Bx = SU(2)/N(T1) ~ CP1/Z2, we argue as 

in (ii) tha t l = 2m - 3 and B0 ~ S 2 m - 3 / N T 1 ) = CP m~2/Z2. This, 

however, is only possible if m — 2 is odd. In that case, there is indeed an 

action of SU(2) on M ~ CP m/Z2 which models M in the sense of (2.5). 

In fact, if T : CP m - • C P m is the involution defining CP m/Z2, then 

the SU(2)- action on CP m described above takes r-orbits to r-orbits 

(in homogeneous coordinates, 

7"([zi, ..., z2n; z 2 n + i , z 2 n + 2 \ ) = z n+l) •••) z2ni ~zl, ••-, ~z ni z2n+2i ~z2n+l] 

if m = 2n + 1). 

Subcase ( i i i ) ' . If B\ = SU(2)/T, the finite subgroup 

K = TC SU(2) 

acts freely on the normal sphere S l to B\ in M at p i , and BQ ~ S l /Y. 

The normal bundle to B\ in M is isomorphic to 

SU{2) xrR l+1 ->SU(2)/T. 

by the slice theorem. Now consider M = S l * SU(2)/T ~ S l + 4 / r where 

r acts on S l as above and on SU(2) by right translations. The SU(2)-
action on S * SU(2) described in (iii) induces an action on M with 

Bo = S l /T. Since the normal bundles of B\ in M and of B\ in M are 

isomorphic, we are done by (2.5). 

Case ( f ) . Let Bo be a component of M Spin(9> with codim(Bo) = 

16, and Bi = Spin(9)(pi) be the corresponding soul orbit. Since the 

principal isotropy subgroup is H = Spin(7), and H is necessarily em-

bedded in S pin (8) C Spin (9) via the spin representation (ref?), there 

are only the following possibilities for potential soul isotropy subgroups 

K: 

(i) K = Spin(9) 
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(ii) K = Spin(8); 

(ii)' K = N(Spin(8)) (N(Spin(8)/Spin(8) = Z2) 

(iii) K = Spin(7); 

(iii)' K = N(Spin(l)) C Spin(8) {N(Spin(l))/Spin(l) = Z2) 

Subcase ( i) . Bx = fpig C Mspm(-9\ and all orbits of the Spin{9)-
action on the tangent sphere S C T piM are principal and diffeomorphic 

to S 1 5 . Since there is no proper fibration of a sphere with S 1 5 as fiber 

(cf. e.g. [?]), we conclude that l = 15 and Bo ~ Spin(9) / Spin(7) = S15. 
Taking M = S 1 6 , the suspension of Spin(9)/Spin(7) = S 1 5 , we see via 

(2.5) that M is Spin(9)-equivalent to S 1 6 . 

Subcase ( i i ) . B\ ~ Spin(9) / Spin(8) = S8, and Spin(8) acts on 

the normal sphere S l to B\ at p i , such that all orbits are principal and 

diffeomorphic to Spin{8)/Spin{l) = S7. Moreover, BQ ~ S l/Spin{8). 
Thus either l = 7 and BQ = fpog, or l = 15 (cf. e.g. [?]). However, 

as shown in [?, p.236], there is no fibration of S 1 5 with S7 fibers, all 

of which are also orbits of a group action on S 1 5 . Hence l = 7 and 

the normal sphere bundle E —> B\ is Spin(9)-equivalent to the Hopf 

fibration 

S =Spin(8) JSpin(7) —> Spin(9)/Spin(7) 

=S15 -> S8 = Spin(9)/Spin(8). 

The same picture is apparent for the sub-action of Spin(9) C F4 on 

M = CaP2. Therefore M is Spin(9)-equivalent to CaP2 by (2.5). 

Subcase ( i i i) . B\ = Spin(9)/Spin(7) = S15, and all orbits in 

M — Bo are diffeomorphic to S 1 5 and principal. In particular, Bo ~ S l 

where S is the normal sphere to B\ in M at p\. Furthermore, the 

normal bundle to B\ in M is Spin(9)-isomorphic to the trivial bundle, 

Spin(9)/Spin(7) x R l+1 ^ Spin(9)/Spin(7), 

where the action on R l+1 is trivial. Pick M = S l * Spin{9)/'Spin{7) = 

S + 1 6 with the obvious Spin(9)-action fixing Bo = S and acting canon-

ically on Spin(9)/Spin(7) = S 1 5 . Via (2.5), we see that M is Spin(9)-
diffeomorphic to S l+16. 

Subcase ( i i ) ' . If B\ = Spin(9)/N(Spin(8)) ~ S8/Z2, we see, as 

in subcase (ii) above, that all N(Spin(8))-orbits in the normal sphere S 
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to B\ at po must be diffeomorphic to N(Spin(8))/Spin(7) = S ̂ J J S 7 . 

This excludes l = 7, and we exclude l = 15 as in subcase (ii). Thus 

K = N(Spin(8)) cannot occur as a soul isotropy subgroup. 

Subcase ( i i i ) ' . If Bx = Spin(9)/N(Spin(7)) = S15/Z2 = RP15, 

an argument, as in subcases (iii) and (ii)', above shows that M is 

Spin(9)-diffeomorphic to S l+16/Z2 = RP l+w. q.e.d. 

Theorem A in the introduction is now an immediate corollary of 

Theorem 2.8. 

3. Low-dimensional non-l inear representat ions 

The classification of positively curved manifolds with maximal sym-

metry rank [?], can also be viewed as a classification of the lowest-

dimensional manifolds of positive curvature on which a given torus, T k1 

can act (almost) effectively by isometries. 

The principal issue in this section is to analyse the same question for 

the compact, connected simple Lie groups. Since we allow actions to be 

almost-effective, it suffices to consider simply-connected groups. Explic-

itly, the groups we are considering are: Sp(n)(n > 2)), SU(n)(n > 2), 

Spin(n)(n > 7), together with the exceptional groups G2^ F ? EQ^ E*J and 

Es-
Based on (0.2) in the introduction, we define inductively 

, s repf+1(G) = min{n > rep i (G)\Gacts (almost) effectively 
by isometries on some M n with sec(M) > 0} 

If we restrict our attention to irreducible linear representations, i.e., 

M n = S n, we use the notation rep S ̂ G) < rep S(G) < •••, and it is 

obvious that rep ^ (G) < rep^G) for any compact Lie group G. 

Since Sp(n + l)/Sp(n)Sp(l) = HP n, SU(n+ 1)/S(U(n)U(1)) = 
CP n, Spin(n + 1)/Spin(n) = S n, G2/SU(3) = S6, F4/Spin(9) = CaP2 

all have positive curvature and each one is of the form G/H where 

dim(H) < dim(G) is maximal, we read off the following simple fact: 

Propos i t ion 3 .2 . If G is one of the simply connected simple groups 

other than EQ, E? or Eg, then 

repQ (G) = dimG/H, 

where H C G is a proper subgroup of maximal dimension. 
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In contrast, it is well known that EQ, E? and Eg cannot act transi-

tively on a positively curved manifold. Hence from (1.11) we conclude 

that if G is one of these groups and M is positively curved manifold 

with dim(M) = rep^(G), on which G acts (almost) effectively, then the 

connected component Ho of the principal isotropy subgroup H cannot 

be a maximal connected subgroup. In particular, we conclude 

Propos i t ion 3 .3 . If G is one of EQ, E? or Eg, then 

rep+(G) > dim(G/H) + l, 

where H is a proper subgroup of G with second lowest codimension. 

In particular, this tells us that rep ^ (EQ) > 33, rep ^ (Er) > 56 and 

rep^(Eg) > 115. Further, we know that the lowest dimensional linear 

representations of these exceptional groups occur in complex dimensions 

27, 56 and real dimension 248 respectively [?]. Thus rep^ (EQ) < 52, 

rep+(E7) < 110 and rep+(Eg) < 247. 

In the remaining part of this section we will classify low-dimensional 

positively curved manifolds on which the simple groups other than 

EQ, EI or Eg can act (almost) effectively by isometries. We first observe 

that for these groups the lowest-dimensional irreducible linear represen-

tations yield transitive actions on the corresponding spheres. Using this 

fact together with the Fixed Point Lemma (1.11) we obtain: 

Fixed Point Corollary 3 .4 . Let G be a simply-connected, simple 
Lie group other than EQ, E? or Eg, and M a positively curved mani-
fold on which G acts (almost) effectively by isometries. If the principal 
isotropy group H has maximal connected component Ho and 

dim(M) < min{2repo(G) + l,rep S(G)}, 

then cohomfix(M,G)=l. 
Another general situation in which fixed point homogeneous mani-

folds arise naturally occurs because of the simple fact that the principal 

isotropy group H = G p acts trivially on the normal space to the princi-

pal orbit G(p) ~ G/H at p. 

Principal Isotropy L e m m a 3.5 . Let M be a G-manifold with 
principal isotropy subgroup H, and isotropy representation 

H x T H G/H -> T H G/H. 

If S H C T H G/H denotes the unit sphere and cohom fix(S H, K) = 1 for 
some subgroup K C H, then cohom fix (M, K) = 1. 



d i f f e r e n t i a l t o p o l o g i c a l r e s t r i c t i o n s 547 

The point of this simple fact is that it typically applies to large 

subgroups H of a simple group G (other than EQ, E? or Eg). 

When applying either (3.4) or (3.5), the cohomogeneity of G X M —> 
M is irrelevant. If, however, the principal isotropy subgroup H C G 
is such that neither (3.4), nor (3.5), can be utilized, then we resort to 

other restrictions imposed by the assumption that 

(3.6) dim(M) = dim(M/G) + dim(G/H) 

is relatively small. In particular, we consider only actions where the 

principal isotropy subgroup H has fairly small codimension in G. This 

in turn restricts all the possible isotropy subgroups and enhances the 

chances for using (1.3). So far, however, we have only been able to 

make systematic use of this approach when, in addition, cohom(M, G) = 

dim(M/G) < 1. 

T h e o r e m 3.7 (Symplec t i c Groups ) . Let M be a simply-connected, 
closed manifold with sec(M) > 0. If Sp(n + l),n > 1, acts (almost) 
effectively by isometries on M and 

. , . , (8n-3 = 2rep+(Sp(n+l)), n>2 
dim(M) <C(n)= { F ° l n , h 

I 8 n = 1, 

then dim(M) > 4n = rep ^ (Sp(n-\- 1), and M is diffeomorphic to one 
of either a sphere, a complex or quaternionic projective space, the flag-
manifold Sp(3)/(Sp(l))3 or the real homology sphere Sp(2)/SU(2). 

Proof. Let H denote the principal isotropy subgroup of 

G = Sp(n + l) 

acting on M. From (3.6) and dim(M) < C(n) we have 

(3.8) dim(H)>dim(Sp(n+l))-C(n). 

An analysis of the possible connected subgroups Ho C Sp(n + 1) satis-

fying (3.8) yields the following list: 
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a) 

b) 

c) 

d) 

e) 

f) 

g) 

H0 = Sp(n)Sp(l) 

H0 = Sp(n)U(l) 

H0 = Sp(n) 

Ho = Sp(n-l)Sp(2) 

Ho = Sp(n-l)(Sp(l))2 

Ho = U(n + 1) 

H0 = SU(n+l) 

n > 1, 

n > 1, 

n > 1, 

n > 2, 

n > 2, 

n < 3, 

n < 3. 

In the case (g), we note that for n > 2 the action must be transitive, and 

since neither space obtained is of positive curvature, these cases do not 

occur. Note that for n = 1, case (g) coincides with case (c) (as Sp(l) = 

SU(2)) and we will treat it later. In the cases (d) and (f), we can use 

Corollary (3.4), and hence (2.8) since (G,Ho) is a symmetric pair and 

rep S(Sp(n+l)) = 4 n + 3 , rep S(Sp(n+l) = ( n + l ) ( 2 ( n + l ) - l ) - l , n > 2 

by standard representation theory. For case (f) (n = 1), we note that the 

two lowest-dimensional irreducible linear representations of Sp(2) occur 

in dimensions 5 and 8, but both are transitive on the corresponding 

spheres. Thus, cohomfix(M, Sp(2)) = 1 with Ho = U(2) C Sp(2). 

Moreover, except for Sp(l) in case (c) (n = 1), all of these groups 

admit only one embedding in Sp(n-\-1), up to conjugation. Aside from 

the standard embedding Sp(l) = Sp(l) X {1} C Sp(l) X Sp(l) C Sp(2), 
we can embed Sp(l) via the diagonal Sp(l) = A(Sp(l) X Sp(l)) C Sp(2) 
and as a maximal subgroup Sp(l) C Sp(2). The diagonal embedding 

can also be viewed as Sp(l) = SU(2) C U{2) C Sp{2). 

In the first three cases, in which the embedding is standard, i.e., (a) 

and (b) for all n, and (c) for n > 2, we apply the Principal Isotropy 

Lemma (3.5) to the subgroup K = Sp(n) C Ho C H, and then appeal 

to the Classification Theorem (2.8). 

In order to complete case (c), it remains to consider the case where 

the embedding of Ho is not standard. The only possible dimensions for 

M are then 7 or 8. If dim(M) = 7, the Sp(2)-action is transitive and 

M = Sp(2)/Sp(l) is the Berger homology sphere [?]. If dim(M) = 8, 

the Sp(2)-action is of cohomogeneity one. In particular, the only case 

consistent with (1.13) is that in which the embedding of Ho is diagonal, 

and we will rule out this case. Note that the only possible subgroups 

Ko, Ki between Sp(l) ~ SU(2) and Sp(2) satisfying the conditions of 

(1.13) are Sp(l)2 and U{2). 
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Assume first tha t Ko = K\ = U(2). We remark further that we may 

exclude (by means of a general argument) the case in which Ko = K\ / 

G [?] for a cohomogeneity one manifold of positive curvature. However, 

for the sake of comleteness we will prove each individual case as it arises 

(cf. (3.7) case (e), (3.9) cases (d) and (h), (3.11) case (c) and (3.13)). 

Then the principal orbit E = Sp(2)/Sp(l) fibers over the exceptional 

orbits B0 ~ B\ ~ Sp(2)/U(2) with common fibers S 1 ~ U(2)/Sp(l), 
and M fibers over B0 ~ Sp(2)/U(2) with fiber S 2 . Moreover, E S U ^ C 

E consists of two disjoint circles (namely the orbit of N (SU (2))), each 

of which is a fiber over Bo and B\. The corresponding S2-fibers over B i 
in M are also fixed by H = SU(2), and in fact they are components of 

M SU(2). The latter fact is seen via the isotropy representation of U(2)(D 
SU(2)) at the corresponding fixed points in B i,i = 0 , 1 . Now fix S 1 C 

SU (2) C U(2), and consider M . At each of the fixed points p i, q i G - i , 

i = 0 , 1 , for U(2) acting on B i, the isotropy representation of U(2) 
reveals that the corresponding components of M S are 4-dimensional. 

By the Synge Lemma (1.15), they must all be contained in the same 

component, which, however, clearly contains the above (disjoint) S 2 -

components of M SU(2>1 impossible again by (1.15). 

From the above, we conclude that one of the K^s is Sp(l) X Sp(l), 
and it is not difficult to see that the action of Sp(2) ~ Spin (5) is not 

effective on M as exhibited in (1.14). The corresponding effective ac-

tion is by G = SO(5) with principal isotropy subgroup H = SO(3) 

embedded in the standard way. Moreover, Ko,K\ are either SO(4) or 

SO(3) X SO (2). If K0 ~ K ! = SO(4) we proceed as follows. H = SO(3) 

fixes two disjoint circles in E = G/H, each of which is mapped to one 

circle in Bo and in Bx. Indeed, M SO(3) is a torus. This is a contradic-

tion, since it is also totally geodesic and hence positively curved. 

To complete case (c), it remains to consider the cohomogeneity one 

action on M 8 by G = SO(5), with H = SO(3), K0 = SO(3) SO(2) 
and Ki = SO(4) . First observe that the SO (3)-factor of Ko fixes a 

totally geodesic S 2 in M (that is, two points in Bo, two circles in E 
and one circle in B\). Fix L = SO(2) C SO(3) and consider M . 
From the isotropy representations, we see that M L is a 4-manifold. Its 

intersection with B\ is a 2-sphere. Now the SO (2)-factor of KQ acts on 

M L preserving M SO(3>. It has exactly four fixed points (2 in Bo and 2 

in B\), which is impossible if M and hence M have positive curvature, 

by the Extent Lemma (1.3) (cf. [?]). 

Note that we must also worry about finite extensions of HQ and K i, 
i = 0 , 1 , in this case, since K i/H can be a circle for at least one i. In 
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the case where Ko = K\ = U(2), we may extend Ho to Ho X Z k = 

H . However, the argument used to exclude the case with H connected 

works as well in this case. In the case where Ko = SO (3)SO (2) and 

K\ = SO(4) , any finite extension of Ho = SO(3) in G must include the 

corresponding finite extension of SO(4) , since otherwise K\jH will not 

be a sphere. This leaves us with only one possibility: H = SO(3) X Zi = 

O(3) and Kx = O(4). In this case, M = CP4 (cf. [?]. 

We now turn to the remaining case (e). We will show that only 

n = 2 can occur, and in that case M is either homogeneous, i.e., 

M = Sp(3 ) /Sp( l ) 3 , or it has cohomogeneity one and M = S13. In 

fact, for all n > 2 in the given range of dimensions for M, M must 

either be homogeneous or of cohomogeneity one. The classification of 

homogeneous manifolds with positive curvature leaves only the flagman-

ifold in dimension 12 above as a possibility. On the other hand, if M 
has cohomogeneity one, its da ta is given according to (1.13) as: 

Ko = Sp(n - l)Sp(2) 
C C 

H = Sp{n - ï)Sp(ï)Sp(ï) G = Sp{n + 1) 

c c 
Ki = Sp{n - l)Sp{2) 

where K i/H ~ Sp(n— 1)Sp(2)/Sp(n — l ) ( S p ( l ) ) 2 are 4-spheres for both 

i. Moreover, for n > 3 there is only one possible embedding of KQ = K\. 
For n = 2, however, we can also embed KQ — K\ by permuting the 

factors. This is exactly the description of S 1 3 under the representation 

A2// — 6 of Sp(3) (notation from [?]). It remains to show that KQ = K\ 
cannot occur when sec(M) > 0. 

The general case n > 3 reduces to the case n = 2, since it is easy 

to see from the isotropy representations that M8n~3 contains a totally 

geodesic submanifold N13 of dimension 13, which is fixed by Sp(n — 2) C 
Sp(n — 2 ) (Sp( l ) ) 3 , and on which Sp(3) acts by cohomogeneity one, with 

H = (Sp ( l ) ) 3 and K0 = Kx = Sp(l)Sp(2). Thus, it suffices to show 

that the case n = 2 in which KQ = K\ cannot occur. 

Here, we see that the principal orbit E = S p ( 3 ) / ( S p ( l ) ) 3 fibers over 

the two exceptional orbits B0 ~ B\ ~ Sp(3) /Sp( l )Sp(2) = HP2 with 

common fibers S 4 . In particular, M13 fibers over HP2 with fiber S 5 . 

Let p i G B i, i = 0,1, be the fixed points of K = Ko = K\ = Sp( l )Sp(2) 

on B i, and S 4 ~ HP1 ~ N i C B i the K-orbits in B i at maximal 

distance from p i in B i. Note that the Sp(l)-factor of K acts trivially 

on N i, and that the Sp(2)-factor acts transitively on N i with principal 
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isotropy Sp(l)Sp(l). For the Sp(l)-factor of K, consider M Sp^1>. At 

p i G B i, Sp(l) acts freely on the tangent sphere of B i and trivially 

on the normal sphere. In particular, the 5-sphere fiber of M —> B i 
suspended between po and pi is totally geodesic, and a component of 

M Sp(1>. Now consider the action of Sp(l) at points in N i C B i. On the 

normal sphere to N i inside B i, the action is free. Thus the component of 

M Sp(1> containing N i is determined by the action of Sp(l) normal to B i 
at N i. From representation theory, this Sp(l) X S 4 —> S4 action is either 

almost-effective and factors through SO(3) , or it is the suspension of 

the standard free action on S 3 . In the first scenario, we find disjoint 

totally geodesic submanifolds of M of dimensions 9 and 5, contradicting 

(1.15). In the second scenario, we find a 5-dimensional component, V5, 
of M SpW containing the B^s. Moreover, the Sp(2)-factor of K acts 

on V5 with cohomogeneity one, and all orbits are of principal type 

S 4 ~ B i. In particular, V5 fibers over S1, which is impossible, since V5 

has positive curvature. q.e.d. 

T h e o r e m 3.9 (Uni tary Groups ) . Let M be a simply-connected, 
closed manifold with sec(M) > 0. If SU(n + 1), n > 1 acts (almost) 
effectively by isometries on M and 

dim(M) < C(n) = 

4n-2 = 2rep+(SU(n+l)), n > 3, 

7 n = 2, 

4 n = 1, 

then dim(M) > 2n = rep ^ (SU(n + 1)), and M is dijfeomorphic to one 
of the following: a sphere, a complex projective space, the flagmanifold 
SU(3)/T2, an Aloff-Wallach space SU(2>)/S kl or the Berger manifold 

SU(5)/Sp(2)S\ 

Proof. As in the proof of (3.7), we list all the possibilities for the 

connected component, Ho, of the principal isotropy subgroup, H, under 

the restriction dim(M) < C{n). The list is: 
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(a) 

(b) 

(c) 
(d) 

(e) 

(f) 

(g) 

(h) 

(i 

j ) 

U{n) = S{U{n)U{l)) 

SU(n) 

S(U(n- 1)U(2)) 

SU(n- 1)SU(2) 

SO(n+l) 

S p ^ 

Sp(2)S1 

T 2 

S1 

{1} 

n > 1 ) . 

n > 2), 

n > 3), 

[n > 3), 

;2 < n < 4) 

n̂ = 3, 5), 

[n = 4), 

[n = 2), 

[n=l,2), 

[n= 1). 

In all cases, with the exception of case (i) (n = 2), there is only one 

embedding of Ho in SU(n-\-1), up to conjugation. In the first two cases 

we apply the Classification Theorem (2.8) via (3.5). In fact, in case (a) 

[n = 1), (M,U(1)) is fixed point homogeneous and so is (M,K), with 

K = SU(n) in the remaining cases. 

The cases (c), (e) and (f) are all done via (3.4). We remark first 

tha t in all these cases (G, Ho) is a symmetric pair, and secondly that 

rep S(SU(n + 1) = 2(n + 1) - 1 

and 

rep S(SU(n + 1)) = n(n + 1) - 1 

for n > 4, and for n = 3, 

rep S(SU(4)) = rep S(Spin(6)) = 5 

and rep S(SU(4)) = 7 (and both of these representations are transitive), 

and in case (e) (n = 2), we have rep S (SU(3)) = 5 and rep S(SU(3)) = 7. 

We now proceed to show that case (d) cannot occur. We remark 

first, tha t for dimension reasons, the action of SU(n + 1) must either 

be transitive or of cohomogeneity one. The first option is ruled out by 

the classification of positively curved homogeneous manifolds, and thus 

we assume that cohom(M, SU(n-\- 1)) = 1. 
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Note first tha t for n > 4, HQ = H and the only possible groups 

satisfying (1.13) are: 

H = S U ( n - 1)SU(2) C S(U(n - 1)U(2)) 
1 ' ' =K0 = Ki C SU(n + 1) = G, 

and N(H) = K = ii'i, i = 0,1, K/H = S 1 . Remark also that , as in the 

discussion of case (e) in (3.7), the subcases (n > 5) reduce to the subcase 

[n = 3). We will first rule out the subcase (n = 4). Here, M fibers over 

Bo ~ B\ ~ G/K ~ G3T2 with fiber S 2 , and K fixes isolated points p i G 

B i, i = 0 , 1 . Let A i C B i be the K-orbit at maximal distance from p i,i = 
0 , 1 . Then A i ~ G2,i ^ C P 2 is fixed by the SU(2)-factor of H . This 

implies that SU(2) also fixes the normal bundles of B i in M restricted 

to A i, i = 0,1. The resulting G-manifold is a component of Msu(2> and 

hence totally geodesic. It fibers over A i ~ CP2 with S2-fiber, and the 

SU(3)-factor of H acts on it by cohomogeneity 1 or 2, either of which 

gives us a contradiction; the first via the Principal Isotropy Lemma 

(3.5), and the second via the Fixed Point Lemma (1.11). 

To complete case (d), we now proceed with the subcase (n = 3). Ac-

cording to (1.13), the only possibilities for K i, i = 0,1 are S(U(2)U(2)) ~ 

Spin(4)Spin(2) and Spin(5). And the argument in this case mirrors the 

argument made for case (e) (n = 3) in (3.7). The only possible in this 

case is M = CP5 where G = SO(6)/Z2 (cf. [?]). The details are left to 

the reader. 

In case (g), the SU(5)-action is either transitive or of cohomogeneity 

one. However, there are no subgroups K i, between H = Sp(2)S1 and 

SU(5), satisfying (1.13). Thus, M 1 3 = SU(5)/Sp(2)S1, the Berger 

example, is the only possibility here. 

In case (h) as well, the SU(3)-action is either transitive or of coho-

mogeneity one. In the homogeneous case, we obtain the flagmanifold, 

M6 = SU(3)/T2. When the action is of cohomogeneity one, we note 

first tha t only K i ~ U{2) satisfies (1.13). Moreover, there are only two 

choices for the pair (Ko, K i ) : either Ko = K\ or KQ / g~1Kog = K\ is 

embedded via a permutation of the coordinates. The latter case char-

acterizes S7, where SU(3) acts on R8 via the adjoint representation. 

We will show that the former does not occur. First note that M7 fibers 

over Bo ~ Bx ~ SU(3)/K = SU(3)/S(U(2)U(1)) = CP2 with S 3 -

fibers, and K fixes isolated points p i G B i, i = 0,1. Let A i C B i be the 

K-orbits at maximal distance to p i. Then A i ~ U(2)/T2 ~ CP2, and 

there is an S 1 C T2 which fixes all of A i. This S 1 also acts on the nor-

mal bundle of B i restricted to A i, and therefore either fixes the whole 
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normal bundle or a 1-dimensional sub-bundle. The latter is impossible, 

since it would yield a totally geodesic component of M S of the form 

S 2 X S1. If, on the other hand, the whole normal bundle is fixed, we 

get a 5-dimensional component of M , namely the restriction of the 

S3-fibration M -> B0 to A0. It is, however, also easy to see that all 

S3-fibers are totally geodesic, so a contradiction in this case is reached 

via the Synge Lemma (1.15). 

In case (i) (n = 2), the action of SU(3) must necessarily be transi-

tive, and hence M is an Aloff-Walach example SU(3)/Sl ^ 

It remains to consider cases (i) and (j), (n = 1), where we have 

SU(2)-actions on manifolds with dim(M) < 4. If Ho = S1, we are 

done by (3.5). If H0 = {1} and dim(M) = 4, the SU (2)-action is 

of cohomogeneity one. The only possible groups, K i, between {1} and 

SU(2) satisfying (1.13) are Z2, S1 or SU(2). If Zi arises, then TÏ\ / {1}, 

and if SU(2) does, then we are done by the Classification Theorem (2.8). 

In the case where Ko ~ K\ ~ S1, x(M) = 4, which is impossible by [?]. 

Note that we must also worry about finite extensions here, since 

the principal orbit may fiber over the singular orbit with circle fiber. 

There are only two such SU(2) actions, both of which are ineffective. 

The corresponding (ineffective) SO(3) actions have principal isotropy 

subgroup Z2 or Zi X.Z2. In the first case M = CP2 and the SO(3) action 

is the restriction of the standard SU(3) action on CP2. In the second 

case M = S4 and the action of SO(3) on S4 is via the representation 

S2p2 - 9 (notation from [?]) [?]. 

T h e o r e m 3.11 (Orthogonal Groups ) . Let M be a simply-connected, 
closed Riemannian manifold with sec(M) > 0. If Spin(n + 1), n > 6 

acts isometrically and (almost) effectively on M and 

dim(M) < C(n) = 2n = 2rep^[Spin{n + 1)), 

then dim(M) > n = rep^(Spin(n + 1)), and M is diffeomorphic to a 

sphere, a complex projective space, or the Cayley plane. 

Proof. As in the previous two theorems, we proceed to list the con-

nected components of the possible principal isotropy subgroups, under 
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the given dimensional restrictions. The possibilities are: 

(a) H0 = Spin(n), n > 6, 

(b) H0 = Spin(n — 1)S1 , n > 6, 

(c) H0 = Spin(n — 1), n > 6, 

(d) H = SU(4 )üSp in (6 ) , n = 7, 

(e) H = G2 , n = 6. 

In all cases except (c) and (d), HQ is a maximal connected subgroup of 

G = Spin(n-\- 1), and d([G / HQ)/ HQ) / 0, since (a) and (b) are sym-

metric pairs, and in case (e), (G / HQ) / HQ is a closed interval. However, 

the only positively curved manifolds on which Spin(n-\-l) can act tran-

sitively are the spheres S n = SO(n + l)/SO(n), S7 = Spin(7)/G2 
and S 1 5 = Spin(9)/Spin(7). Suppose then that Spin(n + 1) does 

not act transitively on M. Then by the Fixed Point Lemma (1.11), 

M Spin(n+i) ^ 0_ The action of Spin(n + 1) at the normal space to 

a point in M Spin(n+1> yields a representation of dimension less than 

or equal to 2n by the assumption on dim(M). For n / 6 ,8 ,9 , or 11 

the two lowest linear representations of Spin(n + 1) are in dimensions 

n + 1 and —n—, and Corollary 3.4 together with (2.8) yields the de-

sired result. The three lowest dimensional representations for Spin(7) 
are of dimensions 7, 8, 21; for Spin(9): 9,16, 36; for Spin (10): 10,16, 45; 

and for Spin(12): 12,64,66. Since the two lowest-dimensional repre-

sentations for Spin(7), as well as for Spin(9), yield transitive actions 

on the corresponding spheres, the Fixed Point Lemma (1.11), together 

with (2.8), still suffices without further considerations. In the case of 

S pin (10), the 16-dimensional representation (which is not transitive on 

S1 5) might occur when 16 < dim(M) < 18. However, since the prin-

cipal isotropy subgroup for this action on S 1 5 is neither Spin(9), nor 

Spin(8)S1 (known from representation theory, or can be seen via the 

Fixed Point Lemma applied to Spin(10) X S 1 5 —> S15), this case does 

not arise. 

We are left then with case (c) and (d). Note however that there is an 

outer automorphism of S pin (8) (triality) which take SU (4:) to Spin (6) 
and so case (d) is contained in case (c). For n / 8, there is only one 

embedding of Spin(n — 1) in Spin(n-\-1), and Spin(n-\- 1)/Spin(n — 1) 
does not carry a homogeneous metric of positive curvature, so for these 

n, Spin(n-\-l) X M —» M must be of cohomogeneity one and dim(M) = 

In. For the non-standard embedding of Spin(7) in Spin(9), however, 

Spin(9)/Spin(7) = S15. 
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Now suppose that Spin(n + 1) acts (almost) effectively on M2n 
with cohomogeneity one and principal isotropy subgroup H = Ho = 

Spin(n — 1) embedded in the standard fashion (also when n = 8). The 

possible subgroups KQ, K\ satisfying (1.13) are then Spin(n — 1)S* and 

Spin(n). Note also that there is only one embedding of Spin(n — 1)S* 

in Spin(n-\-l), whereas Spin(n) admits embeddings parametrized by S 1 

(these, however, all yield the same manifold up to diffeomorphism). As 

we have seen in previous theorems, it suffices to consider only the sub-

cases (n = 4) and (n = 5), and since Spin (5) = Sp(2) and Spinilo) = 

SU(4), both have already been ruled out. Thus, case (c) does not occur 

when H = Ho = Spin(n-l) C Spin(n-\-l) is standard. If H/Ho / {1}, 

then M = CP n (cf. [?]). 

Finally, we consider case (c) (n = 8), where the embedding of 

Spin(7) in Spin (9) is not standard, i.e., suppose Spin (9) acts on M 1 6 

by cohomogeneity one, with principal isotropy subgroup Ho = Spin(7) 
embedded via the spin-representation in Spin (8) C Spin(9). According 

to (1.13) there are only two possibilities for K i, i = 0,1, corresponding 

to 3 possible scenarios: (i) Ko = K\ = Spin(9), (ii) Ko = Spin (9) and 

K\ = S pin (8) and (iii) Ko ~ K\ = Spin(8). The first two cases corre-

spond to S 1 6 and CaP2 respectively, and we show how to rule out the 

third case here. To do so, we consider the orbit space M/Spin(8). Here 

G/K i = S8, and the action of Spin(8) on the singular orbits fixes 2 iso-

lated points and is transitive on the normal S7 to both of these points, 

tha t is, M/Spin{8), (G/K i)/Spin(8) = I , i = 0 , 1 . M Spin(-8^ consists of 

four isolated points. Moreover the induced representation of Spin(8) on 

the tangent spaces R16 to the fixed points in M yields a cohomogene-

ity one action on S 1 5 with principal isotropy group Gì and orbit space 

[0,7r/2]. A contradiction is thus obtained via the Extent Lemma (1.3). 

q.e.d. 

The exceptional groups Gì and F4 have SU(3) and Spin (9) as sub-

groups of maximal dimension, respectively. Since G2/SUfò) = S 6 and 

F4/'Spin(9) = CaP2 both have (homogeneous) positive curvature met-

rics, it follows that rep^~(G2) = 6 and rep^ (F4) = 16. Further, it is 

known that rep S (G2) = 14 and rep S (F4) = 25 and rep S (F4) = 51. By 

arguments as in the previous three theorems, we derive: 

T h e o r e m 3 .12 . Let M be a positively curved manifold with TÏ\ (M) = 

{1}. If G2 acts (almost) effectively on M by isometries and 

dim(M) < 11 = 2rep+(G2) - 1, 
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then dim(M) > 6 = rep ^ (G2), and M is diffeomorphic to a sphere. 

T h e o r e m 3 .13 . Let M be a simply-connected manifold with 
sec(M) > 0, as above. If F4 acts isometrically and (almost) effectively 
on M and 

dim(M) < 25 = 2rep+(F4) - 7, 

then dim(M) > 16 = rep^F ^), and M is diffeomorphic to a sphere, the 
Cayley plane, or the flagmanifold F ^/Spin(%). 

The Corollaries C and D in the introduction now follow easily from 

Theorems (3.7), (3.9), (3.11), (3.12), and (3.13), and the classification 

of positively curved homogeneous manifolds. 

References 

S. Aloff & N. L. Wallach, An infinite family of distinct 7-manifolds admitting 
positively curved Riemannian structures, Bull. Amer. Ma th . Soc. 8 1 (1975) 

93-97. 

Y. Bazaikin, On one family of 13-dimensional closed Riemannian manifolds with 

positive curvature, P h D thesis, to appear in Siberian Math . J. 

V. N. Berestovskii, Spaces with bounded curvatures and distance geometry, Sibirsk. 

Mat . Zh. 27 (1986) 11-25. 

L. Berard Bergery, Les varietes Riemaniennes homogenes simplement connexes de 
dimension impair a courbure strictement positive, J. Ma th . Pures Appl. 55 (1976) 

47-68. 

M. Berger, Les varietes Riemaniennes homogenes simplement connexes a courbure 

strictement positive, Ann. Scuola Norm. Sup. Pisa 15 (1961) 179-246. 

A. Borel, Some remarks about transformation groups on spheres and tori, Bull. 

Amer. Ma th . Soc. 55 (1949) 580-587. 

, Le plan projectif des octaves et les spheres comme espaces homogenes, C R . 

[9: 

Acad. Sci. Paris 230 (1950) 1378-1381. 

W. Browder, Higher torsion in H-spaces, Trans . Amer. Ma th . Soc. 108 (1963) 

353-375. 

Y. Burago, M. Gromov & G. Perelman, A.D. Alexandrov's spaces with curvatures 
bounded from below. I, Uspekhi Mat . Nauk., Tom 47 BbI I IyCK 2 (284), (1992) 

3-51 (Russian), or Russian M a t h Surveys, 42 (1992) 3-51. 

[10] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat . Sb. 30 

(1952) 349-462 (Russian), Amer. Ma th . Soc. Transl. 6 (1957) 111-244. 



558 k a r s t e n g r o v e & c a t h e r i n e s e a r l e 

J. H. Eschenberg, New examples of manifolds with strictly positive curvature, In-

vent. Ma th . 66 (1982) 469-480. 

, Inhomogneous spaces of positive curvature, Differential Geom. Appl. 2 

(1992) 123-132. 

D. Gromoll & K. Grove, A generalization of Berger's rigidity theorem for positively 
curved manifolds, Ann. Sci. Ecole Norm. Sup. 20 (1987) 227-239. 

, The low-dimensional metric foliations of Euclidean spheres, J. Differential 

Geom. 28 (1988) 143-156. 

K. Grove, Critical point theory for distance functions, P roc . Amer. Ma th . Soc. 

Summer Instit . Differential Geom., UCLA, 1990. 

K. Grove & S. Markvorsen, New extremal problems for the Riemannian recognition 
problem via Alexandrov geometry, J. Amer. Ma th . Soc. 8 (1995) 1-28. 

K. Grove & C. Searle, Positively curved manifolds of maximal symmetry rank, J. 

Pu re Appl. Algebra 9 1 (1994) 137-142. 

K. Grove, et al, Global G-manifold resolutions with applications, in preparat ion. 

K. Grove & W. Ziller, in preparat ion. 

W.-Y. Hsiang, On the classification of differentiable SO(n) actions on simply-
connected manifolds, Amer. J. Ma th . 88 (1966) 137-153. 

W.-C. Hsiang & W.-Y. Hsiang, Differentiable actions of compact connected classical 

groups. I, Amer. J. Ma th . 89 (1967) 705-786. 

W.-Y. Hsiang & B. Kleiner, On the topology of positively curved Jrmanifolds with 

symmetry, J. Differential Geom. 30 (1989) 615-621. 

W.-Y. Hsiang & H. B. Lawson, Minimal submanifolds of low cohomogeneity, J. 

Differential Geom. 5 (1971) 1-38. 

B. Kleiner, Riemannian Jrmanifolds with non-negative curvature and continuous 

symmetry, P h D thesis, U.C. Berkeley, 1990. 

D. Montgomery & H. Samelson, Transformation groups on spheres, Ann. of Math . 

4 4 (1943) 454-470. 

G. Perelman, Aklexandrov's spaces with curvature bounded from below. I I , Prepr in t . 

, Elementary Morse theory for Alexandrov spaces, St. Pe tersburg Math . J. 

5 / 1 (1994) 207-214. 

A. Pet runin , P h D thesis, University of Illinois, Urbana , 1995. 

[29] F . Podestà , A Fixed point theorem, Prepr int , 1994. 



d i f f e r e n t i a l t o p o l o g i c a l r e s t r i c t i o n s 559 

[30] J. Poncet , Groupes de Lie compacts de transformations de l'espaces Euclidean et 
les spheres comme espaces homogenes, Comment . Ma th . Helv. 3 3 (1959) 109-120. 

[31] H. Samelson, Notes on Lie algebras, Van Nos t rand Reinhold, Cincinnati , 1969. 

[32] A. Wald, Begrundung Einer koordinatenlosen differentialgeometrie der flamchen, 

Ergeb. Eines Math . Kolloquiums, Vol. H.7, 1935, 24-46. 

[33] N. R. Wallach, Compact homogeneous Riemannian manifolds with strictly positive 

curvature, Ann. of Math . 96 (1972) 277-295. 

[34] M. Wang & W. Ziller, On isotropy irreducible Riemannian manifolds, Ac ta Math . 

166 (1991) 223-261. 

University of Maryland 
Ins t i tu to de Matematicas, Unidad Cuernavaca -UNAM, 
CINVESTAV-IPN, MEXICO 


