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Abstract
Background

NANOG is a core transcription factor (TF) in embryonic stem cells (ESCs) and primordial germ cells
(PGCs). Regulation of the NANOG gene by TFs, epigenetic factors, and autoregulatory factors is well
characterized in ESCs, and transcriptional regulation of NANOG is well established in these cells.
Although NANOG plays a key role in germ cells, the molecular mechanism underlying its transcriptional
regulation in PGCs has not been studied. Therefore, we investigated the mechanism that regulates
transcription of the chicken NANOG (cNANOG) gene in PGCs and ESCs.

Results

We �rst identi�ed the transcription start site of cNANOG by 5’-rapid ampli�cation of cDNA ends PCR
analysis. Then, we measured the promoter activity of various 5’ �anking regions of cNANOG in chicken
PGCs and ESCs using the luciferase reporter assay. cNANOG expression required transcriptional cis-
regulatory elements, which were positively regulated by POU5F3 (OCT4) and SOX2 and negatively
regulated by TP53 in PGCs. The proximal region of the cNANOG promoter contains a positive cis-
regulatory element (CCAAT/enhancer-binding protein (CEBP)-binding site) in ESCs. Furthermore, small
interfering RNA-mediated knockdown demonstrated that POU5F3, SOX2, and CEBP played a role in cell
type-speci�c transcription of cNANOG.

Conclusions

We show for the �rst time that different cis-regulatory elements control transcription of cNANOG in a cell
type-speci�c manner. This �nding might help to elucidate the mechanism that regulates cNANOG
expression in PGCs and ESCs.

Background
Gene transcription is mainly regulated by transcription factors (TFs) that bind to speci�c DNA sequences
(called motifs) located in the promoter regions of genes (1). Many TFs contribute to tissue- and cell type-
speci�c gene transcription according to their recognition speci�city (2). In addition, TFs generally initiate
and guide cell fate such as lineage progression and control the stability of cell differentiation (3).
Therefore, identi�cation of regulatory elements within the promoter region is considered crucial to
understand the mechanism underlying transcriptional regulation in speci�c cell types. A germ cell-speci�c
gene regulatory network is required to maintain the unique properties of primordial germ cells (PGCs) for
transmission of genetic information to the next generation (4). Many studies have investigated germ cell-
speci�c gene promoters to understand their regulatory mechanisms. In many species, germ cells have a
unique mechanism of transcription initiation that uses alternate forms of core promoter transcription (5).
Also, germ cells reorganize different type of core promoter TFs under the control of germ cell-speci�c TFs
during germ cell differentiation (6).
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In mammals, core TFs such as NANOG, OCT4, and SOX2 control maintenance of pluripotency. Core TFs
play an important role in establishing control of gene expression programs that de�ne the identity of
embryonic stem cells (ESCs) (7-9). In particular, the NANOG gene is important for acquisition of
pluripotency by ESCs and embryonic germ cells (EGCs) (10-12). Several earlier studies identi�ed the
regulatory elements of NANOG that are required to maintain the self-renewal and pluripotency of ESCs
(13-15). The major regulators of NANOG expression are Octamer- and Sox-binding elements present at
the upstream of transcription start site (TSS) in its promoter region, and these elements are positively
regulated by binding of OCT4 and SOX2 in ESCs (13, 16). Direct binding of ZFP143 to the proximal region
of the NANOG promoter regulates NANOG expression by modulating OCT4 binding (17). In addition, TF-
binding cis-regulatory elements of NANOG, including SP1/SP3-, SALL4-, and BRD4-binding sites, have
been identi�ed as positive regulators (18-20). On the other hand, P53-binding sites negatively regulate
NANOG expression to induce differentiation of ESCs (21). Therefore, regulation of NANOG expression
plays a critical role in determining the fate of pluripotent cells.

PGCs express several pluripotency-related TFs such as NANOG, POU5F3, and SOX2, and their expression
controls transcription of germness-related genes in these cells (6, 22). During early germ cell
development, NANOG plays an essential role as a key TF required for formation of PGCs and
maintenance of early germ cells (23, 24). NANOG-de�cient PGCs reportedly undergo apoptotic death (25).
It was recently reported that NANOG regulates PGC-speci�c epigenetic programming and global histone
methylation (26, 27). NANOG is evolutionarily conserved in mammals and most of the lower vertebrate
species, including chicken. In particular, NANOG orthologs from chicken, zebra�sh, and axolotl are highly
conserved (28-30). Similar to mammals, NANOG is crucial to maintain pluripotency and self-renewal of
chicken ESCs (28). NANOG is expressed during chicken intrauterine embryonic development and is
exclusively expressed in PGCs from Hamburger and Hamilton stage 5 (HH5) to HH8. Therefore, NANOG is
also important to maintain pluripotency and cell proliferation in chicken intrauterine embryos and PGCs
(24, 28, 31).

Despite the exclusive expression of NANOG in chicken PGCs, the molecular mechanism that regulates its
transcription in these cells has not been fully clari�ed. This study investigated enhancers and
suppressors of the proximal promoter region of the chicken NANOG (cNANOG) gene in PGCs and ESCs.
Furthermore, we investigated transcriptional control of cNANOG expression via cis-regulatory elements
and TFs, which are important for its cell type-speci�c expression.

Methods
Experimental design, animals, and animal care

This study investigated the cis- and trans-regulatory elements that are important for modulating
transcription of the NANOG gene in chicken PGCs using the dual luciferase assay and transcriptome
analysis. The management of White Leghorn (WL) chickens was approved by the Institute of Laboratory
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Animal Resources, Seoul National University, Korea (SNU-190401-1-1). The chickens were housed
according to standard procedures at the University Animal Farm, Seoul National University, Korea.

5’ Rapid ampli�cation of cDNA ends (5’-RACE) PCR analysis

To determine the TSS of the cNANOG gene (Gene ID: 100272166), 5’-RACE PCR was performed using a
GeneRacer Kit (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions. Gene Racer RNA
Oligo-ligated mRNA was reverse-transcribed into cDNA. Single-stranded cDNA served as the template in
nested 5’-RACE PCR using the GeneRacer 5’ Primer and reverse gene-speci�c primers (GSPs). The
cNANOG reverse GSP was 5’-GTC TGC AGT AGG GCT AGT GGC AGA GTC T-3’. The RACE products were
identi�ed by DNA sequencing analysis. To con�rm the quality of adapter-ligated RNA, 5’-RACE PCR was
performed with a chicken β-actin reverse GSP, which was 872 bp in size and contained 828 bp of β-actin
and 44 bp of the GeneRacer RNA Oligo.

Construction of NanoLuc luciferase expression vectors derived from the cNANOG promoter

To construct NanoLuc luciferase expression vectors, the 5’ �anking region of the cNANOG gene was
ampli�ed using genomic DNA extracted from adult chicken blood and inserted into the pGEM-T Easy
vector (Promega, Madison, WI, USA). Primer sets were used to clone differently sized fragments of the
cNANOG promoter (Table 1). Then, different lengths of the 5’ upstream region of the cNANOG gene were
inserted between the KpnI and XhoI sites of the pNL1.2 vector (Promega).

Luciferase reporter assay

The Nano-Glo Dual Reporter Assay System (Promega) was used to assess cNANOG promoter activity.
Prepared cells were seeded in a 96-well plate and co-transfected with the pGL4.53 �re�y luciferase (Fluc)
and pNL1.2 (NlucP/cNANOG RE) NanoLuc luciferase (Nluc) plasmids using Lipofectamine 2000
(Invitrogen). After transfection for 24 h, cells were lysed with lysis buffer containing Fluc substrate. Fluc
signals were then quenched, followed by reaction with Nluc substrate. Signals in arbitrary units (AU) of
Nluc and Fluc were measured using a luminometer (Glomax-Multi-Detection System; Promega). Promoter
activities were calculated by determining the ratio of Nluc/Fluc signals in AU. pNL1.2, an empty vector,
was used as a negative control. All reporter assays were repeated at least three times.

Culture of chicken PGCs, ESCs, and DF-1 cells

WL PGCs were maintained and sub-passaged in KnockOut DMEM (Thermo Fisher-Invitrogen, USA)
supplemented with 20% fetal bovine serum (Hyclone, South Logan, UT, USA), 2% chicken serum
(MilliporeSigma, Burlington, MA, USA), 1× nucleosides (MilliporeSigma), 2 mM L-glutamine, 1×
nonessential amino acids, β-mercaptoethanol, 10 mM sodium pyruvate, 1× antibiotic-antimycotic (ABAM;
Thermo Fisher-Invitrogen), and 10 ng/mL human basic �broblast growth factor (MilliporeSigma). PGCs
were sub-cultured onto mitomycin-inactivated mouse embryonic �broblasts at an interval of 5–6 d via
gentle pipetting.
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Chicken ESCs were generously provided by Dr. Bertrand Pain (INSERM-INRAE). These cells were
maintained and sub-passaged as previously described (32). Brie�y, ESCs were cultured in 50 mL of
DMEM/F12 (GIBCO, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (Hyclone), 1×
nonessential amino acids, 10 mM sodium pyruvate, β-mercaptoethanol, 1× ABAM (Thermo Fisher-
Invitrogen), 5 ng/mL insulin-like growth factor 1, 1 ng/mL stem cell factor, 1 ng/mL interleukin 6, 1 ng/mL
soluble interleukin 6 receptor α, and 1,000 U/mL human leukemia inhibitory factor. ESCs were sub-
cultured onto mitotically inactivated STO cells.

Chicken DF-1 cells (CRL-12203; American Type Culture Collection, USA) and chicken embryo �broblasts
(CEFs) were cultured as negative controls. Chicken DF-1 cells were maintained and sub-passaged in
DMEM (Hyclone) supplemented with 10% fetal bovine serum (Hyclone) and 1× ABAM (Thermo Fisher-
Invitrogen). CEFs were derived from 6-day-old WL embryos and maintained in DMEM (Hyclone)
supplemented with 10% fetal bovine serum (Hyclone) and 1× ABAM (Thermo Fisher-Invitrogen). All
chicken cells (PGCs, ESCs, DF-1 cells, and CEFs) were cultured in an incubator at 37°C under an
atmosphere of 5% CO2 and 60–70% relative humidity.

Prediction of putative TF-binding elements

TF-binding sites were predicted by MatInspector, a Genomatix program (http://www.genomatix.de/) using
TRANSFAC matrices (vertebrate matrix; core similarity 1.0 and matrix similarity 0.8), and PROMO 3.0,
which uses TRANSFAC version 8.3 (http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?
dirDB=TF_8.3).

Small interfering RNA (siRNA)-mediated knockdown of predicted TFs

siRNAs targeting predicted TFs were designed using siRNA Target Finder (http://www.ambion.com)
(Table 2). Commercially available control siRNA (sense: 5’-CCU ACG CCA CCA AUU UCG U-3’) was
purchased from Bioneer Corporation (Daejeon, Korea). To validate the knockdown e�ciency of predicted
TFs, PGCs or ESCs were transfected with 50 pmol of siRNAs targeting CCAAT/enhancer-binding protein
(CEBP) genes, including CEBPA, CEBPB, CEBPD, CEBPG, and CEBPZ, and TP53 using Lipofectamine 2000
(Invitrogen). After siRNA transfection for 24 h, the knockdown e�ciency of the predicted TFs and the
effects on cNANOG gene transcription were measured by quantitative reverse-transcription PCR (RT-
qPCR).

Analysis of gene expression by RT-qPCR

Total RNA was extracted from test samples using TRIzol reagent (Molecular Research Center, USA) in
accordance with the manufacturer’s protocol and reverse-transcribed using the Superscript III First-Strand
Synthesis System (Invitrogen). The PCR mixture contained 2 µL of PCR buffer, 1 µL of 20× EvaGreen
qPCR dye (Biotium, Hayward, CA, USA), 0.4 µL of 10 mM dNTP mixture, and 10 pmol each of gene-
speci�c forward and reverse primers (Table 3). RT-qPCR was performed in triplicate. Relative target gene

http://www.genomatix.de/
http://www.ambion.com/
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expression was quanti�ed after normalization against chicken glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) expression as an endogenous control.

Statistical analysis

Statistical analysis was performed using GraphPad Prism (GraphPad Software, La Jolla, CA, USA).
Signi�cant differences between groups were determined by a one-way analysis of variance with
Bonferroni’s multiple comparison test and the unpaired t-test. A value of P < 0.05 indicated statistical
signi�cance.

Results
Identi�cation of the TSS of the cNANOG gene

To better understand transcriptional regulation of the cNANOG gene, we �rst determined the TSS of this
gene by 5’-RACE PCR analysis. A 470 bp PCR product was obtained using a reverse GSP that targeted
exon 2 of the cNANOG gene (Fig. 1a and b). Sequencing analysis identi�ed the TSS of the cNANOG gene
located 70 bp upstream of the ATG start codon (Fig. 1b).

Characterization of the cNANOG core promoter in PGCs and ESCs

To investigate the proximal region of the core promoter of the cNANOG gene, we generated a series of 5’
deletion luciferase reporter constructs of the 6− region, which were randomly designed based on the
−3,550/+70 bp sequence (Fig. 2a). Luciferase activity derived from differently sized fragments of the
cNANOG promoter was examined in PGCs, ESCs, and DF-1 cells transfected with the constructs for 24 h
using Lipofectamine 2000. Luciferase activity was 4-fold higher in PGCs transfected with the −3,550/+70
bp fragment than in PGCs transfected with the −250/+70 bp fragment (Fig. 2b). On the other hand, the
−250/+70 bp fragment did not exhibit luciferase activity in ESCs (Fig. 2c). None of the cNANOG promoter
fragments were active in DF-1 cells (Fig. 2d). These results suggest that transactivation level of the
complete promoter (−3,550/+70 bp sequence) was similar between PGCs and ESCs but cNANOG
transcription is differentially regulated in PGCs and ESCs by the proximal enhancer.

POU5F3 and SOX2 regulate constitutive expression of cNANOG in PGCs

To further examine PGC-speci�c cNANOG promoter activity and binding to the proximal enhancer, we
generated four constructs harboring fragments of the −250/+70 bp region of the cNANOG promoter via
deletion of the 5’ upstream region. Among the four constructs, the −210/+70 bp, −170/+70 bp, and
−130/+70 bp fragments still showed promoter activity in PGCs, while the −69/+70 bp fragment did not
(Fig. 3a). These results suggest that a positive transcriptional cis-regulatory element is located between
−130 and −69 bp.

Based on the �ndings regarding cNANOG promoter activity described above, we predicted TFs with
binding sites located between −130 and −69 bp of the cNANOG promoter using two software programs
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(PROMO and MatInspector). Several TF-binding sites, including AIRE-, NFY-, CMYB-, ISL1-, E2F-, and
OSNT-binding sites, which contain binding sites for POU5F3 (OCT4), SOX2, NANOG, and TCF3, were
identi�ed in this region (Fig. 3b). Sequence alignment of this cNANOG promoter region from six vertebrate
species showed that the POU5F3- and SOX2-binding cis-regulatory elements are highly conserved in
mammalian species (Fig. 3c). To determine the functional contributions of the POU5F3- and SOX2-
binding sites to constitutive expression of cNANOG, site-directed mutagenesis, which can disturb the
recruitment of TFs, was performed (Fig. 3d). Mutation of the POU5F3/SOX2-binding sites in the 200 bp
fragment (−130/+70 bp) signi�cantly reduced relative luciferase activity in PGCs. Moreover, relative
luciferase activity was reduced signi�cantly more by mutation of the SOX2-binding site alone than by
mutation of the POU5F3-binding site alone in PGCs (Fig. 3e). Taken together, these results suggest that
POU5F3 and SOX2 play a role in transcription of cNANOG by directly binding to the 5’ upstream promoter
region in PGCs.

TP53 suppresses cNANOG gene expression in PGCs

Luciferase activity was at least 3-fold higher in PGCs transfected with the −210/+70 bp, −170/+70 bp,
and −130/+70 bp fragments than in PGCs transfected with the −250/+70 bp fragment (Fig. 3a). These
results suggest that a negative transcriptional cis-regulatory element is located between −250 and −210
bp. To investigate suppression of cNANOG promoter activity, we predicted TFs that have binding sites
within this region using two software programs (PROMO and MatInspector) (Fig. 4a). Among the
predicted TFs, TP53 is a suppressor of NANOG transcription, while ZIC2/3 and CEBP are positive
regulators of NANOG transcription (21, 33, 34). We further examined whether TP53 affects cNANOG
promoter activity in PGCs by performing site-directed mutagenesis and comparing the mutant with the
wild-type −250/+70 bp fragment (Fig. 4b). Deletion of the TP53-binding site in the cNANOG promoter
region signi�cantly increased luciferase activity in PGCs (Fig. 4c). These results demonstrate that TP53
suppresses cNANOG transcription in PGCs.

CEBP transactivates the cNANOG promoter in ESCs

To further investigate the potential transcriptional cis-regulatory elements in ESCs, we generated four
constructs harboring fragments of the −442/+70 bp region of the cNANOG promoter via deletion of the 5’
upstream region. Among the four constructs, the −407/+70 bp, −377/+70 bp, and −312/+70 bp fragments
exhibited signi�cantly reduced cNANOG promoter activity in ESCs (Fig. 5a). These results suggest that a
positive transcriptional cis-regulatory element is located between −442 and −407 bp.

We analyzed the −442/+70 bp fragment using two software programs (PROMO and MatInspector) to
identify important TF-binding sites that maintain the basal activity of the cNANOG gene in ESCs. Only a
CEBP-binding site was identi�ed between −442 and −407 bp (Fig. 5b). To examine the effect of the CEBP-
binding site on promoter activity, we constructed vectors containing mutations of this site in the
−422/+70 bp fragment (Fig. 5c). Mutation of the CEBP-binding site in the −442/+70 bp region
dramatically reduced relative luciferase activity in ESCs compared with the wild-type construct of the
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same region (Fig. 5d). Taken together, these results suggest that CEBP positively regulates transcription
of cNANOG by directly binding to the 5’ upstream promoter region in ESCs.

Effects of predicted TFs on cNANOG gene transcription

To con�rm that the predicted TFs are expressed in PGCs and ESCs, we conducted RT-qPCR using RNA
prepared from PGCs, ESCs, DF-1 cells, and CEFs. Expression of chicken CEBP genes (CEBPA, CEBPB,
CEBPD, CEBPG, and CEBPZ) was signi�cantly higher in ESCs than in other cells. By contrast, expression
of POU5F3 and SOX2/3 was signi�cantly higher in PGCs and ESCs than in DF-1 cells and CEFs.
Expression of POU5F3 and SOX3 did not differ between PGCs and ESCs, while SOX2 was signi�cantly
upregulated in PGCs. Additionally, expression of TP53 was signi�cantly higher in PGCs than in other cells
(Fig. 6).

We further examined whether these TFs affect transcription of cNANOG in PGCs and ESCs using a siRNA-
mediated knockdown assay. Knockdown of TP53 signi�cantly increased cNANOG expression in PGCs,
indicating that TP53 decreases cNANOG transcription (Fig. 7a). Knockdown of CEBPA, CEBPB, CEBPD,
and CEBPG signi�cantly decreased cNANOG gene expression in ESCs (Fig. 7b–f). These results indicate
that these TFs control transcription of cNANOG by directly interacting with its promoter in a cell type-
speci�c manner.

Discussion
The homeodomain TF NANOG is important to maintain proliferation of germ cells and pluripotency of
stem cells (35). However, the molecular mechanisms that regulate transcription of the NANOG gene in
chicken PGCs and ESCs remain unclear, although cNANOG is evolutionarily conserved with NANOG
orthologs from zebra�sh and axolotl (28-30). In this regard, we characterized the structure of cNANOG
and analyzed its promoter activity in chicken PGCs and ESCs.

We successfully transcribed cNANOG under the control of the proximal regulatory region located within
130 bp upstream of the TSS in PGCs. Furthermore, we identi�ed the regulatory region of cNANOG located
within 442 bp upstream of the TSS in ESCs. Moreover, we showed that TP53 suppresses cNANOG
transcription in PGCs. These results suggest that the cNANOG promoter functions in a cell type-speci�c
manner. Similarly, Yeom et al. reported that the mouse Oct4 gene contains two separate regulatory
elements (36). The distal regulatory element is speci�cally active in mouse ESCs and EGCs, while the
proximal enhancer is active in the epiblast. Thus, transcription of the mouse Oct4 gene is regulated in a
stage-speci�c manner. Our �ndings indicate which elements are critical for gene expression in PGCs. This
is the �rst report of a cis-regulatory element of NANOG that is differentially active in a cell type-speci�c
manner in chicken.

Many researchers have studied mammalian ESCs to determine which core factors regulate the NANOG
gene. To understand the molecular networks, several TFs, including OCT3/4, SOX2, SALL4, PBX1, and
KLF4, have been identi�ed in mouse, human, and goat (13, 19, 37, 38). OCT3/4 and SOX2 play an
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important role in regulation of the NANOG gene promoter. Mutation of Octamer- and Sox-binding sites
dramatically reduces transcription of NANOG. Also, these TFs such as POU5F3, SOX2/3, KLF2, and
SALL4 are highly expressed in chicken ES cells and PGCs (39). In the present study, mutation of POU5F3-
and SOX2-binding sites in the proximal region signi�cantly reduced cNANOG promoter activity in PGCs.
Although the DNA sequences of POU5F3 and SOX2, which are recognized by mouse core pluripotency
factors, are not well conserved in chicken, POU5F3 and SOX2 are key regulators of cNANOG transcription.
Further investigation by the electrophoretic mobility shift assay and chromatin immunoprecipitation
sequencing is required to determine the core TFs in chicken PGCs.

Programmed death of PGCs is essential to remove abnormal, misplaced, and excess cells during PGC
development and this is important to establish the next generation. TP53 is reportedly involved in
elimination of excess PGCs during PGC development (40). In addition, TP53 binds to the NANOG
promoter and suppresses NANOG expression for maintenance of genome stability in ESCs (21). Our
results showed that the TP53-binding site negatively controlled NANOG transcription in PGCs. Therefore,
we propose that TP53 plays important roles in the regulation of NANOG transcription to maintain genome
stability in PGCs.

 CEBPB interacts with p300 to modulate histone acetylation (41), and p300 is a co-activator that binds to
NANOG for maintenance of pluripotency in ESCs (42). In our study, CEBPA, CEBPB, CEBPD, CEBPG, and
CEBPZ were signi�cantly upregulated in chicken ESCs. In addition, knockdown of these TFs dramatically
decreased transcription of cNANOG in chicken ESCs. These results suggest that CEBP in chicken ESCs
participate in regulation of cNANOG transcription by directly interacting with putative binding sites in the
cNANOG promoter.

We found that speci�c TFs were important in different cell types. This suggests that the notion of cell
type-speci�c TFs based on expression analysis should be carefully considered, especially in the context
of transcriptional regulation. In addition, analysis of cell type-speci�c cis-regulatory elements indicated
that TFs control NANOG expression for cell type-speci�c functions. Thus, given that cell type-speci�c
functions must be regulated, it is logical that differences in complex regulation of TFs underlie
transcriptional regulation speci�c to each cell type.

Conclusion
This study demonstrated that the proximal regulatory region of the cNANOG gene differs between PGCs
and ESCs. We showed that the cNANOG gene is positively regulated by POU5F3 and SOX2 and negatively
regulated by TP53 in PGCs, while it is positively regulated by CEBP in ESCs. Collectively, these �ndings
aid understanding of transcriptional regulation of the cNANOG gene in PGCs and ESCs (Fig. 8).

Abbreviations
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TF: transcription factor; ESCs: embryonic stem cells; PGCs: primordial germ cells; cNANOG: chicken
NANOG; CEBP: CCAAT/enhancer-binding protein; EGCs: embryonic germ cells; TSS: transcription start
site; HH5: Hamburger and Hamilton stage 5; WL: White Leghorn; 5’-RACE: 5’ Rapid ampli�cation of cDNA
ends; GSPs: gene-speci�c primers; Fluc: �re�y luciferase; Nluc: NanoLuc luciferase; AU: arbitrary units;
CEF: chicken embryo �broblasts; GAPDH: glyceraldehyde 3-phosphate dehydrogenase
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Table 1. List of primer sequences used to clone the NANOG promoter

Primer name Primer sequence (5’ ⟶ 3’)

cNANOG -3,550 bp_F AAGCTTTGTCCTTTTCTTGACC

cNANOG -3,375 bp_F CTGGAGTCAAGGGCTGTGG

cNANOG -3,154 bp_F TGGGCCCCTCGTTACAGCT

cNANOG -2,928 bp_F CCAGCAGTACAAGCTCCGAA

cNANOG -1988 bp_F GCGACACGTGGAACA

cNANOG -945bp_F CATGGGGGTGTCTGCTC

cNANOG -627 bp_F CTTCTTTGTGCTCCTCC

cNANOG -442 bp_F CTGCAGTCTGCAATGC

cNANOG -407 bp_F AATGTCCCGGGGGGGTCTCTGG

cNANOG -377 bp_F CCATTCTTTGTACTTGGGTGGGGACCGATGAG

cNANOG -312 bp_F CGAGGGCGGGGGTGCCAGCCCAG

cNANOG -250 bp_F CTGCAGTCTGCTCCTCC

cNANOG -210 bp_F CTGCAGTCTGCAATGC

cNANOG -170 bp_F CCAAAGGGGGAAGCTGC

cNANOG -130 bp_F ACTCTCCGAATATCCCCATAGC

cNANOG -69 bp_F TCGTGACAATCTCTTG

cNANOG promoter_R GGTCGGGACGACACCT

Table 2. List of siRNA sequences targeting each transcription factor for knockdown analysis

Target

gene

siRNA sequence (5’ ⟶ 3’)

Sense Antisense

TP53 UCAUGGACCUCUGGAGCAU AUGCUCCAGAGGUCCAUGA

CEBPA GCGAGGAGGAGGAGGUGA UUCACCUCCUCCUCCUCGC

CEBPB GCGCAAGAGCCGCGACAAA UUUGUCGCGGCUCUUGCGC

CEBPD ACGAGAAGCUGCACAAGAA UUCUUGUGCAGCUUCUCGU

CEBPG AAAUUAAGCUCCUGACCAA UUGGUCAGGAGCUUAAUUU

CEBPZ GAGAAAAGCAAGAAGGAAA UUUCCUUCUUGCUUUUCUC
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Table 3. List of primer sequences used for quantitative real-time PCR

Gene

symbol

Primer sequence (5’ ⟶ 3’)

Forward Reverse

CEBPA CCCACCTGCAGTACCAGATC TCTTTTTGGATTTGCCGCGG

CEBPB CGCCCGCCTTTAAATCCATG GGGCTGAAGTCAATGGCTCT

CEBPD ACTTCTACGACGCCAAGGTG CTCTCGTCCTCGTACATGGC

CEBPG CCCACAGCTAACGTGTCAGT GGACGGGCTCTTCTTTGACA

CEBPZ CGCTGTTCACAGTCTCCACT GGACGCTGTGAGAAAGACCA

SOX2 AAACCGAGCTGAAACCTCCC TGTGCATCTTCGGGTTCTCC

SOX3 CGGCTCAGCAGACTCGATAC TCGCCGTGGCTTAAGAACTT

POUV TGAAGGGAACGCTGGAGAGC ATGTCACTGGGATGGGCAGAC

TP53 CCGTGGCCGTCTATAAGAAA ACAGCACCGTGGTACAGTCA

NANOG AGTGGCAGAGTCTGGGGTAT ACTACTACTGGCCCTCTCCG

GAPDH GGTGGTGCTAAGCGTGTTAT ACCTCTGTCATCTCTCCACA

Figures
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Figure 1

Identi�cation of the transcription start site (TSS) of the chicken NANOG (cNANOG) gene by 5’-rapid
ampli�cation of cDNA ends (RACE) analysis. a After performing 5’-RACE, the PCR product was analyzed
and its size was determined by agarose gel electrophoresis. Scale bar = 150 bp. b The 5’-RACE product
was cloned into the pGEM-T vector and sequenced. The TSS of the cNANOG gene is located 70 bp
upstream of the translation start codon ATG. +1 indicates the potential TSS of the cNANOG gene.

Figure 2

Promoter variants reduce activity of the chicken NANOG (cNANOG) gene in a cell type-dependent manner.
a Schematic diagram of deletion of the cNANOG gene promoter (−3,550/+70 bp). Relative luciferase
activity in chicken primordial germ cells (PGCs) (b), chicken embryonic stem cells (ESCs) (c), and DF-1
cells (d). Luciferase activity was normalized against �re�y luciferase expression (pNL1.2-Basic) to control
for variation in the transfection e�ciency. Signi�cant differences are indicated as ns (no signi�cance), **
P < 0.01, and *** P < 0.001.
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Figure 3

Veri�cation of the proximal enhancer of the chicken NANOG (cNANOG gene) in chicken primordial germ
cells (PGCs). a Schematic diagram of the constructed cNANOG promoter vectors and luciferase activity. b
Prediction of transcription factor (TF)-binding sites in the cNANOG promoter region located from −250 to
+70 bp. c Multiple alignment of the putative cNANOG proximal enhancer with cis-regulatory elements of
NANOG genes from mouse, rat, human, cattle, sheep, pig, and chicken. Prediction of mostly conserved
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POU5F3- and SOX2-binding sites in chicken. d Mutation analysis of putative POU5F3- and SOX2-binding
sites in PGCs. e Luciferase activity of the −130/+70 bp cNANOG promoter fragment compared with that
of mutated promoter constructs. Signi�cant differences are indicated as ** P < 0.01 and *** P < 0.001.

Figure 4

Negative regulation of chicken NANOG (cNANOG) gene expression by TP53 in chicken primordial germ
cells (PGCs). a Prediction of transcription factor (TF)-binding sites in the cNANOG promoter region from
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−250 to −210 bp. b Mutation analysis of putative TP53-binding sites in PGCs. c Luciferase activity of
pNL-NANOG-250/+70 and TP53-binding site-mutated (pNL-NANOG-250/+70 Mutation TP53) vectors.
pNL1.2-Basic was used as a control. Signi�cant differences are indicated as ns (no signi�cance) and ***
P < 0.001.

Figure 5

Veri�cation of the proximal enhancer of the chicken NANOG (cNANOG) gene in chicken embryonic stem
cells (ESCs). a Schematic diagram of the constructed cNANOG promoter vectors and luciferase activity. b
Prediction of transcription factor (TF)-binding sites in the cNANOG promoter region from −442 to −250
bp. c Mutation analysis of putative CCAAT/enhancer-binding protein (CEBP)-binding sites in ESCs. d
Luciferase activity of the −442/+70 bp cNANOG promoter fragment compared with that of the mutated
promoter. Signi�cant differences are indicated as ns (no signi�cance) and *** P < 0.001.
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Figure 6

Quantitative expression analysis of predicted transcription factors (TFs) in various cell types. Expression
of predicted TFs in chicken primordial germ cells (PGCs), embryonic stem cells (ESCs), DF-1 cells, and
chicken embryonic �broblasts (CEFs) was analyzed by quantitative RT-PCR. Error bars indicate the
standard deviation of triplicate analysis. Signi�cant differences are indicated as ns (no signi�cance), * P
< 0.05, ** P < 0.01, and *** P < 0.001.
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Figure 7

Relative gene expression analysis after knockdown of predicted transcription factors (TFs) in cultured
primordial germ cells (PGCs) and embryonic stem cells (ESCs). a E�ciency of small interfering RNA
(siRNA)-mediated knockdown of TP53 in PGCs was analyzed by quantitative reverse-transcription PCR
(RT-qPCR). Relative expression of NANOG was determined. b–f E�ciency of siRNA-mediated knockdown
of CEBPA, CEBPB, CEBPD, CEBPG, and CEBPZ in ESCs was analyzed by RT-qPCR. Relative expression of
NANOG was determined in each sample. Error bars indicate the standard deviation of triplicate analyses.
Signi�cant differences are indicated as * P < 0.05, ** P < 0.01, and *** P < 0.001.
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Figure 8

A model illustrating regulation of chicken NANOG (cNANOG) gene transcription in chicken primordial
germ cells (PGCs) and embryonic stem cells (ESCs). cNANOG gene expression requires transcriptional
cis-regulatory elements that are positively controlled by POU5F3 and SOX2 and negatively controlled by
TP53 in PGCs. On the other hand, CCAAT/enhancer-binding protein (CEBP) positively regulates cNANOG
gene expression in ESCs.


