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Abstract 
This paper presents the approximate solution of higher order boundary value problems by differential transform 
method. Two examples are considered to illustrate the efficiency of this method. The results converge rapidly to 
the exact solution and are shown in tables and graphs. 
Keywords: differential transform method, boundary value problems, series solution 
1. Introduction 
Recently, studies showed that higher order boundary value problems arise in the areas of fluid dynamics, 
hydrodynamics and hydromagnetic stability and other applied sciences. Specifically, fifth-order boundary value 
problems arise in viscoelastic fluid. The problem was considered by Wazwaz (2001) using the decomposition 
method. Caglar et al (2006) solved it via B-spline interpolation and compared the results with finite element and 
finite volume methods and Triphathi (2012). Sixth order boundary value problems occur in astrophysics and it 
has attracted the attention of researchers like Wazwaz (2001) who investigated it using modified decomposition 
method, He (2003) used variational approach method and Erturk (2007) approached it via differential 
transformation method. However, seventh order boundary value problems that arise in modeling induction 
motors with two rotor circuits was considered by Siddiqi et. al (2012) while  eight-order boundary value 
problem which occur in hydrodynamic and hydromagnetic stability was also studied by Siddiqi et al (1996) and 
Mohammad-Jawad (2010). Other authors who have also studied higher order boundary value problems include 
Wazwaz (2000), Othman et al. (2010) and Mohyud-Din (2010). 
The differential transform method is applied in this work to solve boundary value problems of ninth and twelfth 
orders. This method was proposed by Zhou (1986). Some authors who have also adopted this method include, 
Opanuga et al (2014) on systems of ordinary differential equations, also Opanuga et al (2015) applied it in 
numerical solution of two-point boundary value problems, Edeki et al (2014) analyzed linear and nonlinear 
differential equations and finally Edeki et al (2015), in transformed Cauchy-Euler equidimensional equations of 
homogenous type.   
2. Analysis of Differential Transform Method 
Let the arbitrary function ( )y v x=  be expressed in Taylor series about a point 0x x=  as 
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with the differential transformation of ( )V k  given as  
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We then obtain the inverse differential transform of ( )V k  as  
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The following theorems can be obtained from equations (1), (2) and (3) 

(i) If 1 2( ) ( ) ( )v x v x v x= ±  then, 1 2( ) ( ) ( )V k V k V k= ±  

(ii) If 1( ) ( )v x v xβ=  then, 1( ) ( )V k V kβ=  
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3. Numerical Examples 
Example 1: We consider the following ninth order boundary value problem. 

9( ) 9 ( ),        0 1,tu t e u t t= − + < <                         (4) 

and the boundary conditions are  

( )

( )

(0) (1 ),        0,1,2,3,4
(1) ,            0,1,2,3.

k

k

u k k
u ke k

= − =

= − =               (5) 

The exact solution for the bvp is 

( ) (1 ) tu t t e= −                                    (6) 

The differential transformation of equation (4) is given as 

! 9( 9) ( )
( 9)! !

nU n U n
n n

 + = − +   .
     (7) 

and differential transformation of the boundary conditions yield 

1 1 1(0) 1, (1) 0, (2) , (3) , (4)
2 3 8

U U U U U= = = − = − = −  

With 

( ) ( ) ( ) ( )(5), (6), (7), (
5! 6! 7! 8!

v vi vii viiiu t u t u t u tA U B U C U D U= = = = = = = =         (8) 
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Using the boundary conditions (8) in the transformed equation (7) at 0x =  , we obtain the solution of ( )u t , 

for 9t ≥   . The constants A, B, C and D can be determined by using the boundary conditions (8) at 1x =   
giving rise to the following systems 

    

2849503
68428800 20 720 5040 40320

0.218055584
24 120 720 5040

0.934722556
6 24 120 720

3.141670336
2 6 24 120

A B C D

A B C D

A B C D

A B C D

+ + + +

+ + + +

+ + + +

+ + + +

                                        (9) 

We then solve the above system of equations to obtain the following:  

3.999989123, 5.000214682, 5.998305826, 7.005270192A B C D= − − = − = −                 (10) 

We finally obtain the following series of equation using the inverse transformation equation (3) up to 18T =  

 

2 3 4 5 6

7 8 9 10

11 12 13 10 14

1 1 1( ) 1 0.03333324269 0.006944742614
2 3 8

1 1         0.001190140045 0.0001737418202
45360 403200

1 1 1        1.491195680 10
3991680 43545600 518918400

        1.070

u t t t t t t

t t t t

t t t t−

= − − − − − −

− − − −

− − − × −

11 15 13 16 14 17

18

619340 10 7.168406272 10 4.499813299 10
1       

376610217984000

t t t

t

− − −× − × − × −

             (11) 

Table1. Numerical solution for example1 
 
t 

EXACT 
SOLUTION 

DTM SOLUTION ABSOLUTE    ERROR

0 1.0000000 1.0000000 0 
0.1 0.9946538 0.9946538 6.41E-13 
0.2 0.9771222 0.9771222 1.39E-11 
0.3 0.9449012 0.9449012 6.78E-11 
0.4 0.8950948 0.8950948 1.72E-10 
0.5 0.8243606 0.8243606 2.89E-10 
0.6 0.7288475 0.7288475 3.52E-10 
0.7 0.6041258 0.6041258 3.03E-10 
0.8 0.4451082 0.4451082 1.04E-10 
0.9 0.2459603 0.2459603 4.24E-10 
1 0 -2.09E-09 2.09E-09 
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Figure 1. Graph of example 1 

EXAMPLE 2: We consider the following twelfth order boundary-value problem 

    12 2( ) 2 ( ) ( ),      0 1tu t e u t u t t′′′= + < <                          (12) 

with the following boundary conditions 

    2 2 1(0) 1, (1) ,             0,1, 2, 3, 4, 5 .k ku u e k−= = =                        (13) 

The exact solution for the boundary –value problem is written as 

    ( ) tu t e −=                                                                     

(14) 

The differential transform of equation (12) is given as 

0 0

! (1)( 12) 2 ( )( ) ( 3) ! ( 3)
( 12) ! !

sn r

r s

nU n U r s n r n U n
n s= =

 
+ = − − + + + +  

 
                        (15) 

and the differential transformation of the boundary conditions yield 

1 1 1 1 1(0) 1, (2) , (4) , (6) , (8) , (10)
2! 4! 6! 8! 10!

Y Y Y Y Y Y= = = = = =  

(1), (3), (5), (7),
1! 3! 5! 7!

(9), (11)
9! 11!

v vii

ix vii

u u u uA U B U C U D U

u uE U F U

′ ′′′
= = = = = = = =

= = = =
            (16) 

Using the transformed boundary conditions (16) in equation (15) at 0x = , we obtain the series solution ( )u t , 
for 12t ≥ .The constants A, B, C and D are evaluated by using the boundary conditions (16) at 1x =  to give 
the system of equations below. 
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798336011.175201197
479001600 120 5040 362880 39916800

36288011.175201468
3628800 6 120 5040 362880

1.175225719
40320 6 120 5040

1.176565004
720 6 120

1.215453893
24 6

1.63212056

B C D E FA

B C D E F

B D E FC

B E FD

B FE

+ + + + + +

+ + + + +

+ + + + +

+ + + +

+ + +

2
B H+ +

                  (17) 

Solving the system of equations yield the following: 

 0 .9 9 9 9 9 8 3 6 1 4 , 1 .0 0 0 0 1 6 1 7 5, 0 .9 9 9 8 4 0 7 3 2 2 , 1 .0 0 1 5 5 8 9 9 ,
0 .9 8 5 1 0 1 1 4 0 3, 1 .1 3 2 1 1 2 4 7 3

A B C D
E F

= − = − = − = −
= − = −

           (18) 

We then obtain the following series solution using the inverse transformation equation (3) up to 20T =  

2 3 4

5 6 7 8

6 9 10 8 11

9 12

1 1( ) 1 0.9999983614 0.1666693625
2 24
1 1         0.008332006102 0.0001987218847

720 40320
1        2.714674659 10 2.836180438 10

3628800
        2.087641931 10 1.6058

u t t t t t

t t t t

t t t

t

− −

−

= − + − + −

+ − + −

× + − × +

× − 10 13 15 14

12 15 12 16 13 17

13 18 14 19 14 20

93858 10 3.65385 10
        3.058816015 10 1.053272498 10 3.317537471 10
        1.104704058 10 4.141550914 10 1.876145228 10

t t
t t t
t t t

− −

− − −

− − −

× + × +
× − × + × −

× + × − ×

            (19) 

 
Table 2. Numerical solution for example 

          

t 

EXACT 

SOLUTION

DTM 

SOLUTION

ABSOLUTE      

ERROR 

0 1.00000000 1.00000000 0 

0.1 0.90483742 0.904837579 1.61E-07 

0.2 0.81873075 0.81873106 3.07E-07 

0.3 0.74081822 0.740818643 4.22E-07 

0.4 0.67032005 0.670320542 4.96E-07 

0.5 0.60653066 0.606531181 5.21E-07 

0.6 0.54881164 0.548812132 4.96E-07 

0.7 0.4965853 0.496585725 4.22E-07 

0.8 0.44932896 0.44932927 3.06E-07 

0.9 0.40656966 0.40656982 1.6E-07 

1 0.36787944 0.36787944 1.45E-09 
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Figure 2. Graph of examlpe 2 

 
4. Concluding Remarks 
This paper has applied differential transform method to solve ninth-order and twelfth-order boundary value 
problems. The method is easy to apply, accurate and efficient. This is evident from table 1 and the graphical 
representations of the solution which show strong agreement with the exact solution. 
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