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Differential Transformation Method to determine Magneto
Hydrodynamics flow of compressible fluid in a channel with porous

walls

R. Mohammadyari, M. Rahimi-Esbo, A. Khalili Asboei

abstract: In this article magneto hydrodynamics (MHD) boundary layer flow of
compressible fluid in a channel with porous walls have been researched. In this study
it is shown that the nonlinear Navier-Stokes equations can be reduced to an ordinary
differential equation, using the similarity transformations and boundary layer ap-
proximations. Analytical solution of the developed nonlinear equation is carried out
by the Differential Transformation Method (DTM). In addition to applying DTM
into the obtained equation, the result of the mentioned method is compared with a
type of numerical analysis as Boundary Value Problem method (BVP) and a good
agreement is seen. The effects of the Reynolds number and Hartman number are
investigated.
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Nomenclature

BVP boundary value problem method
B0 uniform static magnetic field
DTM differential transformation method
f similarity function
H channel width (m)
M Hartman number
p pressure (pa)
Re Reynolds number
u x velocity (m/s)
v y velocity (m/s)
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Greek symbols

µ dynamic viscosity (N.s/m2)
ρ density ( (kg/m3)
σ electrica conductivity (Siemens/m, where Siemens=1/Ω)

1. Introduction

Magnetohydrodynamics is essential in plasma physics and astrophysics and
studies the motion of electrically conducting media in the presence of a magnetic
field. In natural systems include the Earth’s core and solar flares, and in the
engineering world, the electromagnetic casting of metals and the confinement of
plasmas MHD effects are important [1]. Recently reactor designs commonly in-
volve the use of electrically conducting liquid metals, in fusion engineering, are
much of the interest [2].

In order to determine the velocity components, DTM is applied to solve the re-
sulting nonlinear differential equation. Then the solution is compared with Bound-
ary Value Problem Method. An ordinary non-linear differential equation can be
derived from the governing differential equations by using similarity transforma-
tion. In semi-analytical techniques such as differential transform method (DTM),
homotopy perturbation method (HPM) and etc. the differential equations will be
transformed into algebraic equations so that by these methods the most problems
can be solved. DTM was first applied to the engineering field by Zhou [3]. This
method is based on Taylor expansion that produces a polynomial form of the main
equations and requires calculating the essential derivatives of the data functions.
The mentioned method includes of an iterative procedure to deal with the differen-
tial equations analytically. A.A. Joneidi and et al. [4] applied three new analytical
approximate techniques for addressing nonlinear problems to Jeffery–Hamel flow.
Homotopy Analysis Method (HAM), Homotopy Perturbation Method (HPM) and
Differential Transformation Method (DTM) were proposed and used in this re-
search. Rahimi et al. [5] used this method for obtaining efficiency, temperature
distribution, and effectiveness of conductive, convective, and radiative straight fins
with temperature dependent thermal conductivity. As DTM has the ability to solve
the non-linear problems, so it has been applied for the solution of the non-linear
vibration problems by Chiou and Tzeng [6]. It should be explained that DTM
method can also be used to solve the partial differential equations as Jang et al.
[7] carried it out. Different application problems have been solved by this method
[8-13].

2. Description of the problem

The two-dimensional MHD flow of a compressible fluid in a porous channel with
suction and injection are investigated. The geometry of the problem is shown in
figure (1-a) and (1-b). The x-axis is taken along the centerline of the channel and
the y-axis transverse to these. The flow is symmetric about both axes. The porous
walls of the channel are at y = H/2 and y = H/2. The fluid injection or suction
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takes place through the porous walls with velocity V0/2. Here V0 > 0 corresponds
to suction and V0 < 0 for injection. Let u and v be the velocity components
along the x- and y-axes respectively, and B0 is a uniform static magnetic field in
Y -direction.

Figure 1: Axial section of the channel in case of (a) suction (b) injection

The compressible electrically conducting fluid that flows though the axial di-
rection in the channel will induce a magnetic field in the medium in an applied
magnetic field. The magnetic Reynolds number (Rem = σmUL) represents the rel-
ative strength of the induced field. In the above relation the characteristics such as
U and L are the scale length and velocity and µm is magnetic permeability. If the
magnetic Reynolds number is small, the induced magnetic field will be neglected
[14].

It can be assumed that the electric field is zero as no external electric field is
applied and the effect of polarization of the ionized fluid is negligible. The equations
for the MHD boundary layer flow of a compressible fluid with are:

∂(ρu)

∂x
+

∂(ρv)

∂y
= 0 (2.1)

ρ

(

u
∂u

∂x
+ v

∂u

∂y

)

= −σB2
0u−

∂p

∂x
+

4

3
µ
∂2u

∂x2
+

1

3
µ

∂2v

∂x∂y
+ µ

∂2u

∂y2
(2.2)

Assuming the symmetry about the x-axis and no-slip conditions aty = H/2, we
have:

∂u

∂y
= 0 , v = 0 at y = 0

u = 0, v =
V0

2
at y =

H

2
(2.3)

The Equation (2.4) represents the non-dimensional parameters to rewrite the Equa-
tion (2.2) in the non-dimensional form, in which f(y∗) is assumed as a similarity
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function.

x∗ =
x

H
, y∗ =

y

H
, u = −V0x

∗f
′

(y∗) , v = V0f (y∗) (2.4)

Applying the above equation, Equations (2.2) and (2.3) may be written as:

f
′′′

+Re(f
′2

− ff
′′

)−M2f
′

= 0 (2.5)

f = 0, f
′′

= 0 at y = 0

f =
1

2
, f

′

= 0 at y =
1

2
(2.6)

Where M2 = σB2
0H

2/µ and Re = ρHV0/µ are known as Hartman number and
Reynolds number respectively. To solve Equations (2.5) and (2.6), the DTM
method is employed.

3. Solution with Differential Transformation Method (DTM)

First briefly DTM method will be introduced. Let x(t) be analytic function in
a field that Taylor series expansion of x(t) is of the form of the following [15].

x(t) =

n
∑

k=0

(

t

H

)k

X(k) (3.1)

In which the transformed function is calculated as the below equation:

X(k) =

∞
∑

k=0

Hk

k!

[

dkx(t)

dtk

]

t=0

, (3.2)

Obviously, the concept of DTM method is based on the Taylor series expansion.
Mathematical operations performed by Differential Transformation Method are
listed in the Table 1.

Table 1: The fundamental operations of differential transformation method
Original function Transformed function
x (t) = αf (t)± βg (t) X (k) = αF (k)± βG (k)

x (t) = df(t)
dt

X (k) = (k + 1)F (k + 1)

x (t) = d2f(t)
dt2

X (k) = (k + 1) (k + 2)F (k + 2)

x (t) = f (t) g (t) X (k) =
∑k

l=0 F (l)G (k − l)

x (t) = tm X (k) = δ (k −m) =

{

1 k = m
0 k 6= m

Now the explained method will be applied into Equation (2.5) considering H =



Differential Transformation Method 253

1.

(j + 1)(j + 2)(j + 3)fj+3 −M2(j + 1)fj+1

+Re

(

j
∑

i=0

(i + 1)fi+1 (j − i+ 1) fj−i+1

)

−Re

(

j
∑

i=0

fi(j − i+ 1)(j − i+ 2)fj−i+2

)

= 0 (3.3)

From boundary conditions in Equation (2.6), and performing the transformation:

f(0) = 0 (3.4)

The other boundary conditions are considered as following:

f(1) = a

f(2) = b (3.5)

f(3) = c

Where a, b and c are constants. These parameters will be calculated with consid-
ering another boundary condition in Equation (2.6).

f4 = −
1

12
Re ab+

1

12
M2b (3.6)

f5 = −
1

30
Re b2 +

1

20
M2c (3.7)

f6 = −
1

360
Re2a2b−

1

30
Re bc+

1

360
M4b (3.8)

f7 = −
1

1260
aRe2b2 +

1

420
Re aM2c−

1

630
ReM2b2 −

1

70
Re c2 +

1

840
M4c (3.9)

This procedure can be continued. Inserting the Equation (3.4) to (3.9) into the main
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equation on the basis of DTM, the closest form of the solution will be obtained.

f(y∗) = ay∗ + by∗2 + cy∗3 +

(

−
1

12
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1

12
M2b

)
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1
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1
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1
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)

y∗7 + ...

f ′∗) = a+ 2by∗ + 3cy∗2 +

(

−
1

3
Reab+

1

3
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)
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(
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1

6
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1

4
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)
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(

−
1
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1

60
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+

(

−
1
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1
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1
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−
1

10
Rec2 +

1

120
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)
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and

f
′′

(y∗) = 2b+ 6cy∗ +
(

−Reab+M2b
)

y∗2 +

(

−
2

3
Reb2 +M2c

)
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(

−
1
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1
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+

(

−
1
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1
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1

15
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3

5
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1

20
M4c

)

y∗5 + . . .

Substituting the boundary conditions from Equation (2.6) into Equations (3.10),
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(3.11) and (3.12) iny∗ = 0.5, we have:
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Then Solving the above equations together and assumingM = 1, Re = 4, the values
of a, b, c will be obtained.

a = 1.485594956, b= 0, c = −1.902424049 (3.16)

So f(y∗) will be yielded as the following:

f(y∗) = 1.485594956y∗ − 0.08693160073y∗9 − 0.2359936967y∗7

+ 0.003149937499y∗13 + 0.002905168393y∗15 − 0.01826631831y∗11 (3.17)

−1.902424049y∗3 − 0.09512120245y∗5 + 0.00007152172800y∗17

4. Result and discussion

Figure 2 represents the comparison of DifferentialTransformationMethod(DTM)
and Boundary Value Problem (BVP) for f(y∗). From figure 2 and Table 2, it is
considerable that DTM with fifteen orders converge to the results with a good
accuracy.
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Figure 2: comparison of DTM and BVP for f(y∗) on the 15th -order approximation
(Re = 4, M = 1 )

Table 2: Comparing the results of DTM with BVP Method for different iteration
iteration 1 7 15

y
∗ fNM(BVP) f DTM Error f DTM Error f DTM Error

0 0 0 0 0 0 0 0

0.1 5.94E-02 0.07475 0.01539 0.074045 0.01468 0.07404 0.01468

0.1 0.11817 0.148 0.02983 0.146662 0.02849 0.14666 0.02849

0.2 0.175857 0.21825 0.04239 0.216419 0.04056 0.21641 0.04055

0.2 0.231861 0.284 0.05214 0.281876 0.05002 0.28187 0.05

0.3 0.285615 0.34375 0.05813 0.341577 0.05596 0.34157 0.05595

0.3 0.336543 0.396 0.05946 0.394039 0.0575 0.39403 0.05749

0.4 0.384058 0.43925 0.05519 0.437742 0.05368 0.43773 0.05368

0.4 0.427558 0.472 0.04444 0.471104 0.04355 0.4711 0.04354

0.5 0.466422 0.49275 0.02633 0.492456 0.02603 0.49245 0.02603

0.5 0.5 0.5 0 0.5 2E-10 0.5 -2E-10
∑

Error 0.3833 0.37047 0.37041

In figures 3 and 4, the effect of the injection velocity on f and f ′ are shown. It
can be seen that as the velocity injection enlarges, both f and f ′ increase. Although
the suction case, f increases and f decreases. So it means that suction force assists
the structural formation of y direction flow, in the contrary of x direction.

In figures 5 to 8 the effects of Hartman number and Reynolds number on the
velocity components f and f ′ are investigated. From figures (5) and (6), it is
observed that as the Reynolds number and Hartman number increase, the similarity
function (f) decreases. In the figures 7 and 8, toward the center point fromy∗ = 0 to
the suction side as the Hartman number and Reynolds number grow, f ′ decreases,
but then this parameter increases. Hence the profile of the velocity component in
x direction will have a common point that approximately takes place in y∗ = 0.25.
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So the stated point can be interpreted as a critical point in the formation of x
direction flow.

Figure 3: Effects of the injection velocity (V0) for f(y∗) on the 15th-order approx-
imation (M = 1, Re = 4)

Figure 4: Effects of the injection velocity (V ) for f ′∗) on the 15th-order approxi-
mation (M = 1, Re = 4 )
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Figure 5: Effects of the Reynolds number or f(y∗) on the 15th-order approximation
(M = 2)

Figure 6: Effects of the Hartman number for f(y∗) on the 15th-order approximation
(Re = 4)
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Figure 7: Effects of the Reynolds number for f ′∗) on the 15th-order approximation
(M = 2)

Figure 8: Effects of the Hartman number for f ′∗) on the 15th-order approximation
(Re = 4)

5. Conclusion

In this research, an analytic method for the solution of the two-dimensional
magnetohydrodynamics (MHD) boundary layer flow of compressible fluid have
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been presented. Differential equations were transformed to algebraic equations,
using Differential Transformation Method (DTM). Then DTM was compared with
Boundary Value Problem (BVP) method as a numerical solution. The effects of
different Reynolds number and Hartman number were investigated for the similar-
ity functionsf, f ′ used to determine the velocity components. It was found from the
results, as the Hartman number and Reynolds number changed a common point
appeared in the profile of the velocity component in x direction. When the velocity
injection increased, it was clear that the suction force assisted the structural for-
mation of y direction flow. This research has been also proved that DTM includes
of high accuracy to solve different problems in the engineering field.
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