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Abstract

When a number of psychological measures are to be combined it is some-

times desirable to weight the measures differentially, either with fixed

weights which are constant for all subjects or with variable weights which are

not. In this paper we review the literature on a priori and empirical weight-

ing of test items and test-item options.

A large number of methods are available for deriving fixed empirical

weights for component variables such as tests and test items. The best known

and most widely used technique is multiple regression. Other methods allow

one to derive weights which equalize the effective weights of the component

variables, i.e., their individual contributions to the variance of the com-

posite, or which equalize the correlation of each variable with the composite,

or which maximize composite reliability. Other weighting methods which have

been popular include weighting by the reciprocal of the standard deviation,

weighting (tests) by length or difficulty, and weighting by the validity

coefficient of the comionent variable.

The effectiveness of fixed weighting depends on the nuaber of measures

to be combined, their intercorrelations, and certain characteristics of the

weights. In general, fixed weighting is most effective when there are few

variables in the composite and when these variables are not highly correlated.

For a largenumber of positively correlated variables (such as test items)

the correlation between two randomly weighted composites rapidly approaches

unity.

Fixed weighting has also been used to develop scores for response cate-

gories such as those in the items of personality, attitude, and interest tests,

where there is no "correct" response option. The raw data in such cases are

classificatory rather than quantitative. A familiar example of one such
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method is that used by E.K. Strong Jr. to secure option weights for the Strong

Vocational Interest Blank.

Empirical studies of fixed weighting, popular in the 1920's and 1930's,

demonstrated what the analytical papers predicted would be the case. Weighting

was found useful in many cases where only a few tests were combined in a bat-

tery. But weighting the items of a long test was shown repeatedly to be inef-

fective, or so slightly effective as to be impractical. There are few empiri-

cal studies of response-option weighting in adhievement or aptitude tests,

although there is reason to believe that such weighting might be effective

despite the fact that item weighting is not.

Variable weighting methods are those in which there is no nominal weight,

constant over subjects, applied to a single item or response option. Of most

interest are variable response-weighting methods such as those recently sug-

gested by de Finetti (1965) and others. Here, the subject's response to a

test item need not be restricted to simply selecting a single response option

as correct. Rather, he may be asked to respond in one of a variety of ways.

In particular, he may be instructed to assign a probability to each response

option corresponding to his subjective probability of the correctness of the

option. A scoring formula is then used to take the probability distribution

into account in arriving at a score for the item. To be effective, such

weighting methods require that the subject be able to maximize his expected

score if and only if he reports his subjective probabilities honestly.

The de Finetti subjective-probability approach does not produce differ-

ential scoring weights for the various distracters, however, nor do the me-

thods devised by Birnbaum and by Cleary. A criterion-keying procedure due to

Guttman does provide differential scoring weights for the various options of a

multiple-choice item and seems promising enough to be tried, now that high-

speed digital computers are readily available.
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Variable response-weighting methods, perhaps in conjunction with fixed

response-weighting methods, show promise for increasing the reliability and

validity of test scores, a feat which cannot be attained with fixed item-

weighting techniques for long tests composed of positively intercorrelated

items.
*

iv

*
For a shorter verpioh of this review that is considerably more detailed

than this abstract, see Stanley & Wang (1968).



Whenever several measures are to be combined to form a single composite

measure or to predict a criterion, the question of differential weighting of

the component measures presents itself. Can differential weighting improve

the reliability of measurement and/or provide a more valid composite mea-

sure than would be obtained if the component measures were merely summed or

averaged?

Theoretically, the answer to this question should be "Yes" for both

reliability and validity. It is unlikely that all of the component measures

will be equally reliable, have equal variances, be equally intercorre/ated

with one another, and be equally correlated with the underlying variable

which the composite is s4posed to measure or with the external criterion.

But all of these characteristics of the component measures will be reflected

in the composite measure. Thus, on purely logical grounds, it is to be ex-

pected that differential weighting would be effective.

If criterion measures are available, multiple-regression techniques

will provide a set of weights which is optimal for minimizing error of pre-

diction for the group on which the weights were derived, under the usual

assumptions of normality and linearity of regression. When no external

criterion is available, certain assumptions concerning the nature of the

variable which the composite is supposed to measure enable us to identify

those component measure3 which should be weighted more heavily. Or, alter-

natively, weights may be chosen so as to maximize certain internal criteria

such as the reliability of the composite measure. Regardless of which

method is used to derive the weights, however, all methods have in common

the fact that they weight most heavily those measures which are "best"

according to the criterion adopted in each particular instance, and they

weight least, perhaps even negatively, those measures which are worst.
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McDonald (1968) has offered "a unified treatment of the weighting prob-

lem," a general procedure for obtaining weighted linear combinations of

variables. This general procedure includes as special cases multiple-re-

gression weights, canonical variate analysis, principal components, maxi-

mizing composite reliability, canonical factor analysis, and some other well

known methods. He shows that the general procedure yields r,rtAin desirable

invariance properties with respect to transformations of the 7.4riables.

McDonald's approadh is applicable to a considerable part of this survey,

because it undoubtedly can be used to simplify some of the seemingly dtverse

procedures of the past half century.

Although differential weighting promises, in theory, to provide sub-

stantial gains in predictive or construct validity, very often, in practice,

these gains are so slight that they do not seem to justify the labor involved

in deriving the weights and scoring with them. This is especially true when

the component measures are a large number of test items and much less true

when they are a small number of tests comprising a battery. It is this fact

which has led psychologists to conclude that, in general, weighting is not

worth the trouble, especially as far as item weighting is concerned. (For

example, see Guilford, 1954; Gulliksen, 1950.)

But item' weighting is not the only type of weighting which has been

investigated. Multiple regression is very often effective'when a team pf

variables, not necessarily tests, is used to predict a criterion. In most

interest and personality tests some form of option weighting occurs, i.e.,

the subject's score on a given item depends on which option he selects or

prefers. In this case it is the options which are differentially weighted.

Usually there are many sets .of weights which are applied successively to

the answr sheet in order to derive a score for the subject on a number of

different scales. Although it has not been studied extensively in the past,
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differential weighting of item options on academic aptitude or achievement

tests has also been considered a possibility. In fact, it has recently been

proposed (de Finetti, 1965; Shuford, Albert & Massengiil, 1966) that the re-

liability and validity of tests m-y be increased if the subject himself

assigns weights to the options according to his confidence in the correct-

ness of each option.

The remainder of this paper will be devoted to a systematic study of

the weighting question. First, different types of weighting and methods of

deriving weights will be discussed, as well as the mathematical restrictions

which limit the effectiveness of certain sets of weights, regardless of what

method is used to derive them. Next, a summary of empirical investigations

of weighting in each of the typical situations where weighting has been con-

sidered potentially useful will be presented. Finally, consideration will

be given to the recently suggested confidence-weighing methods.

Weighting and the Derivation of Weights

In this and the following two sections we shall be concerned only with

what will be termed fixed weighting. In this context "fixed" implies that

the weight for a given measure is constant for all individuals. Thus, if the

items of a single test are differentially weighted, the same set of weights

is used for all examinees. In contrast, we will term variable weighting all

methods where the weights are free to vary from person to person. Variable

weighting will be discussed in a later section.

A Definition of Weighting

It is customary to define the weight of a single variable in a composite

in terms of the contribution of that variable to the variance of the com-
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posite. The contribution of each of n component variables to the variance of

the composite is equal to the variance of the variable plus the n-2 covari-

ances of that variable with the n-1 other variables in the composite. This

follows directly from the formula for the variance of a sum:

(1) Var(X. + X2 +...+ Xn) an Var(X1) + Var(X2) +...+ Var(Xn) + 2Cov(X1X2)

+ 2Cov (X
1
X3) + .+ 2Cov (Xn Xn) .

The formula indicates that the-variance of the composite is equal to the sum

of n variance terms and n(n-1) covariance terms corresponding to the n(n.1)

combinations and permutations of pairs of the n variables. If the variances

and covariances are arranged in a symmetrical matrix of order n x n, the con-

tribution of the ith variable to the variance of the composite is given by

the sum of the terms in the ith row or the ith column of the matrix. Thus,

the n variables which comprise the composite are equally weighted if and only

if they make equal contributions to the total variance, i.e., the sum of the

elements in each row (or column) of the variance-covariance matrix is equal

to a constant.

Although it is seldom stated, this definition of weighting implies that

the resulting composite measure, for a single individual, has little signifi-

cance in and of itself and that its meaning is derived via the total distri-

bction ,./f the composite measures for all individuals. This is probably not

an unreasonable assumption, since so much measurement in psychological re-

search is of the ordinal or interval variety and population norms of some

kind are required for interpretation of a single individual's score. However,

in certain cases, the composite and component measures do have sufficient

intrinsic or arbitrarily agreed-upon meaning that the score for an individual

may be interpreted without reference to a distribution of scores. When this

is the case, it will be shown that the above definition of weighting is not

appropriate.
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Nominal vs. Effective Weighting. The approach outlined above may also

be followed to determine the contribution to the total variance of each of a

number of variables which have been "weighted" before being summed. Assume

asetanvariablesX.(1 1,...,n), and a corresponding set of weights

(i = 1,...,n), such that the composite score for any individual is given
2

by w1X1 w2X2 +..+ tonXn. The variance of the composite is given by

(2) Var(wiXi + w2X2 +...+ wnXn)

w2Var(X
1
) + w

2
Var(X

2
) + + wn 2Var(K ) 2w

1
w
2
Cov X

2
)

1 2 " . n
a
1 '

+ 2w
1
w
3
Cov(X

1
X3) +6

6+
2wn_

1
wnCov(Xn

-1
X)

Again, the contribution of any one variable to the variance of the composite

is given by the sum of the elements in the corresponding row (or column) of

the variance-covariance matrix. The wiln constitute the nominal weights,

whereas the effective weight of each variable is defined in terms of its con-

tribution to the total variance of the composite.

When =Anal weights are unity the contribution of the ith variable to

the total variance of the composite, Cj is given by

= Cav(X1Xi) + Cov(X2Xi) + + Cov (44Xi) + Var (Xi) + Cov (Xi4aXi)

+...+ Cov(XnXi).

The natural effective weight of the ith variable is thus given by its own

variance plus its covariance with each of the remaining variables, or equi-

valently, by its covariance with the sum of the remaining variables.

When nominal weights wi are assigned to the variables, the expression for

the contribution of the ith variable to the variance of the composite is

given by
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(4) Ci = wlwiCov(XiXi) + w2wiCov(X2Xi)

2 ;4.wArark w.
+
w.Cova. ..) +... w wava X.).

2 2)
.X. + 21 2 1,+1

X +
n 2
Cn

2

It is a common misconception that when nominal weights have been assigned

they correspond to the relative weights of the variables in the composite.

Equation (4) indicates that this is not the case. Although the nominal

weights do influence the effective weights, they are not in general propor-

tional to them.

Equation (4) may also be expressed in terms of the intercorrelations

of the variables. Since Cov(X1Xi) = rlislsi, the formula becomes

(5) 1 2'12.1'i -2-i-2i-2-i ". -i-l-ei-1,ei-leiGi =WW." .3 +wwr 4-112 W:

+ Wi+lWiri+1 tisi+lsi WnWirniSnat.

From this it may be seen that the contribution of the ith variable to the

total variance depends on (a) the nominal weights wi, (b) the variance of

(c) the n-1 correlations between Xi and the n-1 other variables in the com-

posite, and (d) the standard deviations of the other n-1 variables.

Now assume that each of the n variables is given in standard form,

4i = (Xi ul)/ai, or equivalently, that each Xi is divided by the appro-

priatestandarddeviationa..In this case all variances and standard de-
2

viations of the resulting scores will be equal to unity and therefore will

disappear from the formula, giving

(6) C = w..w .r . + w w .r +. .+ w . w .r . + w . 4- W.. w ra2
if 1 2 12 2 2 22 z-1 2 2+1 2 2+1,2

+...+ w w.r "
n 2 n2

Thus, when scores are expressed in standard form the effective weight of

the ith variable is determined by the nominal weights and the intercorrela-
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tions of the variables. If unit weights are used with standard variables,

the effective weight of a variable is approximately proportional to its

average correlation with the other variables:

n

(7) C. = 1 + E r..
zd

(i # j)

0=1

= 1 + (n - l)r..

E ri4 is the correlation of the ith variable with the total score on the re-

j=1
maining variables, r

X., X.

j=1

From the foregoing discussion two things should be clear. First, the

nominal weights will not in general be proportional to the effective weights.

Second, only rarely will variables have equal effective weights unless the

nominal weights have been derived specifically to ensure this result (e.g.,

see Kaiser, 1967, for a way to make all Cov(X,Y.) zero). Otherwise, using

unit nominal weights with standard scores probably comes closest to achieving

this end, particularly if the average correlation of each variable with the

others is nearly constant.

An Exception. There is one situation, however, in which the nominal

weights are always directly proportional to the effective weights. This is

the situation alluded to earlier where the usual definition of effective

weighting is not appropriate.

Assume, for example, that a teacher decides in advance to assign grades

to her class on the basis of a "semester score" which is expressed as a per-

centage. The following scheme might be adopted: A = 90%-100%; B = 80%-89%

C = 70%-79%; D = 65%-69%; F = below 65%. Five examinations1 are given

l
If the examinations are of equal length, the following applies to the

items as well as to the test as a whole.
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during the semester and the score on each is expressed as the percentage of

items answered correctly. The semester score is the arithmetic average of

the five examination scores,and the final letter grade is assigned according

to the predetermined scheme. In this case it is appropriate to say that the

five examinations have been equally weighted in determining the final grade

regardless of the distribution of scores on any of the examinations or the

intercorrelations of the examinations. Likewise, if a weighted average of

the examinations had been taken, the effective wight of each would be di-

rectly proportional to the nominal weight assigned to it. This is true be-

cause, in this case, the semester score of each pupil may be interpreted by

itself, with no reference to the distribution of semester scores of which it

is a part. Since the pupil's semester score will be interpreted directly,

i.e., assigned a letter grade, and since the several examinations contribute

to this score in direct proportion to the weights assigned to them, these

nominal weights are also the effective weights.

This point can be seen even more clearly at the item level. Suppose

that the teacher administers a five-question test and assigns 35 percentage

points to one of the questions. No pupil who receives 0 percentage points

on that question earns a grade of C or better. If all the pupils fail the

question completely, they all earn grades of D or F, even though scores on

the question have 0 variance and covary 0 with scores on each other question.

Absolute grading on an arbitrary scale differs in this way from grading each

pupil relative to the performance of the other pupils in his class.

This situation is to be contrasted with that in which the examinee's

semester score is interpreted with reference to the total distribution of

such scores. Suppose, instead, that the letter grades were to be assigned

on the basis of the examinee's standard semester score, according to the

scheme in Figure 1.
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Figure 1. Grading system using standard scores.

In this case the examinee's letter grade depends both on his own score

and on the variance of the semester-score distribution. It is for this rea-

son that the effective weight of the several examinations is assessed via

the contribution-to-variance criterion.

Although the latter method of assigning grades, or some modification

of it, is very comman, particularly at the college level, the former method

is probably sufficiently common to account for the intuitive feeling of

many that the nominal weights are indeed the effective weights. As suggested

earlier, however, aside from the classroom situation, the former type of

measurement is sufficiently rare in psychology to justify the adoption of

the contribution-to-variance definition of effective weighting.

Methods of Weighting Variables

We are now ready to consider in greater detail the specific methods of.

weighting which have been and continue to be used in psychological research.

In each method the entity to be weighted is a quantitative variable, in con-

trast to methods discussed in a later section where it is unordered response

categories for which scoring weights are sought. For the most part, the

methods of this section are concerned with assigning weights to tests in a

4
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battery or to test items. In most of the methods the weights derived are

the nominal weights, i.e., the multiplicative constants by which the measures

on the n component variables are weighted. In some cases derivations and

formulas assume considerably simpler forms if themeasures'areexpresse0 in

standard forgirather.that,in.raw-rscore from. In:allsuch 'ases it is implicit

that, if desired, the derived weights may be redefined to absorb the standard

deviations of the variables. sal.

Random Weights. When raw scores on a number of variables are simply

summed or averaged to form a composite measure the effective weight of each

variable is determined by Equation (3). Since no deliberate effort is made

to control the effective weights of the variables they will be termed-random

weights. The term "random" should not be taken to indicate that differences

between the effective weights are due to "chance." Real differences in the

variances of the component variables and differences in their intercorrela-

tions are simply allowed free rein in determining the weights. It should be

carefully noted that this case corresponds to what is usually call "no"

weighting. It must be remembered that these measures are unweighted only in

the sense that the nominal weights are unity.

A Priori Weights. When nominal weights are assigned to the n cdmponent__,_,_

variables on the basis of judgments or ratings or some similar procedure, the

weights are termed a priori weights. The decision not to weight, i.e., to

assign unit nominal weights, is a special case of this.

A very common case of a priori weighting occurs when different sections

or questions on an examination are weighted differentially. For example,

20 true-false items on a test might be allowed a point apiece, whereas 20

multiple-choice questions on the same test may be worth 4 points apiece. In

some cases even items of the same type may be differentially weighted on an

a priori basis. Corey (1930) had instructors rate each item of an objective
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test in psychology on a 7-point scale according to its judged importance for

a general knowledge of psychology. The rating then became the weight for

the item. Weighting on an a priori basis is also very common in personnel

decisions, where certain job criteria may be deemed more important than others.

Although there are important empirical methods available for deriving

nominal weights, this should not be taken to mean that such methods are neces-

sarily preferable in all situations. Burt (1950, p.122) concludes that a pri-

ori or subjective weighting may be necessary where questions of value are

concerned or where the criterion is genuinely composite.

Empirically Derived Weights. Of all of the empirical methods of deriving

predictor weights, the one probably most familiar to psychologists is multiple

(linear) regression. This is but one of a number of least-squares solutions

which have been used to derive. weights. The other methods have proved ex-

tremely useful since it is so often difficult to find an adequate criterion

variable. These methods will be discussed in turn and their major advantages

noted. Since the actual mathematical derivations of the weights are avail-

able elsewhere they will not be presented here.

Matiple Regression. If for a certain population measures on each of n

predictor variables Xi are available together with measures on the variable

,be predicted, X0, the classical multiple regression equation will give the

optimal weights to be assigned to the predictors in order to maximize the

correlation between the predicted or composite score and the actual criterion

score. This solution also minimizes the mean squared error of prediction,

given that the function expressing the relationship between the predictors

and the criterion is linear.

The general form of the equation when all variables are expressed in

raw-score form is
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-12--

p ) + b (Tif - p ) +0 .1+
01.23...n 1 1 02.13...n 2 2

bOn. 12...n-1(Xn
-

11 n)

where i is the predicted criterial score for an examinee, p is the popula-
0 0

tion mean on the criterial variable, and the b's are population weights for

deviation-from-the-mean predictor scores, (X i - pi).

This equation can be simplified by expressing all predictors in standard

form and the predicted score in semi-standard form, as follows:

(9)
(KO 110)/10 1

+...++
02.13...na2 130n.12...n-1 n°

The b-weights in Equation (8) are the nominal weights for scores used to pre-

dict the criterion score. The 0-weights in Equation (9) are the nominal

weights for standard scores. They are related to the b-weights by the equa-

tion

(10)
b0i.12...n °Oi.12...n(c10/ai).

is the partial regression coefficient of X0 on Xi. Specifically,

it is the regression of that part of X
0
which is independent of all the

other n-1 variables on that part of Xi which is also independent of them

(Kelley, 1923).

Note the two following properties of the regression weights ceteris

paribus:

1. The larger the correlation between the variable and the cri-

terion, the larger the weight.

2. The more independent the variable of the n-1 other variables,

the larger the weight.

In the equations above, nothing has been assumed concerning the source

of the criterion variable except that measures are available in the population
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of interest. Ryans (1954) has considered the problem of weighting from the

other side of the fence, i.e., weighting the components of the criterion to

arrive at a suitable measure. Hotelling (1935) has presented a method called

'canonical correlation" for assigning weights to two batteries (one of which

might serve to define a criterion) so as to maximize the correlation between

them.

A word of caution is in order concerning the use of multiple regression.

The weights derived via multiple regression are the weights which maximize

the multiple correlation between predictors and criterion for the particular

set of measures on which the weights are derived. This is true whether the

set of measures is from an entire population or merely a sample from a popula-

tion. Most often, however, the weights are derived on a sample and then sub-

sequently used to predict the criterion in the entire population. The mul-

tiple correlation between actual criterion scores in the population and cri-

terion scores predicted via sample weights will necessarily be less than the

multiple zorrelation which could be obtained if scores for the entire popula-

tion were used to derive the weights. However, if the weights are derived

on a random sample from the population, then the observed values of inter-

correlations and component variances are likely to be representative.of'the

values of the population parameters,and the obtained weights are likely to

be reasonable approximations to the optimal weights for the population. If

this is the case, then the multiple correlation obtained using sample weights

in the population should not be much less than the maximum possible multiple

correlation for the population. Quite commonly, however, the multiple cor-

relation obtained from using sample weights in the population is not only

less than the maximum correlation but also less than the sample multiple

correlation. This "shrinkage" in the multiple correlation has received con-

siderable attention in the psychological literature.
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When there is error of measurement in either the predictors or in the

criterion, shrinkage of the multiple correlation may be even more dramatic.

In the previous example the sample multiple correlation could be said to

roughly indicate the predictability of the criterion. More exactly, the

square of the multiple correlation corresponds to the proportion of the cri-

terion variance which can be "explained" by the predictors. It was assumed

that the measures themselves were error-free. If, however, the predictors

are not error-free measures, then a certain proportion of the "predicted"

or "explained" variance is in actuality error variance which is random from

sample to sample. However, in any given sample from the population error

will affect the value .f the r's and s's on which the multiple regression

weights are based. Within the sample, the weights are actually tailored to

"predict" both error variance and "true" variance. Thus, in this case

there are two factors which affect the representativeness of the r's and s's,

sampling fluctuations and measurement error, Thus, when there is measure-

ment error, weights derived from a sample are more likely to deviate from

optimal weights than when there is no measurement error. In this case the

optimal weights would be those which would be obtained if error-free popula-

tion measures were available. Unless the measuring instrument can be made

error-free, these weights can never beAnown. The important point hereAs

that if the ultimate goal of the regression analysis is prediction, then the

presence of unwanted random-error variance in the sample increases the like-

lihood that r's and s's obtained in the sample will not be representative of

the values of the corresponding parameters in the population. Thus, when

sample regression weights are based on fallible measures, it is extremely

important to crossvalidate the weights before reporting validity coefficients.

The error of measurement problem with respect to regression weights is

most apparent when the predictors are psychological tests, although tests are
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by no means the only psychological measures subject to error! Wolins (1967)

has discussed problems of hypothesis testing and estimation for this case,

noting that as the intercorrelations between the predictors rises, bias in

the regression coefficients also rises.
2 This is due to the fact that as

the correlation between two fallible variables approaches the limit set by

their respective reliabilities, the differences between the variables in-

creasiaEly reflects error variance rather than true variance. As the inter-

correlation between the variables drops there is less bias in the weights

since proportionally more of the difference between the variables is due to

"true" differences rather than error. The estimate of the multiple correla-

tion squared, however, is only slightly affected by bias in the regression

coefficients, since as the ihtercorrelation rises it is less and less depen-

dent on the actual values of the regression coefficients.

In terms of efficiency, multiple-regression techniques will be most use-

ful when there are but few predictor variables, and, as the number of predic-

tor variables rises, when the predictors are relatively independent. (Sup-

pressor variables constitute an exception to this rule, since they increase

the multiple correlation as their correlation with the other predictors rises.)

Equal contributions to Total Variance. It is sometimes desirable to

ensure that each of the component variables has equal effective weighting.

This might be the case if the composite measure is truly intended to be a

composite rather than a measure of some hypothesized underlying unitary en-

tity, as when each of n judges assigns ratings and it is desired that the

judges' opinions have equal weight. Or, in the absence of an external cri-

terion, equal effective weighting may be deemed appropriate.

2
Cureton (1951) has also discussed this problem.
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Both Wilks (1935) and Dunnette & Hogatt (1957) have presented iterative

procedures for obtaining approximate solutions for this case. The solution

requires setting n equations like (5) equal to an arbitrary constant and sol-

ving for the weights W. If, rather than equal weighting, it is desired to

set the weights in some predetermined proportions to one another, this may

be accomplished by setting the constants in that proportion. Thus, the me-

thod allows us to assign a priori effective weights rather than a priori

nominal weights as discussed in a previous section.

An interesting special case of this method occurs when uncorrelated

standard scores are given unit (or a priori) weights. (See Kaiser, 1967, for

a rather interesting orthogonalizing procedure.) Only under this condition

does the use of standard scores ensure equal weighting.

Equal Correlations with the Composite. When there is no external cri-

terion available, weights may be derived by the method of least squares to

equalize the correlation of each variable with the resulting weighted com-

posite score (Wilks, 1938). The correlation of zi with wel w2z2

is

R. =
n n

E .rWI

j=1 217 (i 0 j)

14
E w2 + E E w.w.r..

=1 i=l j=1
s so

Setting all such /Vs equal to some arbitrary constant p and solving for the

w's is equivalent to setting the numerators equal to p and solving for the

W's since the denominator is a constant. This method is logically defensible

only if none of the variables are negatively correlated.

Minimum Generalized Variance. Wilks (1938) has proposed a method of

minimizing generalized variance, an analogous extension of the concept of

variance, to obtain a set of weights for combining a number of component
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variables to form a composite when there is no external criterion. In an

n-dimensional space the score of a single individual may be represented as a

point whose projections on the n coordinate axes correspond to the scores

obtained by the individual on each of the n component variables. An n-dimen-

sional simplex may be determined in this space by taking n points plus the

point representing the mean of all n variables. The generalized variance is

found by squaring the volumes of all such simplexes formed by taking differ-

ent combinations of n points, summing, taking the mean, and multiplying the

result by (n!)2. In the case of one variable, this is the variance, where

(n!)2 = 1, and instead of squaring volumes it is the length of the line seg-

ments connecting single points with the mean of the distribution which is

squared. In the case of two variables it is the area of all possible tri-

angles formed by pairs of points tad the point representing the mean of both

distributions which is st,luared and averaged and multiplied. by (2!)2. "In the

case of three dimensions it is the volume of all possible tetrahedra form by

trios of points and the point representing the mean of the three variables

which is squared.

Briefly, Wilks method is applied to the weighting problem as follows.

An n-dimensional space is defined by the n component variables xi. The score

of the pth person on the ith variable may be denoted ccip,where all scores are

in standard form. A linear function of the wi's is sought, such that for any

given value of the function the generalized variance of individuals having

that value is minimized. The "plane" T = w1x1 + w2x2 wnxn cuts across

the n-dinensional space, determining a series of n-1 dimensional spaces which

are non-intersecting. The generalized variance of individuals within each of

these subspaces is then minimized and a single set of weights found which

satisfies this condition.



-18-

Minimum Variation. In 1936 Edgerton & Kolbe presented a method for

combining a number of measures of the same thing based on the criterion that

the sum of the squares of the n(n-1)I2 differences between standard scores

for an individual on each of the n variables be a minimum. In other words,

intra-individual differences in standard scores are minimized. In the same

year a method was suggested by Horst for deriving a set of weights which

would maximize the difference between composite scores for all pairs of indi-

viduals, i.e., maximize inter-individual differences. Interestingly, this

approach leads to weights which are proportional to those obtained via the

former criterion. Edgerton & Kolbe, noting that the two methods yield iden-

tical results, maintained that their method was computationally simpler.

Maximum Reliability. In the absence of an external criterion, probably

no alternative criterion has so frequently been seized upon as maximum relia-

bility. Weighting for reliability has been especially popular when the vari-

ables to be weighted are tests which comprise a battery or the items of a

single test. It is well known that the maximum correlation which may be ob-

tained between two variables is Limited by their respective reliabilities:

P q4H/P2e
where p

tt
is the correlation between "true" scores. In

xy xy
measurement, reliability is the sine qua non, the necessary but not sufficient

condition, for a valid instrument. For this reason weighting for maximum

reliability has long been deemed a worthy enterprise.

When reliability is defiaed in terms of the proportion of total composite

variance which is "true score" variance (or, 1 - the proportion which is

error variance), the sample reliability coefficient of the composite y is

given by the following formula when all variables are expressed in standard

form:
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n n n
2

+ E E w.w.r..
2 22 2 ty 2,7

i=1 i=1 j=1

2
n n

E W. + .E E w.w

i=1 2=1 j=1
1O27

From this formula it is apparent that the reliability of the composite may

equal 1.00 if and only if every rii, also equals 1.00. Likewise, if every

is zero, r must also be zero. Nosier (1943) has discussed the effect

YY

on r , of the interrelationships among the variables. For example, if the

YY

variables are mutually uncorrelated, the reliability of the composite is the

weighted.mean of the item reliabilities r.. where each rut is weighted
22

2
by wi. He notes that this conclusion is of particular interest because when

multiple regression is used for prediction, every attempt is usually made to

obtain predictors which are independent or nearly so. It may be noted from

Equation (12) that for a given set of individual reliabilities and weights,

the reliability of the composite increases as the positive intercorrelation

of the components increases, although the unreliability of the components

does set an upper limit to the size of these correlations.

Equation (12) may be conveniently expressed in terms of two matrices, r

and k both of which contain the component intercorrelations in the off-

diagonal cells, eild the row vectorcif,waghts.wi. In the eliagonal cells of r

are the reliabilities rii,, whereas in R the diagonal elements are unity.

Using this notation Equation (12) becomes

(13) r = wrwYWRWJ.
YY

Thomson (1940) derived formulas in matric form for both the maximum

battery reliability and the weights which give this result. Peel (1947, 1948)
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has shown that Thomson's formulation may be considerably simplified. Maxi-

mum reliability may be found by solving 1r - XRI for its largest root Al.

The desired weights are then in the ratio of the elements of apy row of

adj(r - A
I
R). Peel (1948) has also given equations for the weights which

will maximize the correlation between a predictor battery and a complex cri-

terion, itself a weighted composite with fixed weights.

Valicaty vs. Reliability. Since methods are available for computing

both the weights which give maximum validity and the weights which give maxi-

mum reliability, an interesting question is, "What is the effect on relia-

bility of weighting for validity, and vice versa?" Since the two sets of

weights are not at all likely to be proportional, weighting for one criterion,

e.g., validity, will result in a less-than-maximal value of the other.

This general lack of correspondence between the two sets of weights may

be attributed in the main to two factors. First, when other factors are heZd

constant, weighting for validity results in weighting more heavily those

variables which are more highly correlated with the criterion. Likewise,

weighting for reliability weights more heavily the more reliable variables.

Thus, unless the more reliable variables are also the more valid ones (with

respect to the observed correlation with the criterion) the correlation be-

tween the two sets of weights will not be perfect or even nearly so.

Let us consider one case where this is likely to be true and one case

where it is not. If all the items of a test are assumed to measure the same

thing except for error of measurement, and if all are of a constant level of

difficulty, then differences in observed correlations with the criterion are

due solely to unreliability, i.e., if all correlations were corrected for

attenuation, they would equal a constant, the "true" correlation with the

criterion. In this case, the items with the highest reliability will also

have the highest observed correlation with the criterion. Thus, as far as
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this influence on the relative sizes of the weights is concerned, weighting

for validity should have the effect of increasing reliability as well and

vice versa.

However, it is not difficult to conceive of instances where the most re-

liable items of a test are not the most valid and the most valid not the most

reliable. For example, in a multiple-choice test ulth items of different

degrees of difficulty, some items which are very easy may be passed by nearly

all examinees. These items may have higher reliability but lower validity

than do some of the very difficult items in the test. (Very difficult items

tend to have low reliability because of guessing.) Contrasting only these

subsets of items from the test, weighting for reliability would weight the

easy items higher than the difficult ones, and weighting for validity would

do the opposite.

In actual practice it is not likely that many of the items of the test

would behave in this manner. This is due partly to the fact that item unre-

liability prevents extremely high correlations with the criterion, thus making

it unlikely that the very unreliable items would have high observed correla-

tions with the criterion.

The second factor which affects the two sets of weights differently is

the intercorrelation of the component variables. As noted earlier, when other

factors are held constant, the variables which are more independent will re-

ceive higher weights in the multiple-regression case. When weights are de-

rived to maximize reliability, however, high positive intercorrelation of the

components provides stability and thus, other things equal, the components

which have higher correlations with the remaining components are weighted

more heavily.

This may be seen readily in the formula which Mosier (1943) derived for

the weight to be assigned to the pth item, in order to maximize reliability,
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when the qth item is taken as a reference and assigned a weight of 1.00:

(14)

E to.r. (1 - r )
219 qg

'1=1

( E .r . ) (1 - r ) + r 4. r

i=1
q PP clq PP

(i p, i #q)

Note that the sum of the intercorrelations of the reference item appears in the

denominator of all weights and that the sum of the intercorrelations of the pth

item appears in the numerator. Of two items with the same reliability, the one

with the higher total intercorrelation with the other items will have the

higher weight. Thus two factors, item validity vs. item reliability, and total

intercorrelation of an item with the remaining items, work against the perfect

or near-perfect correlation of the sets of weights which maximize validity and

reliability respectively.

Table 1

The Effects of Weighting on Validity and Reliability

Correlations

r'

r
11

22
r

r
01

02
r
12

Unweighted

Validity

Reliability

Weighted for

Validity

w
1

w
2

Validity

Reliability

Weighted for

Reliability

w
1

w
2

Validity

Reliability

I

.50

.95

.20

.40

.10

.405

.660

.162

.384

.460

.884

.010

1.000

.402

.950

II

.40

.60

.20

.40

.10

.405

.545

.162

.384

.460

.598

.154

1.000

.425

.607

III

.50

.95

.40

.20

.10

.405

.660

.384

.162

.460

.597

.010

1.000

.204

.950

IV

.50

.95

.20

.20

.10

.270

.660

.182

.182

.270

.660

.010

1.000

.202

.950
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In Table 1 we present numerical illustrations of some of the foregoing points.

Four hypothetical sets of data, including the reliabilities, validities, and

intercorrelation of two variables which comprise a two-test battery, appear

in the first section of the table. Below these, the validity and reliability

of the unweighted composite are given, followed by the weights and resulting

validities and reliabilties obtained when the composite is weighted for

validity and reliability respectively.

In Case I, the reliability anJ validity are in the same direction for

the two tests, i.e., the more reliable test has the higher observed correla-

tion with the criterion. Thus, it is to be expected that weighting for either

validity or reliability will increase both. But this is not the case. Weight-

ing for validity does increase reliability from .660 to .884, but weighting

for reliability reduces the validity, despite the fact that the more reliable

test is also the more valid. The reason for this is apparent from the sizes

of the weights. Since the second test is considerably more reliable than the

first, and since the intercorrelation of the tests is low, the weight assigned

to the second test is 100 times as large as that assigned to the first, thus

all but eliminating the first test from the composite, despite its small inde-

pendent validity. In the unweighted case, the second test by itself correlates

.400 with the criterion, and adding the first test to the battery increases

this correlation very slightly to .405. Weighting for reliability waters down

this contribution greatly, resulting in a gain of only .002 over the correla-

tion for the second test alone. The reliability of this composite, however,

is virtually identical to the reliability of the more reliable test.

In Case II the general pattern of the correlations remains the same, but

here the difference between the reliabilities of the tests is not so great.

In this case the expected trend does occur. Weighting for validity produces

the same regression weights and the same resultant validity as in Case I,
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although the increase in reliability is smaller because of the reduced relia-

bility of the individual tests. Weighting for reliability, however, produces

weights which are in the ratio of approximately 13:2 rather than 100:1, again

increasing the reliability of the composite to a value almost as high as the

reliability of the more reliable test. The validity is increased modestly

from .405 to .425.

Case III illustrates the situation where the more reliable test has a

very low correlation with the criterion, whereas the less reliable test, des-

pite its unreliability, has a higher correlation with the criterion. In this

case, as expected, weighting for validity reduces the reliability from that

of the unweighted composite. Likewise, weighting for reliability reduces the

validity from that of the unweighted composite. Again, since the two tests

differ so greatly in reliability, weighting for maximum reliability reduces

the contribution of the less reliable test to the validity of the composite

to nearly zero.

Case IV illustrates the fact that when tests which differ in reliability

but have equal correlations with the criterion are weighed for reliability,

the validity of the composite is reduced from that computed for the unweighted

composite. In this case, since the observed correlations with the criterion

are equal, weighting for validity produces equal regression weights and no

increase in the validity of the composite. In this case, any weighting scheme

other than equal weighting of the two tests will produce a reduced validity

for the composite. Of course if there were more than two variables in the

composite, differences in their intercorrelations with one another would pro-

duce differences in the regression coefficients and some increase in validity.

The above illustrations are at best oversimplified because it is not too

often that one combines only two measures. In any situation where there are

more than two variables.to be combined, the individual validities, reliabili-
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ties, and intercorrelations will interact to produce the resultant effect on

one measure of weighting for a maximum value of the other.

From Table 1 it is clear that weighting for reliability cannot increase

the relidbility of the composite to a value higher than the reliabiiity of

the most reliable test in the battery. What weighting actually accomplishes

is suppression of the contributions of the less reliable variables, leaving

it to the most reliable tests to constitute the composite score. If, on the

other hand, the less reliable tests could, by some means, be made more reli-

able, the reliability of the unweighted composite would automatically rise,

as would the validity.
Table 2

The Effects of Weighting for Validity

with Perfectly Reliable Tests

Correlations I II III IV

r
01

.283 .316 .566 .283

r
02

.410 .516 .205 .205

r
12

.145 .204 .145 .145

Unweighted

Validity .458 .537 .510 .322

Reliability 1.000 1.000 1.000 1.000

Weighted for

Validity

w1 .228 .220 .548 .259

W2 .377 .472 .126 .168

Validity .468 .552 .588 .333

Reliability 1.000 1.000 1.000 1.000

In Table 2 the correlations of Table 1 have been corrected for attenua-

tion. These values are thus the observed correlations which would be expected

if all the tests were perfectly reliable. With perfectly reliable predictors

the composite would also be perfectly reliable and the unweighted validity of

the composite would increase accordingly. These perfectly reliable tests

might then be weighted for maximum validity. The resulting validity coeffi-

cient would be the maximum corelation obtainable with these tests.
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Since actually making the tests more reliable automatically increases the

validity, whereas weighting for reliability may or may not increase validity,

it would seem that it is always safest to attempt to increase reliability

per se, rather than to weight for increased reliability. This would definitely

be preferable if a criterion measure is available. If no criterion measure is

available, and hence the validity is unknown, weighting for reliability is to

be recommended only if it may be safely assumed that the most reliable tests

are not, in fact, the least valid ones.

It may be objected, however, that since reliability is a necessary pre-

requisite for a valid test, then if there is no criterion measure, increasing

the reliability of the test is always to be desired. Somewhat similarly, it

has been suggested that, even when criterion measures are in hand, one might

wish to increase both validity and reliability by stipulating that these shall

be equal and then solving for the weights which maximize this value (Thomson,

1940). Both of these positions seem to advocate increasing reliability even

at the cost of some validity. Admittedly, the unreliability of a test sets

an upper limit to the validity of the test. But if a test with low reliability

correlates more highly with the criterion than a quite reliable one does, then

despite its unreliability the test will always be expected to correlate more

highly with the criterion. Likewise, an unweighted composite of these tests

will always be expected to correlate more highly with the criterion than a

composite weighted for reliability. What the unreliability of the more valid

test does do is prevent the maximum correlation for this test with the cri-

terion from occurring. But manipulating the reliability of the test statis-

tically is not necessarily a good thing, particularly since validity may be

lowered in the process. These statements apply even when the actual validity

is not known, thus explaining why weighting for reliability exclusively is not

recommended unless it may be assumed on other grounds that this will not de-

crease the real but unknown validity.
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In testing, most measures, even if highly reliable, c not often

have extremely high correlations with the criterion. Thus, it is unlikely

that we will discover many variables which, while unreliable, are never-

theless more valid than their more reliable companions in the composite.

In the usual situation a reasonable reliability is needed before the test

or test item can evidence any validity at all. It is probably for this

r:eason that reliability and increasing reliability have received so much

attention. But it must be emphasized that once the validity is known, re-

liability must assume a position of secondary importance. It is better to

have a test with reliability of .60 and validity of .57 than a test with

reliability of .95 and validity of .19. In the former instance the "true"

correlation with the criterion is .95, whereas in the latter it is .20!

These, then, are some of the more important methods which have been

used to assign weights to the component variables which comprise a com-

posite. A number of additional weighting methods deserve mention. Some

of these are admittedly approximations to multiple regression weights

and others are simply weights which have been used for one reason or an-

other. Each will be discussed briefly before we move on to the next major

section 6f the paper.

Weighting by the Reciprocal of the Standard Deviation. Quite fre-

quently the authors of tests wish to eliminate the influence of unequal

standard deviations on the effective weighting of a number of variables.

Weighting each measure by the reciprocal of its standard deviation ac-

complishes this. Using standard scores has the same effect and in ad-

dition subtracts out the mean from each measure. Some testers have mis-

takenly believed that this ensures equal weighting. This conclusion is

unwarranted, of course, unless the component variables are uncorrelated

or equally correlated. Otherwise the intercorrelations will determine the
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effective weights.

If no particular significance is attached to the fact that the sev-

eral variances are unequal, then removing this source of unintended weight-

ing may be appropriate. There is at least one case, however, where this

would not be true. Richardson (1941) presents an example similar to the

following. Suppose Xi is the number of items answered correctly on a 50-

item test and X2 is the number of items answered correctly on a 100-item

test. X2 will undoubtedly have a larger variance than Xi. But it is also

true that the longer test will in general be a more reliable test. If the

scores are merely combined, the longer test will automatically have the

larger effective weight. This will work in favor of the reliability of

the composite. In this case, weighting by the reciprocal of the standard

deviation denies any such difference between the tests and thus works

against the reliability of the composite. If the two tests in the composite

measure the same thing, then the increased reliability of the longer

test would also be reflected in a larger validity, again arguing against

the use of these weights.

Weighting by Length. The above example raises the question of

whether or not tests should be weighted in terms of their length. Or-

iginally, the idea of weighting by length can probably be traced to the

fact that examination grades are often expressed as percentages of items

answered correctly. Combining such percentages directly gives equal

nominal weighting to each test. But clearly, if one test consists of

50 items and a second of 100 items in the same subject, then the second

test is, in a very real sense, equal to two of the first. Weighting

each percentage in terms of the length of the test on which it was com-

puted has the effect of converting the percentages back to a score equal

to the number of items answered correctly. By so doing, each item now has
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equal nominal weighting3. By simply adding the percentages the tests will

be equally weighted, but the items will not.

But what of the case where the tests are not in the same subject,

but instead tests from a number of different subjects are to be combined

to form some sort of overall achievement score? In this case It is not

so clear that each item should be equally weighted. The principal

reason for this is that the significance of a single item may differ mark-

edly from one subject to the next. A single lengthy algebra problem simply

cannot be considered equivalent to a single vocabulary item. The item is

a meaningful unit only when the items are measuring the same thing or very

similar things.4 In such a case it would undoubtedly be better to work with

the percentage scores, perhaps weighting these on the basis of other a priori

or empirical considerations.

Weighting by Difficulty. Another method of weighting which has been

popular, particular in the classroom is weighting by difficulty. Very often

such weighting is implied rather than explicit, as when a teacher assigns

different weights to sections or items of a test on the basis of an intuitive

feel for the difficulty or "worth" of the component in question, rather than

some conviction concerning the intrinsic validity of the component. In other

cases, particularly with some standardized tests, the weights are derived

via an empirical estimate of the difficulty of the item. In these cases the

weight is usually equal to the proportion of those taking the test who fail

to answer the item correctly.

The logic of this type of weighting is most likely based on the con-

3
See footnote 1.

4Likewise, for items which do measure the same thing, it might also be

argued that items of different forms, e.g., true-false vs. multiple-choice,

are not equivalent units.
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viction that knowing a very difficult item is evidence of considerably more

ability or achievement than knowing a simple one. But no one seems to have

pointed out thatoin effect, this is the same as penalizing the student more

heavily for not knowing a difficult item than for not knowing an easy one, a

rather counter-intuitive strategy. If the weights were reversed we would be

in the position of penalizing the student more for missing an easy item than a

difficult one, but at the same time allowing less credit for a correct answer

to a difficult item than an easy one. As long as there is but a single set of

weights which is monotonically related to difficulty, we cannot have one side

of the coin without the other. One possible way around this difficulty, how-

ever, would be to give more credit for passing a difficult item than an easy

one, and at the same time to penalize more severely, with a negative weight,

for missing an easy item than for missing a difficult one. Fcr example, let

the positive weight equal q, the proportion of examinees failing the item, and

let the negative weight equal -p, where p is the proportion passing the item.

Thus a difficult item passed by only .05 of the examinees would be scored .95

if passed and -.05 if failed. The mean score for each item over all examinees

is qp (-pq) = 0 and thus the mean test score for all examinees is also zero,

although the distribution of the scores will depend on the distribution of the

item difficulties. This scheme does not, of course, take guessing into ac-

count, except insofar as the values of p and q are affected by guessing. Al-

though this weighting scheme is not being recommended, it is logically more de-

fensible than simply assigning weights according to difficulty.

It is interesting to note that when items varying in difficulty are

given equal nominal weights a certain amount of natural weighting-by-dif-

ficulty occurs, although this weighting is net a monotonic function of

difficulty. As the difficulty of an item deviates from .50 the maximum

phi coefficients for that item with the other items of the test becomes

smaller, thus limiting the size of its maximum possible contribution to



-31-

total variance. Thus the most and least difficult items tend to be less

heavily weighted than items of .50 difficulty.

Weighting by VaZidity. When it is not feasible to carry out a full-

scale multiple regression derivation of appropriate weights for component

variables, very often the raw correlation of the component with the cri-

terion is used as an approximation to the optimal weight. Such a weight

ignores the intercorrelation of the components and the varianca of the in-

dividual component being weighted. If, however, standard scores are weight-

ed in this manner, the intercorrelation of the components is the only

factor which is left unaccounted for. Since in a single test the items

are usually fairly homogeneous and the average intercorrelation of any

one item with the others may be fairly constant (particularly if items

are of similar difficulty), the approximation may be a very good one in-

deed. The same is true if the components are nearly independent of one

another. These weights are in least correspondence with the multiple

regression weights when the average intercorrelation varies markedly from

one component to the next and when raw scores are used which differ

markedly in variance.

Guilford (1941) has presented a formula for weighting test items

which is an approximate regression weight for Xi and which combines the

correlation of X. with the criterion c, the standard deviation of the

criterion, and the standard deviation of

(15) Wi = ric
Oe

The only factor not included in this weight is the intercorrelation of the

items. Guilford goes on to simplify this expression by assuming criterion

groups of equal size, thereby fixing se at .50. The formula, after simpli-

fying and transforming to achieve a range of weights from 0 to 8, is



-32-

(16) wi = - P1)1P(3. F) .+ 4,

where PU is the proportion of people in the "upper" criterion group who select

the response and Pt is the proportion in the "lower" group who select the re-

sponse. P is the proportion in the combined group PU + It who choose the re-

sponse. As Guilford presented the method it was intended for use with re-

sponses, but as can easily be seen, it also lends itself readily to use with

dichotomously scored items.

At least one other index of validity has been used to weight the items

of a test. Clark (1928) presented a formula for evaZuating the items of a

test. His index of validity, IV, was given by

(17) IV = (P - D)/(1 - D),

where D is the percentage of the group taking the test who fail the item and

P is the percentage of the "criterion group" who fail the item. For a given

item the criterion group is composed of the D percentage of the class who rank

lowest in terms of total score. Although Clark seems to have intended his

Index of Validity as a measure of the "goodness" of a particular item, at

least one person, .Peatman (1930), has used it to weight items.

Factor AnaZysis. One further method of weighting deserves mention. If

no criterion measure is available, a correlation matrix may be factor analyzed

to extract the major factors accounting for the variance of the unweighted

composite. Factor scores, correlated or uncorrelated, may then be secured.

See Glass and Maguire (1966) and Harris (1967).

The Effectiveness of Weighting

In r,,ach situation where a set of weights is used with a set of variables

the specific effect of using one particular set of weights as opposed to

another is uniquely determined by the factors which have been discussed under
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"Methods of Neighting." However, it is possible to make certain generaliza-

tions concerning the limits of the effectiveness of any set of weights rela-

tive to another set of weights regardless of the method used to derive either.

It is well known that if the correlation of each of two variables with a

third is known, then the limits of possible values of the correlation between

the two variables is determined For example, if each of two variables cor-

relates .90 with a third variable, then the correlation between the two vari-

ables must lie within the range .62 'd r d 1.00. Therefore, if the correlation

between one weighted composite and a criterion is known, and if the correla-

tion between the two weighted composites is known, then the limits of the

correlation of the second composite with the criterion is determined. However,

even in the absence of information concerning the size of the correlation of

one composite with the criterion, the size of the correlation betWeen the two

composites gives some indication of the limits of the effectiveness of either

weighting method over the other. If it is known that two different sets of

weights produce composites which correlate .99, then regardless of the cor-

relation of either composite with the criterion, adopting the alternative set

of weights could not be expected to affect that correlation very greatly.

A number of authors, notably Wilks (1938), Richardson (1941), Burt (1950),

and Gulliksen (1950), have presented formulas for the correlation of two

weighted sums. Since Gulliksen's formula is the most general, and since he

.
discusses important special cases, it is closely followed here. If n standard

scores are weighted by the weights v and the same set of scores also weighted

by the set of weights w, we may denote the respective composite scores Xv and

Without yet imposing any restrictions on the weights, the correlation

between the two composites Xv and Xw is given directly by the following

formula:

5
See Stanley & Wang (1969)
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In Equation (18) the weights have been expressed in raw-score form. The sums

of squares and cross-product sums may, however, be expressed in terms of the

means, variances, and covariances to which they are related. When this is

done and the expression is simplified, Equation (18) becomes

(19) r
X X

=

v w

n(1 -;..)(Cov(v.w.) +7vt-S) + (n2 - n)Cov((v.w.)r .) + n27;i5
2 2 2 0 i0

ri

2

///

n(1 -1;
1-0

..)(a2 +TP) n(1 -T)..)02 +TS2)
v 20 w

+ (n2 - n)Cov( (ve)rii) + (n2 - n)Cov((Witydrii)

/ + n27)239-2. /
2j

+ n2TPri

where, as usual, i & j. From this equation it may be seen that the correlation

between the two weighted composites depends upon the number of scores to be

combined, n; the mean values of the two sets of weights, Tiand TS; the variance

of the two sets of weights, (5.12, and az2j; the average intercorrelation of the

variables to be combined, rip' the covariance between the two sets of weights,

Cov(v1w.), and the covariance of a product of weights with a corresponding
2-

correlation, Cov((v.w.)r..). To see what happens to this expression as:n in-
2 0 20

creases we may divide the numerator and denominator by n2 and eliminate all

terms which have l/n as a factor. Thus,

(20) r
X X
v w

Cov((v.w .)r..) vw
1, 0 1,0

ri

Cov((v.v.)r..) Cov((w.w.)r..) +TS2--
2 0 20 20 2 0 20

rij
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This expression will be equal to unity if the covariance terms are equal and

if the mean v weight equals the mean w weight. If the covariance terms are

nearly zero, such that they may be ignored, then the correlation approaches

unity .regardless of the mean value of the weights. The information concern-

ing Equations (19) and (20) has been summarized by Gulliksen as follows:

1. If either or both v and w may be zero, rx x may assume any value

v w

regardless of the value of r.., n, or the various covariance terms in-

volving the weights.

2. If v and w are small in relation to a and 0
w'

r
X X

depends pri-

v w

marily on the four covariance terms and is relatively insensitive to

changes in the values of r.
j

and n.
2

3. If we consider only positive weights so that ov/v and ow/w are less

than unity,-the correlation between the two composites obtained by using

two different sets of weights approaches unity as (a) the dorrelation

between the two sets of weights is increased, (b) the average intercorrel-

ation of the component variables is increased, and (c) the number of

component variables to be combined is increased. It should be particular-

ly - noted that the last effect holds, even if the correlation between

01..6

the two sets of weights is zero, provided rij is greater than zero.

(d) As the standard deviation of the weights is increased in proportion

to the mean weights, rx approaches unity regardless of the values of

v w

raw v, and w.

From these deductions it is clear that there are very real limits on the

effectiveness of any weighting method, particularly when the number of pre-

dictor variables is large and only positive weights are used. Under these

conditions even random sets of positive weights will result in composites

which are highly correlated. When the weights have been derived according to

some logical rationale, the correlation is likely to be very high indeed.
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Gullfksen concludes that from a practical point, of view, 50-100 variables

is probably sufficient to make differential weighting unprofitable, and the

same conclusion is reached if the variables ,are very highly correlated.

Weighting may be worthwhile, he contends, when there are few, say three to ten,

variables to be combined and if the average intercorrelation is also low, say

.50 or less. However, in addition, even in this case, the weights must have

an appreciable standard deviation if they are to differ from unit weights

appreciably. And finally, if two sets of weights are being considered, and

the weights themselves are highly correlated, it will make little difference

which set is used.

A word of caution is in order concerning the wholesale dismissal of the

weighting question under conditions of high correlation between differently

weighted composites. It was pointed out earlier that the limits of the effec-

tiveness of one set of weights given the effectiveness of another set and the

correlation between the two weighted composites is easily determined. It is

implicit in the correlation-between-weighted-composites
approach that if the

correlation rapidly approaches unity, then it really doesn't matter which set

of weights is used. This is only partially true. As the validity of one

wighted composite drops from unity, the range of possible values which another

wighted composite may give when correlated with the criterion increases, with

a constant correlation between the composites. Likewise, for a constant vali-

dity of the first weighted composite, as the correlation between the two

weighted composites drops from unity, the range of possible validities for the

second increases. McCornack (1956) hat criticized a great many empirical

studies of the effectiveness of weighting for failure to take this into account.

Thus, quite often investigators are content to report only that two composites

correlate over..90 or some higher figure without reporting or even investiga-

ting whether one composite is more or less valid than the other. Yet this is
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the result that is of most importance. In such cases, and they are numerous,

conclusions to the effect that weighting is not worth the trouble or that two

methods of weighting will result in essentially equivalent scores, while prob-

ably cox,rect, are not completely justified.

A word of caution is also in order concerning a very similar premise,

viz., that if the correlation between two composites is greater than the re-

liability of either, then. it does not really matter which-composite is used.

The argument which has been advanced by many, including Burt (1950), is that if

two tests (composites) are more highly correlated with one another than either

is with itself on another administration, then either one should be acceptable.

But this still does not allow for the real possibility that one version will

have a higher validity than the other. This will probably not be the case,

but it nevertheless must be recognized as a possibility.

So far a number of factors which influence the effectiveness of weighting

have been considered: the number of variables in the composite, their average

intercorrelation, the size of the weights and their correlations, etc. Nothing

has been said, however, concerning the size of the sample on which the weights

are derived or the distribution of the scores on the several component mea-

sures. This section will be concluded with a brief mention of these two

points.

In the section on multiple regression it was pointed out that when

weights are derived on the basis of a sample from the population of interest,

sampling error will cause a certain amount of shrinkage in the validity co-

efficient when the weighted composite is used to predict the criterion in the

population. It is usually recommended that if multiple regression weights or

similar weights are to be empirically derived and used on a wide scale, the

sample on which the weights are derived should be fairly large. In deriving

the weights for responses to the Strong Vocational Interest Blank, Strong
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recommended, for example, that no less than 250 blanks for each occupation

should be used (Strong, 1943). In many personnel situations, and even in the

classroom, numbers this large are usually out of the question. However, the

lack of stability which small sample size brings about may also be responsible

for the observed lack of difference between different weighting methodsfi In

an interesting empirical study of the effects of sample size on the predictive

validity of the resulting composite, Lawshe & Schucker (1959) found no dif-

ference between samples of 20, 40, and 90 cases when the weights were used to

predict the criterion in a cross-validation sample. They concluded, however,

that more research on sample size is needed.

Although we have not stated it explicitly until now, most of the weight-

ing methods in common use do assume that the measures on the several component

variables are normally distributed, or at least have similar distributions.

Such assumptions are most important when tests of significance are performed

or when point estimation is involved. Failure to satisfy an assumption of

normality may have other consequences. For example, Cliff (1960) investigated

the effect of unlike distributions on the contribution to composite variance

made by two tests which formed a composite. One test was negat19e1y skewed

and the other was positively skewed, although the tests had the same variance

since standard scores were used. It was hypothesized that summing the stan-

dard scores to get a composite would not result in equal contributions to com-

posite variance at various cutting points in the composite score distribution.

By actually computing the contribution of each variable to the composite

variance it was demonstrated that the positively skewed variable contributed

more to composite variance in the upper percentiles and the negatively skewed

variable contributed more in the lower percentiles, whereas if the variables

6R.G. Simpson (1951) has considered the sample problem at length with

reference to the weighting of biographical inventory items.
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had been symetrically distributed, they would have contributed equally through-

ovtt the distribution.

Methods of Weighting Response Categories

In each of the weighting methods discussed thus far the entity which was

weighted, Xi, was a quantitative variable capable of taking at least two

values. Each subject received a score on each of the n component variables

and it was these scores which were then weighted todetermine the composite

score. In the present section we will consider the case where for each item

Xi we can categorize the subject's r3sponse into one of a small number of

mutually exclusive response categories which do not initially have numeri-

cal values associated with them. The weighting problem is one of determin-

ing a set of weights for the categories in order to derive a total score for

the subject. Conceptually, the problem is not very different from that of

scaling the response categories in order to assign to a subject the scale

value of the category he selects.

The response-weighting methods to be discussed may be classified ac-

cording to the nature of the criterion which is used to derive the weights.

We will first consider methods which utilize an external criterion which

is classificatory. Next we will consider the use of an external criterion

which is quantitative, and finally we will turn to the use of an internal

quantitative criterion.

Weighting with an External Qualitative Criterion. Consider a single

stimulus, 4, to which a subject's response may be classified in one of c

mutually exclusive categories. The stimuli might be personal, biographical,

or demographic questions, the items of an interest or personality test, or

any such similar thing. As criterion measures we have the responses of two

or more criterion groups to the stimulus and we wish to determine weights
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for each of the c categories in order to best estimate whether the subject's

response is more typical of one criterion group or the other. Although a

priori weighting of responses is occasionally found (e.g.,see Giles,1936),

most often the weights are derived empirically. In one case, Gage (1957)

found that empirically derived response weights were not superior to logic-

ally assigned weights with respect to the reliability and validity of the

composite test. Nevertheless, in many cases it is not possible to determine

logically which responses are to be weighted most heavily. Typical of these

situations is the interest test.

Strong (1943) has presented an historical survey of methods of weight-

ing responses of an interest test. His discussion is the basis of the brief

summary of these methods which follows. These methods have in common the

fact that the criterion to be predicted is qualitative, usually membership

in a particular group. Although Strong was concerned specifically with the

responses .11islike,' ndifferent," and "like (which could, if desired, be

ordered, e.g.,0,1,2), the methods themselves are appropriate whenever a num-

ber of mutually exclusive categories of response are weighted for diagnostic

purposes.

In 1924, Ream used the following rationale to weight the items of an

interest test. He had a successful group of life insurance salesmen and an

unsuccessful group respond "like" "dislike," and indifferent" to a series of

items. He then calculated for each response to each item the proportion of

those in each of the two reference groups who selected the response. When-

ever the difference between two of these percentages for one of the responses

to an item exceeded the standard error of the difference, the item was re-

tained and the score assigned to it was 41 if the direction of the differ-

ence favored the successful group and -1 if the reverse was true. This was

equivalent to setting the critical ratio equal to 1.00 and weighting
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zero all items which failed to attain this. However, Ream did not weight the

several responses to a single item differentially.

A much more recent example of a very similar approach to response weight-

ing is Sound in Anastasi, Meade & Schneiders (1960). In this case the response

weights were determined according to the significance of the difference be-

tween the poportions of those in the reference groups choosing the response

and the direction of that difference.

A somewhat different method was used by both Cowdery (1925) and Strong

(1930), based on a formula for weighting recommended by T.L. Kelley:

(21) w
r

= r
re

1(1 - r2 )8
re r'

where r is the correlation between choosing the response in question and

re

being in the criterion group, and sr is the standard deviation of the response

distribution. The r
re
/rs part of the formula is actually an approximation to

the multiple regression weight which would be assigned to the response.

(1 - r2 ) is proportional to the square of the standard error of r . In

re
re

practice the weight is usually multiplied by 10 to get rid of decimals and

then taken to the nearest integer. Both Cowdery and Strong used the formula,

although procedural differences in presenting the data resulted in different

working formulas.

In 1934 Kelley revised the formula, stating that instead of being pro-

portional to the square of the standard error of riv, the multiplicative

constant should be proportional to the square of the error of the weight

itself, rre/sr. An appropriate formula was derived and the new formula

wa.s adopted by Strong for scoring the Strong Vocational Interest Blank. The

whole notion of incorporating such a constant in the weight was subsequently

criticized by Guilford (1941), however. He claimed that the reliability of

the regression weight should have nothing to do with the size of the con-
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tribution of the variable to the score. His argument bears a similarity to

that advanced in the last section against weighting for reliability.

Strong and, somewhat later, Kuder(1934) used the contrast of the group

in question with the composite of other groups, thus having a dichotomous cri-

terion. Porter (1965) tried a contingency-table chi weighting procedure for

securing weights from several criterion groups (sudh as foresters, clinical

psychologists, social workers, dentists, and pharmacists) simultaneously to

test the hypothesis that for similar occupations his procedure would differ-

entiate better than Kuder's, whereas for dissimilar occupations it would not.

Though somewhat equivocal because of an incorrect key to one of the interest

scales, his findings tended to support this hypothesis.

He considered Kuder Pzeference Record -- Vocational items that required

three things to be ranked by picking the one liked most and the one liked

least. For example, an item might consist of three options "Construct a

piano," "Play a piano," and "Hove a piano." There are six possible order-

ings of those three phrases, each of which orders can be considered a "res-

ponse." If there are five different occupational groups, this yields a 6 x

5 set of tallies. Porter simply computed chi (the signed difference between

the number of responses in one of the 30 cells and the theoretical number

for that cell determined from the respective row and column sums, divided by

the square root of the theoretical number).

These figures, which resemble percentage deviations from expectancy,

were his option weights. A given examinee would obtain five scores for his

pattern on a single item, i.e., one score for each of the five occupational

groups. Porter used every item in the Kuder Preference Record, merely sum-

ming an examinee's pattern weights for each occupation to yield a score

scale for that occupation.

Weighting with an External Quantitative Criterion. In 1941 Louis Guttman
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discussed at length the weighting of response categories. He showed that if

we wish to predict a quantitative external criterion y by assigning weights to

each of a number of response categories.ar' the correlation ratio n2 Will be

a maximum if each category is weighted by the mean criterion score of persons

in that response category. Such a weighting scheme produces a perfect re-

gression of criterion scores on category scores. The weighting scheme also

maximizes the correlation rxy. If a number of items are . available, re-

sponse weights for each may be determined by the above procedure. In order to

maximize prediction of the criterion using all of these items, it would then

be appropriate to combine them in a multiple-regression equation, if it is as-

sumed that the regression of critericn scores on these item scores is linear.

Guttman, however, makes the simplifying assumption that the items are indep-

endent and uses the unweighted mean of the category weights to determine the

total score for each subject. This procedure does not, of course, take into

account the different "validities" of the items or differences in their inter-

correlations.

It is interesting to note that although Guttman does not discuss the pos-

sibility, there is an alternative approach to the multi-item situation. Re-

call that in the single-item case the response of the subject was straight-

forwardly categoriZed. If there are k permitted responses to an item, the

subject's choice determines which of k categories he falls into. Once cate-

gorized, the determination of fhe weights is simple. For n items, each with

k alternative responses, it is possible to categorize each subject uniquely

by the particular combination of responses he selects over fhe n items. There

are kn such categories possible, and after all subjects have been categor-

ized, the determination of the weights is the same as in the previous case.

It is not particularly surprising that this method was not explicitly

suggested by Guttman. As the number of items increases the number of pos-
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sible response combinations increasef; exponentially. For 10 five-option items

it is 9,765,625! This is a far less economical method than simply using the

name of the subject to predict his score! Still, for a very few items and a

very large number of subjects, the scheme does have the advantage of maximiz-

ing prediction.

Wherry (1944) has discussed a special case of the one considered by

Guttman. Where the external criterion is expressed as a pass-fail dichotomy,

scored 1,0, Wherry shows that for a single item theresponse weights which

maximize the point biserial r are weights which are proportional to the pro-

portion of passers in each response category. This proportion is exactly

equal to the mean of the subjects choosing the response, where the criterion

scores have been scored dichotomously. For a theoretical study of Guttmam's

procedure as applied to option-preference patterns, see Merwin (1959).

Weighting with an Internal QUantitative Criterion. 'Where there is no

external criterion with which to weight item responses, it is nevertheless

possible to derive weights which will differentiate among subjects with re-

spect to a composite score. Guttman. (1941) considers the total scores

to have meaning only insofar as they enable us to differentiate be-

tween the candidates consistently. Guttman seeks to maximize the internal

consistency of a set of responses to n items. He seeks weights for the re-

sponse categories which will maximize the correlation over items and sub-

jects between response weight and total score. Clearly, the internal con-

sistency of a set of responses is enhanced if persons with similar total

scores tend to endorse similar response categories. Guttman shows that such

a correlation is maximized when a score for a person is the mean of the

response categories which characterize him, and when the weight for a re-

sponse category is the mean score of the persons choosing the category.

Clearly, since there is no a priori "correct" response, many sets of
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weights will do. Both Lawshe & Harris (1958) and Shiba (1965) have presented

iterative procedures for this case. In the Lawshe & Harris procedure the

responses are first given a priori weights and each subject's score is cal-

culated by averaging the weights assigned to the responses he has chosen. The

weight for each response is then recalculated according to the mean score of

those choosing it. The subject's score is then revised according to the new

weights and so on until the weights and scores stabilize.

Although there has been no attempt to do so to date, the above response

weighting methods, with and without an external criterion, could be used to

weight responses to test items where there is an a priori correct answer. It

is generally recognized, at least in theory, that differential weighting of

distracters may provide information which is lost when test items are scored

dichotomously or with a correction for guessing. If an external criterion

were available it would be possible to assign each response option a weight

equal to the mean criterion score of individuals choosing the option. Of

course, it would be necessary to insure that the correct option for each item

has a significantly higher weight than any other option. In the absence of an

external criterion an internal criterion such as number of items correct or

total score corrected for guessing could be used to weight the options. As in

the Lawshe & Harris procedure,it would be possible to continue iterations until

scores and weights stabilized. In the former case validity of the items

would be maximized, whereas in the latter, reliability would be maximized.

Cross-Validation and Response Weighting. Just as it was true in the case

of multiple regression, it is true with optimum :esponse-weighting tech-

niques that weights derived in a particular sample or population have more

effectiveness in that same sample or population than any other set of weights.

Once again, lepending on what the weights are intended to maximize, there is

likely to be shrinkage when the original weights are applied to a new sample
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from a given population. It is perhaps with this in mind that some investi-

gators look for significance before assigning weights. According to Guttman,

Strong could simply have weighted response options by the proportion of per-

sons choosing the option who were members of the occupation in question. What

Strong did, however, was to consider the difference between the proportions

choosing and not choosing the option with respect to the profession in ques-

tion. Since small differences, though real in the sample, might well be due

to sampling fluctuations and disappear in a different sample, Strong chose

instead to weight more strongly those responses which were more differentia-

ting. The use of the test of significance to determine the size of the re-

sponse weights in the Anastasi et al. (1960) paper is another example of this.

Thus, if Guttman's method were to be used in any large-scale testing program,

crossvalidation of weights would be extremely important.

This concludes what might be called the analytical approach to the

weighting problem. We have seen that alternative definitions of weighting

appear in the literature and we have reviewed all of the major methods of

weighting which have been and continue to be used. Finally, we have con,-

sidered, from a rational standpoint, those factors which operate in each con-

crete situation to determine the effectiveness of the various weighting

methods. In the next section we turn to the empirical studies of weighting,

those where a specific set of component variables is to form a composite and

the problem of whether or not to weight, and/or what set of weights to use,

is investigated.

Empirical Studies of Weighting

Empirical studies of weighting far outnumber analytical ones. A great

many early testmakers either incorporated weights into their tests as

of course (e.g., see Yerkes, Bridges & Hardwick, 1915; Pintner, 1920;

a matter

Wright,
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1929) or tried out one or two methods before making a decision on the weighting

question (e.g., see Anderson, 1925; Bovee, Holzinger, & Morrison, 1925). Both

the Yerkes-Bridges Point Scale and the Kuhlman-Anderson Intelligence Test in-

corporated weights of some form. Besides these, a great many less well-known

tests incorporated some type of weighting scheme. Because the number of stu-

dies is so large, and since the findings tend so strongly in the same direc-

tion from one study to the next, each of the following sections of this dis-

cussion will be arbitrarily selective. The studies which are to be mentioned

in some detail are quite typical of those to be found in the literature.

Although the empirical studies of weighting deal primarily with the

weighting of tests, subtests, test items, item responses, and so on, the

weighting question has also been explored in other areas. Other types of in-

formation to which weighting methods may profitably be applied include eco-

nomic, anthropometric, and psychological indices (Scates & Fauntleroy, 1938;

Stromgren, 1946); biographical or personal inventories (Congdon, 1941; Wherry,

1944); and especially ratings (Bingham, 1932; Jurgensen, 1955; and Tiffin &

Musser, 1942). For the sake of simplicity, however, this section will deal

only with the weighting of measures which may propoerly be termed "scores" of

one type or another. We will first consider the weighting of scores which are

themselves composites, i.e., course grades, test scores from a number of

different tests or from subsections of a single long test, or test scores from

a number of tests of the same thing. Second, we will consider the weighting

of the items of a single test, where in most cases the raw score from a single

item is in the form of a pass-fail dichotomy. Finally, attention will be

turned to the problem of response weighting, both in the interest and perso.r.

nality type of test, where there is no "correct" response, and in the academic-

achievement or aptitude type of test, where incorrect responses may be differ-

entially weighted.
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The Weighting of Tests

7.77,77,77

In 1931 Scates & Noffsinger reported a study of factors which influenced

the effectiveness of weighting when a number of tests in a battery were to be

combined to form a composite. A six-test battery and a ten-test battery were

involved. The first battery of tests was given to 80 subjects and the second

to 26 subjects. Four methods of weighting were compared: (1) natural weight-

ing using the raw scores on each test; (2) a priori weighting based on the

opinion of a committee of judges; (3) modified a priori weighting; and (4)

sigma weighting, i.e. weighting by the inverse of the standard deviation.

The results were presented in terms of the correlation between composite

battery scores under the different types of weighting. For the ten-test

battery these correlations ranged from .943 to .985. These correlations are

interpreted as evidence aF.,:nst the effectiveness of artificial weighting over

natural-raw-score weighting. A fairly high intercorrelation of the tests may

explain the high correlation between the composites. As noted above, however,

correlation between composites does not deny the possibility of differential

validity of the various composites.

A more recent study by Wesman & Bennett (1959) illustrates the more di-

rect approach where the validities themselves are compared for one weighting

scheme vs. another scheme vs. no weighting. In this case the tests were ac-

tually the subtests of the Psychological Corporation's College Qualification

Tests, including 75 verbal items in one subtest, 50 numerical items in the

second, and 75 general-information items in the third. A multiple-regression

analysis was carried out in seven separate samples and the weights which were

derived were then used to predict the criterion in the original sample plus

some of the other damples. Four colleges participated in the study. In

three, both a male and a female sample was available, whereas in the fourth
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college only women were enrolled. Weights were crossvalidated only in samples

of the same sex. Validity coefficients for each weighting and no weighting

are presented in Table 3. Column headings refer to the school where the

weights were derived; row headings refer to the school where the weights were

applied.

Table 3

Crossvalidation of Multiple-Regression Weighting of Scores

from Three Tests

Weights Applied

to College Sex N

Unweighted

Validity

Weightä De'rived on College

A B _ C D

A M 449 .46 .46 .45 .43

B M 151 .51 .53 .54 .52

C M 217 .60 .59 .60 .60

A F 262 .59 .59 .55 .58 .58

B F 169 .65 .66 .68 .65 .66

C F 76 .52 .54 .49 .56 .52

D F 107 .71 .71 .71 .69 .72

Note that in four of seven instances weighting did not improve validity

at all, and that in the remaining three cases the increase was rather small.

Of necessity the weights derived on a particular sample do at least a bit

better in that sample than any other weights. But interestingly, the weights

derived in one sample may do even better in another sample than they do in

the original one. This of course reflects the fact that the validity is

simply higher in some samples than in others and that it matters little what

weights are used. Had each set of weights been derived on a random sample

from the population of interest, e.g., College A - Females, and crossvalida-

ted on another random sample from the same population, we would expect the

correlation to shrink rather than increase.
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In a third study of interest (Booth, 1968) a multiple-regression technique

WAS used to weight course grades in arriving at a final grade in two Naval

Aviation Schools, the Aviation Officer Candidate School (AOCS) and Flight Pre-

paration School (FP). All student naval aviators attend FP, as do naval flight

officers. These groups are procured from AOCS or sote other source. In this

study the aim was to investigate whether a new set of weights would improve

prediction of completion vs.non-completion of the training. Also considered

was the possibility that subgroups might be used to derive special sets of

weights and thereby improve prediction further. The subgroups of interest

were formed by the intersection of two two-way classifications, i.e., AOCS

students VS. non-AOCS students, and student naval aviators VS. naval flight

officers. Obviously, the first classification can be applied only to those in

FP. The n's were as follows: In AOCS, 839 students were stwIent naval offi-

cers and 327 were naval flight officers. Of these, 812 and 303 went on to FP

and formed the AOCS group. The non-AOCS group in FP contained 1122 student

naval officers and 339 naval flight officers. Thus, the sample size in this

study was sufficiently large that reasonably stable regression weights might

be expected.

It was found that the new weights raised the correlation of final grade

with the criterion from .207 in AOCS to .268, and from .304 in FP to .313,

where the first figure is the validity under the old weighting scheme. When

validity is computed separately for each subgroup, differences are revealed

which are consistent regardless of which weighting scheme is used. The final

grade is more valid for naval flight officers than for student naval officers

in AOCS, and it is more valid for the AOCS students than for the non-AOCS stu-

dents in FP. The use of special sets of weights for each of these four sub-

groups resulted in very slightly higher correlations, but not sufficiently

higher to justify the difficulty involved in applying them.
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It is interesting to contrast this study with the previous one where

overall gains due to weighting were small. Of course in Booth's study,

weighting is not compared to natural random weighting but rather to a former

method of weighting which is in fact highly correlated with the new one. In

the previous study only three scores were combined in the composite, whereas

in the present case there were eight course grades to be combined in AOCS and

six in FP. With fewer variables in the composite, there should have been more

opportunity for weighting to be effective in the first case than in the pre-

sent study. What seems to lie behind the difference, however, is not the num-

ber of variables, but rather their average intercorrelation. In the first

study the tests were moderately correlated with one another, whereas in the

second study the course grades intercorrelated .19 on the average in AOCS and

.34 in FP. This difference seems to be reflected also in the fact that the

increase in the validity is smaller in the group where the intercorrelation is

larger.

Perloff (1951) studied special procedures to reduce the shrinkage of

validity coefficients when predictor weights based on one sample are applied

to another. His results were somewhat equivocal.

The Weighting of Test Items

In this section we consider the case where the variables to be weighted

are the items of a test. In the typical case the item itself is scored on a

pass-fail dichotomy and then multiplied by the appropriate weight. From the

earlier discussion of the factors which affect the effectiveness of weighting

it would seem that tests consisting of a large number of items, perhaps on the

order of 50 to 100, all or nearly all of which are positively correlated, are

not likely to become much more valid or reliable under differential weighting,

simply because the correlation between two such weighted tests will very likely
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approach unity. This is indeed the case. Yet numerous studies have been per-

formed demonstrating
empirically that this is true. In many cases, the con-

clusion to disregard weighting is based only on findings of high correlation

between waghted and unweighted tests or between two differently weighted

tests. As pointed out earlier, this still leaves open the possibility of

differential validity. Yet even in those cases where validity coefficients

are presented the gains attributable to weighting are so small as to be of no

practical significance. The studies to be discussed in this section are

typical of those which have been performed.

The arrival of the new-type or objective examination in the 1920's was

accompanied by claims of objectivity in scoring which would result in fairer

assignment of course grades and the like. There were opponents of the new

tests, however, and some felt that in actuality the new tests were no more

objective than the old ones. One such opponent was Corey, who in 1930 pub-

lished a study which purported to demonstrate the element of subjectivity in

new-type examinations. Corey asked six instructors to rate each of the 73

items of an objective test according to "its importance for a general know:-

ledge of psychology." The ratings supplied by each instructor became the

weights for the items. Corey scored all the examination papers without

weights and with each of the six sets of weights. The judges' weighted test

scores correlated from .836 to .960 with the unweighted totals, with the for-

mer figure being the more typical. Corey established arbitrary cut-offs and

assigned letter grades to the six series of tests. He concluded that many of

the students would receive very different grades depending on whose weights

were used to score the test, thus demonstrating the subjectivity which lin-

gered in the new-type test.

Corey's "experiment" is important because it is probably the only study

which claims to show that weighting makes a difference. Unfortunately, as an
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experiment it is open to criticism on a number of grounds. In a follow-up

study, Odell (1931) revealed that some of Corey's instructors had weighted

certain items zero, thus eliminating them from the test! Odell approached the

whole weighting problem is a more systematic way. First he compared several

methods of weighting, including: (1) natural raw-score weighting; (2) weight-

ing by the percentage of subjects answering correctly; (3) weighting by the

percentage of subjects failing to answer correctly; (4) weighting by a random

distribution of weights from 1 to 5; (5) weighting by a random distribution of

weights from to 10; (6) weighting by a second random distribution of weights

from 1 to 5. With the exception of sets (2) ari (3), which correlated -.62,

all other sets of weights correlated near zero. When test scores wer c! then

calculated with these sets of weights the scores correlated in the ,90s,

much higher than in Corey's study. Odell then had instructors assign weights

as in the Corey study. The three sets of weights thus obtained were moderate-

ly well correlated and again the test scores computed with the different sets

of weights were almost perfectly correlated. Odell concluded that there was

no evidence for the utility of weighting.

In both Corey's and Odell's study no information concerning the relia-

bility or validity of the weighted and unweighted tests was presented. Guil-

ford, Lovell, & Williams (1942) in a classic experiment compared weighted and

unweighted scoring of a single multiple-choice test in terms of the effect on

both reliability and validity. One hundred multiple-choice questions from an

achievement examination were used in unweighted form as the criterion. Three

"tests" were then composed of the first 20 items, the first 50 items, and the

100 items. Guilford's weight (see p.32) was then used to weight the items.

The reliability of the tests was determined by the split-half reliability

stepped up with the Spearman-Brown formula. The reliability and validity

coefficients for the weighted and unweighted tests are presented in Table 4.



-54-

Table 4

Reliability and Validity of Weighted

and Unweighted Tests

Number of Reliability Validity

Unwei hted

20 .667 .649 .817 .793

50 .860 .844 .892 .901

100 .922 .S99 .900 .924

Differences in reliability and validity for the weighted and unweighted

tests are not significant. Guilford explains that the phi coefficients for

these items and the range of the weights were both small. These facts might

explain the failure of the weights to affect either reliability or validity.

He also notes that since the validity coefficient in this case was a part-

whole correlation for the unweighted tests, the spuriousness of this correla-

tion may have obscured real differences. Yet attempting to derive an estimate

of the correlation of the 100-item test without the spuriousness did not sup-

port this interpretation. Guilford's conclusion was that it was certainly not

worth the trouble to weight the test items.

Other studies of item weighting have reached similar conclusions. Doug-

lass & Spencer (1923) found weighted and unweighted tests to correlate .98,

.99, .995, .996, .985, and .991. Holzinger reports a correlation of over .99

for weighted vs. unweighted items of a French achievement test (Holzinger,

1923). West (1924) found correlations ranging from .987 to .997 for weighted

VS. unweighted comprehension tests. In addition, he reports correlations of

.975, .956, .932, .966, .984, and .940 for six of the Army Alpha tests,

weighted VS. unweighted. Peatman (1930), using Clark's Index of Validity to

weight true-false items, found over a series of quizzes and a final exam that

correlations ranged from .879 to .970 for the individual tests and that the
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correlation for all tests combined was .978. Ruch & Meyer (1931) found that

weighting on the basis of difficulty did not raise validity and perhaps low-

ered reliability. Pothoff & Barnett (1932), in a study quite similar to that of

Odell, found correlations of .965 to .987 between weighted and unweighted
szt

scores, when weights were based on teachers' opinions. Finally, Stalnaker

(1938), in a study of weighting essay-type examinations, found correlations

consistently on the order of .98 and .99 between weighted and unweighted ver-

sions of a number of examinations of the College Entrance Examination Board.

Thus, it seems abn:adantly clear that weighting a given item of a test the same

for all examinees simply does not affect the total score enough to be of prac-

tical sign3licance. Although a great many of these studies report only the

corralations between the weighted and unweighted scores, when the magnitude

of such correlations is .98 or .99 it must be admitted that even if the small

possible gain in validity allowed by such a correlation were to be expected,

it would be too small to justify the extra amount of time and effort required

to score the test using the weights. The utility of fixed item weighting

seems to have long since been disproven.

There remain two possible hopes for effective differential weighting of

item scores. One is Allan Birnbaum's work on a three-parameter logistic la-

tent-trait model, reported in Lord & Novick (1968, ch. 17-20). Lord (1967)

tried out this model with the Scholastic Aptitude Test Verbal scores of nearly

3000 examinees and reported his results cautiously but with guarded optimism.

The essence of Birnbaum's procedure is that it applies differential

weights not only to items but also to various ability levels. His scoring

produces the most improvement for the least able examinees, who throw noise

into the system by guessing wildly at the more difficult items. In effect,

Birnbaum's method seems to nullify such guessing by assigning small weights to

items difficult for the examinees at that ability level, and larger weights to

the easier items there.
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Unfortunately, as Lord poiats out, Birnbaum's model applies only to data where

there are no omitted responses, and Lord's comparison is with items of the

Verbal Scholastic Aptitude Test scored either right or wrong, 1 or 0. The

conclusions may not apply to Verbal SAT scored in the usual operational way

with a "correction for chance." We know that giving -1/4 point for each Ver-

bal SAT item marked incorrectly will tend to remve some of the effects of

sheer guessing, thereby lessening the spurious intercorrelation of items and

perhaps improving validity.

Lord also warns that his conclusions, which favor Birnbaum's procedure,

depend on the adequacy of Birnbaum's mathematical model for describing Verbal

SAT data. Despite these considerations and the complexity of the computations

required, Birnbaum's approach seems promising enough to be investigated much

further. It may use effectively a different kind of weighting, i.e.,by abil-

ity level, which is needed to go beyond the impasse clearly pointed out by

Wilks (1938) and convincingly demonstrated by Stalnaker (1938) and others.

Cleary (1966) developed a model for multiple regression that allows in-

dividual differences to emerge empirically. This model effectively reduces

the variance of errors of prediction, the weights obtained are stable over

samples, and it appears that these weights have some stability over different

sets of predictors. The model assigns to each person a different set of

regression weights. It offers an empirical method of estimating whether pre-

diction can be improved by deviating from the usual multiple-regression model

and how many dimensions are required for maximum improvement. Her model goes

beyond the situation considered by Wilks (1938), where there was just one

set of weights, the same for each person, so it might provide a way to weight

item scores in order to predict a criterion better than the nominally-equally-

weighted item scores do. This moderated-linear-regression approach seems to

be a possible alternative to Birnbaum's (1968) differential weighting of abil-



-57-

ity levels. Presumably, it could operate either with corrected-for-chance item

scores or with uncorrected scores, whereas Birnbaum's procedure seems confined

to the latter.

Also to be noted is Samejima's (1968) application of her graded-response

model to multiple choice situations in an attempt to estimate latent ability.

It did not prove successful for this particular case, but she promises further

developments.

The Weighting of Item Responses

There are at least two very distinct situations where response weighting

might be advantageous. First, when there is no correct answer to a question,

as is the case in interest, attitude, and personality tests, the responses

are usually weighted in order to differentiate between examinees. The methods

of weighting such responses were considered in an earlier section. A second

situation where response weighting might be profitable is in the academic

achievement or aptitude test where partial information or misinformation is

evaluated through differential weighting of the correct responses to each

item. The second situation, although promising, has not been extensively

investigated.

Probably no single test has been the subject of so many empirical in-

vestigations of weighting as the Strong Vocational Interest Blank. The meth-

od used by Strong to derive the weights for item responses was discussed ear-

lier. It will be recalled that the size of the weight is related to the co-

efficient of the correlation between membership in the occupation oc not, and

choosing the response vs.not choosing it. This coefficient in turn is related

to the size of the difference in the proportions of those choosing the re-

sponse in the two populations. The larger the difference, the larger the

coefficient. Responses which differentiate strongly between the two groups
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receive large weights relative to those which do not. In the original scor-

ing system the weights ranged from 30 to -30. In the 1930 revision the range

droppad to 4 to -4. More recently the adoption of unit weights 1, 0 and -1

has been advocated. This progressive collapse of the elaborate weighting

system of the SVIB has resulted from a long series of experimental studies

which demonstrated such slight reductions in predictive accuracy that it was

concluded that the simpler weights were to be preferred to the more cumber-

rome ones.

The list of empirical studies of weighting the SVIB begins with the con-

tention by Strong (1930) that the use of unit weights resulted in less dif-

ferentiation between the occupations. In a series of experiments Dunlap and

his associates claimed to have shown that the unit weights could in fact be

substituted for the larger weights with only a small loss in accuracy (Dunlap,

1940; Peterson & Dunlap, 1941; Harper & Dunlap, 1942; Lester & Traxler,1942;

Kogan & Gehlmann, 1942). The basic strategy in each of these studies is to

score a sample of blankswith both unit and regular weights and then to use a

multiple-regression equation to predict the fully weighted scores from the

unit-weighted scores. The regression weights are then used to predict the

weighted scores in a cross-validation group, and the correlation between pre-

dicted and actual scores ia computed. It is usually in the mid to high .90s .

Since the SVIB is used as the basis of vocational counseling, an important

question is to what extent is the letter-grade designation upon which coun-

seling is based affected by the change iu scoring procedure? Thus, in each

study, the letter grades are assigned on the basis of predicted and actual

scores and the percentages of correct classifications is reported, with

special attention to the shift of the Bt scores to B, a change which corres-

ponds to a failure to recommend the-ocucupation. . Usually, the critical

shift occurs in about 3.5% of all cases. Strong (1945),in an extensive re-
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view of this research, claimed that not only the highest scores on the blank

were to be stressed, but the entire pattern, and that additional changes in

the scores might noticeably affez.t this pattern. Strong maintained even in

1964, when the unit weights were finally adopted, that unit scoring reduced

validity. However, under the considerable pressure put forth by others, the

SVIB finally acquired unit weights (Strong, Campbell, Berdie & Clark,1964).

Essentially, similar findings have been reported in research with the

Bernreuter Personality Inventory (Bennett, 1938; Kempfer, 1944; McClelland,

1944, 1947). Here also a small loss of accuracy is suffered when diminished

weights are used.

Until fairly recently, the possibility of differentially weighting the

incorrect responses of an achievement examination had not been considered in

the literature. It has long been assumed that on a multiple-choice exam-

ination the conventional correction-for-guessing formula provides a reasonable

means of deducting from the number-correct score the proportion of those

correct items which are the result of random guessing. Formula scoring is,

in at least one sense, response weighting. If the conventional formula is

used, where Score = Right - [11(k - 1)] Wrong, this is equivalent to assign-

ing a weight of +1.00 to each correct response, -1/(k - 1) to every incor-

rect response, and 0 to an omitted item. The subject's score is then the al-

gebraic sum of the responses he selects. Some investigatore have preferred

to empirically derive the best weight for the incorrect response via some

technique such as multiple regression (e.g.,see Thurstone, 1919; Brinkley,

1924; Staffelbach, 1930; Dailey,1947). However, formula scoring, regardless

of how the formula is derived, is not differential weighting of distractors

other than "omit." The subject's score depends on the number of correct res-

ponses, the number of incorrect responses, and the number of omissions, but it

is not affected by which incorrect response is chosen on a particular item.
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If each examinee omits the same number ot items, formula scoring us not needed.

(See Stan1ey,1954) For theoretical increases in validity (usually slight) that

might be gained by formula scoring, see Lord(1963).

The first step in the direction of differential weighting of incorrect res-

ponses was made by Nedelsky (1954). He hypothesized that information might

be added to the conventional Rights score by penalizing students for choosing

a response which was so grossly incorrect as to be attractive only to an F-

student. Nedelsky had experts read his test questions and indicate which op-

tions for a given item, if any, fit this description. The experts' judgements

were the basis for the designation of certain incorrect responses to the ques-

tions as F- responses. Some items had no such responses, others had more

than one. The test was given to 651 students and each received three scores:

(1) a rights score; (2) an F-soore (3) a composite score computed on the for-

mula R - FYI, where f is the average number of F responses available per item.

Of the 651 who took the exam, all receiving a D or an F by standard scoring,

plus a representative sample of thosereceiving an A,B, or C, 306 in all, were

rescored for F-score and for the composite. The reliability of the rights

score was estimated as .81, of the F-score,.63, and of the composite,.84.

However, when thee figures are computed separately for the ABC group and the

DF group they become respectively: ABC: rights, .69, F-score,.46, composite,

.71; DF: rights,-.16, F-score,.42, composite,.26. Thus for the poorer

students the F-score is the most reliable score. Accentuating this finding

is the fact that when the reliability is oomputed only on those items having

F-responses, and only for the lowest 15% of the entire 651 subjects, the fig-

ure for the F-score rises to .45. What is particularly interesting in this

study is that for both groups of subjects the composite score is more re-

liable than the rights-only score.

If Nedelsky's study may be looked on as a significant first step in the
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direction of differential response weighting, the later study of Davis & Fifer

(1959) may be considered a significant second one. These authors note that

conventional rights-only scores, as well as formula scores, do not permit dif-

ferentiation among examinees with respect to the type of distracters they sel-

lect. The student who consistently chboses incorrect responsus which are most

nearly correct receives the same penalty as the student who chooses the same

number of incorrect responses, but whose choices reflect very little infor-

mation at all. If it is possible to differentiate among incorrect alternat-

ives with respect to their degree of incorrectness, then it might be worth-

while to weight these alternatives differentially.

From a pool of 300 arithmetic-reasoning problems two tests of 45 items

each were contructed and designated test 5022 and test 5023. An additional

five problems testing computational facility were also included as a sort of

handicap to eliminate unwanted variance from this source in the total score.

A priori weights were derived via ratings given to each response. Two math-

ematicians were instructed to rate each response option on a seven-point scale,

from -3 to +3 according to the relative amount of arithmetic reasoning, i.e.4

correct reasoning , displayed by an examinee marking that option. In gen-

eral such weights were posittve for the correct response and negative for the

incorrect ones.

Empirical weights were derived via the correlation between marking the

option vs. not marking it and the criterion score on both tests 5022 and 5023.

These weights were then transformed to the range -3 to +3. The authors do not

give in detail their reasons for using correlation coefficients except to say

that these are approximations to the appropriate multiple-regression weights.

(lavis, 1959, is more explicit.) Since the responses are categories rather

than variables, the weights seem somewhat less appropriate than Guttman's

(1941) criterion weights, though considerably easier to secure. However,
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since the reliability of the weights based on the correlation coefficients was

only moderately high, the empirical weights were modified in terms of the

a priori weights to arrive at a final set of weights for each item. Two stu-

dies were then carried out.

A sample of examinees from the larger group which had taken the tests, and

which did not include any of those in the sample on which the weights were de-

rived, was used to estimate the reliability of the two scoring procedures.

Two raw scores and two weighted scores were available for each subject. Since

5022 and 5023 were considered parallel tests, their correlation was used to

estimate the reliability of either one. Unweighted scores were found to cor-

relate .6836, weighted scores .7632. The difference between these two correla-

tions is highly significaAt by Fisher's z-transformation. It was estimated

that the increase in reliability was equivalent to that which would be expected

by the Spearman-Brown formula if the test were lengthened from 45 items to 67

items and scored conventionally. It is pointed out that the increase in reli-

ability is not to be attributed to the fact that the correct choices were

differentially weighted since it has long been known that such differential

weighting is not effective for long tests.

In a second study an attempt was made to determine whether the new scor-

ing procedure would increase the validity of the test. Two criteria were

used, teacher's ratings and the score on a free-response form of the same

tests. Very briefly, it was found that for 251 subjects who took one test in

free form and the other in multiple-choice form, the validity using these cri-

terion variables was not different. The authors conclude that ths variance

introduced into the total score increased the proportion of "true" variance,

but that the new variance had the same concurrent validity as the original.

A slight exception may be taken to this conclusion. If the nw variance

were as valid as the original variancerthen the increased reliAility of the
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test should have resulted in a concomitant increase in the validity, much as

increasing the length of a test through the addition of items of comparable

reliability and validity does. However, before meaningful generalizations

can be made concerning the nature of the variance whidh is added to the ti.tal

test score through this type of differential weighting it will be necessary to

explore more carefully the composition of the total-test-score variance.

Aiken (1967) has presented formulas for the maximum total variance of the test

score, but some of his assumptions do not seem fully justified. More work on

this aspect of the problem is needed.

A rather novel recent study is that of Jacobs and Vandeventer (1968), where

"the notion of facet analysis provided a systematic method for a priori order-

ing of the distractors on the Coloured Progressive Matrices test as to degree

of correctuass. A score based on type of distractor chosen was shown to have

a moderate degree of test-retest reliability, concurrent and predictive val-

idity, and cross-cultural applicability."

Variable Neighting Methods

In the beginning of this paper it was stated that throughout most of

the discussions the weighting methods considered would be fixed methods. Fix-

ed, of course, refers to the fact that the wvIghts are determined in advance

of scoring the subject's paper and that a definite weight is attached to each

item or response. The subject's score on the item or response is determined

by a binary outcome, viz., correct vs. incorrect for tb n! weighting of items,

and chosen vs. not chosen for the weighting of responses.

Modification of the Mode of Response.

Recently, however, a somewhat different approach has been investigated.

Since the very beginning of the objective test movement there has been con-
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siderable concern over the effects of guessing ontthe reliability and validity

of multiple-choice and true-false tests. Most often when testers were suffic-

iently concerned over the effects of guessing to attempt to correct for it,

they relied on some form of correction-for-guessing formula which subtracted

a percentage of the incorrect responses from the correct ones. The traditional

formula, R - [1/(k 1)]W, is based on the assumption that if a subject does

not know the answer to a question he guesses randomly among the k options.

Admittedly, this assumption is never satisfied in practice. Response al-

ternatives differ in attractiveness, as the differential popularity of incor-

rect options indicates. Moreover, the assumption asserts that information

comes in two states, certainty and complete ignorance. The existence of both

partial information and misinformation is thus denied. However, the useful-

ness of the traditional formula has served to perpetuate it.

In the last section the door was opened for partial information to reveal

itself through the differential weighting of the distracters. It was implicit

in the scoring scheme that the incorrect options could serve to identify the

existence of partial information. In actuality, the empirical method of deri-

ving option weights does not ensure that the more heavily weighted options are

in fact more nearly correct, but merely that xi the average the total scores

of subjects choosing the more heavily weighted option are higher than those of

subjects choosing another option on the same item. In this type of weighting

scheme it is the options themselves which bear the burden of differentiating

between the subjects with respect to partial information.

There is an alternative approach, however. If we assume that the subject

has some information concerning the correctness of the several options, instead

of assuming that correct choices are made out of certainty and incorrect ones

out of guessing, we may, through appropriate response techniques and scoring

procedures, lead the subject to reveal much more precisely the actual state
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In each of the methods of variable weighting considered below, the mode

of response to the individual test item has been altered from that of the trad-

itional multiple-choice item. Scoring is not carried out on the basis of a

weighting of individual items or item options.

nimination of Response Alternatives

In two fairly recent studies the mode of response was altered by having

subjects cross out options. Dressel & Schmid (1953) compared the conventional

multiple-choice paradigm with one in which the subjects_were instructed to

cross out alternatives until they were certain that they had included the cor-

rect answer among the alternatives marked. Each incorrect uark was scored

as - 1/4 point. Thus, marking all alternatives except the correct one re-

sulted in the maximum negative score and marking only the correct choice re-

sulted in the maximum positive score. This scoring method and response tech-

nique was found to give a reliability of .67 as compared with a reliability of

.70 for the conventional procedure.

Coombs, Milholland & Womer (1956) performed the complementary experiment

where subjects were instructed to cross out the incorrect alternatives, taking

care not to mark the correct alternative. Each incorrect option eliminated

received a score of +I and if the correct alternative was marked it was

scored - (k - 1), where k is the number of choices for the question. Thus, if

r alternativec were marked, the score was +21 if the correct alternative was

not marked, and (r - k) if it was. Marking all alternatives or no alternat-

ives resulted in a score of zero. There was evidence to indicate that this

method of scoring resulted in a gain of reliability equivalent to that to be

expected by increasing the length of the test 20%.

These techniques are reminiscent of the Troyer-Angell punchboard invented
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two decades ago and sold by Science Research Associates. The punchboard was

a device on which the subject punched out his choice and if it was correct a

red dot would appear in the hole. If the dot did not appear the subject had

to choose another response until the dot did appear. Thus, the subject re-

ceived immediate feedback on the correctness of his choices, learning while

being tested. He was then scored on the basis of the number of punches need-

ed to reveal the dot 0, -3, -4, -6, -7, for correct answer on the first

through 5th responses respectively. When two groups of subjects used the

punchboard for an entire semester and did not use it respectively, the differ-

ence between the groups, favoring the users, increased during the semester from

zero to a value approaching statistical significance. (See Jones & Sawyer,

1949).

Confidence Weighting

Asecond method of assessing partial information which has shown some

promise is that of having students assign confidence weights to the various

alternatives. This procedure has its historical antecedents in the confidence

weighting of true-false tests (Hevner, 1932; Soderquist, 1936). More recently

it has been tried with multiple-choice tests. Dressel & Schmid (1953) also in-

cluded this as a scheme in their study. They had subjects choose one alternat-

ive and then assign a confidence weighting from 1 to 4 in accordance with

their degree of certainty regarding the correctness of their choice. The

weight was scored as positive if the item choice was correct and negative if

incorrect. They report a reliability of .73 for this case as opposed to the

.70 for the conventional case. Also see Merwin (1959) for a theoretical anal-

ysis of the effects of rankirg options according to preference for them.

Subjective Probabilities

Recently, from two different sources (Shuford, Albert, & Massengill,
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1966', de Finetti, 1965) have come suggestions concerning the assignment of

probabilities to each of the response alternatives for a single question. The

most interesting characteristic of these procedures is that, under what has

been termed admissible probability measurement, the scoring system is so de-

vised that the examinee can maximize his expected score on the test if and

only if he reports as accurately as he can the distribution of his subjective

probabilities over the various response options. Not all scoring methods

achieve this, and considerable mathematics has been devoted to illustrating

permissible schemes.

In the Shuford, Albert, & Massengill procedure it is assumed initially

that the examinee's state of knowledge concerning a multiple-choice item may

be expressed as a distribution of probabilities over the response options.

Since probability distributions of this kind are not "wired into' the cogni-

tive system, it ib assumed that examinees are able to convert their degrees of

confidence in the various options into a probability distribution having the

property that the sum of die probabilities over all response options is 1.00.

It should be pointed out that since such probabilities are cubjective and,

presumably determined by the-relative degrees of confidence which the examinee

places in the correctness of the various options, there is no guarantee that

identical probability distributions for two subjects represent the same abso-

lute degrees of confidence in the options taken individually. The probabili-

ties are ipsative measures. If, for example, the examinee assigned equal

probability to each option, he might do so out of complete ignorance or out of

conflicting misinformation which gave him rather,high confidence in each op-

tion considered singly. The assigned probabilities must be seen as measures

of reZative confidence.

Once the examinee's probability distribution is known for a multiple-

choice item, there are numerous scoring techniques which may be used to deter-
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mine the item score. Shuford, Albert, & Massengill have discussed the neces-

sary and sufficient mathematical properties of scoring schemes which have the

property of allowing the subject to maximize his expected score if and only

if he reports his "true" subjective probabilities. For items with more than

two options it is not possible to find such a scheme which is dependent only

on the probability assigned to the correct answer. Most schemes thus involve

the distribution of confidence over the incorrect options and most are symme-

tric in that the item score does not change when the probabilities assigned to

the incorrect options are permuted. Thus there is usually no differential pe-

nalty for assigning high confidence to one incorrect option over another.

Shuford and Massengill, in a series of technical reports (Shuford, 1967;

Shuford & Massengill, 1967; Massengill, 1967), have expressed great enthusiasm

and optimism concerning the potential of admissible probability measurement

for eliminating the effects of guessing on multiple-choice tests. They have

demonstrated mathematically that the elimination of guessing, which is purpor-

tedly accomplished by admissible probability measurement, can theoretically

provide quite substantial gains in both reliability and validity. These maxi-

mum gains, however, are determined with reference to the reliability and vali-

dity of a multiple-choice test in which: (1) the level of guessing, i.e., the

probability of being correct given that guessing occurs, is at a maximum level

of .50; (2) all examinees guess when they do not "know" the correct answer;

and (3) the test is scored as the number of items correct. For example, they

demonstrate that for a test so difficult that no examinee knows the answer to

any question, more guessing by some examinees than by others results in a

spurious reliability over a laige number of items or examinees. It is easy to

show, however, that insofar as the conventional correction-for-guessing for-

mula accurately reflects the average level of guessing, the expected value of

the reliability of formula scores is zero here. .
Although the elimination of
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guessing may plausibly increase reliability and validity, the size of these

gains will be considerably smaller than the maximum possible gains, since in

actual practice the effects of guessing are not nearly so devastating as they

might be, particularly when a correction-for-guessing formula is used. (Also

see Lord, 1963.)

Although the Shuford, Albert , & Massengill admissible-probability-mew.

surement procedure requires the examinee to report his subjective probabili-

ties directly, other response methods are possible. De Finetti (1965) has

discussed a number of response schemes which provide various degrees of infor-

mation concerning the subject's probability distribution. It is assumed that

the probability distribution is directly available to the examinee and that he

may use the distribution to determine his response so as to maximize his ex-

pected score on the item. It is paradoxical that although the actual respon-

ses made by the student seem superficially to be simpler than assigning proba-

bilities directly, the optimal strategy required of the examinee may take the

form of a very complicated rule. For example, assume that the subject is to

respond by crossing out the incorrect options on a multiple-choice item, with

the number of options eliminated left to the student to decide. (This is the

response method of Coombs et al.) If r is the number of options, and k is the

number of options crossed out, the score is determined by the formula

1/(r k), and made negative if the correct answer is crossed out and positive

if it is not. How many options should the subject cross out given his proba-

bility distribution? Let the subject rank the options such that pi is the

largest probability and ph is the probability assigned to the hth option, h =

1,... ,r. The rule for maximizing the expected score on this item may then be

stated: "Cross out alternatives until the probability ph of the (0 - h) alter-

*

natives already crossed out plus that of the next one, ph, when multiplied by

the number h of those still left, does not attain .5"(de Finetti, 1965, p.98).
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Thus, although the response of crossing out alternatives seems relatively un-

demanding, the strategy which will allow the subject to be consistent and maxi-

mize his expected score is more than a little complex!

The success of this type of testing procedure would be critically depen-

dent on the ability of subjects to effectively utilize optimum strategies.

The problem of whether or not all subjects are equally capable of learning to

use such strategies is a very real one. Also raised is the problem of the

differential risk-taking
propensities of different subjects. Despite the fact

that risk taking must in the long run reduce the expected score, the score on

a single test can be altered significantly by a lucky guesa. Winkler (1967a,

1967b, 1967c) has discussed these aspects of subjective probability measure-

ment.

It will be recalled that most admissible probability measurement or sub-

jective probability
measurement procedures are symmetrical and do not take in-

to account characteristics of specific distracters. In these scoring systems

involving probabilities per se, high concentration of confidence in a single

distracter results in a lower score than an equal distribution of that same

amount of confidence over all distracters. It might, however, be possible to

differentially weight distracters and incorporate such weights into the scor-

ing scheme. Although some type of criterion keying of options could probably

be incorporated while maintaining the admissible probability of the scoring,

it is likely that the optimal strategy would then become considerably more

complicated. Empirical work on the use of admissible probability measurement

and differential option weighting, both separately and in conjunction, is un-

doubtedly forthcoming since so much theoretical interest in these proposals

has been croused.
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