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Abstract

When a number of psychological measures are to be combined it is some-
times desirable to weight the measures differentially, either with fixed -
weights which are constant for all subjects or with variable weights which are
not. In this paper we review the literature on a pricri and empirical weight-
ing of test items and test-item optionms.

A large number of methods are available for deriving fixed empirical
weights for component variables such as tests and test items. The best known
and most widely used technique is multiple regression. Other methods allow
one to derive weights which equalize the effective weights of the component
variables, i.e., their individual contributions to the variance of the com-
posite, or which equalize the correlation of each variable with the composite,
or which maximize composite reliability. Other weighting methods which have
been popular include weighting by the reciprocal of the standard deviation,
weighting (tests) by length or difficulty, and weighting by the wvalidity
coefficient of the compbnent variable.

The effectiveness of fixed weighting depends on the number of measures
to be combined, their intercorrelations, and certain characteristics of the

weights. In general, fixed weighting is most effective when there are few

variables in the composite and when these variables are not highly correlated.

§§r a largenumbexr of positively correlated variables (such as test items)
the correlation btetween two randomly weighted composites rapidly approaches
unity.

Fixed weighting has also been used to develop scores for response cate-
gories such as those in the itewms of personality, attitude, and interest tests,
where there is no ''correct' response option. The raw data in such cases are

classificatory rather than quantitative. A familiar example of one such
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method is that used by E.K. Strong Jr. to secure option weights for the Strong
Vocational Interest Blank.

Empirical studies of fixed weighting, popular in the 1920's and 1930's,
demonstrated what the analytical papers predicted would be the case. Weighting ;

was found useful in many cases where only a few tests were combined in a bat-

] tery. But weighting the items of a long test was shown repeatedly to be inef-
| fective, or sos§1ight1y effective as to be impractical. There are few empiri-
cal studies of response-option weighting in achievement or aptitude tests,
although there is reason to believe that such weighting might be effective
despite the fact that item weighting is not.

Variable weighting methods are those in which there is no nominal weight,

constant over subjects, applied to a single item or response option. Of most

interest are variable response-weighting methods such as those recently sug-

gested by de Finetti (1965) and others. Here, the subject's response to a -

test item need not be restricted to simply selecting a single response option

as correct. Rather, he may be asked to respond in one of a variety of ways.

In particular, he may be instructed to assign a probability to each response

option corresponding to his subjective probability of the correctness of the

option. A scoring formula is then used to take the probability distribution

into account in arriving at a score for the item. To be effective, such
weighting methods require that the subject be able to maximize his expected
score if and only if he reports his subjective probabilities honestly.

The de Finetti subjective-probability approach does not produce differ-
ential scoring weights for the various distracters, however, nor do the me-
thods devised by Birnbaum and by Cleary. A criterion-keying procedure due to
Guttman does provide differential scoring welghts for the varlous options of a
multiple-choice item and seems promising enough to be tried, now that high-

speed digital computers are readily available.

iii




Variable response-weighting methods, perhaps in conjunction with fixed

response-weighting methods, show promise for increasing the reliability and

validity of test scores, a feat which cannot be attained with fixed item-

weighting techniques for long tests composed of positively intercorrelated

1tems.*

iv J

*For a shorter version of this review that 1s considerably more detailed
than this abstract, see Stanley & Wang (1968).
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Whenever saveral measures are to be combined to form a single composite
measure or to predict a criterion, the question of differential weighting of
the component measures presents itself. Can differential weighting improve
the reliability of measurement and/or provide a more valid composite mea-
sure than would be obtained if the component measures were merely summed or
averaged?

Theoretically, the answer to this question should be "Yes" for both
reliability and validity. It is unlikely that all of the component measures
will be equally reliable, have equal variances, be equally intercorrelated
with one another, and be equally correlated with the underlying variable
which the composite is supposed to measure or with the external criterion.
But all of these characteristics of the component measures will be reflected
in the composite measure. Thus, on purely logical grounds, it is to be ex-
pected that differential weighting would be effective.

If criterion measures are available, multiple-regression techniques
will provide a set of weights which is optimal for minimizing error of pre-
diction for the group on which the welghts were derived, under the usual
assumptions of normality and linearity of regression. When no external
criterion is available, certain assumptions concerning the nature of the
variable which the composite is supposed to measure enable us to identify
those couponent measures which should oe weighted more heavily. Or, alter-
natively, weights may be chosen so as to maximize certain internal criteria
such as the reliability of the composite measure. Regardless of which
method is used to derive the weights, however, all methods have in common
the fact that they weight most heavily those measures which are "best"
according to the criterion adopted in each particular instance, and they

weight least, perhaps even negatively, those measures which are worst.
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McDonald (1968) has offered "a unified treatment of the weighting prob-
lem," a general procedure for obtaining weighted linear combinations of
variables. This general procedure includes as special cases multiple-re-
gressioh weights, canonical variate analysis, principal components, maxi-
mizing composite reliability, canonical factor analysis, and some other well
known methods. He shows that the general procedure yields ¢ .ctiin desirable
invariance properties with respect to transformations of the —.riables.
McDonald's approach is applicable to a considerable part of this survey,
because it undoubtedly can be used to simplify some of the seemingly diverse
procedures of the past half century.

Although differential weighting promises, in theory, to provide sub-
stantial gains in predictive or comstruct validity, very often, in practice,
these gains are go slight that they do not seem to justify the labor involv;d
in deriving the weights and scoring with them. This is especially true when
the component measures are a large number of test items and much less true
when they are a small number of tests comprising a battery. It is this fact
which has led psychologists to conclude that, in general, weighting 1s not
worth the trouble, especially as far as item weighting is concerned. (For
example, see Guilford, 1954; Gulliksen, 1950.)

But item'weighting is not the only type of weighting which has been
investigated. Multiple regression ie very often effective when a tean of
variables, not necessarily tests, is used to predict a criterion. In most
interest and personality tests some form of option weighting occurs, 2.€.,
the subject's score on a given item depends on which option he selects or
prefers. In this case it is the options which are differentially weighted.
Usually there are many sets -of weightse which are applied successively to
the answer sheet in order to derive a score for the subject on a number of

different scales. Although it has not been studied extensively in the past.
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differential weighting of item options on academic aptitude or achievement
tests has also been considered a possibility.. In fact, it has recently been
proposed (de Finetti, 1965; Shuford, Albert & Massengill, 1966) that the re-
liability and validity of tests m<; be increased if the subject himself
assigns weights to the options according to his confidence in the correct-
ness of each option.

The remainder of this paper will be devoted to a systematic study of
the weighting question. First; diZferent types of weighting and methods of
deriving weights will be discussed, as well as the mathematical restrictions
whici limit the effectiveness of certain sets of weights, regardless of what
method is used to derive them. Next, a summary of empirical investigations
of weighting in 2ach of the typical situations where weighting has been con-
sidered potentially useful will be presented. Finally, consideration will

be given to the recently suggested confidence-weighing methods.
Weighting and the Derivation of Weights

In this and the following two sections we shall be concerned only with
what will be termed fixed weighting. In this context "fixed" implies that
the weight for a given measure is constant for ail individuals. Thus, if the
items of a single test are differentially weighted, the same set of weights
is used for all examiness. In contrast, we will term variable weighting all
methods where the weights are free to vary from person to persom. Variable

weighting will be discussed in a later section.
4 Definition of Weighting

It is customary to define the weight of a single variable in a composite

in terms of the contribution of that variable to the variance of the com-

Y
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posite. The contribution of each of n component variables to the variance of
the composite is equal to the variance of the variable plus the n-l covari-
ances of that variable with the n-1 other variables in the composite. This

follows directly from the formula for the variance of a sum:

(1) Var(XE + X2 +o0ok Xh) = Var(Xl) + Var(Xz) +, .0t Var(Xn) +'200v(X1X2)

+ ZCov(XiXB) +..0+ ZC°V(Xh,1Xh)°

The formula indicates that tke variance of the composite is equal to the sum
of  variance terms and n(n-1) covariance terms corresponding to the n(n-1)
combinations and permutations of pairs of the » variables. If the variances
and covariances are arranged in a symmetrical matrix of order #n x 7, the con-
tribution of the Zth variable te the variance of the composite is given by
the sum of the terms in the 7tk row or the Zth column of the matrix. Thus,
the n variables which comprise the composite are equally weighted if and only
if they make equal contributions to the total variance, Z.e., the sum of the
elements in each row (or column) of the variance-covariance matrix is equal
to a constant.

Although it is seldom stated, this definition of weighting implies that
the resulting composite measure, for a single individual, has little signifi-~
cance in and of itself and that its meaning is derived via the total distri-
brzion uf the composite measures for all individuals. This is probably not
an unreasonable assumption, since so much measurement in psychological re-
search is of the ordinal or interval variety and population norms of some

kind are required for interpretation of a single individual's score. However,

. in certain cases, the composite and component measures do have sufficient

intrinsic or arbitrarily agreed-upon meaning that the score for an individual
may be interpreted without reference to a distribution of scores. When this

is the case, it will be shown that the above definition of weighting is not

appropriate.

J
3
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Nominal vs. Effective Weighting. The approach outlined above may also
be followed to determine the contribution to the total variance of each of a
number of variables which have been “'weighted" before being summed. Assume
a set of n variables X; (#=1,...,n), and a corresponding set of weights
W, (¢ = 1,...,n), such that the composite score for any individual is given

by lel +-w2X2 +...+ w X . The variance of the composite is given by
wiVar (X;) + wiVar(X,) +...+ war(¥,) + 2w,0,Cov(X;X,)
+ 2w1w300v (X1X3) +ooot 2wn_1wnCov (Xn__lxn) .

Again, the contribution of any one variable %o the variance of the composite
is given by the sum of the elements in the corresponding row (or column) of
the variance-covariance matrix. The w;'s constitute the nominal weights,
whereas the effective weight of each variable is defined in terms of its con-
tribution to the total variance of the composite.

When nominal weights are unity the contribution of the ith variable to

the total variance of the composite, Cg, is given by
(3) Ci = Cov(X1X{) + Cov(XéXi) +...F+ Cov(X£-1X£) + Var(X£) + Cov(X¢+1X£)
+...F Cov(thg).

The natural effective weight of the Zth variable is thus given by its own
variance plus its covariance with each of the remaining variables, or equi-
valently, by its covariance with the sum of the remaining variables.

When nominal weights w; are assigned to the variables, the expression for

the contribution of the ith variable to the variance of the composite is

given by
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(4) 07: = wlwiCov(XlX?:) + wzwiCov(XZXi) +...4+ a:i_lwiCov(Xi_]_Xi)
+ w,%Var (X?:) + w,,;_,_lwiCov (X?:'l'lX?:) +...+ wnw?;COV (an'i) .

it is a common misconception that when nominal weightes have been assigned
they correspond to the relative weights of the variables in the compesite.
Equation (4) indicates that this is not the case. Although the nominal
weights do influence the effective weights, they are not in general propor-
tional to them.

Equation (4) may also be expressed in terms of the intercorrelations

of the variables. Since Cov(XiX%) = r1;815;, the formula becomes

= Ly » » ) & S . . 0% o o ° . 2. 20
(5) Gy = Wy 1818, + Wollsitg 698, Feu ot Wy WTs g 585 187 + W5s3

+ V1050 41,4814187 Fe o T Uit Snse.

From this it may be seen that the contribution of the Z<th variable to the
total variance depends on (a) the nominal weights w;, (b) the variance of X,
(c) the n-1 correlations between X; and the #n-1 other variables in the com-
posite, and (d) the standard deviations of the other n-1 variables.

Now assume that each of the » variables is given in standard form,
L; = (X; - ui)ioi, or equivalently, that each X; is divided by the appro-
priate standard deviation Ui. In this case all variances and standard de-

viations of the resulting scores will be equal to unity and therefore will

disappear from the formula, giving

- 2
(6) Cp = WP s + Wl oo sk Wy qWePy g o+ Wy + Vs WP 4

+ LN BN J + [ oe
wnwzrnz

Thus, when scores are expressed in standard form the effective weight of

the Zth variable is determined by the nominal weights and the intercorrela-




o
tions of the variables. If unit weights are used with standard variables,
the effective weight of a variable is approximately proportional to its

average correlation with the other variables:

7
(7) Ci =1 + .z Pij (T # J)
J=1
=1+ - 1)rij
n
z Pij is the correlation of the ith variable with the total score on the re-
J=1
maining variables, r n .
Xi, T X.
g=1 Y

From the foregoing discussion two things should be clear. First, the
nominal weights will not in general be proportional to the effective weights.
Second, only rarely will variables have equal effective weights unless the
nominal weights have been derived specifically to ensure this result (e.g.,
see Kaiser, 1967, for a way to make all Cov(Xin) zero). Otherwise, using
unit nominal weights with standard scores probably comes closest to achieving
this end, particularly if the average correlation of each variable with the
others is nearly constant.

An Exception. There is one situation, however, in which the nominal
weights are always directly proportional to the effective weights. This is
the situation alluded to earlier where the usual definition of effective
weighting is not appropriate.

Assume, for example, that a teacher decides in advance to assign grades
to her class on the basis of a "semester score' which is expressed as a per-
centage. The following scheme might be adopted: A = 90%-100%; B = 80%-89%;

C = 70%-79%; D = 65%-69%; F = below 65%. Five examinationsl are given

llf the examinations are of equal length, the following applies to the
items as well as to the test as a whole.
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during the semester and the score on each is expressed as the percentage of
items answered correctly. The semester score is the arithmetic average of
the five examination scores, and the final letter grade is assigned according
to the predetermined scheme. In this case it is appropriate to say that the
five examinations have been equally weighted in determining the final grade
regardless of the distribution of scores on any of the examinations or the
intercorrelations of the examinations. Likewise, if a weighted average of
the examinations had been taken, the effective weight of each would be di-
rectly proportional to the nominal weight assigned to it. This is true be-
cause, in this ease, the semester score of each pupil may be interpreted by
itself, with no reference to the distribution of semester scores of which it
is a part. 8ince the pupil's semester score will be interpreted directly,
1.e., assigned a letter grade, and since the several examinations contribute
to this score in direct proportion to the weights assigned to them, these
nominal weights are also the effective weights.

This point can be seen even more clearly at the item level. Suppose
that the teacher administers a five-question test and assigns 35 percentage
points to one of the questions. No pupil who receives 0 percentage points
on that question earns a grade of C or better. If all the pupils fail the
question completely, they all earn grades of D or F, even though scores on
the question have 0 variance and covary 0 with scores on each other question.
Absolute gradiﬂg on an arbitrary scale differs in this way from grading each
pupil relative to the performance of the other pupils in his class.

This situation is to be contrasted with that in which the examinee's
semester score is interpreted with reference to the total distribution of
such scores. Suppose, instead, that the letter grades were to be assigned

on the basis of the examinee's standard semester score, according to the

scheme in Figure 1.
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Figure 1. Grading system using standard scores.

In this case the examinee's letter grade depends both on his own score

and on the variance of the semester-score distribution. It is for this rea-

son that the effective weigﬁt of the several examinations is assessed via
the contribution-to-variance criterion.

Although the latter method of assigning grades, or some modification

of it, is very common, particularly at the college level, the former method
is probably sufficiently common to account for the intuitive feeling of

many that the nominal weights are indeed the effective weights. As suggested
earlier, however, aside from the classroom situation, the former type of
measurement is sufficiently rare in psychology to justify the adoption of

the contribution-to-variance definition of effective weighting.

Methods of Weighting Variables

We are now ready to consider in greater detail the specific methods of.
weighting which have been and continue to be used in psychological research.
In each method the entity to be weighted ié a quantitative variable, in con-
trast to methods discussed in a later section where it is unordered response
categories for which scoring weights are sought. For the most part, the

methods of this section are concerned with assigning weights to tests in a

ERIC
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battery or to test items. 1In most of the methods the weights derived are
the nominal weights, Z.e., the multiplicative constants By which the measures
on the 7 component variables are weighted. In some cases derivations and
formulas assume considerably simpler forms if tlie’measures-are:expressed in -
standard form;rather'fhhnuiﬁ.raWescore from. In:all.such @ases it is iwplicit
that, if desired, the derived weights may be redefined to absorb the standard
deviations of the variables. ~ e

Random Weights. When raw scores on a number of variables are simply
summed or averaged to form a composite measure the effective weight of each
variable is determined by Equation (3). Since no deliberate effort is made
to control the effective weights of the variables they will be termed -random
wetghts. The term "random" should not be taken to indicate that differences
between the effective weights are due to "chance.” Real differences in the
variances of the component variables and differences in their intercorrela-
tions are simply allowed free rein in determining the weighfs. It should be
carefully noted that this case corresponds to what is usually call "no"
welighting. It must be remembered that these measures are unweighted only in
the sense that the nominal weights are unity.

A Priovi Weights. When nominal weights are assigned to the n component.

TS e e

variables on the basis of judgments or ratings or some similar procedure, the
weights are termed a priori weights. The decision not to weight, Z.e., to
assign unit nominal weights, is a special case of this.

A very common case of a priori weighting occurs when different sections
or questions on an examination are weighted differentially. For example,
20 true~-false items on a test might be allowed a point apiece, whereas 20
multiple-choice questions on the same test may be worth 4 points apiece. In
some cases even items of the same type may be differentially weighted on an

a priori basis. Corey (1930) had instructors rate each item of an objective
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test in psychology on a 7-point scale according to its judged importance for

a general knowledge of psychology. The rating then became the weight for

the item. Weighting on an a priori basis is also very common in personnel
decisions, where certain job criteria may be deemed more important than others.

Although there are important empirical methods available for deriving
nominal weights, this should not be taken to mean that such methods are neces-
sarily preferable in all situations. Burt (1950, p.122) concludes that a pri-
ori or subjective weighting may be necessary where questions of value are
concerned or where the criterion is genuinely composite.

Empirically Derived Weights. Of all of the empirical methods of deriving
predictor weights, the one probably most familiar to psychologists is multiple
(linear) regression. This is but one of a number of least-squares solutions
which have been used to derive weights. The other methods have proved ex-

tremely useful since it is so often difficult to find an adequate criterion

; variable. These methods will be discussed in turn and their major advantages
noted. Since the actual mathematical derivations of the weights are avail-
able elsewhere they will not be presented here.

Multiple Regression. If for a certain population measures on each of 7

predictor variables X; are available together with measures on the variable

e
i,

B v be. predicted, Xb, the classical multiple regression equation will give the
optimal weights fo be assigned to the predictors in order to maximize the
correlation between the predicted or composite score and the actual criterion
score. This solution also minimizes the mean squared error of prediction,
given that the function expressing the relationship between the predictors
and the criterion is linear.

The general form of the equation when all variables are expressed in

raw-score form is
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X

1" W) tDgy 48 4

X = ¥g = Dp1.23...m g " Wp) to.t

bon.12...n-1%n = ¥)»

where 20 is the predicted criterial score for an examinee, o is the popula-

tion mean on the criterial variable, and the b's are population weights for

deviation-from-the-mean predictor scores, (X; - Hg) e

This equation can be simplified by expressing all predictors in standard

form and the predicted score in semi-standard form, as follows:

(9)

(g = ugd/og = Boz.23...n%1 * Bo2.13...#%2 *-o-F Bon.12.. n-1%nc

The b-weights in Equation (8) are the nominal weights for scores used to pre-

dict the criterion score. The B-weights in Equation (9) are the nominal

weights for standard scores. They are related to the b-weights by the equa-

tion
(10) Pot.12...n = Pos.az...n %%
BOi.lZ...n is the partial regression coefficient of Xb on Xy. Specifically,

it 1s the regression of that part of X _ which is independent of all the

0

other n~1 variables on that part of Xi which is also independent of them

(¥elley, 1923).

Note the two following properties of the regression weights ceteris

paribus:

1. The larger the correlation between the variable and the cri-
" terion, the larger the weight.
2. The more independent the variable of the n-1 other variables,
the larger the weight.

In the equations above, nothing has been assumed concerning the source

of the criterion variable except that measures are available in the population

T T
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of interest. Ryans (1954) has considered the problem of weighting from the
other side of the fence, Z.e., weighting the components of the criterion to
arrive at a suitable measure. Hotelling (1935) has presented a method called
“eanonical correlation' for assigning weights to two batteries (one of which
might serve to define a criterion) so as to maximize the correlation between
them.

A word of caution is in order concerning the use of multiple regression.
The weights derived via multiple regression are the weights which maximize
the multiple correlation between predictors and criterion for the particular
set of measures on which the weights are derived. This is true whether the
set of measures is from an entire population or merely a sample from a popula-
tion. Most often, however, the weights are derived on a sample and then sub-
sequently used to predict the criterion in the zntire population. The mul-
tiple correlation between actual criterion scores in the population and cri-
terion scores predicted via sampiz weights will necessarily be less than the
multiple czorrelation which could be obtained if scores for the entire popula-
tion were used to derive the weights. However, if the weights are derived
on a random sample from the population, then the observed values of inter-
correlations and component variances are likely to be representative.of’the
values of the population parameters,and the obtained weights are likely to
be reasonable approximations to the optimal weights for the population. If
this is the case, then the multiple correlation obtained using sample weights
in the population should not be much less than the maximum possible multiple
correlation for the population. Quite commonly, however, the multiple cor-
relation obtained from using sample weights in the population is not only
less than the maximum correlation but also less than the sample multiple
correlation. This "shrinkage" in the multiple correlation has received con-

siderable attention in the psychological literature.
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When there is error of measurement in either the predictors or in the
criterion, shrinkage of the multiple correlation may be even more dramatic.
In the previous example the sample multiple correlation could be said to
roughly indicate the predictability of the criterion. More exactly, the
square of the multiple correlation corresponds to the proportion of the cri-~
terion variance which can be "explained" by the predictors. It was assumed
that the measures themselves were error-free. If, however, the predictors
are not error-free measures, then a certain proportion of the '"predicted"
or "explained" variance is in actuality error variance which is random from
sample to sample. However, in any given sample from the population error
will affect the value . f the r's and &'s on which the multiple regression
weights are based. Within the sample, the weights are actually tailored to
"predict" Lotk error variance and "true" variance. Thus, in this case
there are two factors which affect the representativeness of the r's and &'s,
sampling fluctuations and measurement error. Thus, when there is measure-
ment error, weights derived from a sample are more likely to deviate from
optimal weights than when there is no measurement error. In this case the
optimal weights would be those which would be obtained if error-free popula-
tion measures were available. Unless the measuring instrument can be made
error-frece, these weights can never be.known. The important point here.is
that if the ultimate goal of the regression analysis is prediction, then the
presence of unwanted randem-error variance in the sample increases the like-
1ihood that r's and s's obtained in the sample will not be representative of
the values of the correspornding parameters in the population. Thus, when
sample regression weights are based on fallible measures, it is extremely
important to crossvalidate the weights before reporting validity coefficients.

The error of measurement problem with respect to regression weights is

most apparent when the predictors are psychological tests, although tests are
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by no means the only psychological measures subject to error! Wolins (1967)
has discussed problems of hypothesis testing and estimation for this case,
noting that as the intercorrelations between the predictors rises, bias in
the regression coefficients also rises.2 This is due to the fact that as
the correlation between two fallible variables approaches the limit set by
their respective reliabilities, the differences between the variables in-
creasiagly reflects 2rror variance rather than true variance. As the inter-
correlation between the variables drops there is less bias in the weights
since proportionally more of the difference between the variables is due to
"erue" differerces rather than error. The estimate of the multiple correla-
tion squared, however, is only slightly affected by bias in the regression
coefficients, since as the intercorrelation rises it is less and less depen-
dent on the actual values of the regression coefficients.

In terms of efficiency, multiple-regression techniques will be most use-
ful when there are but few predictor variables, and, as the number of predic-
tor variables rises, when the predictors are relatively independent. (Sup~-
pressor variables constitute an exception to this rule, since they increase
the multiple correlation as their correlation with the other predictors rises.)

Equal Contributione to Total Variance. It is sometimes desirable to
ensure that each of the component variables has equal effective weighting.
This might be the case if the composite measure is truly intended to be a
composite rather than a measure of some hypothesized underlying unitary en-
tity, as when each of n judges assigns ratings and it is desired that the
judges' opinions have equal weight. Or, in the absence of an external cri-

terion, equal effective weighting may be deemed appropriate.

2Cureton (1951) has also discussed this problem.
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Both Wilks (1935) and Dunnette & Hogatt (1957) have presented iterative
procedures for obtaining approximate solutions for this case. The solution
requires setting »n equations like (5) equal to an arbitrary constant and sol-
ving for the weights wi' If, rather than equal weighting, it is desired to
set the welghts in some predetermined proportions to one another, this may
be accomplished by setting the constants in that proportion. Thus, the me-
thod allows us to assign a priori effective weignts rather than a priori
nominal weights as discussed in a previous section.

An interesting special case of this method occurs when uncorrelated
standard scores are given unit (or a priori) weights. (See Kaiser, 1957, for
a rather interesting orthogonalizing procedure.) Only under this condition
does the use of standard scores ensure equal weighting.

Equal Correlations with the Composite. When there is no external cri-
terion available, weights may be derived by the method of least squares to
equalize the correlation of each variable with the resulting weighted com-

posite score (Wilks, 1938). The correlation of 2 with wy3q + W2y L w3,

is
n
We T W.r..
(11) . v g=1 9% . EED

1 =///*n n_n
T wd + f L waw.rs,
=1 ° i=1 j=1 9%

Setting all such R's equal to some arbitrary constant p and solving for the
w's is equivalent to setting the numerators equal to p and solving for the
w's since the denominator is a constant. This method is logically defensible
only if none of the variables are negatively correlated,

Minimum Generalized Variance. Wilks (1938) has proposed a method of
minimizing generalized variance, an analogous extension of the concept of

variance, to obtain a set of welghts for combining a number of component

o ot —— S ST T 2
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. variables to form a composite when there is no external criterion. 1In an
n-dimensional space the score of a single individual may be represented as a

point whose projections on the 7 coordinate axes correspond to the scores

s ,
e liciizbadnn

% obtained by the individual on each of the 7 component variables. An n-dimen-

sional simplex may be determined in this space by taking »n points plus the

: point representing the mean of all = variables. The generalized variance is
found by squaring the volumes of all such simplexes formed by taking differ-

ent combinations of # points, summing, taking the mean, and multiplying the

; result by (n!)z. In the case of one variable, this is the variance, where
(n!)2 = 1, and instead of squaring volumes it is the length of the line seg-

ments connecting single points with the mean of the distribution which is

squared. In the case of two variables it is the area of all possible tri-
angles formed by pairs of points :ad the point representing the mean of both

distributions which is scuared and averaged and multiplied by (2!32. “In the

b ey g I

case of three dimensions it is the volume of all possible tetrahedra form by

trios of points and the point representing the mean of the three variables

which is squared.

Briefly, Wilks' method is applied to the weighting problem as follows.

B e R Lo o

An n-dimensional space is defined by the » component variables x;. The score

-t

of the pth person on the ith variable may be denoted xip,where all scores are

in standard form. A linear function of the xi's is sought, such that for any

given value of the function the generalized variance of individuals having

that value is minimized. The "plane” T = w%y + WXy +.oot W X, cuts across

N W“W"&\*n

5 : the n-dimensional space, determining a series of n-l dimensional spaces which
are non-intersecting. The generalized variance of individuals within each of

these subspaces is then minimized and a single set of weights found which

PR ——

satisfies this condition.
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Minimum Variation. In 1936 Edgerton & Kolbe presented a method for

combining a number of measures of the same thing based on the criterion that

the sum of the squares of the n(n-1)/2 differences between standard scores

for an individual on each of the n variables be a minimum. In other words,

intra-individual differences in standard scores are minimized. In the same

year a method was suggested by Horst for deriving a set of weights which

would maximize the difference between composite scores for all pairs of indi-

viduals, i.e., maximize inter-individual differences. Interestingly, this

approach leads to weights which are proportional to those obtained via the

former criterion. Edgerton & Kolbe, noting that the two methods yield iden-

tical results, maintained that their method was computationally simpler.

Maximum Reliability. 1In the absence of an external criterion, probably

no alternative criterion has so frequently been seized upon as maximum relia-

bility. Weighting for reliability has been especially popular when the vari-

ables to be weighted are tests which comprise a battery or the items of a

singie test. It is well known that the maximum ccrrelation which may be ob-

tained between two variables is iimited by their respective reliabilities:

= . ] 1 i H .
%y %t'/pmxpy where Prs is the correlation between '‘true” scores. In

measurement, reliability is the sine qua non, the necessary but not sufficient

condition, for a valid instrument. For this reason weighting for maximum
reliability has long been deemed a worthy enterprise.

When reliability is defiaed in terms of the proportion of total composite
variance which is "true score" variance (or, 1 - the proportion which is
error variance), the sample reliability coefficient of the composite Yy is

given by the following formula when all variables are expressed in standard

form:
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n 2 n n :
I wr.., + I I ww.r..
=1 *** =1 g=1 9 Y
roy= i#d
(12) wy ' ’ (z # d)
(] 2 n n
r w, + I I wwr,.,
i=1 * i=1 g=1 *J %Y

From this formula it is apparent that the reliability of the composite may
equal 1.00 if and only if every P also equals 1.00. Likewise, if every
ros is zero, ryy, must also be zero. Mosier (1943) has discussed the effect
on ryy' of the interrelationships among the variables. For example, if the

variables are mutually uncorrelated, the reliability of the composite is the

weighted-mean of the item reliabilities r..,, where each rii' is weighted

1!
by wi' He notes that this conclusion is of particular interest because when
multiple regression is used for prediction, every attempt is usually made to
obtain predictors which are independent or nearly so. It may be noted from
Equation (12) that for a given set of individual reliabilities and weights,
the reliability of the composite increases as the positive intercorrelation
of the components increases, although the unreliability of the components
does set an upper limit to the size of these correlations.

Equation (12) may be conveniently expressed in terms of two matrices, r
and B, both of which contain the composent intercorrelations in the off-
diagonal cells, zud the row vector'df.Wéights.Qi. In the diagonal. cells of »

are the reliabilities Toirs whereas in X the diagonal elements are unity.

Using this notation Equation (12) becomes
(13) r , = wrw'/wRw'.
yy

Thomson (1940) derived formulas in matric form for both the maximum -

battery reliability and the weights which give this result. Peel (1947, 1948)
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has shown that Thomson's formulation may be considerably simplified. Maxi-~
mum reliability may be found by solving Ir - ARi for its largest roct Al.

The desired weights are then in the ratio of the elements of apy row of

adj(r - AIR). Peel (1948) has also given equations for the weights which

will maximize the correlation between a predictor battery and a complex cri-
terion, itseif a weighted composite with fixed weights.

Validity vs. Reliability. Since methods are available for computing
both the weights which give maximum validity and the weights which give maxi-
mum reliability, an interesting question is, "What is the effect on relia-
bility of weighting for validity, and vice versa?" Since the two sets of
weights are not at all likely to be proportional, weighting for one criterion,
e.g., validity, will result in a less~than-maximal value of the other.

This general lack of correspondence between the two sets of weights may
be attributed in the main to two factors. First, when other factors are held
congtant, weighting for validity results in weighting more heavily those
variables wh;ch are more highly correlated with the criterion. Likewise,
weighting for reliability weights more heavily the more reliable variables.
Thus, unless the more reliable variables are also the more valid ones (with
respect to the observed correlation with the criterion) the correlation be-
tween the two sets of weights will not be perfect or even nearly so.

Let us consider one case where this is likely to be true and one case
where it is not. If all the items of a test are assumed to measure the same
thing except for error of measurement, and if all are of a constant level of
difficulty, then differences in observed correlations with the criterion are
due solely to unreliability, Z.e., 1f all correlations were corrected for
attenuation, they would equal a constant, the "true'" correlation with the

criterion. In this case, the items with the highest reliability will also

have the highest observed correlation with the criterion. Thus, as far as

o ot e oS e e ey -
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this influence on the relative sizes of the weights is concerned, weighting
for validity should have the effect of increasing reliability as well and
viece versa.

However, it is not difficult to conceive of instances where the most re-
liable items of a test are not the most valid and the most valid not the most
reliable. For example, in a multiple-choice test with items of different
degrees of difficulty, some items which are very easy may be passed by nearly
all examinees. These items may have higher reliability but lower validity
than do some of the very difficult items in the test. (Very difficult items
tend to have low reliability because of guessing.) Contrasting only these
subsets of items from the test, weighting for reliability would weight the
easy items higher than the difficult ones, and weighting for validity would
do the opposite.

In actual practice it is not likely that many of the items of the test
would behave in this manner. This is due partly to the fact that item unre-
liability prevents extremely high correlations with the criterion, thus making
it unlikely that the very unreliable items would have high observed correla-
tions with the criterion.

The second factor which affects the two sets of weights differently is
the irtercorrelation of the component variables. As noted earlier, when other
factors are held constant, the variables which are more independent will re-
ceive higher weights in the multiple-regression case. When weights are de-
rived to maximize reliability, however, high positive intercorrelation of the
components provides stability and thus, other things equal, the components
which have higher correlations with the remaining components are weighted
mor2 heavily.

This may be seen readily in the formula which Mosier (1943) derived for

the weight to be assigned to the pth item, in order to maximize reliability,
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when the gth item is taken as a reference and assigned a weight of 1.00:

1{4
: wer. (L-1r_)
@y w o= 27 i . GEp Q)
n
I wr,){Q-r +r <+
CE 05 0= Tpp) ¥ Paq * Tpp

Note that the sum of the intercorrelations of the reference item appears in the
denominator of all weights and that the sum of the intercoxrelations of the pth
item appears in the numerator. Of two items with the same reliability, the omne

with the higher total intercorrelation with the other items will have the

higher weight. Thus two factors, item validity vs. item reliability, and total
intercorrelation of an item with the remaining items, work against the perfect
or near-perfect correlation of the sets of weights which maximize validity and

reliability respectively.

Table 1

The Effects of Weighting on Validity and Reliability

Correlations I I III IV
: 3% .50 .40 .50 .50
ry, .95 .60 .95 .95
251 .20 .20 .40 .20
2as .40 .40 .20 .20
P .10 .10 .10 .10
Unweighted
Validity .405 .405 .405 .270
Reliability .660 .545 .660 .660
Weighted for
Validity
W, .162 .162 .384 .182
W, .384 .384 .162 .182
Validity 460 .460 .460 .270
Reliability .884 .598 .597 .660
Weighted for
Reliability
Wy .010 154 .010 .010
Wy 1.000 1.000 1.000 1.000
Validity 402 425 .204 .202

Reliability .950 .607 .950 .950
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In Table 1 we present numerical illustrations of some of the foregoing points.

Four hypothetical sets of data, including the reliabilities, validities, and

intercorrelation of two variables which comprise a two-test battery, appear

in the first section of the table. Below these, the validity and reliability

of the unweighted composite are given, followed by the welghts and resuiting
valildities and reliabilties obtained when the composite is weighted for

validity and reliability respectively.

In Case I, the reliability and validity are in the same direction for

the two tests, Z.e., the more reliable test has the higher observed correla-

tion with the criterion. Thus, it is to be expected that weighting for either

validity or reliability will increase both. But this is not the case. Weight-

ing for validity does increase reliability from .660 to .884, but weighting

for reliability reduces the validity, despite the fact that the more reliable

test is also the more valid. The reason for this is apparent from the sizes

of the weights. Since the second test is comsiderably more reliable than the

first, and since the intercorrelation of the tests is low, the weight assigned
to the second test is 100 times as large as that assigned to the first, thus
all but eliminating the first test from the composite, despite its small indej
pendent validity. In the unweighted case, the second test by itself correlates
.400 with the criterion, and adding the first test to the battery increases
this correlation very slightly to .405. Weighting for reliability waters down
this contribution greatly, resulting in a gain of only .002 over the correla-

tion for the second test alone. The reliability of this composite, however,

is wvirtually identical to the reliability of the more reliable test.

In Case II the general pattern of the correlations remains the same, but
here the difference between the reliabilities of the tests is not so great.
In this case the expected trend does occur. Weighting for validity produces

the same regression welghts and the same resultant validity as in Case I,
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although the increase in reliability is smaller because of the reduced relia-
bility of the individual tests. Weighting for reliability, however, produces
weights which are in the ratio of approximately 13:2 rather than 100:1, again
increasing the reliability of the composite to a value almost as high as the
reliability of the more reliable test. The validity is increased modestly
from .405 to .425.

Case III illustrates the situation where the more reliable test has a
very low correlation with the criterionm, whereas the less reliable test, des-
pite its unreliability, has a higher correlation with the criterion. In this
case, as expected, weighting for validity reduces the reliability from that
of the unweighted composite. Likewise, weighting for reliability reduces the
validity from that of the unweighted composite. Again, since the two tests
differ so greatly in reliability, weighting for maximum reliability reduces
the contribution of the less reliable test to the validity of the composite
to nearly zero.

Case IV illustrates the fact that when tests which differ in reliability
but have equal correlations with the criterion are weighed for reliability,
the validity of the composite is reduced from that computed for the unweighted
composite. In this case, since the observed correlations with the criterion
are equal, weighting for validity produces equal regression weights and no
increase in the validity of the composite. In this case, any weighting scheme
other than equal weighting of the two tests will produce a reduced validity
for the composite. Of course if there were more than two variables in the
composite, differences in their intercorrelations with one another would pro-
duce differences in the regression coefficients and some increase in validity.

The above illustrations are at best oversimplified because it is not too
often that one combines only two measures. In any situation where there are

more than two variables.to be combined, the individual validities, reliabili-
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ties, and intercorrelations will interact to produce the resultant effect on

one measure of weighting for a maximum value of the other.

From Table 1 it is clear that weighting for reliability cannot increase

the reliability of the composite to a value higher than the reliabiiity of
the most reliable test in the battery. What weighting actually accomplishes |
is suppression of the contributions of the less reliable variables, leaving
it to the most reliable tests to constitute the composite score. If, on the
other hand, the less reliable tests could, by some means, be made more reli-
able, the reliability of the unweighted composite would automatically rise,

as would the validity.
Table 2

The Effects of Weighting for Validity
with Perfectly Reliable Tests

Correlations 1 Il I1I IV
Py, .283 .316 . 566 .283
roo 410 .516 .205 .205
rlz 145 .204 145 145

Unweighted
Validity 458 .537 .510 »322
Reliability 1.000 1.000 1.000 1.000

Weighted for

Validity
Wy ,228 .220 .548 .259
W, .377 472 .126 .168
Validity .468 .552 .588 .333
Reliability 1.000 1.000 1.000 1.000

In Table 2 the correlations of Table 1 have been corrected for attenua-

tion. These values are thus the observed correlations which would be expected

if all the tests were perfectly reliable. With perfectly reliable predictors

the composite would also be perfectly reliable and the unweighted validity of

the composite would increase accordingly. These perfectly reliable tests
might then be weighted for maximum validity. The resulting validity coeffi-

cient would be the maximum corelation obtainable with these tests.
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Since actually making the tests more reliable automatically increases the
validity, whereas weighting for reliability may or may not increase validity,
it would seem that it is always safest to attempt to increase reliability
per se, rather than to weight for increased reliability. This would definitely
be preferable if a criterion measure is available. If no criterion measure is
available, and hence the validity is unknown, weighting for reliability is to
be recommended only if it may be safely assumed that the most rellable tests
are not, in fact, the least valid omes.

It may be objected, hdwever, that since reliability is a necessary pre-
requisite for a valid test, then if there is no criterion measure, increasing
the reliability of the test is always to be desired. Somewhat similarly, it
has been suggested that, even when criterion measures are in hand, one might
wish to increase both validity and reliability by stipulating that these shall
be equal and then solving for the weights which maximize this value (Thomson,
1940). Both of these positions seem to advocate increasing reliability even
at the cost of some validity. Admittedly, the unreligbility of a test sets
an upper limit to the validity of the test. But if a test with low reliability
correlates more highly with the criterion than a quite reliable one does, then
despite its unreliability the test will always be expected to correlate more
highly with the criterion. Likewise, an unweighted composite of these tests
will always be expected to correlate more highly with the criterion than a
composite weighted for reliability. What the unreliability of the mere valid
test does do is prevent the maximum correlation for this test with the cri-
terion from occurring. But manipiilating the reliability of the test statis-
tically is not necessarily a good thing, particularly since validity may be
lowered in the process. These statements apply even when the actual validity
is not known, thus explaining why weighting for reliability exclusively is not
recommended unless it may be assumed on other grounds that this will not de-

crease the real but unknown validity.
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In testing, most measures, even if highly reiiable, ¢ not often
have extremely high correlations with the criterion. Thus, it is unlikely
that we will discover many variables which, while unreliable, are never-
theless more valid than their more reliable companions in the composite.
In the usual situation a reasonable reliability is needed before the test
or test item can evidence any validity at all. It is probably for this
veason that reliability and increasing reliability have received so much
attention. But it must be emphasized that once the validity is known, re-
liability must assume a position of secondary importance. It is better to
have a test with reliability of .60 and validity of .57 than a test with
reliability of .95 and validity of .19. In the former instance the "true"
correlation with the criterion is .95, whereas in the latter it is .20!'

These, then, are some of the more important methods which have been
used to assign weights to the component variables which comprise 2 com-
posite. A number of additional weighting methods deserve mention. Some
of these are admittedly approximations to multiple regression weights
and others are simply weights which have been used for one reason or an-
other. Each will be discussed briefly before we move on to the next major
section of the paper.

Weighting by the Reciprocal of the Standard Deviation. Quite fre-
quently the authors of tests wish to eliminate the influence of unequal
standard deviations on the effective weighting of a number of variables.
Weighting each measure by the reciprocal of its standard deviation ac-
complishes this. Using standard scores has the same effect and in ad-
dition subtracts out the mean from each measure. Some testers have mis-
takenly believed that this ensures equal weighting. This conclusion is
unwarranted, of course, unless the component variables are uncorrelated

or equally correlated. Otherwise the intercorrelations will determine the
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effective weights.

If no particular significance is attached to the fact that the sev-
eral variances are unequal, then removing this source of unintended weight-
ing may be appropriate. There is at least one case, however, where this
would not be true. Richardson (1941) presents an example similar to the
following. Suppose X7 is the number of items answered correctly on a 50-
item test and X, is the number of items answered correctly on a 100-item
test. X, will undoubtedly have a larger variance tham Xj. But it is also
true that the longer test will in general be a more reliable test. If the
scores are merely combined, the longer test will automatically have the
larger effective weight. This will work in favor of the reliability of
the composite. In this case, weighting by the reciprocal of the standard
deviation denies any such difference between the tests and thus works
against the reliability of the composite. If the two tests in the composite
measure the same thing, then the increased reliability of the longer
test would also be reflected in a larger validity, again arguing against
the use of these weights.

Weighting by Length. The above example raises the question of
whether or not tests should be weighted in terms of their length. Or-
iginally, the idea of weighting by length can probably be traced to the
fact that examination grades are often expressed as percentages of items
answered correctly. Combining such percentages directly gives edqual
nominal weighting to each test. But clearly, if one test consists of
50 items and a second of 100 items in the same subject, then the second
test is, in a very real sense, equal to two of the first. Welghting
each percentage in terms of the length of the test on which it was com-
puted has the effect of converting the percentages back to a score equal

to the number of items answered correctly. By so doing each item now has
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equal nominal weighting3. By simply adding the percentages the tests will
be equally weighted, but the items will not.

But what of the case where the tests are not in the same subject,
but instead tests from a number of different subjects are to be combined
to form some sort of overall achievement score? ' In this case it is not
so clear that each item should be equally weighted. The principal
reason for this is that the significance of a single item may differ mark-
edly from one subject to the next. A single lengthy algebra problem simply
cannot be considered equivalent to a single vocabulary item. The item is
a meaningful unit only when the items are measuring the same thing or very
similar things.4 In such a case it would undoubtedly be better to work with
the percentage scores, perhaps weighting these on the basis of cther a priort
or empirical considerations.

Weighting by Difficulty. Another method of weighting which has been
popular, particular in the classroom, is weighting by difficulty. Very often
such weighting is implied rather than explicit, as when a teacher assigns
different weights to sections or items of a test on the basis of an intuitive
feel for the difficulty or “worth" of the component in question, rather than
some conviction concerning the intrinsic validity of the component. In other
cases, particularly with some standardized tests, the weights are derived
via an empirical estimate of the difficulty of the item. 1In these cases the
weight is usually equal to the proportion of those taking the test who fail
to answer the item correctly.

The logic of this type of weighting is most likely based on the con-

3See footnote 1.

4Likewise, for items which do measure the same thing, it might also be
argued that items of different forms, e.g., true~false v8. multiple-~choice,
are not equivalent units.
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viction that knowing a very difficult item is ewvidence of considerably more
ability or achievement than knowing a simple one. But no one seems to have
pointed out that, in effect, this is the same as penalizing the student more
heavily for not knowing a difficult item than for not knowing an easy one, a
rather counter-intuitive strategy. If the weights were reversed we would be
in the position of penalizing the student more for missing an easy item than a
difficult one, but at the same time allowing less credit for a correct answer
to a difficult item than an easy one. As long as there is but a single set of
weights which is monotonically related to difficulty, we cannot have one side
of the coin without the other. One possible way around this difficulty, how-
ever, would be to give more credit for passing a difficult item than an easy
one, and at the same time to penalize more severely, with a negative weight,
for missing an easy item than for missing a difficult one. Fcr example, let
the positive weight equal g, the proportion of examinees failing the item, and
let the negative weight equal -p, where p is the proportion passing the item.
Thus a difficult item passed by only .05 of the examinees would be scored .95
if passed and -.05 if failed. The mean score for each item over all examinees
is qp + (-pq) = O and thus the mean test score for all examinees is also zero,
although the distribution of the scores will depend on the distribution of the
item difficulties. This scheme does not, of course, take guessing into ac-
count, except insofar as the values of p and g are affected by guessing. Al-
though this weighting scheme is not being recommended, it is logically more de-
fensible than simply assigning weights according to difficulty.

It is interesting to note that when items varying in difficulty are
given equal nominal weights a certain amount of natural weighting-by-dif-
ficulty occurs, although this weighting is nct a monotonic function of
difficulty. As the difficulty of an item deviates from .50 the maximum
phi coefficients for that item with the other items of the test becomes

smaller, thus limiting the size of its maximum possible contribution to
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total variance. Thus the most and least difficult items tend to be less
heavily weighted than items of .50 difficulty.

Weighting by Validity. When it is not feasible to carry out a full-
scale multiple regression derivation of appropriate weights for componenF
variables, very often the raw correlation of the component with the cri-
‘terion is used as an approximation to the optimal weight. Such a weight
ignores the intercorrelation of the components and the variance of the in-
dividual component being weighted. If, however, standard scores are weight-
ed in this manner, the intercorrelation of the components is the only
factor which is left unaccounted for. Since in a single test the items
are usually fairly homogeneous and the average intercorrelation of any
one item with the others may be fairly constant (particuiarly if items
are of similar difficulty), the approximation may be a very good one in-
deed. The same is true if the components are nearly independent of one
another. These weights are in least correspondence with the multiple
regression weights when the average intercorrelation varies markedly from
one component to the next and when raw scores are used which differ
markedly in variance.

Guilford (1941) has presented a formula for weighting test items
which is an approximate regression weight for X; and which combines the
correlation of X; with the criterion @, the standard deviation of the

criterion, and the standard deviation of X;:

(15) wi = ricsc/si.
The only factor not included in this weight is the intercorrelation of the
jtems. Guilford goes on to simplify this expression by assuming criterion

groups of equal size, thereby fixing 8§, at .50. The formula, after simpli-

fying and transforming to achieve a range of weights from O to 8, is
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(16) wy = (P, - P;)/P(1 - P) -+ 4,
where P, is the proportion of people in the "upper" criterion group who select
the response and P; is the proportion in the "lower' group who select the re-
sponse. P is the proportion in the combined group P, + Pz who choose the re-
sponse. As Guilford presented the method it was intended for use with re-
sponses, but as can easily be seen, it also lends itself readily to use with
dichotomously scored items.

At least one other index of validity has been used to weight the items
of a test. Clark (1928) presented a formula for evaluating the items of a

test. His index of validity, IV, was given by
17) v = (P -D)Y/(@1 - D),

where D is the percentage of the group taking the test who fail the item and
P is the percentage of the "criterion group" who fail the item. For a given
item the criterion group is composed of thie D percentage of the class who rank
lowest in terms of total score. Although Clark seems to have intended his
Index of Validity as a measure of the ''goodness' of a particular item, at
least one person, . Peatman (1930), has used it to weight items.

Factor Analysis. One further method of weighting deserves mention. If
no criterion measure is available, a correlation matrix may be factor analyzed
to extract the major factors accounting for the variance of the unweighted
composite. Factor scores, correlated or uncorrelated, may then be secured.

See Glass and Maguire (1966) and Harris (1967).
The Effectiveness of Weighting

in cach situation where a set of weights is used with a set of variables
the specific effect of using one particular set of weights as opposed to

another is uniquely determined by the factors which have been discussed under
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“Methods of Weighting." However, it is possible to make certain generaliza-
tions concerning the limits of the effectiveness of any set of weights rela-
tive to another set of weights regardless of the method used to derive either.

It is well known that if the correlation of each of two variables with a
third is known, then the limits of possible values of the correlation between
the two variables is determined? For example, if each cf two variables cor-
relates .90 with a third variable, then the correlation between the two vari-
ables must lie within the range .62 £ r £ 1.00. Therefore, if the correlation
between one weighted composite and a criterion is known, and if the correla-
tion between the two weighted composites is known, then the limits of the
correlation of the second composite with the criterion is determined. However,
even in the absence of information concerning the size of the correlation of
one composite with the criterion, the size of the correlation between the two
composites gives soﬁé indication of the limits of the effectiveness of either
weighting method over the other. If it is known that two different sets of
weights produce composites which correlate .99, then regardless of the cor-
relation of either composite with the criterion, adopting the alternative set
of weights could not be expected to affect that correlation very greatly.

A rumber of authors, notably Wilks (1938), Richardson (1941), Burt (1950),
and Gulliksen (1950), have presented formulas for the correlation of two
weighted sums. Since Gulliksen's formula is the most general, and since he
discusses important special cases, it is closely followed here. If n standard
scores are weighted by the weights v and the same set of scores also weighted
by the set of weights w, we may denote the respective composite scores X, and
Xb. Without yet imposing any restrictions on the weights, the correlation

between the two composites X, and X, is given directly by the following

formula:

5

See Stanley & Wang (1969)
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In Equation (18) the weights have been expressed in raw-score form. The sums
of squares and cross-product sums may, however, be expressed in terms of the
means, variances, and covariances to which they are related. When this is

done and the expression is simplified, Equation (18) becomes

n(l - ;ij)(COV(viwi) + ) + n2 - n)Cov(@.w.)r..) + nszri-

T d" U dJ
9
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where, as usual, ¢ # j. From this equation it may be seen that the correlation
between the two weighted composites depends upon the number of scores to be
combined, n; the mean values of the two sets of weights, » and 5} the variance

of the two sets of weights, 05 and 05; the average intercorrelation of the

variables to be combined,';-

15} the covariance between the two sets of weights,

Cov(viwi), and the covariance of a product of weights with a corresponding

correlation, Cov((viwj)rij). To see what happens to this expression as :zn in-

creases we may divide the numerator and denominator by #2 and eliminate all

terms which have 1/n as a factor. Thus,

Cov((.w.)r..) + wvwr..
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/CW((%UJ)”-&J') + v rij /CW(("’iz"j)Pij) + w rij




-35-

This expression will be equal to unity if the covariance terms are equal and
if the mean p weight equals the mean w weight. If the covariance teérms are
nearly zero, such that they may be ignored, then the correlation apéroaches

unity regardless of the mean value of the weights. The information concern-

1. If either or both » and w may be zero, erXw may assume any value
regardless of the wvalue of';%j, n, or the various covariance terms in-
volving the weights.

2. If v and w are small in relation to Gy and T,y rxbxﬁ depends pri-
marily on the four covariance terms and is relatively insensitive to
changes in the values of ;éj and n.

3. If we consider only positive weights so that va5 and owf5 are less
than unity,-the correlation between the twc composites obtained by using
two different sets of weights approaches unity as (a) the correlation
between the two sets of weights is increased, (b) the average intercorrel-

ation of the component variables is increased, and (c) the number of

component variables to be combined is increased. It should be particular-

ly ‘- noted that the last effect holds, even if the correlation between

the two sets of weights is zero, provided ;éj is greater than zero.

(d) As the standard deviation of the weights is increased in proportion

to the mean weights, rX ¥ approaches unity regardless of the values of
— — — VW
rij’ v, and w.

From these deductions it is clear that there are very real limits on the

effectiveness of any weighting method, particularly’when the number of pre-
dictor variables is large and only positive weights are used. Under these
conditions even random sets of positive weights will result in composites
which are highly correlated. When the weights have been derived according to

some logical rationale, the correlation is likely to be very high indeed.
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Gulliksen concludes that from a practical point.of view, 50-100 variables
is probably sufficient to make differential weighting unprofitable, and the
same conclusion is reached if the variables.are very highly correlated.
Weighting may be worthwhile, he contends, when there are few, say three to ten,
variables to be combined and if the average intercorrelation is also low, say ;
.50 or less. However, in addition, even in this case, the weights must have
an appreciable standard deviation if they are to differ from unit weights
appreciably. And finally, if two sets of weights are being considered, and
the weights themselves are highly correlated, it will make little difference

which set is used.

A word of caution is in order concerning the wholesale dismissal of the

weighting question under conditions of high correlation between differently
I weighted composites. It was pointed out earlier that the limits of the effec-

tiveness of one set of weights given the effectiveness of another set and the

correlation between the two weighted compesites is easily determined. It is

: implicit in the correlation-between-weighted-composites approach that if the
correlation rapidly approaches unity, then it really doesn't matter which set
of weights is used. This is only partially true. As the validity of one
weighted composite drops from unity, the range of possible values which another
weighted composite may give when correlated with the criterion increases; with

a constant correlation between the composites. Likewise, for a constant vali-

dity of the first weighted composite, as the correlation between the two

weighted composites drops from unity, the range of possible validities for the

second increases. McCornack (1956) hLas criticized a great many empirical
; studies of the effectiveness of weighting for failure to take this into account.
Thus, quite often investigators are content to report only that two composites
correlate over- .90 or some higher figure without reporting or even investiga-

ting whether one composite is more or less valid than the other. Yet this is
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the result that is of most importance. In such cases, and they are numerous,
conclusions to the effect that weighting is not worth the trouble or that two
methods of weighting will result in essentially equivalent scores, while prob-
ably correct, are not completely justified.

A word of caution is also in order concerning a very similar premise,
viz., that 1f the correlation between two composites is greater than the re-
liability of either, then it does not really matter which" composite is used.
The argument which has been advanced by many, including Burt (1950), is that if
two tests (composites) are more highly correlated with one another than either
is with itself on another administration, then either one should be acceptable.
But this still does not allow for the real possibility that one version will
have a higher validity than the other. This will probably not be the case,
but it nevertheless must be recognized as a possibility.

So far a number of factors which influence the effectiveness of weighting
have been considered: the aumber of variables in the composite, their average
intercorrelation, the size of the weights and their correlations, ete. Nothing
has been said, however, concerning the size of the sample on which the weights
are derived or the distribution of the scores on the several component mea-.
sures. This section will be concluded with a brief mention of these two
points.

In the section on multiple regression it was pointed out that when
weights are derived on the basis of a sample from the population of interest,
sampling error will cause a certain amount of shrinkage in the validity co-
efficient when the weighted composite is used to predict the criterion in the
population. It is usually recommended that if multiple regression weights or
similar weights are to be empirically derived and used on a wide scale, the
sample on which the weights are derived should be fairly large. In deriving

the weights for responses to the Strong Vocational Interest Blank, Strong
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recommended, for example, that no less than 250 blanks for each occupation
should be used (Strong, 1943). In many personnel situations, and even in the
classroom, numbers this large are usually out of the question. However, the
lack of stability which small sample size brings about may also be responsible
for the observed lack of difference between different weighting methods.®6 In
an interesting empirical study of the effects of sample size on the predictive
validity of the resulting composite, Lawshe & Schuckef (1959) found no dif-
ference between samples of 20, 40, and 90 cases when the weights were used to
predict the criterion in a cross-validation sample. They concluded, howevef,
that more research on sample size is needed.

Although we have not stated it explicitly until now, most of the weight-
ing methods in common use do assume that the measures on the several component
varigbles are normally distributed, or at least have similar distributions.
Such assumptions are most important when tests of significance are performed
or when point estimation is involved. Failure to satisfy an assumption of
normality may have other consequences. For example, Cliff (1960) investigated
the effect of unlike distributions on the contribution to composite variance
made by two tests which formed a composite. One test was negatively skewed
and the other was positively skewed, although the tests had the same variance
since standard scores were used. It was hypothegized that summing the stan-
dard scores to get a composite would not result in equal contributiomns to com-
posite variance at various cutting points in the composite score distribution.
By actually computing the contribution of each wariable to the composite
variance it was demonstrated that the positively skewed variable contributed
more to composite variance in the upper percentiles and the negatively skewed

variable contributed more in the lower percentiles, whereas if the variables

6R.G. Simpson (1951) has considered the sample problem at length with
reference to the weighting of biographical inventory items.
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had been symetrically distributed, they would have contributed equally through-

ovt the distribution.

Methods of Weighting Response Categories

In each of the weighting methods discussed thus far the entity which was
weighted, X, was a quantitative variable capable of taking at least two
values. Each subject received a score on each of the n component variables
and it was these scores which were then weighted to-:determine the composite
score. In the present section we will consider the case where for each item
X; we can categorize the subject's rzsponse into one of a small number of
ﬁutually exclusive response categories which do not initially have numeri-
cal values associated with them. The weighting problem is one of determin-
ing'a set of weights for the categories in order to derive a total score for
the subject. Conceptually, the'problem is not very different from that of
scaling the response categories in order to assign to a subject the scale
value of the category he selects.

The response;weighting methods to be discussed may be classified ac-
cording to the nature of the criterion which is used to derive the weights.
We will first comsider methods which utilize an external criterion which
is classificatory. Next we will consider the use of an external criterion
which is quantitative, and finally we will turn to the use of an internal
quantitative criterion.

Weighting with an External Qualitative Criterion. Consider a single
stimulus, X7, to which a subject's response may be classified in one of ¢
mutually exclusive categories. The stimuli might be personal, biographical,
or demographic questions, the items of an interest or personality test, or
any such similar thing. As criterion measures we have the responses of two

or more criterion groups to the stimulus and we wish to determine weights
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for each of the ¢ categories in order to best estimate whether the subject's
response is more typical of ome criterion group or the other. Although a
priori weighting of responses is occasionally found (e.g.,see Giles,1936),
most often the weights are derived empirically. In one case, Gage (1957)
found that empirically derived response weights were not superior to logic-
ally assigned weights with respect to the reliability and validity of the
composite test. Nevertheless, in many cases it is not possible to determine
iogically which responses are to be weighted most heavily. Typical of these
situations is the interest test.

Strong (1943) has presented an historical survey of methods of weight-
ing responses of an interest test, His discussion is the basis of the brief
summary of these methods whichk follows. These methods have in common the
fact that the criterion to be predicted is qualitative, usually membership
in a particular group. Although Strong was concerned specifically with the
responses ‘#islike,"” ‘indifferent," and “"]ike' (which could, if desired, be
ordered, ¢.4.,0,1,2), the methods themselves are appropriate whenever a num-
ber of mutually exclusive categories of response are weighted for diagnostic
purposes.

In 1924, Ream used the following rationale to weight the items of an
interest test. He had a successful group of life insurance salesmen and an
unsuccessful group respond “like' "dislike," and indifferent" to a series of
items. He then calculated for each response to each item the proportion of
those in each of the two referemce groups who selected the response. When-
ever the difference between two of these percentages for one of the responses
to an item exceeded the standard error of the difference, the item was re-
tained and the score assigned to it was +1 if the direction of the differ-
ence favored the successful group and -1 if the reverse was true. This was

equivalent to setting the critical ratio equal to 1.00 and weighting
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zero all items which failed to attain this. However, Ream did not weight the
several responses to a single item differentially.

A much more recent example of a very similar approach to response weight-
ing is found in Anastasi, Meade & Schneiders (1960). In this case the response
weights were determined according to the significance of the difference be-
tween the proportions of those in the reference groups choosing the response
and the direction of that difference.

A somewhat different method was used by both Cowdery (1925) and Strong

(1930), based on a formula for weighting recommended by T.L. Kelley:

= )
(21) w, rrc/(l rrc)sr’

where LI is the correlation between choosing the response in question and

being in the criterion group, and Sy is the standard deviation of the response

] distribution. The Trc/sr part of the formula is actually an approximation to

the multiple regression weight which would be assigned to the response.

(1 - r%c) is proportional to the square of the standard error of rrc' In

practice the weight is usually multiplied by 10 to get rid of decimals and

then taken to the nearest integer. Both Cowdery and Strong used the formula,

although procedural differences in presenting the data resulted in different

working formulas.

In 1934 Kelley revised the formula, stating that instead of being pro-
portional to the square of the standard error of N the multiplicative
constant should be proportional to the square of the error of the weight
itself, rrc/sr' An appropriate formula was derived and the new formula
was adopted by Strong for scoring the Strong Vocational Interest Blank. The
whole notion of incorporating such a constant in the weight was subsequently
% criticized by Guilford (1941), however. He claimed that the reliability of

the regression weight should have nothing to do with the size of the con-
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tritution of the variable to the score. His argument bears a similarity to
that advanced in the last section against weighting for reliability.

Strong and, somewhat later, Kuder(1934) used the contrast of the group
in question with the composite of other groups, thus having a dichotomous cri~
terion. Porter (1965) tried a contingency-table chi weighting procedure for
securing weights from several criterion groups (such as foresters, clinical
psychologists, social workers, dentists, and pharmacists) simultaneously to
test the hypothesis that for similar occupations his procedure would differ-
entiate better than Kuder's, whereas for dissimilar occupations it would not.
Though somewhat equivocal because of an incorrect key to one of the interest
scales, his findings tended to support this hypothesis.

He considered Kuder Pref;rence Record -- Vocational items that required
thrée things to be ranked by picking the one liked most and the one liked
least. For example, an item might consist of three options ""Construct a
piano," "Play a piano," and "Move a piano." There are six possible order-
ings of those three phrases, each of which orders can be considered a ‘res-
ponse.'” If there are five differeat occupational groups, this yields a 6 x
5 set of tallies. Porter simply computed chi (the signed difference between
the number of responses in one of the 30 cells and the theoretical number
for that cell determined from the respective row and column sums, divided by
the square root of the theoretical number).

These figures, which resemble percentage deviations from expectancy,
were his option weights. A given examinee would obtain five scores for his
pattern on a single item, i.e., one score for each of the five occupational
groups. Porter used every item in the Kuder Preference Record, merely sum-
ming an examinee's pattern weights for each occupation to yield a score

scale for that occupation.

Weighting with an External Quantitative Criterion. In 1941 Louis Guttman




discussed at length the weighting of response categories. He showed that if
we wish to predict a quantitative external uriterion y by assigning weights to

each of a number of respomnse categories,x&}

the correlation ratio ";& will be
a maximum if each category is weighted by the mean criterion score of persons
in that response category. Such a weighting scheme produces a perfect re-
gression of criterion scores on category scores. The weighting scheme also
maximizes the correlation rby' If a number of items are . available, re-
sponse weights for each may be determined by the above procedure. In order to
maximize prediction of the criterion using all of these items, it would then
be appropriate to combine them in a multiple—regression equation, if it is as-
sumed that the regression of critericn scores on these item scores is linear.
Guttman, however, makes the simplifying assumption that the items are indep-
endent and uses the unweighted mean of the category weights to determine the
total score for each subject. This procedure does not, of course, take into
account the different 'validities' of the items or differences in their inter-
correlations.

It is interesting to note that although Guttman does not discuss the pos-
sibility, there is an alternative approach to the multi-item situation. Re-
call that in the single~item case the response of the subject was straight-
forwardly categorized. If there are kX permitted responses to an item, the
subject's choice determines which of kK categories he falls into. Once cate-
gorized, the determination of the weights is simple. For n items, each with
k alternative responses, it is possible to categorize each subject uniquely
by the particular combination of responses he selects over the » items. There
are k" such categories possible, and after all subjects have been categor-
ized, the determination of the weights is the same as in the previous case.

It is not particularly surprising that this method was not explicitly

suggested by Guttman. As the number of items increases the number of pos-
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sible response combinations increase’; exponentially. For 10 five-option items
it is 9,765,625! This is a far less economical method than simply using the
rname of the subject to predict his score! Still, for a very few items and a
very large number of subjects, the scheme does have the advantage of maximiz-
ing prediction.

Whervy (1944) has discussed a special case.of the one considered by
Guttman. Where the external criterion is expressed as a pass-fail dichotomy,
scored 1,0, Wherry shows that for a single item the. response weights which
maximize the point biserial r are weights which are proportional to the pro-
portion of passers in each response category. This proportion is exactly
equal to the mean of the subjects choosing the response, where the criterion
scores have been scored dichotomously. For a theoretical study of Guttman's
procedure as applied to option-preference patterns, see Merwin (1959).

Weighting with an Internal Quantitative Criterion. ' Where there is no
external criterion with which to weight item responses, it is nevertheless
possible to derive weights which will differentiate among subjects with re~-
spect to a composite score. Guttman (1941) considers the total scores
to have meaning only _ insofar as they enable us to differentiate be-
tween the candidates consistently. Guttman seeks to maximize the internal
consistency of a set of responses to n items. He seeks weights for the re-
sponse categories whici: will maximize the correlation over items and sub-
jécts between response weight and total score. Clearly, the internal con-
sistency of a set of responses is enhanced if persons with similar total
scores tend to endorse similar respomse categories. Guttman shows that such
a correlation is maximized when a score for a person is the mean of the
response categories which characterize him, and when the weight for a re-

sponse category is the mean score of the persons choosing the category.

Clearly, since there is no a priori "correct" response, many sets of
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weights will do. Both Lawshe & Harris (1958) and Shiba (1965) have presented
iterative procedures for this case. In the Lawshe & Harris procedure the
responses are first given a priori weights and each subject's score is cal-
culated by averaging the weights assigned to the responses he has chosen. The
weight for each response is then recalculated according to the mean score of
those choosing it. The subject's score is then revised according to the new
weights and so on until the weights and scores stabilize.

Although there has been no attempt to do so te date, the above response
weighting methods, with and without an external criterion, could be used to
weight responses to test ltems where there 18 an a priori correct answer. It
is generally recognized, at least in theory, that differential weighting of
distracters may provide information which is lost when test items are scored
dichotomously or with a correction for guessing. If an external criterion
were available it would be possible to assign each response option a weight
equal to the mean criterion score of individuals choosing the option. of
course, it would be necessary to insure that the correct option for each item
has a significantly higher weight than any other option. In the absence of an
external criterion an internal criterion such as number of items correct or
total score corrected for guessing could be used to weight the options. As in
the Lawshe & Harris procedure,it would be possible to continue iterations until
scores and weights stabilized. In the former case validity of the items
would be maximized, whereas in the latter, reliability would be maximized.

Cross~Validation and Response Weighting. Just as it was true in the case
of multiple regression, it is true with optimum response-weighting tech~
niques that weights derived in a particular sample or population have more
effectiveness in that same sample or population than any other set of weights.
Once again, depending on what the weights are intended to maximize, there is

likely to be shrinkage when the original weights are applied to a new sample
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from a given population. It is perhaps with this in mind that some investi~
gators look for significance before assigning weights. According to Guttman,
Strong could simply have weighted response options by the proportion of per-
sons choosing the option who were members of the occupation in question. What
Strong did, however, was to consider the difference between the proportions
choosing and not choosing the option with respect to the profession in ques-
tion. Since small differences, though real in the sample, might well be due
to sampling fluctuations and disappear in a different sample, Strong chose
instead to weight more strongly those responses which were more differentia-
ting. The use of the test of significance to determine the size of the re-
sponse weights in the Anastasi et al. (1960) paper is another example of this.
Thus, if Guttman's method were to be used in any large-scale testing program,
crossvalidation of weights would be extremely important.

This concludes what might be called the analytical approach to the
weighting problem. We have seen that alternative definitions of weighting
appear in the literature and we have reviewed all of the major methods of
weighting which have been and continue to be used. Finally, we have con=
sidered, from a rational standpoint, those factors which operate in each con-
crete situation to determine the effectiveness of the various weighting
methods. In the next section we turn to the empirical studies of weighting,
those where a specific set of component variables is to form a composite and

the problem of whether or not to weight, and/or what set of weights to use,

is investigated.
Empirical Studies of Weighting

Empirical studies of weighting far outnqmber analytical ones. A great
many early testmakers either incorporated weights into their tests as a matter

of course (e.g;, see Yerkes, Bridges & Hardwick, 1915; Pintner, 1920; Wright,
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1929) or tried out one or two methods before making a decision on the weighting
question (e.g., see Andersom, 1925; Bovee, Holzinger, & Morrison, 1925). Both
the Yerkes-Bridges Point Scale and the Kuhlman—-Anderson Intelligence Test in-
corporated weights of some form. Besides these, a great many less well-known
tests incorporated some type of weighting scheme. Because the number of stu-
dies is so large, and since the findings tend so strongly in the same direc-
tion from one study to the next, each of the following sections of this dis-
cussion will be arbitrarily selective. The studies which are to be mentioned
in some detail are quite typical of those to be found in the literature.
Although the empirical studies of weighting deal primarily with the
weighting of tests, subtests, test items, item responses, and so omn, the
weighting question has also been explored in other areas. Other types of in-
formation to which weighting methods may profitably be applied include eco-
nomic, anthropometric, and psychological indices (Scates & Fauntleroy, 1938;
Stromgren, 1946); biographical or personal inventories (Congdon, 1941; Wherry,
1944) ; and especially ratings (Bingham, 1932; Jurgensen, 1955; and Tiffin &
Musser, 1942). For the sake of simplicity, however, this section will deal
only with the weighting of measures which may propoerly be termed "scores" of
one type or another. We will first consider the weighting of scores which are
themselves composites, Z.¢., course grades, test scores from a number of
different tests or from subsections of a single long test, or test scores from
a number of tests of the same thing. Second, we will consider the weighting
of the items of a single test, where in most cases the raw score from a single
item is in the form of a pass-fail dichotomy. Finally, attention wiil be
turned to the problem of response weighting, both in the interest and perso-
nality typé of test, where there is no “correct" response, and in the academic-

achievement or aptitude type of test, where incorrect responses may be differ-

entially weighted.
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The Weighting of Tests

In 1931 Scates & Noffsinger reported a study of factors which influenced
the effectiveness of weighting when a number of tests in a battery were to be
combined to form a composite., A six~test battery and a ten-test battery were
involved. The first battery bf tests was given to 80 subjects and the second
to 26 subjects. Four methods of weighting were compared: (1) mnatural weight-
ing using the raw scores on each test; (2) a priori weighting based on the
opinion of a committee of judges; (3) modified ¢ priori weighting; and (4)
sigma weighting, i;é.weighting by the inverse of the standard deviation.

The results were presented in terms of the correlation between composite
battery scores under the different types of weighting. For the ten-test
battery these correlations ranged from .943 to .985. These correlations are
interpreted as evidence ar .'nst the effectiveness of artificial weighting over
natural-raw-score weighting. A fairly high intercorrelation of the tests may
explain the high correlation between the composites. As noted above, however,
correlation between composites does not deny the possibility of differential
validity of the various composites.

A more recent study by Wesman & Bennett (1959) illustrates the more di-
rect approach where the validities themselves are compared for one weighting
scheme vs. another scheme vs. no weighting. In this case the tests were ac-
tually the subtests of the Psychological Corporation's College Qualification
Tests, including 75 verbal items in one subtest, 50 numerical items in the
second, and 75 general-information items in the third. A multiple-regression
analysis was carried out in seven separate samples and the weights which were
derived were then used to predict the criterion in the original sample plus
some of the other damples. Four colleges participated in the study. In

three, both a male and a female sample was available, whereas in the fourth
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college only women were enrolled. Weights were crossvalidated only in samples
of the same sex. Validity coefficients for each weighting and no weighting
are presented in Table 3. Column headings refer to the school where the
weights were derived; row headings refer to the school where the weights were

applied.

Table 3

Crossvalidation of Multiple-Regression Weighting of Scores
from Three Tests

Weights Applied Unweighted | Weights Derived on College
to College Sex N | Validity A B . C D
A M 449 .46 .46 45 .43
B M 151 .51 .53 . 64 .52
c M 217 .60 .59 .60 .60
A F 262 .59 .09 .55 .58 .58
B F 169 .65 .66 .68 .65 .66
C F 76 .52 .54 .49 .56 .52
D F 107 .71 .71 .71 .69 .71

Note that in four of seven instances weighting did not improve validity
at all, and that in the remaining three cases the increase was rather small.
Of necessity the weights derived on a particular sample do at least a bit
better in that sample than any other weights. But interestingly, the weights
derived in one sample may do even better in another sample than they do in
the original one. This of course reflects the fact that the validity is -
simply higher in some samples than in others and that it matters little what
weights are used. Had each set of weights been derived on a random sample
from the population of interest, e¢.g., College A - Females, and crossvalida-
ted on another random sample from the same population, we would expect the

correlation to shrink rather than increase.
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In a third study of interest (Booth, 1968) a multiple-regression technique
was used to weight course grades in arriving at a final grade in two Naval
Aviation Schools, the Aviation Officer Candidate School (AOCS) and Flight Pre-
paration School (FP). All student naval aviators attend FP, as do naval flight
officers. These groups are procured from AOCS or some other source. In this
study the aim was to investigate whether a new set of weights would improve
prediction of completion vs.non-completion of the training. Also considered
was the possibility that subgroups might be used to derive special sets of
weights and thereby improve prediction further. The subgroups of interest
were formed by the intersection of two two-way classifications, Z.e., AOCS
students vs. non-AOCS students, and student naval aviators vs. naval flight
officers. Obviously, the first classification can be applied orly to those in
FP. The n's were as follows: In AOCS, 839 students were stuient naval offi-
cers and 327 were naval flight officers. Of these, 812 and 303 went on to FP
and formed the AOCS group. The non-AOCS group in FP contained 1122 student
naval officers and 339 naval flight officers. Thus, the sample size in this
study was sufficiently large that reasonably stable regression weights might
be expected.

It was found that the new weights raised the correlation of final grade
with the criterion from .207 in AOCS to .268, and from .304 in FP to .313,
where the first figure is the validity under the old weighting scheme. When
validity is computed separately for each subgroup, differences are revealed
which are consistent regardless of which weighting scheme is used. Ihe final
grade is more valid for naval flight officers than for student naval officers
in AOCS, and it is more valid for the AOCS students than for the non-AOCS stu-
dents in FP. The use of special sets of weights for each of these four sub-
groups resulted in very slightly higher correlations, but not sufficiently

higher to justify the difficulty involved in applying them.
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It is interesting to contrast this study with the previous one where §
overall gains due to weighting were smail. Of course in Booth's study.
weighting is not compared to natural random weighting but rather to a former i
method of weighting which is in fact highly correlated with the new one. In
the previous study only three scores were combined in the composite, whereas %
in the present case there were eight course grades to be ccmbined in AOCS and
six in FP. With fewer variables in the composite, there should have been more
opportunity for weighting to be effective in the first case than in the pre-
sent study. What seems to lie behind the difference, however, is not the num-~
ber of variables, but rather their average intercorrelation. In the first
study the tests were moderately correlated with one another, whereas in the
second study the course grades intercorrelated .19 on the average in AOCS and
.34 in FP. This difference seems to be refilected alsc in the fact that the
increase in the validity is smaller in the group where the intercorrelation is
larger.

Perioff (1951) studied special procedures to reduce the shrinkage of
validity coefficients when predictor weights based on one sample are applied

to another. His results were somewhat equivocal.

The Weighting of Test Items

In this section we consider the case where the variables to be weighted

are the items of a test. In the typical case the item itself is scored on a

pass—fail dichotomy and then multipligd by the appropriate weight. From the

earlier discussion of the factors whiLh affect the effectiveness of weighting
it would seem that tests consisting of a large number of items, perhaps on the
order of 50 to 100, all or nearly all of which are positively correlated, are
not likely to become much more valid or reliable under differential weighting,

simply because the correlation between two such weighted tests will very likely
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approach unity. This is indeed the case. Yet numerous studies have been per-
formed demonstrating empirically that this is true. In many cases, the con-
clusion to disregard weighting is based only on findings of high correlation
between welighted and unweighted tests or between two differently weighted
tests. As pointed out earlier, this still leaves open the possibility of
differential validity. Yet even in those cases where validity coefficients
are presented the gains attributable to weighting are so small as to be of no
practical significance. The studies to be discussed in this section are
typical of those which have been performed.

The arrival of the new-type or objective examination in the 1920's was
accompanied by claims of objectivity in scoring which would result in fairer
assignment of course grades and the like. There were opponents of the new
tests, however, and some felt that in actuality the new tests were no more
objective than the old ones. One such opponent was Corey, who in 1930 pub-
lished a study which purported to demonstrate the element of subjectivity in
new-type examinations. Corey asked six instructors to rate each of the 73
items of an objective test according to "its importance for a general know-
ledge of psychology.' The ratings supplied by each instructor became the
weights for the iteus. Corey scored all the examination papers without
weights and with each of the six sets of weights. The judges' weighted test
scores correlated from .836 to .960 with the unweighted totals, with the for-
mer figure being the more typical. Corey established arbitrary cut-offs and
assigned letter grades to the six series of tests. He concluded that many of
" the students would receive very different grades depending on whose weights
were used to score the test, thus demonstrating the subjectivity which lin-
gered in the new-type test.

Corey's “experiment' is important because it is probably the only study

" which claims to show that weighting makes a differemce. Unfortunately, as an
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experiment ‘it is open to criticism on a number of grounds. In z follow-up
study, Odell (1931) revealed that some of Corey's instructors had weighted
certain items zero, thus eliminating them from the test! Odell approachead the
whole weighting problem is a more systematic way. First he compared several
methods of weighting, including: (1) natural raw-score weighting; (2) weight-
ing by the percentage of subjects answering correctly; (3) weighting by the
percentage of subjects failing to answer correctly; (4) weighting bv a random
distribution of weights from 1 to 5; (5) weighting by a random distribution of
weights from i to 10; (6) weighting by a second random distribution of weights
from 1 to 5. With the exception of sets (2) and (3), which correlated -.62,
all other sets of weights correlated near zero. When test scores were then
calculated with these sets of weights the scores correlated in the ,90's,
much higher than in Corey's study. Odgll then had instructors assign weights
as in the Corey study. The three sets of weights thus obtained were moderate-
ly well correlated and again the test scores computed with the different sets
of weights were almost perfectly correlated. Odell concluded that there was
no evidence for the utility of weighting.

In both Corey's and Odell's study no information concerning the relia-
bility or validity of the weighted and unweighted tests was presented. Guil-
ford, Lovell, & Williams (1942) in a classic experiment compared weighted and
unweighted scoring of a single multiple-choice test in terms of the effect on
both reliability and validity. One hundred multiple-choice questions from an
achievement examination were used in unweighted form as the criterion. Three
"tests" were then composed of the first 20 items, the first 50 items, and the
100 items. Guilford's weight (see p.32) was then used to weight the items.
The reliability of the tests was determined by the split-half reliability
stepped up with the Spearman-Brown formula. The reliability and validity

coefficients for the weighted and unweighted tests are presented in Table 4.
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Table 4

Reliability and Validity of Weighted
and Unweighted Tests

Number of Reliability Validity
Items Weighted Unweighted ~Weighted Unweighted
20 667 .649 .817 .793
50 .860 .844 .892 .901
1C0 .922 .599 .900 <924

Differences in reliability and validity for the weighted and unweighted
tests are not significant. Guilford explains that the phi coefficients for
these items and the range of the weights were both small. These facts might
explain the failure of the weights to affect either reliability or validity.
He also notes that since the validity coefficient in this case was a part-
whole ccrrelation for the unweighted tests, the spuriousness of this correla-
tion may have obscured real differences. Yet attempting to derive an estimate
of the correlation of the 100-item test without the spuriousness did not sup-
port this interpretation. Guilford's conclusion was that it was certainly not
worth the trouble to weight the test items.

Other studies of item weighting have reached similar conclusions. Doug-
lass & Spencer (1923) found weighted and unweighted tests to correlate .98,
.99, .995, .996, .985, and .991. Holzinger reports a correlation of over .99
for weighted vs. unweighted items of a French achievement test (Holzinger,
1923). West (1924) found correlations ranging from .987 to .997 for weighted
vs. unweighted comprehension tests. In addition, he reports correlations of
.975, .956, .932, .966, .984, and .940 for six of the Army Alpha tests,
weighted vs. unweighted. Peatman (1930), using Clark's Index of Validity to
weight true-false items, found over a series of quizzes and a final exam that

correlations ranged from .879 to .970 for the individual tests and that the
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correlation fdr all tests combined was .978. Ruch & Meyer (1931) found that

weighting on the basis of difficulty did not raise validity and perhaps low-

ered reliability. Pothoff & Barnett (1932), in a study quite similar to that of

Odell, found correlations of .965 to .987 between weighted and unweighted
R

scores, when weights were based on teachers' opinions. Finally, Stalnaker

(1938), in a study of weighting essay-type examinations, found correlations

consistently on the order of .98 and .99 between weightéd and unweishted ver=-

sions of a number of examinations of the College Entrance Examination Board.

Thus, it seems zbrndantly clear that weighting a given item of a test the same
for all examinees simply does not affect the total score enough to be of prac-
tical significance. Although a great many of these studies report only the
corralations between the weighted and unweighted scores, when the magnitude

of such correlations is .98 or .99 it must be admitted that even if the small

possible gain in validity allowed by such a correlation were to be expected,

it would be too small to justify the extra amount of time and effort required

to score the test using the weights. The utility of fixed item weighting
seems to have long since been disproven.

There remain two possible hopes for effective differential weighting of

item scores. One is Allan Birnbaum's work on a three-parameter logistic la-
tent-trait model, reported in Lord & Novick (1968, ch. 17-20). Lord (1967)
tried out this model with the Scholastic Aptitude Test Verbal scores of nearly
3000 examinees and reported his results cautiously but with guarded optimism.

The essence of Birnbaum's procedure is that it applies differential

weights not only to items but also to various ability levels. His scoring
produces the most improvement for the least able examinees, who throw noise
into the system by guessing wildly at the more difficult items. In effect,

Birnbaum's method seems to nullify such guessing by assigning small weights

items difficult for the examinees at that ability level, and larger weights

the easiex items there.
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Unfortunately, as Lord poiats out, Birnbaum's model applies only to data where
there are no omitted responses, and Lozd's comparison is with items of the
Verbal Scholastic Aptitude Test scored either right or wrong, 1 or 0. The
conclusions may not apply to Verbal SAT scored in the usual operational way
with a “correction for chance." We know that giving -1/4 point for each Ver-
bal SAT item marked incorrectly will tend to remove some of the effects of
sheer guessing, thereby lessening the spurious intercorrelation of items and
perhaps improving validity.

Lord also warns that his conclusions, which favor Birnbaum's procedure,
depend on the adequacy of Birnbaum's mathematical model for describing Verbal
SAT data. Despite these considerations and the complexity of the computations
required, Birmbaum's approach seems promising enough to be investigated much
further. It may use effectively a different kind of weighting, Z.e.,by abil-
ity level, which is needed to go beyond the impasse clearly pointed out by
Wilks (1938) and convincingly demonstrated by Stalnaker (1938) and others.

Cleary (1966) developed a model for multiple regression that allows in-
dividual differences to emerge empirically. This model effectively reduces
the variance of errors of prediction, the weights obtained are stable over
samples, and it appears that these weights have some stability over different
sets of predictors. The model assigns to each person a different set of
regression weights. It offers an empirical method of estimating whether pre-
diction can be improved by deviating from the usual multiple-regression model
and how many dimensions are required for maximum improvement. Her model goes

beyond the situation considered by Wilks (1938), where there was just one
set of weights, the same for each person, so it might provide a way to weight
item scores in order to predict a criterion better than the nominally-equally-
weighted item scores do. This moderated-linear-regressior approach seems to

be a possible altermative to Birnbaum's (1968) differential weighting of abil-
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ity levels. Presumably, it could operate either with corrected-for-chance item
scores or with uncorrected scores, whereas Birnbaum's procedure seems confined
to the latter.

Also to be noted is Samejima's (1968) application of her graded-response
model to multiple choice situations in an attempt to estimate latent ability.
It did not prove successful for this particular case, but she promises further

developments.

The Weighting of Item Responses

There are at least two very distinct situations where response weighting
might be advantageous. First, when there is no correct answer to a cuestion,
as is the case in interest, attitude, and personality tests, the responses
are usualiy weighted in order to differentiate between examinees. The methods
of weighting such responses were considered in an earlier section. A second
situation where response weighting might be profitable is in the academic
achievement or aptitude test where partial information or misinformation is
evaluated through differential weighting of the correct responses to each
item. The second situation, although promising, has not been extensively
investigated.

Probably no single test has been the subject of so many empirical in~
vestigations of weighting as the Strong Vocational Interest Blank. The meth-
od used by Strong to derive the weights for item responses was discussed ear-
lier. It will be recalled that the size of the weight is related to the co-
efficient of the correlation between membership in the occupation or not, and
choosing the response vs.not choosing it. This coefficient in turn is related
to the size of the difference in the proportions of those choosing the re-
sponse in the two populations. The larger the difference, the larger the

coefficient. Responses which differentiate strongly between the two groups
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receive large weights relative to those which do not. In the original scor-

ing system the weights ranged from 30 to -30. 1In the 1930 revision the range

droppad to 4 to -4. More recently the adoption of unit weights 1, 0 and -1

has been advocated. This progressive collapse of the elaborate weighting

system of the SVIB has resulted from a long series of experimental studies

which demonstrated such slight reductions in predictive accuracy that it was

concluded that the simpler weights were to be preferred to the more cumber-

£Ome ones.

The list of empirical studies of weighting the SVIB begins with the con- ‘

tention by Strong (1930) that the use of unit weights resulted in less dif- i

ferentiation between the occupations. In a series of experiments Dunlap and

his associates claimed to have shown that the unit weights could in fact be

substituted for the larger weights with only a small loss in accuracy (Dunlap,
1240; Peterson & Dunlap, 1941; Harper & Dunlap, 1942; Lester & Traxler,1942;

Kogan & Gehlmann, 1942). The basic strategy in each of these studies is to
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score a sample cf blanks with both unit and regular weights and then to use a

multiple-regression equation to predict the fully welghted scores from the

unit-weighted scores. The regression weights are then used to predict the
weighted scores in a cross-validation group, and the correlation between pre-
dicted and actual scores in computed. It is usually in the mid to high .90s .
Since the SVIB is used as the basis of vocational counseling, an important

question is to what extent is the letter-grade designation upcu which coun-

seling is based affected by the change in scoring procedure? Thus, in each

study, the letter grades are assigned on the basis of predicted and actual
scores and the percentages of correct classifications is reported, with
special attention to the shift of the B+ scores to B, a change which corres-
ponds to a failure to recommend the ‘ocucupation. . Usually, the critical

shift occurs in about 2.5% of all cases. Strong (1945),in an extensive re-
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view of this research, claimed that not only the highest scores on the blank
were to be stressed, but the entire pattern, and that additional changes in
the scores might noticeably affect this pattern. Strong maintained even in
1964, when the unit weights were finally adopted, that unit scoring reduced
validity. However, under the consicerable pressure put forth by others, the
SVIB finally zcquired unit weights (Strong, Campbell, Berdie & Clark,1964).

Essentially, similar findings have been reported in research with the
Bernreuter Personality Inventory (Benmnett, 1938; Kempfer, 1944; McClelland,
1944, 1947). Here also a small loss of accuracy is suffered when diminished
weights are used.

Until fairly recently, the possibility of differentially weighting the
incorrect responses of an achievement examination had not been considered in
the literature. It has long been assumed that on a multiple-choice exam-
ination the conventional correction-for-guessing formula provides a reasonable
means of deducting from the number-correct score the proportion of those
correct items which are the result of random guessing. Formula scoring is,
in at least one sense, response weighting. If the conventional formula is
used, where Score = Right - [1/(k - 1)] Wrong, this is equivalent to assign-
ing a weight of +1.00 to each correct response, -1/(k - 1) to every incor-
rect response, and 0 to an omitted item. The subject's score is then the al-
gebraic sum of the responses he selects. Some investigatore have preferred
to empirically derive the best weight for the incorrect response via some
technique such as multiple regression (e.g.,see Thurstone, 1919; Brinkley,
1924; Staffelbach, 1930; Dailey,1947). However, formula scoring, regardless
of how the formula is derived, is not differential weighting of distractors
other than "omit." The subject's score depends on the number of correct res-
ponses, the number of incorrect responses, and the number of omissions, but it

is not affected by which incorrect response is chosen on a particular item.
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If each examinee omits the same number ot items, formula scoring us not needed.

(See Stanley, 1954) For theoretical increases in validity (usually slight) that

might be gained by formula scoring, see Lord(1963).
The first step in the direction of differential weighting of incorrect res-

ponses was made by Nedelsky (1954). He hypcthesized that information might

be added to the conventional Rights score by penalizing students for choosing
a response which was so grossly incorrect as to be attractive only to an F-

student. Nedelsky had experts read his test questions and indicate which op-
tions for a given item, if any, fit this description. The experts' judgements

ware the basis for the designation cf certain incorrect responses to the ques-

tions as F- responses. Some items had no such responses, others had more

than one. The test was given to 651 students and each received three scores:

(1) a rights score: (2) an F-score (3) a composite score computed on the for-

mula R ~ F/f, where f is the average number of F responses available per item.

Of the 651 who took the exam, all receiving a D or an F by standard scoring,

plus a representative sample of those receiving an A,B, or C, 306 in all, were

rescored for F-score and for the composite. The reliability of the rights

score was estimated as .81, of the F-scere,.63, and of the composite,.84.
However, when these figures are computed separately for the ABC group and the
DF group they become respectively: ABC: rights, .69, F-score,.46, composite,
.71; DF: rights,-.16, F-score,.42, composite,.26. Thus for the poorer
students the F-score is the most reliable score. Accentuating this finding
18 the fact that when the reliability is oomputed only on those items having
F-responses, and only for the lowest 15% of the entire 651 subjects, the fig-
ure for the F-score rises to .45. What is particularly interesting in this
study is that for both groups of subjects the composite score is more re-
liable than the rights-~only score.

If Nedelsky's study may be looked on as a significant first step in the
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direction of differential response wzighting, the later study of Davis & Fifer

(1959) may be considered a significant second one. These authors note that

conventional rights-only scores, as well as formula scores, do not permit dif-

ferentiation among examinees with respect to the type of distracters they sel-

lect. The student who consistently chooses incorrect regponses which are most

nearly correct receives the same penalty as the student who choogee the same

number of incorrect responses, but whose choices reflect very little infor-

mation at all. If it is possible to differentiate among incorrect alternat-
ives with respect to their degree of incorrectness, then it might be worth-

while to weight these alternatives differentially.

From a pool of 300 arithmetic-reasoning problems two tests of 45 items
each were contructed and designated test 5022 and test 5023. An additional
five problems testing computational facility were also included as a sort of
handicap to eliminate unwanted variance from this source in the total score.

A priori weights were derived via ratings given to each response. Two math~
ematicians were instructed to rate each response option on a seven-point scale,
from -3 to +3 according to the relative amount of arithmetic reasoning, TeCe,
correct reasoning , displayed by an examinee marking that option. In gen-
eral such weights were positive for the correct response and negative for the
incorrect ones.

Empirical weights were derived via the correlation between marking the
option vs. not marking it and the criterion score on both tests 5022 and 5023.
These weights were then transformed toc the range -3 to +3. The authors do not
give in detail their reasons for using correlation coefficients except to say

that these are approximations to the appropriate multiple-regression weights.

(Davis, 1959, is more explicit.) Since the responses are categories rather
than varisbles, the weights seem somewhat less appropriate than Guttman's

(1941) criterion weights, though considerably easier to secure. However,
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since the reliability of the weights based on the correlation coefficients was
only moderately high, the empirical weights were modified in terms of the

a priori weights to arrive at a final set of weights for each item. Two stu-
dies were then carried out.

A sample of examinees from the larger group which had taken the tests, and
which did not include any of those in the sample on which the weights were de-
rived, was used to estimate the reliability of the two scoring przocedures.

Two raw scores and two weighted scores were available for each subject. Since
5022 and 5023 were considered parallel tests, their correlaticn was used to
estimate the reliability of either one. Unweighted scores were found to cor-
relate .6836, weighted scores .7632. The difference between these two correia-
tions is highly significant by Figher's z-transformation. It was estimated
that the increase in reliability was equivalent to that which would be expected
by the Spearman-Brown formula if the test were lengthened from 45 items to 67
items and scored conventionally. It is pointed out that the increase in reli-
ability is not to be attributed to the fact that the correct choices were
differentially weighted since it has long been known that such differential
weighting is not effective for long tests.

In a second study an attempt was made to determine whether the new scor-
ing procedure would increase the validity of the test. Two criteria were
used, teacher's ratings and the score on a free~vesponse form of the same
tests. Very briefly, it was found that for 251 subjects who took one test in
free form and the other in multiple-choice form, the validity using these cri-
terion variables was not different. The authors conclude that the variance
introduced into the total score increased the proportion of "true' variance,
but that the new variance had the same concurrent validity as the original.

A slight exception may be taken to this conclusion. If the new variance

were as valid as the original variance] *hen the increased relidlility of the
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test should have resulted in a concomitant increase in the validity, much as
increasing the length of a test through the addition of items of comparable
reliability and validity does. However, before meaningful generalizations

can be made concerning the nature of the variance which is added to the tctal
test score through this type of differential weighting it will be necessary to
explore more carefully the composition of the total-test-score variance.

Aiken (1967) has presented formulas for the méximum total variance of the test
score, but some of his assumptions do not seem fully justified. More work on
this aspect of the problem is needed.

A rather novel recent study is that of Jacobs and Vandeventer (1968), where
“"the notion of facet analysis provided a systematic method for a priori order-
ing of the distractors on the Coloured Progressive Matrices test as to degree
of correctn2ss. A score based on type of distractor chosen was shown to have
a moderate degree of test-retest reliability, concurrent and predictive val-

idity, and cross-cultural applicability."
Variable Weighting Methods

In the beginning of this paper it was stated that throughout most of
the discussions the weighting methods considered would be fixed methods. Fix-
ed, of course, refers to the fact that the weights are determined in advance
of scoring the subject's paper and that a definite weight is attached to each
item or response. The subject's score on the item or response is determined
by a binary outcome, viz., correct vs. incorrect for the weighting of items,

and chosen vs. not chosen for the weighting of responses.

Modification of the Mode of Response.

Recently, however, a somewhat different approach has been investigated.

Since the very beginning of the objective test movement there has been con-




ERIC

~64i~

siderable concern over the effects of guessing on:the reliability and validity
of multiple-choice and true-false tests. Most often when testers were suffic-
iently concerned over the effects of guessing to attempt to correct for it,
they relied on some form of correction-for-guessing formula which subtracted

a percentage of the incorrect responses from the correct ones. The traditiomal
formula, R - [1/(k - 1)]W, is based on the assumption that if a subject does
not know the answer to a question he guesses randomly among the k optionms.

Admittedly, this assumption is never satisfied in practice. Response al-
ternatives differ in attractiveness, as the differential popularity of incor-
rect options indicates. Moreover, the assumption asserts that 1nformaﬁion
comes in two states, certainty and complete ignorance. The exzistence of both
partial information and misinformation is thus denied. However, the useful-
ness of the traditional formula has served to perpetuate it.

In the last section the door was opened for partial information to reveal
itself through the differential weighting of the distracters. It was implicit
in the scoring scheme that the incorrect options could sexrve to identify the
existence of partial information. In actuality, the empirical method of deri-
ving option weights does not ensure that the more heavily weighted options are
in fact more nearly correct, but merely that on the average the total scores
of subjects choosing the more heavily weighted option are higher than those of
subjects choosing another option on the same item. In this type of weighting
scheme it is the cptions themselves which bear the burden of differentiating
between the subjects with respect to partial information.

There is an alternative approach, however. If we assume that the subject
has some information concerning the correctness of the several options, instead
of assuming that correct choices are made out of certainty and incorrect ones
out of guessing, we may, through appropriate response techniques and scoring

procedures, lead the subject to reveal much more precisely the actual state
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of his information concerning all of the options.
In each of the methods of variable weighting considered below, the mode
of response to the individual test item has been altered from that of the trad-
itional multiple~choice item. Scoring is not carried out on the basis of a

weighting of individual items or item options.

Elimination of Response Alternatives

In two fairly recent studies the mode of response was altered by having
subjects cross out options. Dressel & Schmid (1953) compared the conventional
multiple-choice paradigm with one in which the subjects.were instructed to 1
cross out alternatives until they were certain that they had included the cor-
rect answer among the alternatives marked. Each incorrect nark was scored
as ~ 1/4 point. Thus, marking all alternatives except the correct one re-
sulted in the maximum negative score and marking only the correct choice re-
sulted in the maximum positive score. This scoring method and response tech-
nique was found to give a reliability of .67 as compared with a reliability of

.70 for the conventional procedure.

Coombs, Milholland & Womer (1956) performed the complementary experiment
where subjects were instructed to cross out the incorrect alternatives, taking
care not to mark the correct alternative. Each incorrect option eliminated
received a score of +1 and if the correct alternative was marked it was
scored - (k - 1), where k is the number of choices for the question. Thus, if
y» glternatives were marked, the score was +r if the correct alternative was
not marked, and (» - k) if it was. DMarking all alternatives or no alternat-
jves resulted in a score of zero. There was evidence to indicate that this
method of scoring resulted in a gain of reliability equivalent to that to be
expected by increasing the length of the test 20%.

These techniques are reminiscent of the Troyer-Angell punchboard invented
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itwo decades ago and sold by Science Research Associates. The punchboard was

a device on which the subject punched out his choice and if it was correct a
red dot would appear in the hole. If the dot did not appear the subject had
to choose another response until the dot did appear. Thus, the subject re-
ceived immediate feedback on the correctness of his choices, learning while
being tested. He was then scored on the basis of the number of punches need-
ed to reveal the dot: 0, -3, -4, -6, -7, for correct answer on the first
through 5th responses respectively. When two groups of subiects used the
punchboard for an entire semester and did not use it respectively, the differ-
ence between the groups, favoring the users, increased during the semester from
zero to a value approaching statistical significance. (See Jones & Sawyer,

1949).

Confidence Weighting

A second method of assessing partial information which has shown some
promise is that of having students assign confidence weights to the various
alternatives. This procedure has its historical artecedents in the confidence
weighting of true-false tests (Hevner, 1932; Soderquist, 1936). More recently
it has been tried with multiple-choice tests. Dressel & Schmid (1953) also im-
cluded this as a scheme in their study. They had subjects choose one alternat-
ive and then assign a confidence weighting from 1 to 4 in accordance with
their degree of certainty regarding the correctness of their choice. The
weight was scored as positive if the item choice was correct and negative if
incorrect. They report a reliability of .73 for this case as opposed to the
.70 for the conventional case. Also see Merwin (1959) for a theoretical anal-

ysis of the effects of rankirg options according to preference for them.

Subjective Probabilities

Recently, from two different sources {(Shuford, Albert, & Massengill,
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1966% de Finetti, 1965) have come suggestions concerning the assignment of
probabilities to each of the response alternatives for a single question. The
most interesting characteristic of these procedures is that, under what has
been termed admissible probability measurement, the scoring system is so de-
vised that the examinee can maximize his expected score on the test if and
only if he reports as accurately as he can the distribution of his subjective
probabilities over the various response options. Not all scoring methods
achieve this, and considerable mathematics has been devoted to illustrating
permissible schemes.

In the Shuford, Albert, & Massengill procedure it is assumed initially
that the examinee's state of knowledge concerning a multiple-choice item may
be expressed as a distribution of probabilities over the response options.
Since probability distributions of this kind are not "wired into” the cogni-
tive system, it is assumed that examinees are able to convert their degrees of
confidence in the various options into a probability distribution having the
property that the sum of the probabilities over all response options is 1.00.

It should be pointed out that since such probabilities are cubjective and,
presumably determined by the-relative degrees of confidence which the examinee
places in the correctness of the various optionms, there is no guarantee that
identical probability distributions for two subjects represent the same abso-
lute degrees of confidence in the options taken individually. The probabili-
ties are ipsative measures. If, for example, the examinee assigned equal -
probability to each option, he might do so out of complete ignorance or out of
conflicting misinformation which gave him rather high confidence in each op-
tion considered singly. The assigned probabilities must be seen as measures
of relative confidence.

Once the examinee's probability distribution is known for a multiple-

choice item, there are numerous scoring techniques which may be used to deter-




ERIC

DA v iniieatiotiee . 2

-68~
mine the item score. Shuford, Albert, & Massengill have discussed the neces-
sary and sufficient mathematical properties of scoring schemes which have the
property of allowing the subject to maximize his expected score if and only
if he reports his "true" subjective probabilities. For items with more than
two options it is not possible to find such a scheme which is dependent only
on the probability assigned to the correct answer. Most schemes thus involve
the distribution of confidence over the incorrect options and most are symme-
tric in that the item score does not change when the probabilities assigned to
the incorrect options are permuted. Thus there is usually no differential pe-
nalty for assigning high confidence to one incorrect option over another.
Shuford and Massengill, in a series of technical reports (Shuford, 1967;
Shuford & Massengill, 1967; Massengill, 1967), have expressed great enthusiasm
and optimism concerning the potential of admissible probability measurement
for eliminating the effects of guessing on multiple-choice tests. They have
demonstrated mathematically that the elimination of guessing, which is purpor-
tedly accomplished by admissible probability measurement, can theoretically
provide quite substantial gains in both reliability and validity. These maxi-
mum gains, however, are determined with reference to the reliability and vali-
dity of a multiple-choice test in which: (1) the level of guessing, 1.e., the
probability of being correct given that guessing occurs, is at a maximum level
of .50; (2) all examinees guess when they do not "know" the correct answer;
and (3) the test is scored as the number of items correct. For example, they
demonstrate that for a test so difficult that no examinee knows the answer to
any question, more guessing by some examinees than by others results in a
spurious reliability over a laige number of items or examinees. It is easy to
show, however, that insofar as the conventional correction-for-guessing for-
mula accurately reflects the average level of guessing, the expected value of

the reliability of formula scores is zero here. . Although the elimination of
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guessing may plausibly increase relisbility and validity, the size of these
gains will be considerably smaller than the maximum possible gains, since in
actual practice the effects of guessing are not nearly so devastating as they
might be, particularly when a correction~fof—guessing formula is used. (Also
see Lord, 1963.)

Although the Shuford, Albert , & Massengill admissible-probability-mea~
surement procedure requires the examinee to report his subjective probabili-
ties directly, other response methods are possible. De Finetti (1965) has
discussed a number of response schemes which provide various degrees of infor-
mation concerning the subject's probability distribution. It is assumed that
the probability distributioﬁ is directly available to the examinee and that he
may use the distribution to determine his response so as to maximize his ex-
pected score on the item. It is paradoxical that although the actual respon-
ses made by the student seem superficially to be simpler than assigning proba-
bilities directly, the optimal strategy required of the examinee may take the
form of a very complicated rule. For example, assume that the subject is to
respond by crossing out the incorrect options on a multiple-choice item, with
the number of options eliminated left to the student to decide. (This is the
response method of Coombs et al.) If r is the number of options, and k is the
number of options crossed out, the score is determined by the formula
1/(r - k), and made negative if the correct answer is crossed out and positive
if it is not. How many options should the subject cross out given his proba-
bility distribution? Let the subject rank the options such that p1 is the
largest probability and p, is the probability assigned to the Ath optiom, 7 =
1,...,7. The rule for maximizing the expected score on this item may then be
stated: "Cross out alternatives until the probability ph of the (» - h) alter~
natives already crossed out plus that of the next one, pz, when multiplied by

the number % of those still left, does not attain .5' (de Finetti, 1965, p.98).




ERIC

-70~

Thus, although the response of crossing out alternatives seems relatively un-
demanding, the strategy which will allow the subject to be consistent and maxi-
mize his expected score is more than a little complex!

The success of this type of testing procedure would be critically depen-—
dent on the ability of subjects to effectively utilize optimum strategies.

The problem of whether or not all subjects are equally capable of learning to
use such strategies is a very real one. Alsc raised is the problem of the
differential risk-taking propensities of different subjects. Despite the fact
that risk taking must in the long run reduce the expected score; the score on
a single test can be altered significantly by a lucky guess. Winkler (1967a,
1967b, 1967¢) has discussed these aspects of subjective probability measure-
ment.

It will be recalled that most admissible probability measurement or sub-
jective probability measurement procedures are symmetrical and do not take in-
to account characteristics of specific distracters. In these scoring systems
involving probabilities per se, high concentration of confidence in a single
distracter results in a lower score than an equal distribution of that same
amount of confidence over all distracters. It might, however, be possible to
differentially weight distracters and incorporate such weights into the scor-
ing scheme. Although some type of criterion keying of options could probably
be incorporated while maintaining the admissible probability of the scoring,
it is likely that the optimal strategy would then become considerably more
complicated. Empirical work on the use of admissible probability measurement
and differential option weighting, both separately and in conjunction, is un-
doubtedly forthcoming since so much theoretical interest in these proposals

has been aroused.

e e o o e e
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