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Differentially Coherent Diversity Combining
Techniques for DPSK Over Fast Rayleigh Fading

Channels
Milica Stojanovic and Zoran Zvonar

Abstract—Performance of differential phase-shift keying
(DPSK) is considered for fading channels with nonnegligible
time-variation, as well as signal or noise correlation between
diversity branches. A differentially coherent maximum-ratio
combiner is derived, showing optimal weight dependence on the
fading statistics. Bit error rate (BER) is evaluated analytically for
Rayleigh fading, and comparison is made between the optimal
and the equal-gain differentially coherent combiner. The optimal
combiner provides improvement in all situations, and reduces
the error probability floor. Performance improvement is higher
for higher Doppler spreads, with the exact amount depending on
diversity correlation. For low diversity correlation, equal-gain
combining performance stays close to optimal.

Index Terms—Correlated diversity, differentially coherent
detection, fast fading, maximum-ratio combining, mobile radio
channel, Rayleigh fading, space-time processing.

I. INTRODUCTION

D IFFERENTIALLY coherent detection, together with
diversity combining, offers a good tradeoff between

receiver complexity and performance on Rayleigh fading chan-
nels [1]–[8]. The performance of differential phase-shift keying
(DPSK) with diversity combining on Rayleigh fading channels
is summarized in [1], where both equal-gain combining (EGC)
and maximum-ratio combining (MRC) are addressed for a
slowly fading channel. For rapidly fading channels, the impulse
response of which cannot be assumed constant over the two
consecutive symbol intervals needed for the detection of a
DPSK symbol, receiver performance depends on the fading
process temporal correlation. This dependence is analyzed
in [2] for the case of equal-energy uncorrelated diversity. A
related analysis for differentially encoded star-shaped QAM
signals is given in [3].

In practice, a situation may arise in which there is correlation
among diversity branches [1], resulting from insufficient
channel spacing, be it frequency, time or space. In systems
which exploit multipath diversity, receiver filtering may
cause noise components to appear correlated at the input of
the combiner. The same is true for the signal components,
even if the physical channel exhibits uncorrelated scattering.
Examples of correlated diversity include CDMA systems
which exploit multipath diversity through rake filtering and
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multiuser detection [5], [6], as well as equalization problems
for frequency-selective fading channels [7]. Ricean fading
channels with trellis coded DPSK and block differential de-
tection with correlated diversity is analyzed in [8]. Regardless
of its origin, the correlation between diversity branches shall
be termed “diversity correlation,” which is to be distinguished
from “temporal correlation” present within each of diversity
branches due to the time-variation of fading processes.

Most commonly used diversity combining method for differ-
entially coherent demodulation is EGC, in which the signals
are added without weighting after differentially coherent de-
modulation. Such an approach offers simplicity of implemen-
tation, at the expense of a loss in performance caused by di-
versity correlation (due to receiver filtering, time-spreading, or
co-channel interference) [4]. In a multipath diversity system [7],
noise decorrelation was used to overcome the loss caused by re-
ceiver filtering, but the improvement was found to be subject to
the Doppler spread of the channel.

The fact that DPSK diversity combining performance
depends on both diversity correlation and temporal fading
correlation motivates the design of a differentially coherent
combiner which will use the knowledge of the fading channel
statistics to provide performance improvement for all fading
rates. Two questions immediately arise: How to design the
combiner in an efficient manner, and what is the improvement
available from this design, relative to the simple-to-implement
EGC. The goal of the present analysis is to answer these
questions.

In Section II, the optimal differentially coherent MRC for
fast fading and correlated diversity is derived. The optimiza-
tion criterion is maximization of the output signal-to-noise ra-
tion (SNR) when fading channel response can be estimated only
implicitly, through differentially coherent detection. The proba-
bility of error for DPSK in terms of arbitrary combiner weights
is obtained in Section III for the case of Rayleigh fading. Re-
sults are analyzed through numerical examples in Section IV,
and conclusions are summarized in Section V.

II. COMBINER OPTIMIZATION

The signals observed at the input of diversity combiner after
front-end receiver (matched) filtering at time , associated
with the detection of the th data symbol, are represented in
complex baseband form as a column vector

(1)
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Fig. 1. Schematic representation of differentially coherent MRC.

where is the observed vector of fading channel gains, i.e.,
its discrete-time approximation, and is the noise vector.
The sequence of i.i.d. unit-variance data symbols is ob-
tained by differentially encoding the original sequence

(2)

For M-DPSK,
.

The channel statistics are described by the correlation func-
tions

(3)

where “prime” denotes conjugate transpose. In particular,
the auto-correlation matrix describes signal correlation
across diversity channels, while includes the effects
of temporal correlation at the lag of one symbol interval. The
noise vectors are taken to be zero-mean, (temporally)
white Gaussian, with covariance.

Differentially coherent combining of the signals can be
represented in a general form

(4)

where the matrix contains the combiner weights. Several
special cases can be distinguished. For equal-gain combining,

, i.e., no weighting is performed.1 When there is no
correlation among diversities, in either the signal or the noise
components, EGC is the optimal differentially coherent com-
bining method. When the signal components are uncorrelated,
but noise is correlated, the optimal MRC is given by
for channels with negligible time-variation.2

1The term EGC is not always consistently used. Some authors (e.g., [4]) refer
to the above scheme as that of MRC, implying that weighting is implicitly per-
formed by the delayed signals.

2This combining method can be interpreted as noise decorrelation followed
by EGC (e.g., [7]).

When the time-variation of the channels cannot be neglected,
i.e., there is significant Doppler spreading, the MRC weights
must depend on in addition to and . We refer to
this combiner as the optimal MRC to signify the fact that max-
imization of combining ratio takes into account both the diver-
sity correlation and the temporal correlation. To determine the
optimal MRC combiner for this case, we view the process of
differentially coherent combining as a special case of coherent
combining in which the channel estimate is constrained to de-
pend only on the delayed signal (and not on the previous
values , etc.). The receiver structure is shown in Fig. 1.
If is the linear memoryless transformation used for channel
estimation, the channel estimate can be defined through

(5)

For a rapidly fading channel, the channel estimation error
cannot be neglected in either differentially

coherent or coherent combining [5]. It represents an additional
noise term, which is assumed to be independent of the thermal
noise (an assumption which is justified for all practical cases
when the thermal noise is white and the channel is estimated
from the previously observed signals). If the channel estimation
error covariance is denoted by, the coherent MRC is given by

(6)

Comparing (4) and (6), and using the implied relation

(7)

the differentially coherent MRC is interpreted as coherent com-
bining in which the channel estimate satisfies (5), and the com-
biner matrix is

(8)
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Hence, a differentially coherent combiner can be designed in an
efficient manner by choosing an appropriate channel estimator

, and evaluating its error covariance (is a function of ).
To specify the combiner, we focus on minimum mean

squared error (MMSE) channel estimation. Unlike in the case
of coherent MRC, the channel estimate is constrained by (5),
or equivalently,

(9)

The weights , which minimize the mean-squared error
, are given by

(10)

The corresponding estimation error covariance is

(11)

On substituting the obtained values (10) and (11) into the ex-
pression (8), it is found that the optimal MRC/MMSE differen-
tially coherent combiner is given by

(12)

It may be pointed out that for a Rayleigh fading channel, in
which is a complex, zero-mean Gaussian process, the same
result can be obtained directly, using a different optimization
criterion, namely maximization of thea posterioriprobability
density function of given and . Maximizing

with respect to is equivalent
to maximizing its exponent factor

(13)

where [9].
Using either criterion, the decision rule is given by

(14)

where is given by (4) and belongs to the set of transmitted
-ary DPSK symbols defined earlier.

III. PROBABILITY OF ERRORANALYSIS

Bit error probability for binary DPSK is given by

(15)

which can be expressed in terms of a quadratic form as

(16)

where

(17)

For a Rayleigh fading channel, is a complex, zero-mean
Gaussian vector, with covariance

(18)

The probability (16) is then known to depend only on the eigen-
values of the matrix [1]. If the distinct eigenvalues of this
matrix are denoted by , and each is of multiplicity , the
probability of error is given by

(19)

where are the coefficients of partial fraction expansion
of the characteristic function of the Gaussian quadratic form

(20)

Thus, the bit error probability is a function of combiner
weights , as denoted by

(21)

This result allows us to evaluate the performance of various
combining methods for arbitrary diversity correlations and tem-
poral correlations.

It may be interesting to note that when the optimal combiner
(12) is used, the covariance assumes a form identical to that
found in coherent MRC with ideal MMSE channel estimation
[5]. The difference, of course, is in the value of the error covari-
ances involved in differentially coherent and coherent com-
bining.3

IV. EXAMPLES AND DISCUSSION

To assess the combiner performance over a range of diversity
correlations and for varying Doppler spreads, we concentrate
on an example of binary DPSK with a second-order diversity
and channel statistics that allow us to study the receiver perfor-
mance as a function of two parameters only: one that describes
temporal correlation, and one that describes energy distribution
and correlations among diversity branches.

Assuming identical temporal correlation properties across di-
versity, we have that , where represents the
one-step temporal correlation coefficient. It is related to the nor-
malized Doppler spread (normalized by the symbol rate

), in a manner which depends on the shape of the Doppler
spectrum. The fading process is often modeled as an auto-re-
gressive Gauss-Markov process, or using the Jakes’ model for
land mobile radio channels. Coefficientas a function of
for several fading models can be found in [2].

3Ideal MMSE channel estimation for coherent combining is performed using
all of the past values of the signalz(n). It can be accomplished by Kalman
filtering if the fading processes obey an AR model whose parameters are known
at the receiver.
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Fig. 2. Probabilities of error for combining with and without weighting, and
their ratio as a function ofE =N .

Correlation among diversity signals is described by

(23)

This correlation matrix is constructed such that as the parameter
changes from 0 to 1, the diversity changes from a single-order

diversity for , through a range of second-order, correlated,
unequal-energy diversities, to an uncorrelated, equal-energy di-
versity for . The noise is assumed to be uncorrelated,

. The SNR per bit is defined as SNR .
Fig. 2 shows the bit error probabilities as functions of SNR

with as a parameter, for correlated diversity described by
. For each value of, two error probability curves are shown:

the higher error rate corresponds to EGC and the
lower to the optimal MRC (12). The two curves apparently co-
incide only for , i.e., for slow fading. The exact differ-
ence in performance depends on, i.e., on the fading rate of
the channel. While the difference is small at low SNR, with in-
creasing SNR the loss of EGC rapidly increases, ultimately re-
sulting in a higher error probability floor. The value
is too low to be realistic for the majority of known applica-
tions; nevertheless it is included for the sake of completeness.
On the other hand, using the Jakes’ model, and assuming a ve-
hicle speed of 80 mi/h, a carrier frequency of 900 MHz, and a
bit rate in the range 2400 b/s –9600 b/s,is found to vary be-
tween 0.98 and 0.998. For higher bit rates, such as 64 kb/s,
stays close to 1 for a wide range of vehicle speeds (
for speeds below 150 mi/h).

The second plot of Fig. 2 shows the ratio of the error
probabilities obtained with and without combiner weighting,

, with chosen in the optimal manner,
given by the expression (12). This ratio is clearly always less than
one, demonstrating that the optimal MRC outperforms EGC uni-
formly, i.e., for all values of SNR. The difference in performance
of the two combiners is caused both by diversity correlation
and by fading dynamics. However, EGC loss caused by diver-
sity correlation only (solid curves) is very small compared to
that caused by the fading dynamics. In fact, it is practically
nonexistent at higher SNR, and negligible at low SNR. As
decreases, i.e., fading becomes faster, the gain obtained by
matching the combiner parameters to the fading statistics starts
to show at progressively lower SNR values. For example, with

, and SNR close to 30 dB, the error probabilities
differ approximately by a factor of two. The corresponding
SNR loss is extremely high, as the error probability saturation
region is almost reached for these parameters. At lower values
of SNR, the loss of EGC is not severe at all, which justifies the
use of this simple technique. (It should be noted, however, that
additional performance degradation at finite SNR would result if
there existed correlation between the noise components across
diversity. Noise correlation, of course, has no effect on the error
probability floor, which is caused by fading dynamics.)

Performance of the two combiners as a function of fading
dynamics is summarized in Fig. 3. The parameteris set to
0.3, and the error probabilities of the two combiners are plotted
versus , which is proportional to the Doppler spread. The
accompanying plot represents the ratio of the optimal MRC
error probability to the error probability of EGC. Evidently, the
optimal MRC outperforms the EGC uniformly for all values of
. Notably, performance improvement is present for practical

values of in the range 0.999-0.9. The error probability floors
differ due to the signal correlations across diversity. (If instead
of the signal, only the noise components were correlated, the
two combiners would result in identical error floors.) At finite
SNR and slow fading , the performance of the two com-
biners is practically identical; however, at nonnegligible fading
rates, the optimal combiner yields gain. The exact value of the
gain depends on diversity correlations and the operating SNR.

The impact of diversity correlation is illustrated in Fig. 4
which shows the error probabilities, and their ratio, as a function
of , at dB. For slow fading, diversity correlation
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Fig. 3. Probabilities of error for combining with and without weighting, and
their ratio as a function of(1 � �).

causes only a small difference in performance of the two com-
biners. However, as fading becomes faster, the optimal MRC
results in a better performance for all but the limiting values of

and . (If in addition to the signal, the noise components
were correlated too, the performance difference would exist as
well at ). Hence, the impact of frequency spreading, or
fading dynamics, on the probability of error is emphasized by
the presence of correlated diversity.

V. CONCLUSION

In summary, the optimal differentially coherent MRC pro-
vides an improvement over the differentially coherent EGC
uniformly for all values of SNR, fading rates and varying degrees

Fig. 4. Probabilities of error for combining with and without weighting, and
their ratio as a function of diversity parameter�.

of correlation among diversity branches with unequal energy
distribution. The improvement is higher for higher fading rates,
with the exact amount depending on the energy distribution
and correlations across diversity branches. For practical values
of SNR and realistic fading rates, the loss incurred by EGC
can be kept small if diversity correlations are made relatively
low.

Despite the fact that performance improvement is available
from the knowledge of channel statistics, it is not likely that
precise measurements of either the channel fading rates, or the
signal and noise correlations will be available for the design of
a practical MRC. The presented error probability analysis is not
limited to any particular case, and it also provides a tool for
evaluating the effects of parameter mismatch.
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