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Differentially positive systems
F. Forni, R. Sepulchre

Abstract—The paper introduces and studies differentially pos-
itive systems, that is, systems whose linearization along an arbi-
trary trajectory is positive. A generalization of Perron Frobenius
theory is developed in this differential framework to show that
the property induces a (conal) order that strongly constrains
the asymptotic behavior of solutions. The results illustrate that
behaviors constrained by local order properties extend beyond
the well-studied class of linear positive systems and monotone
systems, which both require a constant cone field and a linear
state space.

I. INTRODUCTION

Positive systems are linear behaviors that leave a cone
invariant [11]. They have a rich history both because of the
relevance of the property in applications (e.g., when modeling
a behavior with positive variables [30], [18], [25]) and because
the property significantly restricts the behavior, as established
by Perron Frobenius theory: if the cone invariance is strict,
that is, if the boundary of the cone is eventually mapped
to the interior of the cone, then the asymptotic behavior of
the system lies on a one dimensional object. Positive systems
find many applications in systems and control, ranging from
specific stabilization properties [48], [32], [18], [14], [26], [39]
to observer design [22], [9], and to distributed control [31],
[37], [42].

Motivated by the importance of positivity in linear systems
theory, the present paper investigates the behavior of differ-
entially positive systems, that is, systems whose linearization
along trajectories is positive. We discuss both the relevance
of the property for applications and how much the property
restricts the behavior, by generalizing Perron Frobenius theory
to the differential framework. The conceptual picture is that
a cone is attached to every point of the state space, defining
a cone field, and that contraction of that cone field along the
flow eventually constrains the behavior to be one-dimensional.

Differential positivity reduces to the well-studied property
of monotonicity when the state-space is a linear vector space
and when the cone field is constant. First studied for closed
systems [43], [24], [23], [13] and later extended to open
systems [3], [5], [4], the concept of monotone systems en-
compasses cooperative and competitive systems [25], [36] and
is extensively adopted in biology and chemistry for modeling
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and control purposes [15], [17], [16], [45], [6], [7]. Differential
positivity is an infinitesimal characterization of monotonic-
ity. The differential viewpoint allows for a generalization of
monotonicity because the state-space needs not be linear and
the cone needs not be constant in space. The generalization
is relevant in a number of applications. In particular, non-
constant cone fields in linear spaces and invariant cone fields
on nonlinear spaces are two situations frequently encountered
in applications. Like monotonicity, differential positivity in-
duces an order between solutions. But in contrast to monotone
systems, the conal order needs not to induce a partial order
globally, allowing for instance to (locally) order solutions on
closed curves, such as along limit cycles or in nonlinear spaces
such as the circle.

A main contribution of the paper is to generalize Perron-
Frobenius theory in the differential framework. The Perron-
Frobenius vector of linear positive systems here becomes a
vector field and the integral curves of the Perron-Frobenius
vector field shape the attractors of the system. A main result
of the paper is to provide a characterization of limit sets
of differentially positive systems akin to Poincaré-Bendixson
theorem for planar systems. Differentially positive systems can
model multistable behaviors, excitable behaviors, oscillatory
behaviors, but preclude for instance the existence of attractive
homoclinic orbits, and a fortiori of strange attractors. In that
sense, differentially positive systems single out a significant
class of nonlinear systems that have a simple asymptotic
behavior.

The paper is organized as follows. Section II introduces the
main ideas of differential positivity on familiar phase portraits
and at an intuitive level. It aims at showing that the differential
concept of positivity is a natural one. Section III covers
some mathematical preliminaries and notations while Section
IV summarizes the main mathematical notions of order on
manifolds. The next three sections contain the main results of
the paper: the formal notion of differentially positive system,
differential Perron-Frobenius theory, and a characterization
of limit sets of differentially positive systems. Section VIII
illustrates several important points of the paper on the popular
nonlinear pendulum example. Proofs are in appendix. Our
treatment of differential positivity is for continuous-time and
discrete-time open systems. The important topic of intercon-
nections of differentially positive systems is a rich one and
will be discussed in a separate paper.

II. DIFFERENTIAL POSITIVITY IN A NUTSHELL

Figure 1 illustrates four different phase portraits of (closed)
differentially positive systems. Two of the phase portraits are
represented in two different set of coordinates. The figure
illustrates that for each of the phase portraits, a cone can
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ẋ1 = −x1 + tanh(2x1 + x2)
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ẋ1 = x2
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Figure 1. The phase portraits of four different planar differentially positive
systems. (I) a linear consensus model. (II) a monotone bistable model. (III)
the harmonic oscillator. (IV) the nonlinear pendulum with strong damping
and torque.

be attached at any point in such a way that the cone is
infinitesimally contracted by the flow (i.e. the cone angle
shrinks under the action of the flow). Furthermore, the cones
can be patched to each other to define a smooth cone field.

In the first two examples, the cone is actually the same
everywhere, defining a constant cone field in a linear space.
In the third example, both the state-space and the dynamics
are linear but the cone rotates with the flow. It defines a non
constant cone field in a linear space. In the fourth example,
the cone field must be defined infinitesimally because the state
space is nonlinear. At each point, a cone is defined in the
tangent space. The nonlinear cylindrical space S × R is a
Lie group and the cone is moved from point to point by
(left) translation. The analogy between the third and fourth
examples is apparent when studying the phase portrait of
the harmonic oscillator in polar coordinates. The nonlinear
change of coordinates makes the cone invariant on the conic
nonlinear space R+×S. The analogy between the first, second,
and fourth examples is apparent when unwrapping the phase
portrait of the nonlinear pendulum in the plane. In cartesian
coordinates, that is, unwrapping the angular coordinate ϑ on
the real line, the cone field becomes constant in a linear space.

The first phase portrait is the phase portrait of a linear
system that leaves the positive orthant invariant. It is a strictly
positive system. Its behavior is representative of consensus
behaviors extensively studied in the recent years [31], [35],
[41]. The second phase portrait leaves the same cone invariant

but the dynamics are nonlinear. Here the cone invariance
can be characterized differentially: the linearization along any
trajectory is a positive linear system with respect to the positive
orthant. It is an example of monotone system, representative
of bistable behaviors extensively studied in decision-making
processes, see e.g. [47]. The third example is the phase
portrait of the harmonic oscillator. Solutions cannot be globally
ordered in the state space because the trajectories are closed
curves. But the positivity of the linearization is nevertheless
apparent in polar coordinates. The corresponding order prop-
erty will be characterized by the notion of conal order on
manifolds developed in Section IV. The fourth example is the
phase portrait of the nonlinear pendulum with strong damping.
Positivity of the linearization and differential positivity of the
nonlinear pendulum is studied in details in the last Section of
the paper.

The main message of the paper is that differential positivity
constrains the asymptotic behavior of the four different phase
portraits in a similar way. For linear positive systems, this
is Perron- Frobenius theory. The Perron-Frobenius vector at-
tracts all solutions to a one-dimensional ray. For differentially
positive systems, the generalized object is a Perron-Frobenius
curve, an integral curve of the Perron-Frobenius vector field
characterized in Section V. In the second phase portrait, this is
the heteroclinic orbit connecting the two stable equilibria and
the unstable saddle equilibrium. In the third phase portrait,
every trajectory is a Perron-Frobenius curve. The differential
positivity is not strict in that case. In the fourth phase portrait,
all solutions except the unstable equilibrium are attracted to a
single Perron-Frobenius curve, the limit cycle.

The convergence properties of differentially positive sys-
tems are a consequence of the infinitesimal contraction of
cones along trajectories. The significance of the property is
that it can be checked locally but that it discriminates among
different types of global behaviors. The smoothness of the
cone field is what connects the local property to the global
property. A most important feature of differential positivity
is that it allows saddle points such as in Figure 1.II, because
the local order is compatible with a global smooth cone field,
but that it does not allow saddle points such as in Figure 2.
The homoclinic orbit makes the local order dictated by the
saddle point incompatible with a global smooth cone field.
This incompatibility has been recognized since the early work
of Poincaré as the essence of complex behaviors. In contrast,
the limit sets of differentially positive systems are simple, in
a sense that is made precise in Section VII.

III. MATHEMATICAL PRELIMINARIES
AND BASIC ASSUMPTIONS

A (d-dimensional) manifold X is a couple (X ,A+) where
X is a set and A+ is a maximal atlas of X into Rd, such
that the topology induced by A+ is Hausdorff and second-
countable (we refer to this topology as the manifold topology).
Throughout the paper every manifold is connected. TxX
denotes the tangent space at x and TX :=

⋃
x∈X {x} × TxX

denotes the tangent bundle. X is endowed with a Riemannian
metric tensor, represented by a (smoothly varying) inner
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product 〈·, ·〉x . |δx|x :=
√
〈δx, δx〉x, for any δx ∈ TxX . The

Riemannian metric endows the manifold with the Riemannian
distance D. We assume that (X , D) is a complete metric space
(see e.g. [1, Section 3.6]). The metric space topology and the
manifold topology agree [10, Theorem 3.1].

Given two smooth manifolds X1, X2, the differential of
f : X1 → X2 at x is denoted by ∂f(x) : TxX1 →
Tf(x)X2. Given X1 = Z ×Y , the operator ∂zf(z, y) satisfies
∂zf(z, y)δz := ∂f(z, y)[δz, 0] for each (z, y) ∈ X1 and each
[δz, 0] ∈ T(z,y)X1, where δz ∈ TzZ . Finally, we write f(·, y)
to denote the function in Z → X2 mapping each z ∈ Z into
f(z, y) ∈ X2.

A curve or γ on X , is a mapping γ : I → X where either
I ⊆ R or I ⊆ Z. domγ and imγ denote domain and image
of γ. We say that a curve γ : I → X is bounded if imγ
is a bounded set. We sometime use γ̇(s) or dγ(s)

ds to denote
∂γ(s)1, for s ∈ domγ.

Given a set S ⊆ X , intS and bdS denote interior and
boundary of S, respectively. Given a vector space V , a set
S ⊆ V , and a constant λ ∈ R, λS denotes the set {λx ∈
V |x ∈ S}. S + S denotes the set {x + y ∈ V |x, y ∈ S}.
Given a point y ∈ S , S \{y} := {x ∈ S |x 6= p}. Given
a sequence of sets Sn, limn→∞ Sn is the usual set-theoretic
limit [38, Chapter 4].

Let Σ be an open continuous dynamical system with
(smooth) state manifold X and input manifold U , represented
by ẋ = f(x, u), (x, u) ∈ X × U , where f is a (input-
dependent) vector field that assigns to each (x, u) ∈ X × U
a tangent vector f(x, u) ∈ TxX . We make the standing
assumptions that the vector field f and u(·) are C2 functions.
Following [10, Chapter 4, Section 4], two differentiable curves
x(·) : I ⊆ R → X (trajectory) and u(·) : I ⊆ R → U (input)
are a solution pair (x(·), u(·)) ∈ Σ if ẋ(t) = f(x(t), u(t)) for
all t ∈ I . An open discrete dynamical system Σ is represented
by the recursive equation x+ = f(x, u), (x, u) ∈ X × U . We
make the standing assumption that f : X × U → X is a C1

function. (x(·), u(·)) : [t0,∞) ⊆ Z → X × U is a solution
pair of Σ if x(·) and u(·) satisfy x(t+ 1) = f(x(t), u(t)) for
each t ∈ [t0,∞).

In what follows, we make the simplifying assumption of
forward completeness of the solution space, namely that every
solution pair has domain I = [t0,∞) ⊆ R (⊆ Z). Given the
solution pair (x(·), u(·)) : [t0,∞)→ X × U ∈ Σ we say that
ψ(·, t, x(t), u(·)) := x(·) is the trajectory or the integral curve
passing through x(t) at time t ≥ t0 under the action of the
input u(·). For constant inputs we simply write ψ(·, t, x(t), u)

?

Figure 2. Strict differential positivity excludes homoclinic orbits on saddle
points whose unstable manifold has dimension one. The local order imposed
by the saddle point cannot be extended globally to a smooth cone field.

and for closed systems we use ψ(·, t, x(t)). The flow of Σ is
given by the quantity ψ(t, t0, ·, u) for any t ≥ t0. For any curve
γ(·) and set S, ψ(t, t0, γ(·), u) denotes the time evolution of
γ(·) along the flow of the system at time t, and ψ(t, t0,S, u)
denotes the set {ψ(t, t0, x, u) |x ∈ S}. For closed systems we
say that xω ∈ X is an ω-limit point of a trajectory x(·) if
there exists a sequence of times tk →∞ as k →∞ such that
xω = limk→∞ x(tk). In a similar way, an α-limit point of a
trajectory x(·) is given by limk→∞ x(tk) for some sequence
tk → −∞ as k → ∞. The ω-limit set ω(x0) (α-limit set) is
the union of the ω-limit points (α-limit points) of the trajectory
x(·) from the initial condition x(t0) = x0.

IV. CONE FIELDS, CONAL CURVES, CONAL ORDERS

A conal manifold X is a smooth manifold endowed with a
cone field [28],

KX (x) ⊆ TxX ∀x ∈ X . (1)

Like for vector fields, a cone field attaches to each point x
of the manifold a cone KX (x) defined in the tangent space
TxX . Throughout the paper, each cone KX (x) ⊆ TxX is
closed, pointed and convex (for each x ∈ X , KX (x) +
KX (x) ⊆ KX (x), λKX (x) ⊆ KX (x) for any λ ∈ R≥0,
and KX (x) ∩ −KX (x) = {0}). To avoid pathological cases,
we assume that each cone is solid (i.e. it contains n inde-
pendent tangent vectors, where n is the dimension of the
tangent space) and there exists a linear invertible mapping
Γ(x1, x2) : Tx1X → Tx2X for each x1, x2 ∈ X , such
that Γ(x1, x2)KX (x1) = KX (x2). Note that the application
of a linear invertible mapping to a cone is intended as an
operation on the rays of the cone, that is, Γ(x1, x2)KX (x1) :=
{λΓ(x1, x2)δx ∈ Tx2

X | δx ∈ KX (x1), λ ≥ 0}.
We make the standing assumption that each cone field is

smooth. In particular, in local coordinates,

KX (x) = {δx ∈ TxX | ∀i ∈ I, ki(x, δx) ≥ 0} (2)

where I ⊆ Z is an index set and ki : TX → R are functions;
and we say that a cone field is smooth if the functions ki are
smooth.

A curve γ : I ⊆ R→ X is a conal curve on X if

γ̇(s) ∈ KX (γ(s)) for all s ∈ I . (3)

Conal curves are integral curves of the cone field, as shown in
Figure 3. They endow the manifold with a local partial order:
for each x1, x2 ∈ X , x1 vKX x2 if and only if there exists
a conal curve γ : I ⊆ R → X such that γ(s1) = x1 and
γ(s2) = x2 for some s1 ≤ s2.

The conal order vKX is the natural generalization on
manifolds of the notion of partial order on vector spaces.
In fact vKX is a partial order when X is a vector space

γ̇(s)

KX (γ(s))
γ(·)

Figure 3. A conal curve satisfies (3). If s1 ≤ s2 then γ(s1) vKX γ(s2).
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and the cone field KX (x) = KX is constant: two points
x, y ∈ X satisfy x vKX y iff y − x ∈ KX , as shown in [28,
Proposition 1.10], which is the usual definition of a partial
order on vector spaces [40, Chapter 5]. In general, vKX is
not a (global) partial order on X since antisymmetry may fail.
The reader is referred to [28] and [33] for a detailed exposition
of the relations among cone fields, ordered manifolds, and
homogeneous spaces.

Example 1: For the manifold S×R in Figure 1.IV, the conal
order given by the cone field δθ ≥ 0, δθ + δv ≥ 0 is not a
partial order since, for any pair of points x, y ∈ S× R, there
exists a conal curve connecting x to y and viceversa. However,
in a sufficiently small neighborhood of any point x, the conal
order is a partial order. y

V. DIFFERENTIALLY POSITIVE SYSTEMS

A. Definitions

A dynamical system is differentially positive when its
linearization is positive. Positivity is intended here in the sense
of cone invariance [11]. More precisely, a dynamical system
Σ on the conal state-input manifold X × U is differentially
positive when the cone field

K(x, u) = KX (x, u)︸ ︷︷ ︸
⊆TxX

×KU (x, u)︸ ︷︷ ︸
⊆TuU

⊆ T(x,u)X × U (4)

is invariant along the trajectories of the linearized system. For
discrete-time system x+ = f(x, u), the invariance property
has a simple formulation. The mapping f : X × U → X , is
differentially positive if, for all x ∈ X and all u, u+ ∈ U ,

∂f(x, u)K(x, u) ⊆ KX (f(x, u), u+) . (5)

Indeed, ∂f(x, u) is a positive linear operator, mapping each
tangent vector (δx, δu) ∈ K(x, u) ⊆ T(x,u)X × U into
δx+ := ∂f(x, u)[δx, δu] ∈ KX (x+, u+) ⊆ Tx+X . A graph-
ical representation for closed discrete systems is provided in
Figure 4. The relation between the positivity of the operator
∂f(x, u) in (5) and the positivity of the linearization of Σ is
justified by the fact that δx+ = ∂xf(x, u)δx + ∂uf(x, u)δu,
which establishes the positivity of the linearized dynamics in
the sense of [11], [18], [14], [2].

KX (x)x

x+

KX (x+)

∂f(x)KX (x)

Figure 4. A graphical representation of condition (5) for the (closed) discrete
time system x+ = f(x). The cone field K(x, u) reduces to KX (x) in this
case.

For general continuous-time ẋ = f(x, u) ∈ TxX and
discrete-time x+ = f(x, u) ∈ X dynamical systems Σ
((x, u) ∈ X × U), the definition of differential positivity
involves the prolonged system δΣ introduced in [12]

δΣ :

{
(x+) ẋ = f(x, u)

(δx+) ˙δx = ∂xf(x, u)δx+ ∂uf(x, u)δu .
(6)

We call variational component the second equation of (6).
Definition 1: Σ is a differentially positive dynamical system

(with respect to K in (4)) if, for all t0 ∈ R, any solution pair
((x, δx)(·), (u, δu)(·)) : [t0,∞)→ TX ×TU ∈ δΣ leaves the
cone field K invariant. Namely,

{
δx(t0) ∈ KX (x(t0), u(t0))
δu(t) ∈ KU (x(t), u(t)), ∀t ≥ t0

⇒
δx(t) ∈ KX (x(t), u(t)), ∀t ≥ t0 .

(7)

y

In continuous-time, differential positivity of Σ is thus
positivity of the linearized system ˙δx = A(t)δx + B(t)δu
along any solution pairs (x(·), u(·)) ∈ Σ, where A(t) :=
∂xf(x(t), u(t)) and B(t) := ∂uf(x(t), u(t)). For closed
systems ẋ = f(x), with cone field KX (x) ⊆ TxX , we
have ˙δx = A(t)δx, where A(t) := ∂f(x(t)), along any
given solution x(·) : [t0,∞) → X ∈ Σ. Therefore, the
fundamental solution Ψx(·)(t, t0) of the linearized dynamics
[44, Appendix C.4] satisfies Ψx(·)(t, t0)KX (x) ⊆ KX (x) for
each t ∈ [t0,∞), that is, Ψx(·)(t, t0) is a positive linear
operator.

Strict differential positivity is to differential positivity what
strict positivity is to positivity. We anticipate that this (mild)
property will have a strong impact on the asymptotic behavior
of differentially positive systems, as shown in Section VI.

Definition 2: Σ is (uniformly) strictly differentially positive
(with respect to K) if differential positivity holds and there
exists T > 0 and a cone field RX (x, u) ⊆ intKX (x, u) ∪
{0} such that, for all t0 ∈ R, any ((x, δx)(·), (u, δu)(·)) :
[t0,∞)→ TX × TU ∈ δΣ satisfies

{
δx(t0) ∈ KX (x(t0), u(t0))
δu(t) ∈ KU (x(t), u(t)), ∀t ≥ t0

⇒
δx(t) ∈ RX (x(t), u(t)), ∀t ≥ t0 + T .

(8)

We assume that the cone field RX also satisfies the following
additional technical condition:

Γ(x1, u1, x2, u2)RX (x1, u1) = RX (x2, u2) (9)

for each (x1, u1), (x2, u2) ∈ X ×U , where Γ(x1, u1, x2, u2) :
Tx1X → Tx2X is a linear invertible mapping such that
Γ(x1, u1, x2, u2)KX (x1, u1) = KX (x2, u2) (see Section IV).

y
For open systems with output h : X × U → Y – Y output

manifold, endowed with the cone field KY(y) ∈ TyY – the
notion of (strict) differential positivity requires the further
condition that h is a differentially positive mapping, that is,
∂h(x, u)K(x, u) ⊆ KY(h(x, u)), for each (x, u) ∈ X × U .

Remark 1: Differential positivity has a geometric character-
ization. restricting to closed systems for simplicity, consider
the cone field KX (x) represented by (2) where I is an index set
and ki are smooth functions. Then, (7) is equivalent to require
that ki(x(t), δx(t)) ≥ 0 along any solution (x(·), δx(·)) ∈ δΣ,
for all i ∈ I . Therefore, differential positivity for a discrete
system can be established by testing that ∀i ∈ I, ki(x, δx) ≥ 0
implies ∀i ∈ I, k+

i := ki(f(x), ∂f(x)δx) ≥ 0, for each
(x, δx) ∈ TX . In a similar way, for continuous systems,
consider any pair (x, δx) ∈ TX such that ki(x, δx) ≥ 0 for
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all i ∈ I and test that, for any j ∈ I , if kj(x, δx) = 0 then
k̇j := ∂kj(x, δx)[f(x), ∂f(x)δx] ≥ 0. y

B. Examples

1) Positive linear systems are differentially positive: Con-
sider the dynamics Σ given by x+ = Ax on the vector space V .
Positivity with respect to the cone KV ⊆ V reads AKV ⊆ KV ,
[11]. A typical example is provided by the case of a matrix A
with non-negative entries which guarantees the invariance of
the positive orthant KV := Rn+.

Since each tangent space of a vector space can be identified
to the vector space itself, i.e. TxV = V for each x ∈ V ,
consider the manifold X := V and define the lifting of the
cone KV to the cone field KX (x) := KV ⊆ TxX , for each
x ∈ X (constant cone field). Then the linearized dynamics
reads δx+ = Aδx and the prolonged system trivially satisfies
AKX (x) ⊆ KX (Ax).

2) Monotone systems are differentially positive: A mono-
tone dynamical system [43], [3] is a dynamical system whose
trajectories preserve some partial order relation on the state
space. Moving from closed [43], [24], [23], [13], [25], [36]
to open systems [3], [5], [4], this wide class of systems
is extensively adopted in biology and chemistry both for
modeling and control [15], [17], [16], [45], [6], [7].

The partial order � of a monotone system is typically
induced by a conic subset KV ⊆ V of the state (vector) space
V . Precisely, two points x, x̂ ∈ V satisfy x �KV x̂ if and
only if x̂−x ∈ KV . The preservation of the order along the
system dynamics reads as follows: if x(·), x̂(·) ∈ Σ satisfy
x(t0) �KV x̂(t0) for some initial time t0, then x(t) �KV x̂(t)
for all t ≥ t0, [43].

To show that a monotone system is differentially positive,
consider V as a manifold endowed with the constant cone
field KV(x) := KV , x ∈ V . By monotonicity, the infinitesimal
difference between two ordered neighboring solutions δx(·) :=
x̂(·) − x(·) satisfies δx(t) ∈ KV(x(t)), for each t ≥ t0.
Differential positivity follows from the fact that (x(·), δx(·))
is a trajectory of the prolonged system δΣ.

Theorem 1: Given any cone KV on the vector space V , the
partial order �KV , and the cone field KX (x) := KV , a (closed)
dynamical system is monotone if and only if is differentially
positive. y

Proof: For constant cone fields on vector spaces recall
that �KV and vKV are equivalent relations (see Section IV).
Consider a conal curve γ(t0, ·) connecting two ordered initial
points γ(t0, 0) := x(t0) �KV x̂(t0) =: γ(t0, 1). Note that
γ(t0, s1) vKV γ(t0, s2) for each s1 ≤ s2. For each s ∈ [0, 1],
let γ(·, s) be a trajectory of Σ. Indeed, γ(t, ·) represents
the time evolution of the curve γ(t0, ·) along the flow of
the system. [⇐] Differential positivity guarantees that γ(t, ·)
is a conal curve for each t ≥ t0. This follows from the
fact that the pair (xs(t), δxs(t)) := (γ(t, s), ddsγ(t, s)) is a
trajectory of the prolonged system δΣ for each s ∈ [0, 1].
Thus, x(t) vKV x̂(t) for all t ≥ t0. [⇒] Monotonicity
guarantees that γ(t, s1) �KV γ(t, s2) for all s1 ≤ s2. By
a limit argument, d

dsγ(t, s) ∈ KV(γ(t, s)) for all t ≥ t0
and al s ∈ [0, 1]. Thus γ(t, ·) is a conal curve. Note that

(xs(t), δxs(t)) := (γ(t, s), ddsγ(t, s)) is a trajectory of the
prolonged system. Since γ(t0, ·) is a generic conal curve, (7)
follows.

A similar result holds for open monotone systems, which
are typically characterized by introducing two orders �KX and
�KU , respectively induced by the cone KX on the state space
X and KU on the input space U , [3, Definition II.1]. Extending
the argument above it is possible to show that a dynamical
system Σ is monotone with respect to (�KX ,�KU ) if and
only if Σ is differentially positive on the vector space X ×U
endowed with the constant cone field K(x, u) := KX × KU ,
for each (x, u) ∈ X × U . In this sense, differential positivity
on vector spaces and constant cone fields is the differential
formulation of monotonicity.

3) Differential positivity of cooperative systems and the
Kamke condition: A cooperative system ẋ = f(x) with state
space X := Rn is monotone with respect to the partial
order induced by the positive orthant Rn+, thus differentially
positive with respect to the cone field KX (x) := Rn+, x ∈ X .
Exploiting the geometric conditions of Remark 1, differentially
positivity with respect to KX holds when

[∂f(x)]ij ≥ 0 for all 1 ≤ i 6= j ≤ n, x ∈ X , (10)

where [·]ij denotes the ij component. To see this, define Ei as
the vector whose i-th element is equal to one and the remaining
to zero and note that the positive orthant is defined by the set
of δx that satisfy 〈Ei, δx〉 ≥ 0. Then, from Remark 1, the
invariance reads 〈Ei, δx〉 = 0 ⇒ 〈Ei, ∂f(x)δx〉 ≥ 0 for any
x ∈ X , δx ∈ KX (x) = Rn+, and i ∈ {1, . . . , n}. (10) follows
by selecting δx = Ej 6= Ei. Indeed, ∂xf(x) is a Metzler
matrix for each x ∈ X [3, Section VIII].

Cooperative systems typically satisfy (10), as shown in [43,
Remark 1.1] on closed systems. A similar result is provided
in [3, Proposition III.2] for open systems. In this sense, the
pointwise geometric conditions in Remark 1 revisit and extend
the comparison between cooperative systems, incrementally
positive systems of [3, Section VIII], and the Kamke condition
provided in [43, Chapter 3].

4) One dimensional continuous-time systems are differen-
tially positive: This property is well-known for systems in R:
solutions are partially ordered because they cannot “pass each
other”. It remains true on closed manifolds such as S, even
though the conal order does not induce a (globally defined)
partial order in that case.

5) Non-constant cones for oscillating dynamics: Moving
from constant to non-constant cone fields opens the way to
the analysis of more general limit sets such a oscillations
or limit cycles. The harmonic oscillator studied in Section II
provides a first simple example of differential positivity with
respect to a non-constant cone field. In particular, consider
KX (x) := {δx ∈ R2 \ {0} | k1(x, δx) ≥ 0, k2(x, δx) ≥ 0},
where k1(x, δx) := −(x1 + x2)δx1 + (x1 − x2)δx2 and
k2(x, δx) := −(x2 − x1)δx1 + (x1 + x2)δx2. The cone field
is well defined on the (invariant) manifold X := R2 \ {0}.
Differential positivity with respect to KX (x) follows from the
geometric conditions in Remark 1, since k̇1 = 0 and k̇2 = 0
everywhere.
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The differential positivity of the harmonic oscillator with
respect to KX (x) is not surprising if one looks at the rep-
resentation of the oscillator in polar coordinates ϑ̇ = 1,
ρ̇ = 0. The state manifold becomes the cylinder S × R+

and the system decompose into two one-dimensional systems,
which suggests the invariance of any cone field rotating with
ϑ, as shown in Figure 5 (left). Indeed, polar coordinates
suggest differential positivity for arbitrary decoupled dynamics
ϑ̇ = f(ϑ), ρ̇ = g(ρ) with respect to the cone field K(ϑ, ρ) :=
{(δϑ, δρ) ∈ R2) | δϑ ≥ 0 , δρ ≥ 0}. In fact, the linearization
reads ˙δϑ = ∂f(ϑ)δϑ, δ̇ρ = ∂g(ρ)δρ, which guarantees that
˙δϑ = 0 for δϑ = 0 and δ̇ρ = 0 for δρ = 0, as required by

Remark 1.
Possibly, the invariance of the cone field can be strengthened

to contraction by combining the two uncoupled dynamics. For
example, when f(ϑ) = 1 and g(ρ) = ρ − ρ3

3 , the trajectories
of the variational dynamics move towards the interior of the
cone field K(ϑ, ρ) := {(δϑ, δρ) ∈ R2) | δϑ ≥ 0 , δϑ2− δρ2

ρ2 ≥
0}. In fact, d

dt (δϑ
2 − δρ2

ρ2 ) = 4
3δρ

2 > 0 for each (δϑ, δρ) ∈
bdK(ϑ, ρ) \ {0}. Figure 5 (right) provides a representation of
the (projective) contraction of the cone. We anticipate that this
contraction property is tightly connected to the existence of a
globally attractive limit cycle.
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Figure 5. Simulations of the variational dynamics δΣ of the two cases
(i) ρ̇ = 0 (left) and (ii) ρ̇ = (ρ− ρ3

3
) (right), from the same initial condition.

The red arrows represent the motion of the variational component along the
trajectory.

Remark 2: Differential positivity requires classical posi-
tivity of the linearized dynamics at fixed points. In fact,
Definition 1 shows that the cone field at any fixed point
x∗ is given by the invariant cone of the (positive) linearized
dynamics at x∗. The harmonic oscillator is not a positive linear
system, because of the presence of the two complex eigen-
values. Thus, it is not differentialy positive in R2. However,
polar coordinates reveal that it is differentially positive in the
manifold X = R2 \ {0}. y

VI. DIFFERENTIAL PERRON-FROBENIUS THEORY

A. Contraction of the Hilbert metric

Bushell [11] (after Birkhoff [8]) used the Hilbert metric
on cones to show that the strict positivity of a mapping
guarantees contraction among the rays of the cone, opening
the way to many contraction-based results in the literature of
positive operators [11], [34], [42], [9], [29], among which
the reduction of the Perron-Frobenius theorem to a special
case of the contraction mapping theorem [27], [11], [8].

Taking inspiration from these important results, we rely on
the infinitesimal contraction properties of the Hilbert metric
to study the contraction properties of differentially positive
systems.

Consider the product manifold X ×U where X is endowed
with the cone field KX (x, u) ⊆ TxX , for each (x, u) ∈ X ×
U . Following [11], for any given (x, u), take any δx, δy ∈
KX (x, u) \ {0} and define the quantities

MKX (x,u)(δx, δy) := inf{λ ∈ R≥0 |λδy − δx ∈ KX (x, u)}
mKX (x,u)(δx, δy) := sup{λ ∈ R≥0 | δx− λδy ∈ KX (x, u)}.

(11)
MKX (x,u)(δx, δy) := ∞ when {λ ∈ R≥0 |λδy − δx ∈
KX (x, u)} = ∅. The Hilbert’s metric dKX (x,u) induced by
KX (x, u) is given by

dKX (x,u)(δx, δy) = log

(
MKX (x,u)(δx, δy)

mKX (x,u)(δx, δy)

)
. (12)

In each cone KX (x, u) dKX (x,u) is a projective distance:
for each δx, δy, δz ∈ KX (x, u), dKX (x,u)(δx, δy) ≥ 0,
dKX (x,u)(δx, δy) = dKX (x,u)(δy, δx), dKX (x,u)(δx, δy) ≤
dKX (x,u)(δx, δz) + dKX (x,u)(δz, δy), and dKX (x,u)(δx, δy) =
0 if and only if δx = λδy with λ ≥ 0.

The following theorem is a generalization of Birkhoff
result: it shows that strict differential positivity guarantees the
exponential contraction of the metric when the input u(·) acts
uniformly on the system (a feedforward signal). The uniform
action of the input is modeled by taking the variational input
δu(·) = 0, since δu represents the infinitesimal mismatch
between two inputs.

For readability, in what follows we denote the Hilbert metric
along a solution pair dKX (x(t),u(t))(·, ·) with d∗(t)(·, ·).

Theorem 2: Let Σ be a dynamical system on the state/input
manifold X×U , differentially positive with respect to the cone
field K(x, u) := KX (x, u)×{0}, where KX (x, u) ⊆ TxX for
each (x, u) ∈ X × U . Then, for all t ≥ t0,

d∗(t)(δx1(t), δx2(t)) ≤ d∗(t0)(δx1(t0), δx2(t0)) (13)

for any (x(·), δx1(·), u(·), 0), (x(·), δx2(·), u(·), 0) ∈ δΣ with
domain [t0,∞) and δx1(t0), δx2(t0) ∈ KX (x(t0), u(t0)).

If Σ is strictly differentially positive then there exist ρ ≥ 1
and λ > 0 such that, for all t ≥ t0,

d∗(t)(δx1(t), δx2(t)) ≤ ρe−λ(t−t0)d∗(t0)(δx1(t0), δx2(t0))
(14)

for any (x(·), δx1(·), u(·), 0), (x(·), δx2(·), u(·), 0) ∈ δΣ with
domain [t0,∞) and δx1(t0), δx2(t0) ∈ KX (x(t0), u(t0)).
Moreover, d∗(t)(δx1(t), δx2(t)) <∞ for t ≥ t0 + T . y

B. The Perron-Frobenius vector field

The Perron-Frobenius vector of a strictly positive linear map
is a fixed point of the projective space. Its existence is a
consequence of the contraction of the Hilbert metric, [11]. To
exploit the generalized contraction of Theorem 2, we assume
that the input acts uniformly on the system, that is, δu(·) = 0.
We endow the state manifold X with a (smooth) Riemannian
structure and we define B(x) := {δx ∈ TxX | |δx|x = 1} ⊆
TxX , to make the following assumption.
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Assumption 1: (KX (x, u) ∩ B(x), dKX (x,u)) is a complete
metric space for any given (x, u) ∈ X × U 1.

To introduce the Perron-Frobenius vector field we study
the asymptotic behavior of δΣ, looking at solutions pairs
(z(·), u(·)) ∈ Σ with domain I := (−∞, t) (backward
completeness of Σ). Recall that for any (z(·), u(·)) ∈ Σ,
if δu(·) = 0 then δz(t) = ∂z(t0)ψ(t, t0, z(t0), u(·))δz(t0)
is a trajectory of the variational components of δΣ along
(z(·), u(·)).

Theorem 3: Let Σ be a dynamical system on the state/input
manifold X ×U . Suppose that Σ is strictly differentially posi-
tive with respect to the cone field K(x, u) := KX (x, u)×{0}
such that KX (x, u) ⊆ TxX for each (x, u) ∈ X × U and
suppose that Assumption 1 holds.

For any input u(·) : R → U which makes Σ backward
complete, there exists a time-varying vector field wu(·)(x, t) ∈
intKX (x, u(t)) ∩ B(x), x ∈ X and t ∈ R, such that any
solution pair (z(·), u(·)) ∈ Σ satisfies

lim
t0→−∞

∂z(t0)ψ(t, t0, z(t0), u(·))KX (z(t0), u(t0)) =

= {λwu(·)(z(t), t) |λ ≥ 0} .
(15)

We call this vector field the Perron-Frobenious vector field. y
Corollary 1: Under the assumptions of Theorem 3, if

u(·) = u ∈ U (constant), then the Perron-Frobenius vector
field reduces to a continuous time-invariant vector field wu(x).
For linear systems the Perron-Frobenius vector field reduces
to the (constant) Perron-Frobenius vector. y

The evolution of an initial cone KX (z(t0), u(t0)) along the
(variational) flow of the system asymptotically converges to
the span of the Perron-Frobenius vector field wu(·)(x, t) at-
tached to each x ∈ X , as illustrated in Figure 6. Decomposing
the variational trajectory δz(·) along z(·) into a directional
component ϑ(t) := δz(t)

|δz(t)|z(t) ∈ KX (z(t), u(t)) ∩ Bz(t), and
a magnitude component ρ(t) := |δz(t)|z(t), Theorem 3 estab-
lishes that ϑ(t) is guaranteed to converge to wu(·)(z(t), t),
for any initial condition ϑ(t0).

For constant inputs the Perron-Frobenius vector field
has a simple geometric characterization. Take any tra-
jectory (x(·), δx(·)) of the prolonged system δΣ under
the action of the constant input u, and suppose that
d(x(t),u)(wu(x(t)), δx(t)) = 0 for some t ∈ R. Then,
from (14), d(x(t+τ),u)(wu(x(t + τ)), δx(t + τ)) = 0 for
each τ ≥ 0, which shows that wu(x(t)) must be a time-
reparametrized trajectory of Σ. Therefore, wu(x) belongs to
intKX (x, u) for all x and satisfies the partial differential equa-
tion [∂xwu(x)]f(x, u) = [∂xf(x, u)]wu(x) − λ(x, u)wu(x)
for continuous time systems, for some λ(x, u) ∈ R which
guarantees |wu(x)|x = 1. In a similar way, for discrete
dynamics we have wu(f(x, u)) = λ(x, u)[∂xf(x, u)]w(x, u).
As before, λ(x, u) ∈ R is selected to guarantee |wu(x)|x = 1.
Existence and uniqueness of the solution wu(x) follow from
the contraction of the Hilbert metric, under the assumption of
backward and forward invariance of X .

1The reader is referred to [11, Section 4], [29, Section 2.5], or [49] for
examples of complete metric spaces on cones.

z(t)

KX (z(t0), u(t0))z(t0)

z(t′0)

wu(·)(t, x)

KX (z(t′0), u(t′0))

KX (z(t), u(t))

z(·)

Figure 6. The contraction at time t from different initial cones, for
t0 < t′0 < t. Note that ∂z(t0)ψ(t, t0, z(t0), u(·))KX (z(t0), u(t0)) ⊆
∂z(t′0)

ψ(t, t′0, z(t
′
0), u(·))KX (z(t′0), u(t′0)) ⊆ KX (z(t), u(t)). At time t,

for t− t0 →∞, the cone reduces to a line.

VII. LIMIT SETS OF (CLOSED)
DIFFERENTIALLY POSITIVE SYSTEMS

A. Behavior dichotomy

For closed continuous-time dynamical systems (or open
continuous-time systems with constant inputs) the combination
of the local order on the system state manifold and the
projective contraction of the variational dynamics toward the
Perron-Frobenius vector field w(x) restrict the asymptotic
behavior of differentially positive systems. The next theorem
characterizes the ω-limit sets of those systems.

Theorem 4: Let Σ be a closed continuous (complete) sys-
tem ẋ = f(x) with state manifold X , strictly differentially
positive with respect to the cone field KX (x) ⊆ TxX . Under
Assumption 1, suppose that the trajectories of Σ are bounded.
Then, for every ξ ∈ X , the ω-limit set ω(ξ) satisfies one of
the following two properties:
(i) The vector field f(x) is aligned with the Perron-

Frobenius vector field w(x) for each x ∈ ω(ξ) (i.e.
f(x) = λ(x)w(x), λ(x) ∈ R), and ω(ξ) is either a fixed
point or a periodic orbit or a set of fixed points and
connecting arcs;

(ii) The vector field f(x) is not aligned with the Perron-
Frobenius vector field w(x) for each x ∈ ω(ξ) such that
f(x) 6= 0, and either lim inf

t→∞
|∂xψ(t, 0, x)w(x)|ψ(t,0,x) =

∞ or lim
t→∞

f(ψ(t, 0, x)) = 0. y
The interpretation of Theorem 4 is that the asymptotic

behavior of Σ is either described by a Perron-Frobenius
curve γw(·), that is, a curve γ̇w(s) = w(γw(s)) for all
s ∈ dom γw(·); or is the union of the limit points of
some trajectory ψ(·, 0, ξ), ξ ∈ X , nowhere tangent to the
Perron-Frobenius vector field, as clarified in Section VII-C,
and characterized by high sensitivity with respect to initial
conditions, because of the unbounded linearization. The proof
of Theorem 4 in Appendix, Section B, is of interest on its own
since it illustrates how differential Perron-Frobenius theory
impacts the behavior of Σ. In the next two subsections we
further discuss the implications of Theorem 4 in case (i) and
in case (ii), respectively.

B. Simple attractors of differentially positive systems

A first consequence of Theorem 4 is a result akin to
Poincare-Bendixson characterization of limit sets of planar
systems.
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Corollary 2: Under the assumptions of Theorem 4, con-
sider an open, forward invariant region C ⊆ X that does not
contain any fixed point. If the vector field f(x) ∈ intKX (x)
for any x ∈ C, then there exists a unique attractive periodic
orbit contained in C. y

The result shows the potential of differential positivity for
the analysis of limit cycles in possibly high dimensional
spaces. Since stable limit cycles must correspond to Perron-
Frobenius curves, stable limit cycles are excluded when
Perron-Frobenius curves are open, a property always satisfied
in vector spaces with constant cone field. For a differentially
positive system defined in a vector space, the cone field must
necessarily “rotate” with the periodic orbit in order to allow
for limit cycle attractors (see, for example, Section V-B5).

Beyond isolated fixed point and limit cycles, the limit sets
of differentially positive systems are severely restricted by
(local) order properties, see Figure 7 for an illustration. In
particular, the intuitive argument ruling out homoclinic orbits
like in Figure 2 is made rigorous with Theorem 4. A limit
set given by a connecting arc between two hyperbolic fixed
points can exists only if it is everywhere tangent to the Perron-
Frobenius vector field (Theorem 4.i), or nowhere tangent to
the Perron-Frobenius vector field (Theorem 4.ii). Because any
orbit between two hyperbolic fixed points must belong to
the unstable manifold of its α-limit set and to the stable
manifold of its ω-limit set, it can be a Perron-Frobenius
curve only if, whenever it is tangent to the Perron-Frobenius
eigenvector of its α-limit, it is also tangent to the Perron-
Frobenius eigenvector of its ω-limit.

Corollary 3: Under the assumptions of Theorem 4, con-
sider an orbit that connects two hyperbolic fixed points ye, ze,
respectively as t→ −∞ and t→∞. If the orbit is tangent to
w(ye) at ye, then it is tangent to w(ze) at ze. y

The corollary rules out the possibility of a homoclinic orbit
with a one-dimensional unstable manifold, a typical ingredient
of strange attractors. For system depending on parameters, the
corollary rules out the possibility of homoclinic bifurcations
[46, Chapter 8] where the homoclinic orbit is tangent to the
dominant eigenvector of the saddle point. In accordance with
Theorem 4, a limit set given by a homoclinic orbit can only
exist if it is nowhere tangent to the Perron-Frobenius vector
field, which rules out the possibility of being part of a simple
attractor. The two situations are illustrated in Fig 8.

C. Complex limit sets of differentially positive systems are not
attractors.

Part (ii) of Theorem 4 allows for more complex limit sets
than those described in Part (i), but those limit sets cannot be
attractors, because they are nowhere tangent to the dominant
direction of the linearization. This property has been well
studied for monotone systems. For instance, Smale proposed
a construction to imbed chaotic behaviors in a cooperative
irreducible system [43, Chapter 4]. The transversality of those
limit sets to the Perron-Frobenius vector field extends to the
trajectories that converge to them. For instance, consider any
ω-limit set ω(ξ), ξ ∈ X , satisfying Part (ii) of Theorem 4.
Any trajectory whose ω-limit points belong to ω(ξ) is nowhere

Figure 7. Simple attractors consistent with the ordering property of a Perron-
Frobenius curve. Cones are shaded in blue. Top-left: fixed point with dominant
eigenvector. Top-right: bistable systems, the heteroclinic orbits connecting
the saddle (red) to the stable fixed points (blue) coincides with the image
of some Perron-Frobenius curves. Bottom: limit cycles (left) or fixed points
and connecting arcs (right) coincides with the image of some closed Perron-
Frobenius curve, thus require require a rotating cone field (on vector spaces).

Figure 8. The stable and unstable manifolds of the saddle have dimension 1
and 2, respectively. The Perron-Frobinius vector field is represented in red. The
limit set given by the homoclinic orbit on the right part of the figure (dashed
line) is ruled out by Corollary 3. The limit set given by the homoclinic orbit
on the left part of the figure (solid line) is compatible with Theorem 4 but
the Perron-Frobenius vector field is nowhere tangent to the curve.

tangent to the Perron-Frobenius vector field. Moreover, if the
trajectory does not converge to a fixed point then it shows high
sensitivity with respect to initial conditions.

Corollary 4: Under the assumptions of Theorem 4, suppose
that for some ξ ∈ X , ω(ξ) satisfies Part (ii) of Theorem
4. Then, for any z ∈ X such that ω(z) ⊆ ω(ξ), the
trajectory ψ(·, 0, z) satisfies f(ψ(t, 0, z)) /∈ KX (ψ(t, 0, z)) \
{0} for each t ≥ 0. If ω(z) is not a singleton, then
lim inf
t→∞

|∂zψ(t, 0, z)w(z)|ψ(t,0,z) =∞. y

The reason why the possibly complex limit sets of differen-
tially positive systems are of little importance for the overall
behavior is that their basin of attraction W seems strongly
repelling. In accordance to Corollary 4, it is very “likely” for
a trajectory in a small neighborhood ofW to move away from
W along the Perron-Frobenius vector field and “unlikely” to
return to W at later time. The argument can be made rigorous
for strongly order preserving monotone systems, allowing to
recover the following celebrated result for monotone systems
[43], [23].

Corollary 5: Let Σ be a continuous dynamical system of
the form ẋ = f(x) on a vector space X , strict differentially
positive with respect to the constant cone field KX ⊆ TxX =
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X . Under boundedness of trajectories, the ω-limit set ω(ξ) is
a fixed point for almost all ξ ∈ X . y
For general differentially positive systems, the above discus-
sion leads to the following conjecture.

Conjecture 1: Under the assumptions of Theorem 4, for
almost every ξ ∈ X , the ω-limit set ω(ξ) is given by either
a fixed point, or a limit cycle, or fixed points and connecting
arcs. y

The implication of Conjecture 1 would be that any limit set
not covered by case (i) in Theorem 4 could at best attract a
set of initial conditions of zero measure.

VIII. EXTENDED EXAMPLE: DIFFERENTIAL POSITIVITY OF
THE DAMPED PENDULUM

The results of the paper are briefly illustrated on the analysis
of the classical (adimensional) nonlinear pendulum model:

Σ :

{
ϑ̇ = v
v̇ = − sin(ϑ)− kv + u

(ϑ, v) ∈ X := S×R ,

(16)
where k ≥ 0 is the damping coefficient and u is the (constant)
torque input.

The analysis of the state matrix A(ϑ, k) for ϑ ∈ S of the
variational system
[

˙δϑ

δ̇v

]
=

[
0 1

− cos(ϑ) −k

]

︸ ︷︷ ︸
=:A(ϑ,k)

[
δϑ
δv

]
(δϑ, δv) ∈ T(ϑ,v)X

(17)
reveals that the pendulum is strictly differentially positive for
k > 2 and differentially positive for k = 2 with respect to the
cone field

KX (ϑ, v) := {(δϑ, δv) ∈ T(ϑ,v)X | δϑ ≥ 0, δϑ+ δv ≥ 0} .
(18)

The differential positivity of (16) for k ≥ 2 has the
following simple geometric interpretation. For any k ≥ 2 and
any value of ϑ, the matrix A(ϑ, k) has only real eigenvalues.
The blue and the red lines in Figure 9 show the direction of
the eigenvectors of A(ϑ, 4) (left) - A(ϑ, 3) (center) - A(ϑ, 2)
(right), for sampled values of ϑ ∈ S. The blue eigenvectors
(δϑ ≤ 0) are related to the smallest eigenvalues, which is
negative for each ϑ. The red eigenvectors (δϑ ≥ 0) are
related to the largest eigenvalues. KX (ϑ, v) is represented by
the shaded area in Figure 9. The black arrows represent the
vector field of the variational dynamics along the boundary
of the cone. By continuity and homogeneity of the vector
field on the boundary of the cone, Σ is strictly differentially
positive for each k > 2. It reduces to a differentially positive
system in the limit of k = 2. The loss of contraction in such
a case has a simple geometric explanation: one of the two
eigenvectors of A(0, 2) belongs to the boundary of the cone
and the eigenvalues of A(0, 2) are both in −1. The issues is
clear for u = 0 at the equilibrium xe := (0, 0). In such a case
A(0, 2) gives the linearization of Σ at xe and the eigenvalues
in −1 makes the positivity of the linearized system non strict
for any selection of KX (xe).

It is of interest to interpret differential positivity against
the textbook analysis [46]. Following [46, Chapter 8], Figure
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Figure 9. KX (ϑ, v) is shaded in gray. The two eigenvector of A(ϑ, k) for
a selection ϑ ∈ S are represented in red and blue. Red eigenvectors - largest
eigenvalues. Blue eigenvectors - smallest eigenvalues. Left figure: k = 4.
Center figure: k = 3. Right figure: k = 2.

10 summarizes the qualitative behavior of the pendulum for
different values of the damping coefficient k ≥ 0 and of the
constant torque input u ≥ 0 (the behavior of the pendulum for
u ≤ 0 is symmetric). For k > 2, the attractors of the nonlinear
pendulum for different values of the torque are compatible
with Theorem 4. For example, Corollary 2 can be used to
establish the existence of limit cycles for torque values larger
than one. The nonlinear pendulum cannot be differentially
positive for arbitrary values of the torque when k ≤ kc. This
is because the region of bistable behaviors (coexistence of
small and large oscillations) is delineated by a homoclinic
orbit, which is ruled out by differental positivity (Corollary
3). For instance, looking at Figure 10, for any k < kc there
exists a value u = uc(k) for which the pendulum encounters a
homoclinic bifurcation (see [46, Section 8.5] and Figures 8.5.7
- 8.5.8 therein). In contrast, the infinite-period bifurcation at
k > 2, u = 1 [46, Chapter 8] is compatible with differential
positivity.

It is plausible that the “grey” area between kc and k = 2 is a
region where the nonlinear pendulum is differentially positive
over a uniform time-horizon rather than pointwise. A detailed
analysis of the region kc ≤ k < 2 is postponed to a further
publication.

IX. CONCLUSIONS

The paper introduces the concept of differential positiv-
ity, a local characterization of monotonicity through the in-
finitesimal contraction properties of a cone field. The theory
of differential positivity reduces to the theory of monotone
systems when the state-space is linear and when the cone
field is constant. The differential framework allows for a
generalization of the Perron-Frobenius theory on nonlinear
spaces and/or non constant cone fields. The paper focuses

u

k

fixed points

limit cycle

bistability
1

kc

infinite-period

homoclinic

k = 2

Figure 10. The qualitative behavior of the pendulum for large/small values
of torque and damping, as reported in [46, p. 272].
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on the characterization of limit sets of differentially positive
systems, showing that those systems enjoy properties akin to
the Poincare-Bendixson theory of planar systems. In particular,
differential positivity is seen as a novel analysis tool for
the analysis of limit cycles and as a property that precludes
complex behaviors in a significant class of nonlinear systems.
Many issues of interest remain to be addressed beyond the
material of the present paper. The most pressing of those
is probably the topic of feedback interconnections: negative
feedback interconnections of monotone systems are known to
provide a key mechanism of oscillation [21], [20] and it is
appealing to analyze their differential positivity by inferring
a (non-constant) cone field from the order properties of the
subsystems and from the interconnection structure only. More
generally, the construction of particular cone fields for inter-
connections of relevance in system theory (e.g. Lure systems)
as well as the relationship between differential positivity and
horizontal contraction recently studied in [19] will be the topic
of further research.

APPENDIX

A. Proofs of Section VI

Proof of Theorem 2: Using Γ(x1,u1,x2,u2) to denote the
linear and invertible mapping Γ(x1, u1, x2, u2) that satis-
fies Γ(x1, u1, x2, u2)KX (x1, u1) = KX (x2, u2) for each
(x1, u1), (x2, u2) ∈ X × U (see Section IV), and d∗(x,u) to
denote dKX (x,u) (for readability), note that the Hilbert metric
satisfies

d∗(x2,u2)(v, w) = d∗(x1,u1)(Γ
−1
(x1,u1,x2,u2)v,Γ

−1
(x1,u1,x2,u2)w)

(19)
for any (x1, u1), (x2, u2) ∈ X × U , and any v, w ∈
KX (x2, u2). (19) follows by the combination of (11) with
the identity Γ−1

(x1,u1,x2,u2)bdKX (x2, u2) = bdKX (x1, u1) (by
linearity).

Along any given solution pair (x(·), u(·)) : [t0,∞)→ X ∈
Σ define the linear operator

A(x(·),u(·))[τ2, τ1] :=

:= Γ−1
(x(τ1),u(τ1),x(τ2),u(τ2))∂x(τ1)ψ(τ2, τ1, x(τ1), u(·))

(20)
where t0 ≤ τ1 ≤ τ2. Thus, using d∗(t) to denote dKX (x(t),u(t)),
and recalling that, in Theorem 2, x(t) = ψ(t, t0, x(t0), u(·)),
δx1(t) = ∂x(t0)ψ(t, t0, x(t0), u(·))δx1(t0), and δx2(t) =
∂x(t0)ψ(t, t0, x(t0), u(·))δx2(t0), for each t ≥ t0 we get

d∗(t)(δx1(t), δx2(t)) =
= d∗(t0)(A(x(·),u(·))[t, t0]δx1(t0), A(x(·),u(·))[t, t0]δx2(t0))
≤ d∗(t0)(δx1(t0), δx2(t0)) .

(21)
The identity follows by the combination of (19), (20), and
differential positivity. The inequality follows from the fact that
A(x(·),u(·))[t, t0] is a linear operator in KX (x(t0), u(t0)) →
KX (x(t0), u(t0)), as in [27], [11].

Strict differential positivity guarantees that there exists T >
0 such that, for any given τ ∈ [t0,∞),

A(x(·),u(·))[τ + T, τ ]KX (x(τ), u(τ)) ⊆ RX (x(τ), u(τ)) .
(22)

Thus, following [11], [27], define projective diameter ∆T :=
sup{dKX (x,u)(v1, v2) | v1, v2 ∈ RX (x, u)} <∞ and contrac-
tion ratio µT := tanh

(
∆T

4

)
< 1. Then, using again d∗(t) to

denote dKX (x(t),u(t)), [11, Theorem 3.2] and [27, Proposition
3.14] guarantee the inequality

d∗(τ+T )(δx1(τ + T ), δx2(τ + T )) =
= d∗(τ)(A(x(·),u(·))[τ+T,τ ]δx1(τ), A(x(·),u(·))[τ+T,τ ]δx2(τ))
≤ µT d∗(τ)(δx1(τ), δx2(τ)) ,

(23)
for all τ ≥ t0. By the semigroup property, for any integer k,
and t ≥ t0 + kT we get

d∗(t)(δx(t), δy(t)) ≤ µkT d∗(t0)(δx(t0), δy(t0)) (24)

which establishes the exponential convergence.
Finally, combining (24) and (22), for all t ≥ t0 + (k+ 1)T

we get d∗(t)(δx(t), δy(t)) ≤ µkT∆T . �

Proof of Theorem 3: Consider the solution pair (z(·), u(·)) ∈
Σ such that z(t) = x and define C(t, t0, x, u(·)) :=
∂z(t0)ψ(t, t0, z(t0), u(·))KX (z(t0), u(t0)). By construction,
strict differential positivity guarantees that

C(t, t− T2, x, u(·)) ⊆ C(t, t− T1, x, u(·)) (25)

for each T2 ≥ T1 ≥ 0. This proves the existence of the limit.
From Theorem 2, there exists T > 0 such that

lim sup
k→∞

{dKX (x,u(t))(v1,v2) | v1,v2∈C(t, t− kT, x, u(·))} = 0,

(26)
since the right-hand side is bounded from above by
limk→∞ µk−1

T ∆T , where ∆T < ∞ and µT < 1 are respec-
tively the projective diameter and the contraction ratio defined
in the proof of Theorem 2. (25) and (26) guarantee that
the set C(t, t− kT, x, u(·)) ∩ B(x) converges to the singleton
{wu(·)(x, t)} ⊆ intKX (x, u(t)) ∩ B(x) as k → ∞. We write
wu(·)(x, t) since the limit of the set C(t, t−kT, x, u(·))∩B(x)
for k →∞ depends only on the input signal u(·), the state x,
and the time t. �

Proof of Corollary 1: To show time-invariance, consider
u(·) = u. Under the action of the constant input u, con-
sider the trajectories z(·) and y(·) such that z(t) = x and
y(t + T ) = x, for some t, T ∈ R. Using B(x) :=
{δx ∈ TxX | |δx|x = 1} ⊆ TxX , from Theorem 3,

lim
t0→−∞

(∂z(t0)ψ(t, t0, z(t0),u)KX (z(t0),u))∩B(x)= wu(x, t)

and lim
t0→−∞

(∂y(t0)ψ(t+T, t0, y(t0), u)KX (y(t0), u))∩B(x) =

wu(x, t + T ). However, for constant u, Σ is time invariant,
therefore uniqueness of trajectories from initial conditions
guarantees that z(τ) = y(τ + T ) for all τ ∈ (−∞, t), which
guarantees KX (z(t0), u)) = KX (y(t0 + T ), u)). wu(x, t) =
wu(x, t+ T ) follows.

To show continuity, consider the family of vector fields {gk}
given by a continuous vector field g0(x) ∈ KX (x, u) ∩ B(x)

and by gk+1(ψ(T, 0, x, u)) := ∂xψ(T,0,x,u)gk(x)
|∂xψ(T,0,x,u)gk(x)|x . Note that

each gk is a continuous vector field because ∂xψ(T, 0, x, u)
is continuous in x and the Riemannian structure is smooth
in x. Moreover, dKX (x,u)(gk+1(x),wu(x)) ≤ µkT∆T for all
x ∈ X and all k ≥ 1, where µT and ∆T are respectively
the contraction ratio and the projective diameter defined in
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the proof of Theorem 2. Indeed, gk converge uniformly to wu

(with respect to the Hilbert metric at x).

By contradiction, suppose that the Perron-Frobenius vector
field is not continuous at x. Then, following [10, Definition
2.1], in local coordinates, the ith component [wu(x)]i of
wu(x) is not a continuous function: there exist ε > 0, a
sequence of points yj → x as j → ∞, and a bound J
such that the absolute value |[wu(x)]i − [wu(yj)]i| ≥ ε for
any j ≥ J . By the uniform convergence of gk to wu, there
exists a bound K such that |[gk(x)]i − [wu(x))]i| ≤ ε

3 and
|[gk(yj)]i−[wu(yj))]i| ≤ ε

3 for all k ≥ K and all j. Therefore,
|[gk(x)]i − [gk(yj)]i| ≥ ε

3 for all k ≥ K and j ≥ J , which
contradicts the continuity of gk.

Finally, the coincidence between the Perron-Frobenius vec-
tor field and the Perron-Frobenius vector for linear systems is
a straightforward consequence of (15). �

B. Proofs of Section VII

For readability, in what follows we use ψt(x) := ψ(t, 0, x),
∂ψt(x) := ∂xψ(t, 0, x), and dx(·, ·) := dKX (x)(·, ·). Recall
that the pair (ψt(x), ∂ψt(x)δx) is the trajectory of the pro-
longed system δΣ given by ẋ = f(x), ˙δx = ∂f(x)δx from
the initial condition (x, δx) ∈ TX .

We develop first some technical results. The claims of the
next two lemmas are about the boundedness of the trajectories
of the variational systems. The claims hold for both continuous
and discrete systems (closed or with constant inputs).

Lemma 1: Let u(·) = u be constant. Under the assumptions
of Theorem 3, for any x ∈ X and any δx ∈ TxX , if
|∂ψt(x)w(x)|ψt(x) <∞ then lim sup

t→∞
|∂ψt(x)δx|ψt(x) <∞.

Lemma 2: Let u(·) = u be constant. Under the assumptions
of Theorem 3, let x be any point of X and suppose that there
exists δx ∈ intKX (x) such that lim sup

t→∞
|∂ψt(x)δx|ψt(x) <∞.

Then, lim sup
t→∞

|∂ψt(x)w(x)|ψt(x) <∞.

Proof of Lemma 1: For the first item suppose that the impli-
cations does not hold and |∂ψt(x)δx|ψt(x) grows unbounded.
Take the vector δy = δx+αw(x). Note that for α sufficiently
large δy ∈ KX (x). These facts and the linearity of ∂ψt(x)
guarantee that |∂ψt(x)δy|ψt(x) grows unbounded and there
exists t sufficiently large such that either (i) ∂ψt(x)δy /∈
KX (ψt(x)), which contradicts differential positivity, or (ii)
∂ψt(x)δy ' ρψt(x)w(x) where β ∈ R is a scaling fac-
tor. Thus, for all t ≥ t, by linearity, |∂ψt(x)δy|ψt(x) '
ρ|ψt(x)w(x)|ψt(x) which grows unbounded contradicting the
assumption on |ψt(x)w(x)|ψt(x). �

Proof of Lemma 2: For the second item, consider any de-
composition δx = αw(x) + βδz where α, β ∈ R≥0 and
δz ∈ KX (x), which can always be achieved for α suf-
ficiently small since δx ∈ intKX (x). Then, ∂ψt(x)δx =
∂ψt(x)[αw(x) + βδz] = α∂ψt(x)w(x) + β∂ψt(x)δz and,
by projective contraction, ∂ψt(x)δz converges asymptotically

to ρtw(ψt(x)) for some ρt ∈ R≥0. Thus,

lim sup
t→∞

|∂ψt(x)δx|ψt(x) =

= lim sup
t→∞

|α∂ψt(x)w(x) + βρtw(ψt(x))|ψt(x)

= lim sup
t→∞

∣∣∣α∂ψt(x)w(x) + βρt
∂ψt(x)w(x)

|∂ψt(x)w(x)|ψt(x)

∣∣∣
ψt(x)

= lim sup
t→∞

(
α+ βρt

|∂ψt(x)w(x)|ψt(x)

)
|∂ψt(x)w(x)|ψt(x)

≥ α lim sup
t→∞

|∂ψt(x)w(x)|ψt(x) . (27)
�

The next lemma shows that any trajectory of a continuous
and closed differentially positive system whose motion follows
the Perron-Frobenius vector field either converges to a fixed
point or defines a periodic orbit. In what follows we will use
ψt(x) := ψ(t, 0, x) and ∂ψt(x) := ∂xψ(t, 0, x).

Lemma 3: Under the assumptions of Theorem 4, consider
any x such that, for all t, f(ψt(x)) = λ(ψt(x))w(ψt(x)) and
|λ(ψt(x))| ≥ ρ > 0. Then, the trajectory ψt(x) is periodic.
Proof of Lemma 3: In what follows we use A := {ψt(x) | t ∈
R} and Bε(x) to denote a ball of radius ε centered at x: for any
two points z in Bε(x) there exists a curve γ(·) such that γ(0) =

x, γ(1) = z and whose length L(γ(·)) =
∫ 1

0
|γ̇(s)|γ(s)ds ≤ ε.

We make also use of the notion of local section at x, which is
any open set S ⊆ X of dimension n−1 (X has dimension n)
contained within a (sufficiently) small neighborhood Bε(x) of
x such that x ∈ S and w(z) /∈ TzS for each z ∈ S. Finally,
for any given Rimannian tensor such that 〈δx,w(x)〉x ≥ 0
for any x ∈ X and δx ∈ KX (x), define the vertical projection
Wx(δx) := 〈δx,w(x)〉xw(x), and the horizontal projection
Hx(δx) := δx−Wx(δx).

1) Bounded variational dynamics: 0 6= f(ψt(x)) =
λ(ψt(x))w(ψt(x)) for all t ≥ 0 therefore, by continuity of
the vector field and boundedness of trajectories, for ε > 0
sufficiently small, f(z) ∈ intKX (z) or −f(z) ∈ intKX (z)
for all z ∈ E :=

⋃
t≥0 Bε(ψt(x)). Note that E is a compact

set by boundedness of trajectories. Without loss of generality
consider f(z) ∈ intKX (z). Then, f(ψt(z)) ∈ intK(ψt(z))
for all z ∈ E and t ≥ 0, by differential positivity combined
with the identity f(ψt(z)) = ∂ψt(z)f(z), which makes
(ψt(z), f(ψt(z))) a trajectory of the prolonged system.

By boundedness of trajectories, |∂ψt(z)f(z)|ψt(z) =
|f(ψt(z))|ψtz is necessarily bounded. Lemma 2 guarantees
that lim sup

t→∞
|∂ψt(z)w(z)|ψt(z)<∞ for all z ∈ E . By Lemma

1, lim sup
t→∞

|∂ψt(z)δz|ψt(z)<∞ for all z ∈ E and δz ∈ TzX .

Similar results can be obtained for the case −f(z) ∈ intKX (z)
exploiting the linearity of ∂ψt(z). Finally, consider any z ∈ E
and define αz := sup

δz∈TzX ,|δz|z=1

lim sup
t→∞

|∂ψt(z)δz|ψt(z) <∞.

Then, for any δz ∈ TzX , lim sup
t→∞

|∂ψt(z)δz|ψt(z) < αz|δz|z .

Since E is a compact set, there exists α := supz∈E αz .
2) Contraction of the horizontal component: Take z ∈ E .

For δz ∈ KX (z), combining the contraction property
limt→∞ dψt(z)(∂ψt(z)δz,w(ψt(z))) = 0 of Theorem 2
and the bound lim sup

t→∞
|∂ψt(z)δz|ψt(z) ≤ α|δz|z in 1),

we get lim
t→∞

∂ψt(z)δz − Wψt(z)(∂ψt(z)δz) = 0, that is,
lim
t→∞

Hψt(z)(∂ψt(z)δz) = 0. A similar result holds for
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δz ∈ −KX (z). Consider now δz /∈ KX (z). Define the
new vector δz∗ = δz + αw(z). For α sufficiently large
δz∗ ∈ KX (z). Therefore lim

t→∞
Hψt(z)(∂ψt(z)δz

∗) = 0 which
implies lim

t→∞
Hψt(z)(∂ψt(z)δz) = 0.

3) Attractiveness of ψt(x): Consider the case t = 0 since
ψ0(x) = x (the argument is the same for t > 0) and take any
curve γ(·) : [0, 1] → E such that γ(0) = x and L(γ(·)) = ε,
and consider the evolution of γ(·) along the flow of the system,
that is, ψt(γ(s)) for s ∈ [0, 1]. We observe that d

dsψt(γ(s))=
[∂ψt(γ(s))]γ̇(s). Thus, by 1), lim sup

t→∞
| ddsψt(γ(s))|ψt(γ(s)) ≤

α|γ̇(s)|γ(s), which guarantees lim sup
t→∞

L(ψt(γ(·))) ≤ εα.

By 2), lim
t→∞

Hψt(γ(s))(
d
dsψt(γ(s)))|ψt(γ(s)) = 0 for all s ∈

[0, 1]. Thus, d
dsψt(γ(s)) either converges to zero or aligns to

the Perron-Frobenius vector field. Precisely, three cases may
occur:

• lim
t→∞

d
dsψt(γ(s))) = 0,

• lim
t→∞

dψt(γ(s))(w(ψt(γ(s))), ddsψt(γ(s))) = 0,

• lim
t→∞

dψt(γ(s))(w(ψt(γ(s))),− d
dsψt(γ(s))) = 0.

Furthrmore, lim
t→∞

dψt(γ(s))(w(ψt(γ(s))), f(ψt(γ(s)))) = 0

since f(ψt(γ(s))) ∈ KX (ψt(γ(s))). Thus, in the limit, the
image of ψt(γ(·)) is given by the image of a (time-dependent
Perron-Frobenius) curve γwt (·) that satisfies either d

dsγ
w
t (s) =

w(γwt (s)) or d
dsγ

w
t (s) = −w(γwt (s)) at any fixed t. By

construction, d
dsγ

w
t (s) = 1

λ(γw
t (s))f(γwt (s)).

At each fixed t, γwt (·) is a (reparameterized) integral curve
of the vector field f from the initial condition γwt (0) = ψt(x).
Therefore, trajectory with initial condition in γ(s) converges
asymptotically to A, for all s ∈ [0, 1]. In particular, using the
bound L(ψt(γ(·))) ≤ εα characterized above, each trajectory
converges asymptotically to

Ct(x) :=

{
ψt+τ (x) ∈ A | − αε

ρ
≤ τ ≤ αε

ρ

}
. (28)

4) Periodicity of the orbit: ψt(x) does not converge to a
fixed point and belongs to a compact set for each t, therefore
there exists a point ψt0(x) whose neighborhood Bε(ψt0(x))
is visited by the trajectory infinitely many times for any given
ε > 0. For simplicity, without any loss of generality, we
consider this point given at t0 = 0, that is, ψ0(x) = x.

Consider a local section S at x and consider the sequence
tk → ∞ such that ψtk(x) ∈ S. Since f(x) is aligned with
w(x), for ε sufficiently small, the continuity of the system
vector field f guarantees that S is transverse to f(z) for all
z ∈ S ∩ Bε(x), that is, f(z) /∈ TzS ∩ Bε(x).

By 3), for every z ∈ S ∩ Bε(x), ψtk(z) converges asymp-
totically to the set Ctk(x) as k →∞. For any positive integer
N , define the ( εN -inflated) set

C(ε/N)
t (x) := {y | ∃γ : [0, 1]→ E ,∃s ∈ [0, 1] such that

γ(0) ∈ Ct(x), γ(s) = y, L(γ(·)) ≤ ε/N} .
(29)

Then, by continuity, for every N > 0, there exists a k ≥ kN
sufficiently large such that ψtk(z) ∈ C(ε/N)

tk
(x) for all z ∈

S ∩ Bε(x).

By the transversality of the section S with respect to the
system vector field, for N sufficiently large, we have that
the flow from z ∈ C(ε/N)

tk
(x) satisfies ψτ (z) ∈ S for some

−(αρ + δN )ε ≤ τ ≤ (αρ + δN )ε, where δN is some (small)
positive constant such that δN → 0 as N →∞. Moreover, by
continuity with respect to initial conditions, for N sufficiently
large, we get

ψτ (z) ∈ S ∩ B ε
3
(ψtk(x)) . (30)

It follows that, for tk − (αρ + δN )ε ≤ t ≤ tk + (αρ + δN )ε, the
flow ψt(·) maps every point of S∩Bε(x) into S∩B ε

3
(ψtk(x)).

For k ≥ kN , denote by Pk the mapping from S ∩ Bε(x)
into S ∩ B ε

3
(ψtk(x)). Since ψtk(x) recursively visit any

local section of x, eventually, for some K ≥ kN , the flow
satisfies ψtK (x) ∈ S ∩ B ε

3
(x). Using the results above, we

conclude that the flow of the system maps S ∩ Bε(x) into
S∩B ε

3
(ψtK (x)) ⊆ S∩B 2ε

3
(x), that is, PK is a contraction. By

Banach fixed-point theorem PK(x) = x, that is, ψtK (x) = x.
�

We are now ready for the proof of the main theorem.
Proof of Theorem 4: For any ξ ∈ X consider ω(ξ). Three
cases may occur:
1) f(x) = 0 for some x ∈ ω(ξ). x is a fixed point.
2) f(x) ∈ intKX (x) \ {0} or −f(x) ∈ intKX (x) \ {0} for
some x ∈ ω(ξ). In such a case,

f(z) = λ(z)w(z) for all z ∈ ω(ξ) , (31)

where λ(z) ∈ R is a scaling factor. To see this, consider the
case f(x) ∈ intKX (x) (wlog). By definition of ω-limit set,
there exists a sequence tk → ∞ such that lim

k→∞
ψtk(ξ) = x.

For k ≥ k∗ sufficiently large, ψtk(ξ) belongs to an infinites-
imal neighborhood of x therefore f(ψtk(ξ)) ∈ K(ψtk(ξ)) by
continuity of the cone field since f(x) ∈ intKX (x). Then, by
projective contraction, lim

k→∞
dψtk (ξ)(f(ψtk(ξ)), w(ψtk(x))) =

0, that is, f(x) = λ(x)w(x) for some scaling factor λ(x) ∈ R.
By definition of ω-limit set, starting from tk∗ , it is possi-
ble to find a sequence τk → ∞ as k → ∞ such that
lim
k→∞

ψtk∗+τk(ξ) = z for any z ∈ ω(ξ). Thus, by the argument
above, f(z) = λ(z)w(z) for all z ∈ ω(ξ). (31) guarantees
that, for any x ∈ ω(ξ), the image of the trajectory ψt(x) is
a subset of the image of some Perron-Frobenius curve γw(·).
Note that λ(ψt(x)) may converge to zero. In such a case ψt(x)
converges to a fixed point. Otherwise, |λ(ψt(x))| ≥ ε > 0
therefore, by Lemma 3, ψt(x) is periodic.
3) It remains to consider the case f(x) /∈ KX (x) (or
−f(x) /∈ KX (x)) for some x ∈ ω(ξ). In such a case, from
the previous item, f(z) /∈ KX (z) \ {0} for all z ∈ ω(ξ).
Then, either limt→∞ f(ψt(x)) = 0 (ψt(x) converges to a
fixed point) or the contraction of the Hilbert metric enforces
lim inf
t→∞

|∂ψt(x)w(x)|ψt(x) = ∞. For the latter, consider any
sequence tk → ∞ as k → ∞ such that f(ψtk(x)) ≥ ε > 0.
Take δx = f(x) + λw(x). For λ sufficiently large δx ∈
KX (x). Then, lim

k→∞
dψtk (x)(∂ψtk(x)δx, w(ψtk(x))) = 0 holds

only if the evolution of δx along the flow ∂ψtk(x)δx =
∂ψtk(x)f(x)+λ∂ψtk(x)w(x) = f(ψtk(x))+λ∂ψtk(x)w(x)
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shows an unbounded growth of the component ∂ψtk(x)w(x).
�

Proof of Corollary 2: Recall that f(ψt(x)) = ∂ψt(x)f(x).
Since f(x) ∈ intKX (x), Lemmas 1 and 2 guarantee that
lim sup
t→∞

|∂ψt(x)w(x)|ψt(x) < ∞. Since f(x) 6= 0 in C,

we conclude that Case (ii) of Theorem 4 does not occur.
Exploiting again the assumption f(x) 6= 0 in C, Case (i) of
Theorem 4 guarantees that the trajectories of Σ converge to
periodic orbits. We need to prove the uniqueness.

By contradiction, suppose that A1 and A2 are two pe-
riodic orbits such that A1 ∩ A2 = ∅. Take any curve
γ(·) : [0, 1] → C such that γ(0) ∈ A1 and γ(1) ∈ A2,
and recall that d

dsψt(γ(s)) = [∂ψt(x)x=γ(s)]γ̇(s). Since
f(ψt(x)) = ∂ψt(x)f(x) and f(x) ∈ intKX (x), Lemmas 1
and 2 guarantee that lim sup

t→∞
| ddsψt(γ(s))|ψt(γ(s)) <∞. Since

f(x) ∈ intKX (x) for any x ∈ C and the trajectories of
Σ are bounded, we can use the argument in 2) and 3) of
Lemma 3 to show that d

dsψt(γ(s)) converges asymptotically to
λa(ψt(γ(s)))w(ψt(γ(s))), thus to λb(ψt(γ(s)))f(ψt(γ(s))),
for some (bounded) scaling factors λa(·), λb(·) ∈ R,

As a consequence, every trajectories whose initial condi-
tions belongs to the image of γ(·) converges asymptotically
to an integral curve of the system vector field f(x), for
x ∈ C, connecting A1 and A2, since ψt(γ(0)) ∈ A1 and
ψt(γ(1)) ∈ A2 for all t ≥ 0. It follows that A1 ∩A2 6= ∅. A
contradiction. �

Proof of Corollary 3: For some x ∈ X , suppose that ye =
lim
t→∞

ψ−t(x) and ze = lim
t→∞

ψt(x) are hyperbolic fixed point.
Suppose that the orbit connecting ye to ze is tangential to

w(ye) at ye. Take now any point y in a small neighborhood
of ye such that y = ψ−T (x) for some T > 0. By continuity,
f(y) ∈ intKX (y). Thus, lim

t→∞
dψt(y)(f(ψt(y)),w(ψr(y))) =

lim
t→∞

dψt(y)(f(ψt(x)),w(xe)) = 0, by Theorem 2. �

Proof of Corollary 4: Consider the trajectory ψt(z). Following
the proof of Corollary 3, necessarily, f(ψt(z)) /∈ KX (ψt(z))
for any t ≥ 0. For instance, by contradiction, suppose that
f(ψt(z)) ∈ KX (ψt(z)) for some t ≥ 0. By definition,
there exists a sequence tk → ∞ as k → ∞ such that
lim
k→∞

ψt+tk(z) = x ∈ ω(ξ) thus ∂ψt+tk(z)f(z) = f(x) /∈
KX (x). By continuity, since KX (x) is closed, there exists k∗

sufficiently large ∂ψt+tk∗ (z)f(ξ) /∈ KX (ψt+tk∗ (z)). But this
contradicts differential positivity.

Suppose now that ω(z) ⊆ ω(ξ) is not a fixed point.
Then, there exists a sequence tk → ∞ as k → ∞ such
that limk→∞ f(ψtk(z)) = f(x) 6= 0 for some x ∈ ω(ξ).
Take δz = f(z) + λw(z). For λ sufficiently large δz ∈
KX (z). Then, lim

tk→∞
dψtk (z)(∂ψtk(z)δz, w(ψtk(z))) = 0 holds

only if the evolution of δz along the flow ∂ψtk(z)δz =
∂ψtk(z)f(z)+λ∂ψtk(z)w(z) = f(x)+λ∂ψtk(z)w(z) shows
an unbounded growth of the component ∂ψtk(z)w(z). �
Proof of Corollary 5: Consider Part (i) of Theorem 4. For
any x ∈ ω(ξ), we have f(ψt(x)) = λ(ψt(x))w(ψt(x)).
On vector spaces, for constant cone fields, closed curves
cannot occur because every Perron-Frobenius curve is open.
Therefore, lim

t→∞
|λ(ψt(x))| = 0 by boundedness of solutions.

Consider Part (ii) of Theorem 4 and take any x ∈ ω(ξ). Either
lim
t→∞

f(ψt(x)) = 0, thus ψt(x) converges to a fixed point for
t→∞, or lim inf

t→∞
|∂ψt(x)w(x)|ψt(x) =∞.

This last case covers attractors which are not fixed points.
We show that their basin of attraction has dimension n − 1
at most. By contradiction, let A be an attractor with a
basin of attraction BA of dimension n. By Corollary 4,
from every x ∈ BA, lim inf

t→∞
|∂ψt(x)w(x)|ψt(x) = ∞. Let

γw(·) be any Perron-Frobenius curve such that γw(0) =
x. Since BA has dimension n, there exists an interval
[s, s] 3 0 such that γw(s) ∈ BA for all s ∈ [s, s]. Also,
lim inf
t→∞

|[∂ψt(x)x=γ(s)]γ̇
w(s)|ψt(x) =∞ for all s ∈ [s, s], that

is, lim inf
t→∞

L(ψt(γ
w(·))) =∞.

For each t > 0, the curve γt(·) := ψt(γ
w(·)) is a reparam-

eterization of a Perron-Frobenius curve, that is, d
dsγt(s) =

λt(s)w(γt(s)) where λt(s) is a scalar. Thus, γt(·) is an
open curve for each t that grows unbounded as t → ∞. It
follow that, for all s ∈ [s, s], the trajectory ψt(γw(s)) grows
unbounded, contradicting the assumption on the boundedness
of the trajectories of Σ. �
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