
Purdue University

Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

12-2016

Differentially private data publishing for data
analysis
Dong Su
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

Recommended Citation
Su, Dong, "Differentially private data publishing for data analysis" (2016). Open Access Dissertations. 1005.
https://docs.lib.purdue.edu/open_access_dissertations/1005

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1005&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1005&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1005&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1005&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1005&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1005?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1005&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form

30 Updated

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By  

Entitled

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation 

Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 

this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of 

Integrity in Research” and the use of copyright material.

Approved by Major Professor(s): 

Approved by:

Head of the Departmental Graduate Program Date

Dong Su

Differentially Private Data Publishing for Data Analysis

Doctor of Philosophy

Ninghui Li

Chair

Elisa Bertino

Christopher W. Clifton

Jennifer Neville

Ninghui Li

Sunil Prabhakar / William J. Gorman 10/7/2016





DIFFERENTIALLY PRIVATE DATA PUBLISHING

FOR DATA ANALYSIS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Dong Su

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2016

Purdue University

West Lafayette, Indiana



ii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude and appreciation to my advisor, Dr.

Ninghui Li, for his guidance and supervision and the many opportunies that he has af-

forded me. He is always available, friendly, and helpful with amazing insights. I am so

fortunate to have the opportunity to work with him in my graduate study. Without his help

and support, this dissertation would not have been possible. I will be forever indebted to

him for what he has given to me.

My appreciation also goes to my prelim exam committee and final exam committee: Dr.

Elisa Bertino, Dr. Christopher W. Clifton, Dr. Dan Goldwasser and Dr. Jennifer Neville

for their helpful advice and suggestions on my dissertation.

I would also like to express my gratitude to my research collaborators, Dr. Jianneng

Cao, Dr. Min Lyu, Dr. Elisa Bertino and Dr. Hongxia Jin. In the past years, I greatly

benefited from their constructive suggestions and effective discussions.

I am fortunate to be in Purdue with an amazing group of fellow students. I am grateful

to them for their friendship and support throughout.

Last but not least, my hearfelt appreciation goes to my family. I can always feel their

love, bless and support.



iii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PRELIMINARIES AND RELATED WORKS . . . . . . . . . . . . . . . . . 4

2.1 The Definition of ǫ-DP . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Bounded DP or Unbounded DP . . . . . . . . . . . . . . . . . 5

2.2 Properties of ǫ-DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Post-processing and Sequential Composition . . . . . . . . . . 6

2.2.2 Parallel Composition and Convexity . . . . . . . . . . . . . . . 8

2.3 The Laplace Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 The Scalar Case . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 The Vector Case . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 The Exponential Mechanism . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 The General Case of the Exponential Mechanism . . . . . . . . 16

2.4.2 The Monotonic Case of the Exponential Mechanism . . . . . . 17

2.5 Settings to Apply DP . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Differentially Private Data Analysis . . . . . . . . . . . . . . . . . . . 21

2.6.1 Example Optimization Problems . . . . . . . . . . . . . . . . 23

2.6.2 Objective Perturbation . . . . . . . . . . . . . . . . . . . . . . 26

2.6.3 Make an Existing Algorithm Private . . . . . . . . . . . . . . . 30

2.6.4 Iterative Local Search via EM . . . . . . . . . . . . . . . . . . 36

2.6.5 Histograms Optimized for Optimization . . . . . . . . . . . . . 40

3 DIFFERENTIALLY PRIVATE DATA PUBLICATION for CLASSIFICATION 43



iv

Page

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 PrivPfC Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 The Quality Function . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Sensitivity in the Binary Classification Case . . . . . . . . . . . 48

3.2.3 Sensitivity of Grid Quality in the Multiclass Classification Case 54

3.2.4 Candidate Grids Enumeration . . . . . . . . . . . . . . . . . . 57

3.2.5 Putting Things Together for PrivPfC . . . . . . . . . . . . . . 59

3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . 59

3.3.2 Comparison with Existing Solutions . . . . . . . . . . . . . . . 68

3.3.3 Varying Parameters in PrivPfC . . . . . . . . . . . . . . . . . 70

3.3.4 Analyses of Sources of Errors . . . . . . . . . . . . . . . . . . 71

3.3.5 Scalability over Dimensions and Runtime . . . . . . . . . . . . 73

4 DIFFERENTIALLY PRIVATE k-MEANS CLUSTERING . . . . . . . . . . 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Differentially Private Lloyd Algorithm and Its Improvements . . . . . . 78

4.2.1 DPLloyd . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 PGkM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 GkM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Using a Private Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 MkM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.2 UGkM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.3 EUGkM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 The Hybrid Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5.1 Error Study of EUGkM . . . . . . . . . . . . . . . . . . . . . 95

4.5.2 Hybrid Approach . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Performance and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 99



v

Page

4.6.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . 101

4.6.2 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . 105

4.6.3 Performance of the Hybrid Approach . . . . . . . . . . . . . . 107

4.6.4 The Analysis of the GkM Approach . . . . . . . . . . . . . . . 108

4.6.5 The Analysis of the PGkM Approach . . . . . . . . . . . . . . 110

4.6.6 The Analysis of the EUGkM, UGkM and MkM Approaches . . 111

4.6.7 Estimating the Number of Clusters. . . . . . . . . . . . . . . . 112

5 UNDERSTANDING THE SPARSE VECTOR TECHNIQUE . . . . . . . . . 118

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Variants of SVT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.1 Privacy Proof for Proposed SVT . . . . . . . . . . . . . . . . . 129

5.2.2 Privacy Properties of Other Variants . . . . . . . . . . . . . . . 133

5.2.3 Error in Privacy Analysis of GPTT . . . . . . . . . . . . . . . 135

5.2.4 Other Variants . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Optimizing SVT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.1 A Generalized SVT Algorithm . . . . . . . . . . . . . . . . . 138

5.3.2 Optimizing Privacy Budget Allocation . . . . . . . . . . . . . 140

5.3.3 SVT for Monotonic Queries . . . . . . . . . . . . . . . . . . . 141

5.4 SVT versus EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



vi

LIST OF TABLES

Table Page

3.1 Dataset characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Summary of differentially private classification methods . . . . . . . . . . 67

4.1 Descriptions of datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Summary of differentially private k-means methods . . . . . . . . . . . . . 100

4.3 Likelihood of the Top-4 Selected k values based on RT-validity over S1 and

Gowalla datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Likelihood of the Top-4 Selected k values based on RT-validity over the TIGER

and Image datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 Likelihood of the Top-4 Selected k values based on RT-validity over the Adult-

num and Lifesci datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1 Dataset characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2 Summary of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3 Comparison of SVT-DPBook, SVT-S, SVT-ReTr and EM on selecting top-c
queries in terms of SER when ǫ = 0.1 on datasets BMS-POS and Kosarak. For

each row, the best SER value in the non-interactive setting is marked by italics

and the best SER value in the interactive setting is marked by boldface. Each

cell gives the average value of SER with standard deviation. . . . . . . . . 157

5.4 Comparison of SVT-DPBook, SVT-S, SVT-ReTr and EM on selecting top-c
queries in terms of SER when ǫ = 0.1 on datasets AOL and Zipf. For each

row, the best SER value in the non-interactive setting is marked by italics and

the best SER value in the interactive setting is marked by boldface. Each cell

gives the average value of SER with standard deviation. . . . . . . . . . . 158

5.5 Comparison of SVT-DPBook, SVT-S, SVT-ReTr and EM on selecting top-c
queries in terms of SER when ǫ = 0.5 on datasets BMS-POS and Kosarak. For

each row, the best SER value in the non-interactive setting is marked by italics

and the best SER value in the interactive setting is marked by boldface. Each

cell gives the average value of SER with standard deviation. . . . . . . . . 159



vii

5.6 Comparison of SVT-DPBook, SVT-S, SVT-ReTr and EM on selecting top-c
queries in terms of SER when ǫ = 0.5 on datasets AOL and Zipf. For each

row, the best SER value in the non-interactive setting is marked by italics and

the best SER value in the interactive setting is marked by boldface. Each cell

gives the average value of SER with standard deviation. . . . . . . . . . . 160



viii

LIST OF FIGURES

Figure Page

2.1 Differential privacy via Laplace noise. . . . . . . . . . . . . . . . . . . . . 12

2.2 An illustration of the sample and aggregate framework. . . . . . . . . . . . 35

3.1 Taxonomy hierarchies of Relationship attribute and Education-num attribute. 45

3.2 Illustration of the sensitivity of grid quality (Eq. 3.3). . . . . . . . . . . . . 49

3.3 Correlation between grid quality (Eq 3.1) and its approximation (Eq 3.8). Av-

erage Pearson correlation coefficient is 0.936 with standard deviation 0.026. 55

3.4 Comparison of PrivPfC, DiffGen, PrivBayes, PPH and DiffPC-4.5 by decision

tree classification. x-axis: privacy budget ǫ in log-scale. y-axis: misclassifica-

tion rate in log-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Comparison of PrivPfC, DiffGen, PrivBayes, PPH, PrivGene and PrivateERM

by SVM classification. x-axis: privacy budget ǫ in log-scale. y-axis: misclas-

sification rate in log-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Comparison of PrivPfC, DiffGen, PrivBayes, PPH and FunctionalMechanism

by logistic regression classification. x-axis: privacy budget ǫ in log-scale. y-

axis: misclassification rate in log-scale. . . . . . . . . . . . . . . . . . . . 62

3.7 Comparison of PrivPfC, DiffGen, PPH, PrivLocal and PrivGene by deci-

sion tree classification and logistic regression classification on the multiclass

datasets. y-axis: misclassification rate in log-scale. . . . . . . . . . . . . . 68

3.8 Varying the maximum pool size Ω on PrivPfC by decision tree classification

on the BR dataset. y-axis: misclassification rate. . . . . . . . . . . . . . . 70

3.9 Comparison of two different privacy budget allocations on PrivPfC by decision

tree classification on the Adult dataset. y-axis: misclassification rate in log-

scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.10 Analyses of PrivPfC, DiffGen and PrivBayes by decision tree classification.

x-axis: privacy budget ǫ in log-scale. y-axis: misclassification rate in log-scale. 72

3.11 Comparison of PrivPfC, DiffGen, PrivBayes and PPH by varying dimensions

(decision tree classification). ǫ = 0.5. x-axis: dimensions. y-axis: misclassifi-

cation rate in log-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



ix

Figure Page

3.12 Runtime comparison of PrivPfC, DiffGen, PPH and PrivBayes on decision tree

classification. x-axis: privacy budget. y-axis: runtime in seconds. . . . . . . 74

4.1 The comparison of DPLloyd-Impr, PGkM, GkM, EUGkM, UGkM and MkM

by varying the privacy budget ǫ. x-axis: privacy budget ǫ in log-scale. y-axis:

NICV in log-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 The close-up view of the comparison of DPLloyd-Impr, DPLloyd, EUGkM,

and UGkM by varying the privacy budget ǫ. x-axis: privacy budget ǫ in log-

scale. y-axis: NICV in log-scale. . . . . . . . . . . . . . . . . . . . . . . 102

4.3 The heatmap by varying k and d on the Synthe datasets with ǫ = 1.0. . . . . 103

4.4 The heatmap by varying k and d on the Synthe-PT datasets. ǫ = 1.0. Varying

the θ value in EUGkM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 The comparison of the Hybrid approach with EUGkM and DPLloyd-Impr. x-

axis: privacy budget ǫ in log-scale. y-axis: NICV in log-scale. . . . . . . . 109

4.6 The analysis of the GkM Approach. x-axis: block size exponent in log-scale,

y-axis: NICV in log-scale. . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7 The comparison of the convergence rate of the genetic algorithm based k-

means and Lloyd algorithm. x-axis: number of iterations in log-scale, y-axis:

NICV in log-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.8 Comparing running time between DPLloyd and EUGkM, ǫ = 0.1 . . . . . . 114

5.1 An instantiation of the SVT proposed in this chapter . . . . . . . . . . . . 121

5.2 SVT in Dwork and Roth 2014 [76] . . . . . . . . . . . . . . . . . . . . . 122

5.3 SVT in Roth’s 2011 Lecture Notes [73] . . . . . . . . . . . . . . . . . . . 123

5.4 SVT in Lee and Clifton 2014 [69] . . . . . . . . . . . . . . . . . . . . . . 124

5.5 SVT in Stoddard et al. 2014 [70] . . . . . . . . . . . . . . . . . . . . . . . 125

5.6 SVT in Chen et al. 2015 [71] . . . . . . . . . . . . . . . . . . . . . . . . 126

5.7 Differences among Algorithms 17-22. . . . . . . . . . . . . . . . . . . . 127

5.8 The distribution of 300 highest scores from experiment datasets. . . . . . . 146

5.9 Comparison of interactive approaches: SVT-DPBook and SVT-S with different

budget allocation, ǫ = 0.1, BMS-POS and Kosarak datasets. x-axis: top-c . 149

5.10 Comparison of interactive approaches: SVT-DPBook and SVT-S with different

budget allocation, ǫ = 0.1, AOL and Zipf datasets. x-axis: top-c . . . . . . 150



x

Figure Page

5.11 Comparison of interactive approaches: SVT-DPBook and SVT-S with different

budget allocation, ǫ = 0.5, BMS-POS and Kosarak datasets. x-axis: top-c . 151

5.12 Comparison of interactive approaches: SVT-DPBook and SVT-S with different

budget allocation, ǫ = 0.5, AOL and Zipf datasets. x-axis: top-c . . . . . . 152

5.13 Comparison of non-interactive approaches: EM and SVT-ReTr with different

thresholds, ǫ = 0.1, BMS-POS and Kosarak datasets. x-axis: top-c . . . . . 153

5.14 Comparison of non-interactive approaches: EM and SVT-ReTr with different

thresholds, ǫ = 0.1, AOL and Zipf datasets. x-axis: top-c . . . . . . . . . . 154

5.15 Comparison of non-interactive approaches: EM and SVT-ReTr with different

thresholds, ǫ = 0.5, BMS-POS and Kosarak datasets. x-axis: top-c . . . . . 155

5.16 Comparison of non-interactive approaches: EM and SVT-ReTr with different

thresholds, ǫ = 0.5, AOL and Zipf datasets. x-axis: top-c . . . . . . . . . . 156



xi

ABSTRACT

Su, Dong PhD, Purdue University, December 2016. Differentially Private Data Publishing

for Data Analysis. Major Professor: Ninghui Li.

In the information age, vast amounts of sensitive personal information are collected by

companies, institutions and governments. A key technological challenge is how to design

mechanisms for effectively extracting knowledge from data while preserving the privacy of

the individuals involved. In this dissertation, we address this challenge from the perspec-

tive of differentially private data publishing. Firstly, we propose PrivPfC, a differentially

private method for releasing data for classification. The key idea underlying PrivPfC is

to privately select, in a single step, a grid, which partitions the data domain into a num-

ber of cells. This selection is done using the exponential mechanism with a novel quality

function, which maximizes the expected number of correctly classified records by a his-

togram classifier. PrivPfC supports both the binary classification as well as the multiclass

classification. Secondly, we study the problem of differentially private k-means clustering.

We develop techniques to analyze the empirical error behaviors of the existing interactive

and non-interactive approaches. Based on the analysis, we propose an improvement of the

DPLloyd algorithm which is a differentially private version of the Lloyd algorithm and pro-

pose a non-interactive approach EUGkM which publishes a differentially private synopsis

for k-means clustering. We also propose a hybrid approach that combines the advantages

of the improved version of DPLloyd and EUGkM. Finally, we investigate the sparse vec-

tor technique (SVT) which is a fundamental technique for satisfying differential privacy in

answering a sequence of queries. We propose a new version of SVT that provides better

utility by introducing an effective technique to improve the performance of SVT in the in-

teractive setting. We also show that in the non-interactive setting (but not the interactive

setting), usage of SVT can be replaced by the exponential mechanism.



1

1. INTRODUCTION

Data collected by organizations and agencies are a key resource in today’s information

age. The use of sophisticated data mining techniques makes it possible to extract relevant

knowledge that can then be used for a variety of purposes, such as research, product de-

velopment and public policy making. However, the disclosure and exploration of those

data pose serious threats to individual privacy. Examples include the identification of the

medical record of the governor of Massachusetts from the GIC data [1]; the identification

of the search history of an AOL user from the AOL query log data [2]; the identification of

Netflix subscribers from the Netflix Prize dataset [3] and the identification of participants

from the published aggregated DNA statistics in the Genome-Wide Association Studies

(GWAS) [4].

In this dissertation, we consider the problem of private data publication. In this setting,

a trusted data curator gathers sensitive information from a large number of respondents,

create a microdataset where each tuple corresponds to one entity, such an individual, a

household or an organization, and release the sanitized synopsis to the public.

In recent years, differential privacy [5, 6] has emerged as the de facto standard privacy

notion for private data analysis because it offers a rigorous guarantee of privacy regard-

less of the adversary’s prior knowledge. Differential privacy requires that the output of a

data analysis mechanism be approximately identical, even if any single tuple in the input

database is arbitrarily added or removed. Differential privacy is parameterized by ǫ, the

upper bound of the ratio of the probabilities on getting the same output on the above two

database differing in a single tuple. ǫ measures the privacy risk. The smaller the ǫ is, the

harder for the adversary to infer the existence of the target tuple in the database.

We aim at developing practical techniques to data analysis under differential privacy.

There are two broad approaches for differentially private data analysis. The interactive

approach aims at developing customized differentially private algorithms for various data



2

analysis tasks. The non-interactive approach aims at developing differentially private algo-

rithms that can output a synopsis of the input dataset, which can then be used to support

various data mining tasks. Most of existing works focus on developing interactive ap-

proaches [7–12]. However, the interactive approach is far from being practical since the

limited privacy budget has to be shared by all queries issued to the database. On the other

hand, non-interactive approaches are free from this limitation. However, very few prac-

tical and accurate non-interactive private data publishing algorithms have been proposed.

Therefore, in this dissertation, we attempt to provide solutions for differentially private data

analysis by proposing new non-interactive algorithms and combining the advantages of two

approaches.

We begin in Chapter 3 by introducing PrivPfC, a differentially private method for re-

leasing data for classification. Several state-of-the-art methods follow the structure of ex-

isting classification algorithms and are all iterative, which is suboptimal due to the locally

optimal choices and division of the privacy budget among many sequentially composed

steps. We propose PrivPfC, a new differentially private method for releasing data for clas-

sification. The key idea underlying PrivPfC is to privately select, in a single step, a grid,

which partitions the data domain into a number of cells. This selection is done using the ex-

ponential mechanism with a novel quality function, which maximizes the expected number

of correctly classified records by a histogram classifier. PrivPfC supports both the binary

classification as well as the multiclass classification. Through extensive experiments on

real datasets, we demonstrate PrivPfC’s superiority over the state-of-the-art methods.

In Chapter 4, we focus on differentially private k-means clustering. Several state-of-

the-art methods follow the single-workload approach which adapts an existing machine

learning algorithm by making each step private. However, most of them do not have sat-

isfactory empirical performance. In this work, we develop techniques to analyze the em-

pirical error behaviors of one of the state-of-the-art single-workload approaches, DPLloyd,

which is a differentially private version of the Lloyd algorithm. Based on the analysis,

we propose an improvement of DPLloyd. We also propose a new algorithm for k-means

clustering from the perspective of the non-interactive approach which publishes a synopsis



3

of the input dataset. After analyzing the empirical error behaviors of EUGkM, we further

propose a hybrid approach that combines our DPLloyd improvement and EUGkM. Re-

sults from extensive and systematic experiments support our analysis and demonstrate the

effectiveness of the DPLloyd improvement, EUGkM and the hybrid approach.

In Chapter 5, we focus on the sparse vector technique. The Sparse Vector Technique

(SVT) is a fundamental technique for satisfying differential privacy and has the unique

quality that one can output some query answers without apparently paying any privacy

cost. SVT has been used in both the interactive setting, where one tries to answer a se-

quence of queries that are not known ahead of the time, and in the non-interactive setting,

where all queries are known. Because of the potential savings on privacy budget, many

variants for SVT have been proposed and employed in privacy-preserving data mining and

publishing. However, most variants of SVT are actually not private. In this dissertation,

we analyze these errors and identify the misunderstandings that likely contribute to them.

We also propose a new version of SVT that provides better utility, and introduce an effec-

tive technique to improve the performance of SVT. These enhancements can be applied to

improve utility in the interactive setting. In the non-interactive setting (but not the interac-

tive setting), usage of SVT can be replaced by the Exponential Mechanism (EM); we have

conducted analytical and experimental comparisons to demonstrate that EM outperforms

SVT.

Our overall contribution can be summarized as follows. On differentially private classi-

fication, we propose a non-interactive approach for publishing projected histograms, which

results in lower classification error when compared with the current state-of-the-art meth-

ods. On differentially private k-means clustering, we propose the EUGkM method for

publishing synopsis for k-means clustering, which outperforms existing methods. We also

propose a novel hybrid approach to differentially private data analysis, which is so far the

best approach to k-means clustering. On SVT, we propose a new version of it that provides

better utility, and introduce an effective technique to improve the performance of SVT in

the interactive setting. We also showed that in the non-interactive setting, usage of SVT

can be replaced by the Exponential Mechanism (EM).



4

2. PRELIMINARIES AND RELATED WORKS

2.1 The Definition of ǫ-DP

Informally, the DP notion requires any single element in a dataset to have only a limited

impact on the output. The following definition is taken from [5, 6].

Definition 2.1.1 (ǫ-Differential Privacy) An algorithm A satisfies ǫ-differential privacy

(ǫ-DP), where ǫ ≥ 0, if and only if for any datasets D and D′ that differ on one element,

we have

∀T ⊆Range(A) : Pr [A(D) ∈ T ] ≤ eǫ Pr [A(D′) ∈ T ] , (2.1)

where Range(A) denotes the set of all possible outputs of the algorithmA.

The condition (2.1) can be equivalently stated as:

∀t ∈Range(A) : Pr [A(D) = t]

Pr [A(D′) = t]
≤ eǫ, (2.2)

where we define 0
0

to be 1.

More generally, ǫ-DP can be defined by requiring Eq. (2.1) to hold on D and D′ that

are neighboring. When applying DP, an important choice is the precise condition under

which D and D′ are considered to be neighboring. Even when applying DP to relational

datasets and interpreting “differing by one element” as “differing by a single record (or

tuple)”, there are still two natural choices, which lead to what are called unbounded and

bounded DP in [13]. In Unbounded DP, D and D′ are neighboring if D can be obtained

from D′ by adding or removing one element. In Bounded DP, D and D′ are neighboring

if D can be obtained from D′ by replacing one element in D′ with another element. When

using bounded DP, two datasets that have different number of elements are not considered

to be neighboring; therefore, publishing the exact number of elements in the input dataset



5

satisfies ǫ-DP for any ǫ under bounded DP. However, doing so does not satisfy ǫ-DP for any

ǫ in unbounded DP.

One way to understand the intuition of DP is the following “opting-out” analogy. We

want to publishA(D), where D consists of data of many individuals. An individual objects

to publishing A(D) because her data is in D and she is concerned about her privacy. In

this case, we can address the individual’s privacy concern by removing her data from D (or

replacing her data with some arbitrary value) to obtain D′ and publishingA(D′). However,

achieving privacy protection by removing an individual’s data is infeasible. Since we need

to protect everyone’s privacy, following this approach means that we would need to remove

everyone’s data. DP tries to approximate the effect of opting out, by ensuring that any effect

due to the inclusion of one’s data is small. This is achieved by ensuring that for any output,

one will see the same output with a similar probability even if any single individual’s data

is removed (unbounded DP), or replaced (bounded DP).

2.1.1 Bounded DP or Unbounded DP

In the literature, it is generally assumed that using either bounded or unbounded DP

is fine, and one can choose whichever one that is more convenient. We point out, how-

ever, that using bounded DP is problematic. More specifically, as we show in Section 2.2,

bounded DP does not compose under parallel composition (whereas unbounded DP does).

This parallel composition property is often used when proving that an algorithm satisfies

ǫ-DP.

We also note that any algorithm that satisfies ǫ-unbounded DP also satisfies (2ǫ)-

bounded DP, since replacing one element with another can be achieved by removing one

element and then adding the other. Therefore, we use unbounded DP in this book.

2.2 Properties of ǫ-DP

DP is an appealing privacy notion in part because it has the following nice properties.

These properties are very useful when designing multi-step algorithms that satisfy ǫ-DP.



6

2.2.1 Post-processing and Sequential Composition

One important property of ǫ-DP is that given an algorithm that satisfies ǫ-DP, no matter

what additional processing one performs on the output of the algorithm, the composition

of the algorithm and the post-processing step still satisfies ǫ-DP.

Proposition 2.2.1 (Post-processing) Given A1(·) that satisfies ǫ-DP, then for any (pos-

sibly randomized) algorithm A2, the composition of A1 and A2, i.e., A2(A1(·)) satisfies

ǫ-DP.

Proof Let D and D′ be any two neighboring databases. Let S be Range(A1). For any

t ∈ Range(A2), we have

Pr [A2(A1(D)) = t)] =
∑

s∈S
Pr [A1(D) = s]Pr [A2(s) = t]

≤
∑

s∈S
eǫPr [A1(D

′) = s]Pr [A2(s) = t]

= eǫPr [A2(A1(D
′)) = t] .

If S is not countable, Pr [A2(A1(D)) = t)] =
∫
s∈S Pr [A1(D) = s]Pr [A2(s) = t] ds and

the logic of the proof is the same.

In the above proposition, the post-processing algorithm A2 accesses only the output of

A1 and not the input dataset D. The following proposition applies to the case where A2

also accesses D.

Proposition 2.2.2 (Sequential composition) Given A1(·) that satisfies ǫ1-DP, and

A2(s, ·) that satisfies ǫ2-DP for any s, then A(D) = A2(A1(D), D) satisfies (ǫ1 + ǫ2)-

DP.



7

Proof Let D and D′ be any two neighboring databases. Let S be Range(A1). For any

t ∈ Range(A2), we have

Pr [A2(A1(D), D) = t)] =
∑

s∈S
Pr [A1(D) = s]Pr [A2(s,D) = t]

≤
∑

s∈S
eǫ1Pr [A1(D

′) = s] eǫ2Pr [A2(s,D
′) = t]

= eǫ1+ǫ2Pr [A2(A1(D
′), D′) = t] .

If S is not countable, Pr [A2(A1(D), D) = t)] =
∫
s∈S Pr [A1(D) = s]Pr [A2(s,D) = t] ds

and the logic of the proof is the same.

Note that Proposition 2.2.1 is a special case of Proposition 2.2.2, where A2 satisfies

0-DP because it does not look at the input dataset. Proposition 2.2.2 can be further gener-

alized to the case where there are k such algorithms, each taking two inputs, an auxiliary

input consisting of the combined outputs of the previous algorithms, and the input dataset,

and satisfying ǫ-DP when the auxiliary input is fixed.

Corollary 1 (General Sequential Composition) Let A1,A2, · · · ,Ak be k algorithms

(that take auxiliary inputs) that satisfy ǫ1-DP, ǫ2-DP, · · · , ǫk-DP, respectively, with respect

to the input dataset. Publishing

t = 〈t1, t2, · · · , tk〉, where t1 = A1(D), t2 = A2(t1, D), · · · , tk = Ak(〈t1, · · · , tk−1〉, D)

satisfies (
∑k

i=1 ǫi)-DP.

This follows from Proposition 2.2.2 via mathematical induction. The ǫ parameter is

often referred to as the “privacy budget”, since it needs to be divided under sequential

composition and consumed by individual steps in an algorithm.



8

2.2.2 Parallel Composition and Convexity

We now consider another form of composition, where k algorithms are applied to an

input dataset D, but each algorithm only to a portion of D. We introduce the notion of

a partitioning function. Let D denote the set of all possible data items. A partitioning

algorithm f takes an item in D as input and maps it to a positive integer number. Executing

f on D once yields a partitioning of D as follows. One executes f on each element of D,

each time resulting in a number. Let k be the largest number being outputted, then D is

partitioned into k partitions, with Di including all items mapped to i.

Proposition 2.2.3 (Parallel Composition under Unbounded DP.) Let A1,A2, · · · ,Ak

be k algorithms that satisfy ǫ1-DP, ǫ2-DP, · · · , ǫk-DP, respectively. Given a deterministic

partitioning function f , let D1, D2, · · · , Dk be the resulting partitions of executing f on

D. PublishingA1(D1),A2(D2), · · · ,Ak(Dk) satisfies (maxi∈[1,..,k] ǫi)-DP.

Proof Given two neighboring datasets D and D′, without loss of generality, assume

that D contains one more element than D′. Let the result of partitioning of D and

D′ be D1, D2, · · · , Dk and D′
1, D

′
2, · · · , D′

k, respectively. There exists j such that (1)

Dj contains one more element than D′
j , and (2) for any i 6= j, Di = D′

i. Denote

A1(D1),A2(D2), · · · ,Ak(Dk) by A(D). Since these k algorithms run on disjoint sets

Di independently, for any sequence t = (t1, t2, · · · , tk) of outputs of these k algorithms,

where ti ∈ Range(Ai), we have

Pr [A(D) = t] = Pr [(A1(D1) = t1) ∧ (A2(D2) = t2) ∧ · · · ∧ (Ak(Dk) = tk)] .

= Pr [Aj(Dj) = tj ]
∏

i 6=j

Pr [Ai(Di) = ti]

≤ eǫjPr
[
Aj(D

′
j) = tj

]∏

i 6=j

Pr [Ai(D
′
i) = ti]

≤ emaxi∈[1,..,k] ǫiPr [A(D′) = t] .



9

Example 1 (Publishing histograms based on counts.) Suppose that we have a method to

publish the number of records in a set while satisfying ǫ-DP. We can use the parallel

composition to turn that method into one for publishing a histogram. A histogram “bins”

the range of values, i.e., divides the entire range of values into a series of intervals, and

then counts how many values fall into each interval.

Recall that publishing the total number of records in a dataset satisfies 0-DP under the

bounded DP interpretation. Thus, if parallel composition were to hold for bounded DP as

well, then arbitrary histograms can be published accurately while satisfying 0-DP.

Proposition 2.2.4 Parallel composition does not hold using the bounded DP interpreta-

tion.

Proof When one element in a dataset D is replaced by another element to obtain D′, after

partitioning D and D′, we may be in the situation that there exist i 6= j such tat Di contains

one additional element than D′
i, and D′

j contains one additional element than Dj . Under

bounded DP,
Pr[Ai(Di)]

Pr[Ai(D′
i)]

can be unbounded because Di and D′
i contain different numbers of

elements.

Since parallel composition is frequently used to prove that an algorithm satisfies ǫ-DP,

Proposition 2.2.4 suggests that we should use the unbounded interpretation of ǫ-DP wher-

ever possible. If bounded DP is used, one has to be really careful that parallel composition

is not used.

Proposition 2.2.3 is only for the case where the partition function f is deterministic. To

prove that it also holds when f is randomized, the following convexity property of DP is

helpful.

Proposition 2.2.5 (Convexity) Given two mechanisms A1 and A2 that both satisfy ǫ-DP,

and any p ∈ [0, 1], let A be the mechanism that applies A1 with probability p and A2 with

probability 1− p. Then A satisfies ǫ-DP.



10

Proof Let D and D′ be any two neighboring databases. For any t ∈ Range(A), we have

Pr [A(D) = t] = pPr [A1(D) = t] + (1− p)Pr [A2(D) = t]

≤ p eǫ Pr [A1(D
′) = t] + (1− p) eǫ Pr [A2(D

′) = t]

= eǫ (pPr [A1(D
′) = t] + (1− p)Pr [A2(D

′) = t])

= eǫPr [A(D′) = t] .

Again, we can generalize the above to the case of k algorithms.

Corollary 2 (Convexity: General Case) Given k mechanisms A1,A2, · · · ,Ak that sat-

isfy ǫ-DP, and p1, p2, · · · , pk ∈ [0, 1] such that
∑k

i=1 pi = 1, let A be the mechanism that

applies Ai with probability pi. Then A satisfies ǫ-DP.

This follows from Proposition 2.2.5 by mathematical induction. With this corollary, we

can extend the parallel composition to the case of randomized partition function as well.

Note that we require that such a partitioning function f to have an upper-bound on the

number of partitions it produces, i.e., there exists b such that ∀x, f(x) ≤ b.

Proposition 2.2.6 (Parallel composition, Randomized partition function.) Let

A1,A2, · · · ,Ak be k algorithms that satisfy ǫ1-DP, ǫ2-DP, · · · , ǫk-DP, respectively.

Given a possibly randomized partitioning function f , The mechanism of first execut-

ing f on D, with D1, D2, · · · , Dk being the resulting partitions, and then publishing

A1(D1),A2(D2), · · · ,Ak(Dk), satisfies (maxi∈[1,..,k] ǫi)-DP.

Proof Let ǫ = maxi∈[1,..,k] ǫi. We can view the result of f as a probabilistic combination of

many deterministic partitioning functions. Consider all possible outputs of f on elements

in D. The total number of such combinations is finite. Let fi be the partitioning function

that output the i’th such output, and pi be the probably that executing f results in output

fi. From Proposition 2.2.3, the parallel composition under fi satisfies ǫ-DP. The behavior

under f can be viewed as the convex composition of all fi’s, and thus also satisfies ǫ-DP

because of Corollary 2.



11

2.3 The Laplace Mechanism

The Laplace mechanism ( [5]) is the first and probably most widely used mechanism

for DP. It satisfies ǫ-DP by adding noise to the output of a numerical function. We present

first the case where the function outputs a scalar, and then the vector case. We present them

separately even though the latter subsumes the former as a special case, because the scalar

case is easier to understand.

2.3.1 The Scalar Case

Assume that we have a dataset for patients diagnosed with lung cancer, with one at-

tribute being how many years the patient has been smoking, and another being how many

packs of cigarette the patient smokes on average per day. Suppose that we want to know

how many patients have been smoking for more than 15 years, how to obtain the answer

while satisfying ǫ-DP?

In this case, we want to compute f(D), where f outputs a single scalar value. To satisfy

ǫ-DP, one can publish f̃(D) = f(D)+X , where X is a random variable drawn from some

distribution. What distribution should one use for X? Intuitively, we want the distribution

to have 0 as its mean so that f̃(D) is an unbiased estimate of f(D). Furthermore, we need

to ensure that

∀t,
Pr
[
f̃(D) = t

]

Pr
[
f̃(D′) = t

] =
Pr [f(D) +X = t]

Pr [f(D′) +X ′ = t]
=

Pr [X = t− f(D)]

Pr [X ′ = t− f(D′)]
≤ eǫ,

where X and X ′ are drawn from the same distribution. Let d = f(D)− f(D′), we need to

ensure that

∀x, Pr [X = x]

Pr [X ′ = x+ d]
≤ eǫ. (2.3)

We need to ensure that Eq. (2.3) holds for all possible d, and thus need the concept of

the global sensitivity of f , which is the maximum change of f between two neighboring

datasets D and D′.



12

Definition 2.3.1 (Global sensitivity) Let D ≃ D′ denote that D and D′ are neighboring.

The global sensitivity of a function f , denoted by ∆f , is given below

∆f = max
D≃D′

|f(D)− f(D′)|, (2.4)

We want to ensure that Eq. (2.3) holds for all d ≤ ∆f . In other words, the probability

density function of the noise should have the property that if one moves no more than ∆f

units on the x-axis, the probability should increase or decrease by a factor of no more than

eǫ, i.e., if one moves no more than 1 unit on the x-axis, the probability should change by a

multiplicative factor of no more than eǫ/∆f .

The distribution that naturally satisfies this requirement is Lap
(

∆f

ǫ

)
, the Laplace dis-

tribution, where Pr [Lap (β) = x] = 1
2β
e−|x|/β. Note that

Pr [Lap (β) = x]

Pr [Lap (β) = x+ d]
≤ ed/β ≤ e∆f/β = eǫ.

f(D) f(D′ )
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lap(f(D),GSf/ǫ) Lap(f(D′ ),GSf/ǫ)

Pr[A(D)∈S]

Pr[A(D′ )∈S]

Laplace Mechanism

Figure 2.1.: Differential privacy via Laplace noise.



13

Theorem 2.3.1 (Laplace mechanism, scalar case) For any function f , the Laplace mech-

anism Af(D) = f(D) + Lap
(

∆f

ǫ

)
satisfies ǫ-DP.

Proof Let X be the noise injected to f(D). So, X ∼ Lap
(

∆f

ǫ

)
.

Pr [Af(D) = t] = Pr [f(D) +X = t] = Pr [X = t− f(D)] =
ǫ

2∆f

exp

(−ǫ|t− f(D)|
∆f

)
.

Similarly, we have Pr [Af(D
′) = t] = ǫ

2∆f
exp

(
−ǫ|t−f(D′)|

∆f

)
. Thus,

Pr [Af(D) = t]

Pr [Af(D′) = t]
=

exp
(

−ǫ|t−f(D)|
∆f

)

exp
(

−ǫ|t−f(D′)|
∆f

)

= exp

(
ǫ(|t− f(D′)| − |t− f(D)|)

∆f

)

≤ exp

(
ǫ|f(D)− f(D′)|

∆f

)

≤ exp(ǫ).

The first inequality holds because of the Triangle inequality with absolute value |a| − |b| ≤
|a− b| and the second holds due to Eq. (2.4).

Example 2 (Counting Queries) Queries such as “how many patients have been smoking

for more than 15 years” are counting queries, as they count how many records satisfy

a given condition. In general, counting queries have global sensitivity 1, as adding or

removing a single record can change the result of a counting query by at most 1. They can

thus be answered by the Laplace mechanism with relatively low noises.

Example 3 (Sum Queries) Queries summing up the values of one attribute for the records

that satisfy a given condition have sensitivity that equals the size of the domain of that

attribute, and can be answered by the Laplace mechanism.



14

2.3.2 The Vector Case

The Laplace mechanism can also be applied to a function f that outputs a vector, in

which case, the global sensitivity ∆f is the maximum L1 norm of the difference between

f(D) and f(D′), i.e.:

∆f = max
D≃D′

||f(D)− f(D′)||1. (2.5)

And noise calibrated to the global sensitivity should be added to all components of a vector.

Theorem 2.3.2 (Laplace mechanism, the vector case) The Laplace mechanism for a

function f whose value is a k-dimensional vector, defined below, satisfies ǫ-DP.

Af(D) = f(D) + 〈X1, X2, · · · , Xk〉,

where X1, X2, · · · , Xk are i.i.d. random variables drawn from Lap
(

∆f

ǫ

)
.

Proof Suppose f(D) = 〈a1, a2, · · · , ak〉. For any output t = 〈t1, t2, · · · , tk〉,

Pr [Af(D) = t] = Pr [f(D) + 〈X1, X2, · · · , Xk〉 = t]

= Pr [(X1 = t1 − a1) ∧ (X2 = t2 − a2) ∧ · · · ∧ (Xk = tk − ak)]

=

k∏

i=1

Pr [Xi = ti − ai] =

k∏

i=1

ǫ

2∆f
exp

(−ǫ|ti − ai|
∆f

)

=

(
ǫ

2∆f

)k

exp




−ǫ
k∑

i=1

|ti − ai|

∆f




=

(
ǫ

2∆f

)k

exp

(−ǫ||t− f(D)||1
∆f

)

Similarly, Pr [Af(D
′) = t] =

(
ǫ

2∆f

)k
exp

(
−ǫ||t−f(D′)||1

∆f

)
. Thus,



15

Pr [Af(D) = t]

Pr [Af(D′) = t]
=

exp
(

−ǫ||t−f(D)||1
∆f

)

exp
(

−ǫ||t−f(D′)||1
∆f

)

= exp

(
ǫ(||t− f(D′)||1 − ||t− f(D)||1)

∆f

)

≤ exp

(
ǫ||f(D)− f(D′)||1

∆f

)

≤ exp (ǫ) .

The first inequality holds because of the triangle inequality for the L1-norm and the second

holds due to Eq. (2.5).

Example 4 (Histogram) Consider again the dataset for patients diagnosed with lung can-

cer, with one attribute being how many years the patient has been smoking, and another

being how many packs of cigarette the patient smokes on average per day. We can pub-

lish a one-dimensional histogram that counts how many patients have been smoking for

a certain number of years, where the number of years is divided into a few bins, such as

{[0 − 4], [5 − 9], [10 − 14], [15 − 19], [20 − 29], [30+]}. Publishing such a histogram has

global sensitivity 1, since adding or removing one patient changes only the count of one

bin by 1. Thus publishing a noisy histogram with noise drawn from the distribution Lap
(
1
ǫ

)

added to each bin count satisfies ǫ-DP.

Similarly, we can publish a two-dimensional histogram that also considers how many

packs of cigarettes a patient smoke on average per day. The same Laplace mechanism

would apply. Note that to satisfy ǫ-DP, it is important that the way the attribute values are

partitioned into bins does not depend on the input dataset. If the partitioning depends on

the input dataset, one has to ensure that the partitioning and the histogram together satisfy

ǫ-DP, using composition properties in Section 2.2.

Note the the above noisy Histogram method can be viewed either as applying the

Laplace mechanism with a vector output, or as a parallel composition of the counting func-

tion.



16

2.4 The Exponential Mechanism

While the Laplace mechanism provides a solution to handle numeric queries, it cannot

be applied to non-numeric valued queries. This motivates the development of the expo-

nential mechanism [14], which can be applied whether a function’s output is numerical or

categorical.

Suppose that one wants to publish f(D), and let O denote the set of possible outputs.

To satisfy ǫ-DP, a mechanism should output values in O following some probability dis-

tribution. Naturally, some values in O are more desirable than others. For example, the

most desirable output is the true value f(D), and one has natural preferences among other

values as well. For example, consider a transactional dataset D, and one wants to output

the item that appears most frequently in D. Then O is the set of all items, and between

two items, we prefer to output the one that appears more often. This preference is encoded

using a quality function q : (D × O) → R, where D denotes the set of all datasets, and

R denotes the set of all real numbers. Without loss of generality, we assume that a higher

quality value indicates better utility. For example, in the most frequent item case, a natural

choice is to define q(D, o) to be the number of times the item o appears in D.

2.4.1 The General Case of the Exponential Mechanism

Definition 2.4.1 (The Exponential Mechanism) For any quality function q : (D× O)→
R, and a privacy parameter ǫ, the exponential mechanism Mǫ

q(D) outputs o ∈ O with

probability proportional to exp
(

ǫq(D,o)
2∆q

)
, where

∆q = max
∀o,D≃D′

|q(D, o)− q(D′, o)|

is the sensitivity of the quality function. That is,

Pr
[
Mǫ

q(D) = o
]
=

exp
(

ǫq(D,o)
2∆q

)

∑
o′∈O exp

(
ǫq(D,o′)
2∆q

)



17

Theorem 2.4.1 (The Exponential Mechanism) The exponential mechanism satisfies ǫ-

differential privacy.

Proof For any two neighboring datasets D and D′ and any o ∈ O,

exp ( ǫq(D,o)
2∆q

)

exp ( ǫq(D
′,o)

2∆q
)
= exp

(
ǫ(q(D, o)− q(D′, o))

2∆q

)
≤ exp

( ǫ
2

)
, (2.6)

Because of the symmetry of neighboring, we also have ∀o′, exp ( ǫq(D
′,o′)

2∆q
) ≤

exp ( ǫ
2
) exp ( ǫq(D,o′)

2∆q
).

Now we prove ǫ-DP of the exponential mechanism. For any output o ofMǫ
q,

Pr
[
Mǫ

q(D) = o
]

Pr
[
Mǫ

q(D
′) = o

] =

exp ( ǫq(D,o)
2∆q )

∑

o′∈O exp
(

ǫq(D,o′)
2∆q

)

exp
(

ǫq(D′,o)
2∆q

)

∑

o′∈O exp
(

ǫq(D′,o′)
2∆q

)

=




exp
(

ǫq(D,o)
2∆q

)

exp
(

ǫq(D′,o)
2∆q

)


 ·



∑

o′∈O exp
(

ǫq(D′,o′)
2∆q

)

∑
o′∈O exp

(
ǫq(D,o′)
2∆q

)


 (2.7)

≤ exp
( ǫ
2

)
·



∑

o′∈O exp
(
ǫ
2

)
exp

(
ǫq(D,o′)
2∆q

)

∑
o′∈O exp

(
ǫq(D,o′)
2∆q

)




≤ exp
( ǫ
2

)
· exp

( ǫ
2

)


∑

o′∈O exp
(

ǫq(D,o′)
2∆q

)

∑
o′∈O exp

(
ǫq(D,o′)
2∆q

)




= exp (ǫ).

2.4.2 The Monotonic Case of the Exponential Mechanism

In some usages of the exponential mechanism, the quality function q(D, o) is mono-

tonic in the sense that for any D and D′ that are neighboring, either ∀o ∈ O, q(D, o) ≥
q(D′, o), or ∀o ∈ O, q(D, o) ≤ q(D′, o). This is generally the case when the quality func-



18

tion is based on counting the number of records satisfying some condition. For example,

this is the case when applying the exponential mechanism to frequent itemsets mining. For

such quality functions, the effectiveness of the exponential mechanism can be improved.

One can make more accurate selections by choosing each possible output with probability

proportional to exp( ǫq(D,t)
∆q

), instead of exp( ǫq(D,t)
2∆q

). To see that doing so satisfies ǫ-DP,

observe that Eq. (2.7) of the proof is a product of two terms, and for a monotonic quality

function, whenever the first term is ≥ 1, the second term is ≤ 1; thus upper-bounding the

first term by eǫ suffices. See below for details.

The utility benefit of doing is this is equivalent to doubling the privacy budget ǫ. Sup-

pose that under the general Exponential Mechanism, the odds of choosing the best option

relative to another less preferable one is 10 : 1, then under the monotonic Exponential

Mechanism, the odds is square to become 100 : 1.

Corollary 3 For any monotonic quality function q : (D×O)→ R and a privacy parameter

ǫ, the exponential mechanismMǫ
q(D) outputting o ∈ O with probability proportional to

eǫq(D,o)/(∆q) satisfies ǫ-DP.

Proof Let D and D′ be two neighboring datasets. Without loss of generality, assume

D′ = D ∪ {r} and the quality function q(D, o) is monotonically increasing when the size

of a dataset increases. So, for any output o′ ∈ O,

exp

(
ǫq(D, o′)

∆q

)
≤ exp

(
ǫq(D′, o′)

∆q

)
.

Similarly to Eq.( 2.6), we have

exp

(
ǫq(D′, o′)

∆q

)
≤ exp (ǫ) exp

(
ǫq(D, o′)

∆q

)
.

Now we turn to the privacy proof of the exponential mechanism in the same way as the

proof above.



19

On one hand, we observe that

Pr
[
Mǫ

q(D) = o
]

Pr
[
Mǫ

q(D
′) = o

] =




exp
(

ǫq(D,o)
∆q

)

exp
(

ǫq(D′,o)
∆q

)


 ·



∑

o′∈O exp
(

ǫq(D′,o′)
∆q

)

∑
o′∈O exp

(
ǫq(D,o′)

∆q

)




≤ 1 · exp (ǫ)



∑

o′∈O exp
(

ǫq(D,o′)
∆q

)

∑
o′∈O exp

(
ǫq(D,o′)

∆q

)


 = exp (ǫ).

On the other hand,

Pr
[
Mǫ

q(D
′) = o

]

Pr
[
Mǫ

q(D) = o
] =



exp

(
ǫq(D′,o)

∆q

)

exp
(

ǫq(D,o)
∆q

)


 ·



∑

o′∈O exp
(

ǫq(D,o′)
∆q

)

∑
o′∈O exp

(
ǫq(D′,o′)

∆q

)




≤ exp (ǫ) · 1 = exp (ǫ).

In a summary, e−ǫ ≤ Pr[Mǫ
q(D)=o]

Pr[Mǫ
q(D

′)=o]
≤ eǫ and thus the corollary holds.

2.5 Settings to Apply DP

We classify DP mechanisms into the following four settings.

1. Local Privacy. In this setting, there is no trusted third party, and each participant

perturbs and submits personal data. To apply DP here, one requires that for two

arbitrary possible input x1 and x2, and any output y: Pr [y|x1] ≤ eǫPr [y|x2].

2. Interactive query-answering. For this and the remaining settings, there is a trusted

data curator who has access to raw data. In the interactive setting, the data curator sits

between the users and the database, and answers queries when they are submitted,

without knowing what queries will be asked in the future.

3. Single workload. In this setting, there is a single data analysis task one wants to

perform on the dataset. Example tasks include learning a classifier, finding k cluster

centroids of the data, and so on. The data curator performs the analysis task in a

private way, and publishes the result.



20

4. Noninteractive publishing. In this setting the curator publishes a synopsis of the input

dataset, from which a broad class of queries can be answered and synthetic data can

be generated.

Note that the latter three settings all require a trusted data curator.

Local Privacy. The local privacy setting is closely related to randomized response [15],

which is a decades-old technique in social science to collect statistical information about

embarrassing or illegal behavior. To report a single bit, one reports the true value with

probability p and the flip of the true value with probability 1 − p. In a sense, applying the

DP requirement here can be viewed as a generalization of the property from randomized

response to a case where one report a non-binary value.

The Interactive Setting. In this setting, the data curator does not know ahead of time what

queries will be encountered, and answers queries as they come. One simple method is to

divide up the privacy budget and consume a portion of the privacy budget to answer each

query [16]. More sophisticated methods (e.g., [17–19]) maintain a history of past queries

and answers, and try to use the history to answer new queries whenever the error of doing

so is acceptable.

Using the interactive setting in practice, however, has several challenges. First and

foremost, answering each query consumes a portion of privacy budget, and after the privacy

budget is exhausted, no additional queries can be answered on the data without violating

DP. Second, the interactive setting is unsuitable with more than one data users. When

a dataset needs to serve the general public such as when the census bureau provides the

census data to the public, the number of data users is very large. Because the curator

cannot be sure whether any two data users are colluding or not, the privacy budget has to

be shared by all users. This means that only a few users can be supported and each user

can have only a small number of queries answered.

Single Workload. In this setting, the goal is to publish the result from one data min-

ing or machine learning task. Most approaches try to adapt an existing machine learning



21

algorithm by making each step private. An alternative approaches include perturbing the

optimization objective function for learning a classifier.

Non-interactive publishing. In this setting, the data curator publishes some summary of

the data. It is generally assumed that the set of queries one cares about is known. The most

natural set of queries are histogram queries or marginal queries.

Interactive versus Non-interactive. There are a series of negative results concerning

differential privacy in the non-interactive mode [5, 20–23], and these results have been

interpreted “to mean that one cannot answer a linear, in the database size, number of queries

with small noise while preserving privacy” and motivate “an interactive approach to private

data analysis where the number of queries is limited to be small — sub-linear in the size n

of the dataset” [23]. However, these results are all based on query sets that are broader than

the natural set of queries that one is interested in. For example, suppose the dataset is one-

dimensional where each value is an integer number in [1..M ]. Further suppose that the data

is sufficiently dense, then publishing a histogram likely gives information that one wants

to know about the database. These negative results say that if one also consider subset sum

queries (i.e., the sum of an arbitrary set of indices in [1..m]), then not all queries can be

answered to a high accuracy. Intuitively this is true; however, it does not say much about

how accurately we can answer range queries.

2.6 Differentially Private Data Analysis

Many data mining and machine learning problems can be viewed as optimization prob-

lems. Examples include k-means clustering, regression, and classification. We use D to

denote the input dataset, ω∗ to denote the desired output, and J(D,ω) to denote the objec-

tive function to be minimized. That is, we want to output

ω∗ = arg min
ω

J(D,ω)



22

Several interesting techniques have been developed to perform these optimization tasks

while satisfying DP. In this chapter, we group these techniques into the following cate-

gories.

1. Output Perturbation. One method is to directly perturb the output of the optimiza-

tion problem. This requires analyzing the sensitivity of the optimization problem;

that is, how much ω∗ changes when the input dataset D changes by one tuple. Unfor-

tunately, the sensitivities of these optimization problems tend to be so high that such

output perturbation destroys utility.

2. Objective Perturbation. There exists a class of methods unique to optimization

problems. Instead of perturbing the output of the optimization problem, one can

perturb the optimization objective function J(D,ω) to get J∗(D,ω) in a way such

that optimizing according to J∗(D,ω) is differentially private.

3. Making Existing Algorithms Private. Another method is to take an existing op-

timization algorithm and make each individual step that needs access to the input

dataset private.

4. Iterative Local Search. There exists another method is to perform an iterative local

search to approach ω∗. In each iteration, given the current candidate or candidates,

we can generate a pool of new candidates and use the exponential mechanism to

select among them.

5. Publishing Histograms for Optimization. Finally, one can publish a histogram

of D optimized for the purpose of the task, e.g., for clustering or for classification,

and then perform optimization using the histogram. Intuitively, this publishes more

information than needed for outputting ω∗; however, this appears to outperform the

above methods in experiments.



23

2.6.1 Example Optimization Problems

We now give a brief description of the optimization problems that have been studied in

the context of differential privacy, and discuss the feasibility of performing output pertur-

bation for each of them.

k-means Clustering

k-means clustering is a widely used unsupervised machine learning method for data

analysis. It has a wide range of applications, including but not limited to nearest neighbor

queries, market segment, image processing, and geo-statistics.

The input is a dataset D = {x1, x2, . . . , xN}, where each data point xℓ is a d-

dimensional real vector. Intuitively, the dataset D consists of points in a d-dimensional

space. The output is a set of k points ω = {o1, o2, · · · , ok}, known as the centroids. These

k centroids partition D into k clusters such that each data point belongs to the cluster de-

fined by the centroid that is closest to the data point. (If there are more than one closest

centroids for a data point, the data point is assigned to one of the corresponding clusters.)

The objective function to be minimized is the within-cluster sum of squares. We normalize

this value and call it Normalized Intra-Cluster Variance (NICV), defined as follows.

Jkm(D,ω) =
1

N

N∑

ℓ=1

k

min
j=1
||xℓ − oj||2. (2.8)

The standard k-means algorithm is the Lloyd’s algorithm ( [24]). The algorithm

starts by selecting k points as the initial choices for the centroid, and then tries to im-

prove these centroid choices iteratively until no improvement can be made. In each itera-

tion, one first uses the current centroid choices to partition the data points into k clusters

O = {O1, O2, · · · , Ok}, with each point assigned to the same cluster as the nearest cen-

troid. Then, one updates each centroid to be the center of the data points in the cluster.

∀i ∈ [1..d] ∀j ∈ [1..k] oji ←
∑

xℓ∈Oj xℓ
i

|Oj| , (2.9)



24

where xℓ
i and oji are the i-th dimension coordinates of xℓ and oj , respectively. The algorithm

continues by alternating between data partition and centroid update, until it converges.

The quality of the output computed by the Lloyd’s algorithm is subject to the choice

of the starting points. Random Partition and Forgy are two commonly adopted

initialization methods. The former randomly partitions the database into k clusters, and

takes the centers of the clusters as starting points. The latter randomly selects k data points

(seeds) from the database as the starting points. One can run the algorithm multiple times,

with different choices of initial centroids, and choose the output that has the minimal NICV.

The global sensitivity of k-means clustering problem is very high, as changing one

single data point could completely change the optimal clustering centroids; see [25].

Linear Regression

Linear regression is a fundamental statistical approach for modeling the linear relation-

ship between a dependent variable and several independent variables. It has been used

extensively in practical applications, including fitting prediction models and analyzing the

relationship between a dependent variable and one or more independent variables.

The input is a dataset D = {〈x1, y1〉, 〈x2, y2〉, . . . , 〈xN , yN〉}, where xℓ is a d-

dimensional real vector, and yℓ is a real scalar value. The output is a d-dimensional vector

ω. The optimization objective is

Jlr(D,ω) =
1

N

N∑

ℓ=1

(
yℓ −

d∑

i=1

xℓ
iωi

)2

(2.10)

In other words, linear regression expresses the value of y as a linear function of the val-

ues of x1, . . . , xd, such that the sum of square errors of the predicted y values is minimized.

The global sensitivity of linear regression is unbounded. For example, given a dataset

where each x is one-dimensional with N − 1 points at (0, 0) and 1 point at (1/N, 0). The

optimal line y = 0ẋ+0. Adding an additional point (1, N) to the input dataset results in an

optimal line y = Nẋ+ 0. Thus, adding noise to the line parameter according to the global

sensitivity remove all utilities completely.



25

Logistic Regression

Logistic regression also learns a vector of linear coefficients; however, the inner prod-

uct of these coefficients and a data point’s independent variables is used to estimate the

probability of the dependent variable, using the logistic function.

The input is a dataset D = {〈x1, y1〉, 〈x2, y2〉, . . . , 〈xN , yN〉}, where xℓ is a d-

dimensional real vector, and yℓ has a boolean domain {0, 1}. The output is a prediction

function, which predicts y = 1 with probability

ρ(ω∗, x) =
exp (ωT

∗ x)

1 + exp (ωT
∗ x)

.

The model parameter ω∗ is computed by minimizing the optimization objective function,

Jlog(D,ω) =
Λ

2
‖ω‖+ 1

N

N∑

ℓ=1

Lω(x
ℓ, y),

where the loss function is defined as

Lω(x, y) = −y log(ρ(ω, x))− (1− y) log(1− ρ(ω, x)),

and Λ is the regularization parameter.

In [8], it is showed that the sensitivity of the output perturbation approach on logistic

regression is 2
NΛ

, where Λ is the regularization parameter and N is the dataset size. Note

that this means this bound becomes∞ when no regularization is used.

SVM

Another widely used classification technique is support vector machine (SVM). It has

promising empirical performance in many practical applications, and especially works well

with high-dimensional data. Given a set of training examples, each marked for belonging to

one of two categories, an SVM training algorithm builds a model that assigns new examples

into one category or the other, making it a non-probabilistic binary linear classifier. An



26

SVM model is a representation of the examples as points in space, mapped so that the

examples of the separate categories are divided by a clear gap that is as wide as possible.

The input is a dataset D = {〈x1, y1〉, 〈x2, y2〉, . . . , 〈xN , yN〉}, where xℓ is a d-

dimensional real vector, and yℓ has a boolean domain {0, 1}. The output is a prediction

function,

ρ(x) =




1 if αT

∗ · x+ β∗ > 0

0 otherwise,

where α∗ ∈ R
d and β∗ ∈ R is computed by minimizing the optimization objective function,

Jsvm(D,α, β) =
Λ

2
‖α‖2 + 1

N

N∑

ℓ=1

Lα,β(x
ℓ, yℓ),

where the loss function Lα,β(x, y) is defined as

Lα,β(x, y) = max{1− 4(y − 0.5)(αTx+ β − 0.5), 0},

and Λ is the regularization parameter.

Rubinstein et al. [26] used the same approach for perturbing the parameters outputed

by the SVM classifier and showed that the sensivitiy of the SVM learning algorithm can

be bounded by 4LΛκ
√
d

N
, where Λ is the regularization parameter, L is the Lipschitz constant

of loss function, κ is the bound of kernel, d is dataset dimensionality and N is the dataset

size.

2.6.2 Objective Perturbation

We have seen that the global sensitivities of these optimization problems are very high,

making direct output perturbation an ineffective method. An interesting approach, first



27

introduced in [8], is to perturb the optimization objective function so that solving it results

in a private solution. We now discuss two such techniques.

Adding a Noisy Linear Term to the Optimization Objective Function

One method, proposed by Chaudhuri et al. [8, 10], is to add a Laplacian noise to the

optimization objective function. We want to solve

arg min
ω

J(D,ω), where J(D,ω) =

(
1

N

N∑

i=1

L(ω, xi)

)
+ c(ω),

where c(ω) is the regularizer.

Assuming that both L(ω, xi) and c(ω) are strictly convex and everywhere differentiable

for ω. Then define the new objective function to be

J∗(D,ω) = J(D,ω) +
bTω

N
,

where b is a random noise sampled from a distribution with density 1
α
e−β‖b‖, α is a normal-

izing constant and β is a function of ǫ.

The privacy of this method is proved as follows.

Proposition 2.6.1 Solving arg minω J
∗(D,ω) satisfies ǫ-DP.

Proof Suppose we have any two neighboring dataset D =

(x1, y1), . . . , (xN−1, yN−1), (a, y) and D′ = (x1, y1), . . . , (xN−1, yN−1). For any ω∗

output by our algorithm, we want to show that

Pr [ω∗|D]

Pr [ω∗|D′]
≤ eǫ.

Since the regularization function J and the loss function L are strictly convex and

differentiable everywhere, unique minimum occurs when the gradient of J∗(D,ω) =

J(D,ω)+ bTω
n

is 0. Therefore, for the two neighboring datasets D and D′, there are unique

values of noise b that maps the different inputs to the same output ω∗.



28

Let the values of b for the first and second cases respectively, be b1 and b2. We have

∂J(D,ω)

∂ω
+

b1
n

=
∂J(D′, ω)

∂ω
+

b2
n
.

Therefore,

‖b1 − b2‖ =
∥∥∥∥
∂J(D,ω)

∂ω
− ∂J(D′, ω)

∂ω

∥∥∥∥

=

∥∥∥∥
∂L(ω, (a, y))

∂ω
− ∂L(ω, (a′, y′))

∂ω

∥∥∥∥

≤ ∆.

And ∆ is the sensitivity of
∂J(D,ω)

∂ω
.

Finally, we have,

Pr [ω∗|D]

Pr [ω∗|D′]
=

pdf(b1)

pdf(b2)
≤ e

ǫ
∆
·‖b1−b2‖ ≤ eǫ.

Chaudhuri et al. [8, 10] showed that ∆ ≤ 2 for both logistic regression and SVM. The

loss function of logistic regression is differentiable and can be bounded by 1, Therefore,

‖b1 − b2‖ =
∥∥∥∥
∂J(D,ω)

∂ω
− ∂J(D′, ω)

∂ω

∥∥∥∥

≤
∥∥∥∥
∂L(ω, (a, y))

∂ω

∥∥∥∥+
∥∥∥∥
∂L(ω, (a′, y′))

∂ω

∥∥∥∥

≤ 2.

Although the loss function of SVM, Lω(x, y) = max{1− y(αTx+β), 0}, is not differ-

entiable, Chaudhuri et al. [10] proposed to use a differentiable version of this loss function,

and showed that its first order derivative can be bounded by 1 and the noise scale can be

bounded by 2.



29

It is difficult to analyze the impact of adding such linear terms to the objective function

on the accuracy of the optimization results; however, experimental results show that this

method is not very promising.

The Functional Mechanism

Zhang et al. [11] proposed to perturb the optimization objective function by first ap-

proximating the objective function using a polynomial, and then perturbing each and every

coefficient of the polynomial.

Given an objective function J(D,ω) =
∑

ti∈D L(ti, ω), the function mechanism first

decomposes J(D,ω) into a series of polynomial basis,

J(D,ω) =
U∑

j=0

∑

φ∈Φj

∑

ti∈D
λφtiφ(ω),

and then perturb the aggregated coefficients of each polynomial basis with Laplace noise.

In the above, D is the dataset, ti is the i-th tuple in the dataset and ω is the model parameter.

And Φj(j ∈ N) denote the set of all products of parameter ω’s coordinates {ω1, . . . , ωd}
with degree j,

Φj = {ωc1
1 ωcd

2 · · ·ωcd
d |

d∑

l=1

cl = j}.

For example, Φ0 = {1}, Φ1 = {ω1, . . . , ωd}, and Φ2 = {ωi · ωj|i, j ∈ [1, d]}.

Algorithm 1 Functional Mechanism

INPUTD: Dataset, J(D,ω): objective function, ǫ: privacy parameter

Output ω∗: best parameter vector

Set ∆ = 2maxt
∑U

j=1

∑
φ∈Φj
‖λφt‖1

for each 0 ≤ j ≤ U do

for each φ ∈ Φj do

set λφ =
∑

ti∈D λφti + Lap
(
∆
ǫ

)

end for

end for

Let J̄(D,ω) =
∑U

j=1

∑
φ∈Φj

λφφ(ω)

Compute ω∗ = arg minω J̄(D,ω) return ω∗



30

The functional mechanism can be applied to linear regression. The expansion of objec-

tive function J(D,ω) for linear regression only involves monomials in Φ0, Φ1 and Φ2.

J(D,ω) =
∑

ti∈D
(yi − tTi ω)

2

=
∑

ti∈D
(yi)

2 −
d∑

j=1

(
2
∑

ti∈D
yitij

)
wj +

∑

1≤j,l≤d

(
∑

ti∈D
tijtil

)
wjwl.

And the scale of Laplace noise can be bounded by,

∆ = 2max
t

U∑

j=1

∑

φ∈Φj

‖λφt‖1

≤ 2(1 + 2d+ d2).

Note that this sensitivity becomes very large as d increases. Adding noises of this mag-

nitude to every coefficient, and then optimizing for that objective function results in poor

performances.

For other regression tasks, e.g. logistic regression, where the objective function are not

a polynomial with finite order, Zhang et al. [11] proposed to use the first two order terms

of Taylor expansion to approximate this kind of objective function.

Functional Mechanism adds more perturbation to the objective function than the previ-

ous method, and thus perform even worse.

2.6.3 Make an Existing Algorithm Private

Another approach is to take a non-private optimization algorithm, and to apply the

Laplace Mechanism or the Exponential Mechanism to ensure that every step is private.

Often times, one takes an iterative algorithm for an optimization task, and then makes each

iteration private. Here, one main parameter is the number of iterations. When the number is

too small, then the algorithm is far from converging. On the other hand, when the number

is too large, each iteration has very little privacy budget, and too much noise is added to



31

each iteration. Intuitively, this method is sub-optimal because the amount of perturbation

added in this approach ensures that outputting all the intermediate results together is private,

whereas only the final output is needed.

DPLloyd: Differentially Private Lloyd Algorithm for k-means Clustering

The k-means clustering problem has been used as a motivating application for PINQ (

[7]), a platform for interactive privacy preserving data analysis. McSherry implemented

k-means clustering using the PINQ system ( [27]). We call this the DPLloyd approach.

DPLloyd fixes the total number of iterations to be 5 in [7]. It adds Laplacian noise to

the iterative update step in the Lloyd algorithm. Each iteration requires computing the

total number of points in a cluster and, for each dimension, the sum of the coordinates

of the data points in a cluster. Let d be the number of dimensions. Then, each tuple is

involved in answering dt sum queries and t count queries. To bound the sensitivity of the

sum query to a small number r, each dimension is normalized to [−r, r]. Thus, the global

sensitivity of DPLloyd is (dr + 1)t [5], and each query is answered by adding Laplacian

noise Lap
(

(dr+1)t
ǫ

)
.

Algorithm 2 NOISYCENTROIDUPDATE

Input: d: number of dimensions, C: cluster, ǫs: privacy budget for sum queries, ǫc: privacy

budget for count queries

1: count← |C|+ Lap
(

1
ǫc

)

2: for each dimension i (i = 1, 2, . . . , d) do

3: sumi ←
∑

xℓ∈C xℓ
i + Lap

(
1
ǫs

)

4: oi ← Π[−r,r]

(
sumi

count

)

5: end for

6: return Cluster centroids 〈o1, o2, . . . , od〉

The algorithm is given in Algorithm 3. The overall structure of DPLloyd is to first

select initial values, and then iteratively improve them. This same algorithmic structure

also applies to many other data analysis tasks, such as linear regression, SVM, etc. When

making such an interactive and iterative algorithm differentially private, there are several

important decisions one has to make.



32

Algorithm 3 DPLLOYD

Input:D: dataset, d: number of dimensions, [−r, r]: dataset range, k: number of clusters,

t: number of iterations, IC: set of initial centroids, ǫ: privacy budget

1: if IC is empty then

2: Randomly select k points {o1, o2, . . . , ok} as initial centroids

3: else

4: {o1, o2, . . . , ok} ← IC
5: end if

6: ǫ′ ← ǫ
(dr+1)t

7: for Loop t times do

8: for each j (j = 1, 2, . . . , k) do

9: Cluster Cj ← {xℓ : ‖xℓ − oi‖ ≤ ‖xℓ − oj‖, xℓ ∈ D, ∀1 ≤ i ≤ k}
10: 〈oj1, oj2, . . . , ojd〉 ← NOISYCENTROIDUPDATE(d, Cj, ǫ′, ǫ′)
11: end for

12: end for

13: return {o1, o2, . . . , ok}

The first decision is how to select the initial values. In the standard, non-private setting,

a purely random choice may suffice, since one could repeat the algorithm multiple times

and choose the best result among them. With privacy constraints, however, running the

interactive algorithm multiple times means that each run can use only a fraction of the total

privacy budget, causing the results to be less accurate. Thus the choice of initial values

becomes more important. In the case of k-means clustering, many methods for choosing

the initial points have been developed, see, e.g. [28]. However, these methods all need

access to the dataset, and it is unclear how to perform them in a differentially privately

way. Therefore, DPLloyd randomly generates k points as the initial centroids.

The second decision is how many iterations one runs. A large number of iterations

causes too much noises being added. A small number of iterations may be insufficient for

the algorithm to converge. Existing approaches fixes a number. However, intuitively the

number of rounds would depend both on the available privacy budget ǫ and the quality of

the initial values. With a smaller privacy budget, one should run fewer number of rounds,

to avoid the results being overwhelmed by too much noise.

The third decision is how to allocate the privacy budget across different rounds. Al-

most by default existing approaches allocate privacy budget equally across different rounds.



33

However, intuitively this is not optimal. In later rounds, when one gets closer to the optimal

value, it is desirable to have a larger privacy budget.

In the implementation of DPLloyd in PINQ, it is proposed to run 5 iterations, with equal

privacy budget allocation for each round. It appears that this setting works quite well across

across many datasets. In [29], when a method newly proposed for k-means clustering was

compared with DPLloyd, the experiments were done by running DPLloyd with 20, 80, and

200 iterations, resulting in artificially poor performance of DPLloyd.

In [30], it is proposed that when the number of rounds is not fixed, one uses exponen-

tially decreasing allocation of privacy budgets, i.e., ǫ
2

in the first round, ǫ
4

in the second

round, and so on. This mostly likely results in deteriorating performance when the number

of rounds increases. Using this method, in later rounds, when one hopes to get closer to

the optimal value, increasingly larger noises are added due to the exponentially decreasing

privacy budget. If one does not allocate privacy budgets equally across all rounds, then one

should allocate smaller privacy budgets for the earlier rounds and larger privacy budgets

for the later rounds, although one cannot do that without knowing fixing the total number

of rounds.

DiffPID3: Differential Private ID3 Algorithm for Decision Tree Classification

In [16], the algorithm for constructing an ID3 decision tree classifier is made differen-

tially private. When the ID3 algorithm needs to get the number of tuples with a specific

feature value, it queries the SuLQ interface to get the corresponding noise count. The

DiffPID3 algorithm in [9] improved this approach by redesigning the classic ID3 classifier

construction algorithm to consider the feature quality function with lower sensitivity and

using the exponential mechanism to evaluate all the attributes simultaneously. Specifically,

the DiffPID3 algorithm starts with the most general partition of the underlying dataset.

Then, the algorithm chooses the attribute that maximizes the purity by using the expo-

nential mechanism and splits the dataset with the selected attribute. The same process is

applied recursively on each subset of the dataset until there are no further splits that improve

the purity.

Sample and Aggregation



34

Algorithm 4 DiffPID3

INPUT: D: Dataset, A = {A1, . . . , Ad}: set of attributes, C: class attribute, ǫ: pri-

vacy parameter, d: maximal tree depth, ǫ′ = ǫ
2(d+1)

: privacy parameter for each recursive

invocation

t← maxA∈A |A|
ND ← NoisyCountǫ′(D)

ifA = ∅ or d = 0 or ND

t|C| <
√
2

ǫ′
then

Dc ← Partition(D, ∀c ∈ C : rC = c)
∀c ∈ C : Nc = NoisyCountǫ′(Dc) return a leaf labeled with argmaxc(Nc)

end if

Ā← ExpMechǫ′(A, q)
Di ← Partition(D, ∀i ∈ Ā : rĀ = i)
for each i ∈ Ā do

Subtreei ← DiffPID3(Di,A \ Ā, C, d− 1, ǫ′)
end forreturn a tree with a root node labeled Ā and edges labeled 1 to |Ā| each going

to subtreei.

The Sample and Aggregation framework provides another approach to deal with private

data analysis, and grows out of the concept of local sensitivity [25]. However, to satisfy

differential privacy by adding noises based on the local sensitivity rather than the global

sensitivity, one needs to be able to analyze the local sensitivity and come up with a smooth

bound of it [25]. Oftentimes the function is too complex for analyzing the local sensitivity.

k-means clustering is such an example. While intuitively adding one data point is unlikely

to change the result by much for most datasets, it is difficult to analyze the effect of adding

one data point, in part because of the iterative nature of the algorithm.

The Sample and Aggregation framework is introduced to handle such cases. Given a

dataset D and a function f , SAF first partitions D into m blocks, then it evaluates f on

each of the block, and finally it privately aggregates results from all blocks into a single

one. The effectiveness of this approach depends on two assumptions. First, f(D) can be

approximated by evaluating f on the partitions (i.e., blocks) of D. Second, the aggregation

step can be designed to be of low sensitivity, e.g., by taking average of all outputs. Since

any single tuple in D falls in one and only one block, adding one tuple can affect at most

one block’s result, limiting the sensitivity of the aggregation step. Thus one can add less



35

noise in the final step to satisfy differential privacy. Figure 2.2 illustrates the Sample and

Aggregation framework.

Dataset

Blocks

Functions

D

D1 D2 · · · Dk

f f · · · f

g

f(D1) f(D2) f(Dk)

Private Output

Lap
(

∆g

k·ǫ

)

Figure 2.2.: An illustration of the sample and aggregate framework.

Algorithm 5 Sample and Aggregate

INPUT Dataset D, length of dataset n, privacy parameter ǫ, output range (min, max)

Let l = n0.4

Randomly partition D in to k disjoint blocks, D1, . . . , Dk

for each i ∈ {1, . . . , k} do

Oi ← Output of user application on dataset Di

Clipping Oi to the range (min,max)
end for

A← 1
k

∑k
i=1Oi + Lap

(
|max−min|

k·ǫ

)

The Sample and Aggregation framework was implemented in the GUPT system [29].

Authors of [29] implemented k-means clustering and used it to illustrate the effective-

ness of GUPT. We call this algorithm GkM. Given a dataset D, it first partitions D into



36

m = N0.4 blocks D1, D2, . . . , Dm. Then, for each block Dj , it calculates its k centroids

oj,1, oj,2, . . . , oj,k. Finally, it computes an average on all the blocks to output the j-th cen-

troid

cj =
1

m

m∑

i=1

oj,i + Lap

(
k(max−min)

m · ǫ

)
, (2.11)

where [min,max] is the estimated output range.

2.6.4 Iterative Local Search via EM

Instead of adding making individual steps in an optimization algorithm private, another

approach is to iteratively apply the exponential mechanism to gradually improve the current

choice of ω. In order to do this, one has to generate a candidate set, e.g., by generating

multiple perturbation of the current ω, and then selects among the set in a private fashion.

We now look at some examples of such algorithms.

PrivGene: Differentially Private Model Fitting Using Genetic Algorithms

PrivGene [12] is a general-purpose differentially private model fitting framework based

on genetic algorithms. Given a dataset D and a fitting function f(D,ω) that measures how

well the parameter ω fits the dataset D, the PrivGene algorithm initializes a candidate set of

possible parameters ω and iteratively refines them by mimicking the process of natural evo-

lution. Specifically, in each iteration, PrivGene selects m′ parameters from the candidate

set, and generates from them offsprings by crossover and mutation. Then, it creates a new

parameter set, which includes all and only the offsprings. At the end of the last iteration, a

single parameter is selected and outputted as the final result.

This algorithm is given in Algorithm 6. PrivGene is applied to logistic regression,

SVM, and k-means clustering. In the case of k-means clustering, the NICV formula in

Equation 2.8, more precisely its non-normalized version, is used as the fitting function f ,

and the set of k cluster centroids is defined as parameter ω. Initially, the candidate set is

populated with 200 sets of cluster centroids randomly sampled from the data space, each

set containing exactly k centroids. Then, the algorithm runs iteratively for Nǫ/(800m′)

rounds, where m′ is empirically set to 10, and N is the dataset size.



37

Algorithm 6 PrivGene

INPUTD: Dataset, J : objective function, ǫ: privacy parameter, m, m′ :sizes of candidate

set Ω and selected set Ω′, r: number of iterations

Output ω: best parameter vector identified by PrivGene

Initialize candidate set Ω with m randomly generated vectors

for i = 1 to r − 1 do

Ω′ ← DPSelect(D, J,Ω, m′, ǫ/r)
Ω← {}
for j = 1 to m/2 do

Randomly choose two vectors ω1, ω2 ∈ Ω′ as parent parameters

Compute (v1, v2)← Crossover(ω1, ω2)
Mutate(v1) and Mutate(v2)
Add two offspring parameters v1, v2 to Ω

end for

end for

{ω} ← DPSelect(D, J,Ω, 1, ǫ/r) return ω

Algorithm 7 DPSelect

INPUT D: Dataset, J : objective function, Ω: parameter candidate set, m′: number of

parameter vectors to be selected from Ω, ǫs: privacy parameter

Output Ω′: set of selected parameter vectors

Ω′ ← {}
For each ω ∈ Ω, compute J(D,ω)
for i = 1 to m′ do

Use privacy budget ǫs/m
′ to apply the exponential mechanism to select the parameter

vector ω∗ from Ω that aims to minimize J(D,ω∗).
Remove ω∗ from Ω, and add ω∗ to Ω′

end forreturn Ω′

While the idea of making a genetic programming algorithm differentially private is

interesting, the effectiveness of Algorithm 6 is questionable for several reasons. First, the

crossover operation often does not result in competitive candidates. Second, with crossover

and mutation, the convergence rate is low, which means a larger number of iterations are

needed. Third, for each iteration, the algorithm requires making m′ selections, with every

single one of them consuming some privacy budget.

Iterative Local Search



38

A more effective local search algorithm can be developed using some ideas from the

PrivGene paper, but does not use features of genetic programming. Such an algorithm is

implemented in the code accompanying the PrivGene paper [12], even though the algorithm

did not appear in the paper. We give the algorithm below.

Algorithm 8 ExpSearch

INPUT D: Dataset, J : objective function, ǫ: privacy parameter, r: number of iterations,

ω0: initial parameter, s: step of search, β < 1: scaling parameter

Output ω: selected parameter

ω ← ω0

for i = 1 to r − 1 do

Ω← {}
for j ∈ {1..d} do

ω1 ← ω with j’s attribute + s
ω2 ← ω with j’s attribute− s
Ω← Ω ∪ {ω1, ω2}
compute J(D,ω1) and J(D,ω2)

end for

ω ← Use privacy budget ǫ/r to apply the exponential mechanism to select the pa-

rameter vector ω∗ from Ω that aims to maximize J(D,ω∗).
s← s ∗ β

end forreturn ω

This algorithm has several interesting ideas. Each round, it uses the exponential mech-

anism to select a single local perturbation that improves the current solution the best. Com-

pared with PrivGene, which selects multiple candidates (for the purpose of using crossovers

to generate the pool of candidates), this means that more privacy budget can be used in each

selection. Since only one candidate is selected, there is no crossover. The mutation step

takes the form of perturbing the coefficient in one dimension. That is, each iteration can

be viewed as moving along one dimension towards a potentially better parameter. Finally,

the perturbation step s exponentially decays so that the amount of changes decreases. This

makes sense as when one starts to converge to the optimal parameter, smaller adjustments

are needed. Also, this feature of exponential decay of the perturbation step can also take

advantage of the enhanced exponential mechanism, to be discussed below. This method



39

is most useful when the goal is to find a vector of coefficients, as in the case of logistic

regression and SVM.

Enhanced Exponential Mechanism

An Enhanced version of the Exponential Mechanism (EEM) is proposed in [12], which

can be used in the iterative local search algorithm. Recall that the quality function we use

is the optimization objective function J(D,ω). In the standard Exponential Mechanism,

one considers the maximal difference between the values of the quality function on two

neighboring datasets D and D′, i.e., ∆J = max∀ω,D≃D′ |J(D,ω)− J(D′, ω)|.
EEM is suitable for the case where the dependency of the quality function on the dataset

D can be computed by summing up some score for each record t ∈ D, i.e.,

J(D,ω) = c(ω) +
∑

x∈D
Lω(x).

In this case, when making a selection among a set Ω, one could also use as global sensitivity

the maximal difference between Lω(x) and Lω′(x) where ω, ω′ ∈ Ω, and x is any data ele-

ment in the input dataset. This is particularly effectively in the local search paradigm where

the set of candidates are all minor perturbations, and thus maxx,ω,ω′(|Lω(x)−Lω′(x)|) may

be small.

In EEM, one selects ω ∈ Ω with probability proportional to eǫJ(D,ω)/(2∆J ), where

∆ = min

{
∆1 = max

x,x′∈D,ω∈Ω
|Lω(x)− Lω(x

′)| ,∆2 = max
x∈D,ω,ω′∈Ω

|Lω(x)− Lω′(x)|
}
.

∆1 is exactly the global sensitivity used in the standard exponential mechanism (here

the bounded interpretation of DP is used), while ∆2 is a new global sensitivity designed

specifically for additive quality functions.

When EEM is used in PrivGene and iterative local search, ∆2 is usually smaller than

∆1. This is because that as more iterations are performed, the quality of the parameter vec-

tors in the candidate set becomes increasingly close to each other as the algorithm converges

to (possibly local) optimal. Thus, it is likely that the maximum value of Lω(x) − Lω′(x)



40

gradually decreases with the number of iterations performed, leading to decreasing ∆2. ∆1,

on the other hand, is not significantly affected by this phenomenon. Therefore, EEM can

make more accurate selection in each iteration as the algorithm converges.

2.6.5 Histograms Optimized for Optimization

The final approach we consider is to publish a synopsis of the dataset, often in the form

of a noisy histogram, so that synthetic datasets can be generated and optimizers can be

learned from these synthetic datasets. Publishing a synopsis enables additional exploratory

and predictive data analysis tasks to be performed, and can be argued to be more preferred.

Uniform Griding and Its Extensions

For low-dimensional datasets with numerical attributes, UG and its extension can be

applied. UG (Uniform Griding) is a simple algorithm proposed in [31] for producing syn-

opsis of 2-dimensional datasets that can be used to answer rectangular range queries (i.e.,

how many data points there are in a rectangular range) with high accuracy. The algorithm

partitions the space into M = m × m equal-width grid cells, and then releases the noisy

count in each cell. It is observed that for counting queries, a larger M value results in higher

errors because more noises are added, and a smaller M value results in higher errors due to

the fact that points within cells may be distributed nonuniformly, and queries including a

portion of these cells may be answered inaccurately. To balance these two kinds of errors,

it is suggested to set

m =

√
Nǫ

10
, or equivalently,M =

Nǫ

10
(2.12)

It has been shown that UG performs quite well for answering rectangular range queries [31].

In [32], UG is extended to higher-dimensional case by setting

M =

(
Nǫ

θ

) 2d
2+d

, (2.13)



41

where θ = 10. And the new algorithm is called extended uniform griding, EUG. When the

dimensionality d increases, this approach does not scale very well.

Histogram Publishing for estimating M-Estimators

Lei [33] proposed a scheme to release differentially private histogram tailored for the

M-estimator. Similar to UG and EUG, it partitions the data space into equal-width grid

cells. However, it uses a different method to determine how many grid cells to use. Given

a d-dimensional dataset with N tuples, statistical analysis in [33] suggests that

M =

(
N√

log(N)

) 2d
2+d

. (2.14)

Theoretical bounds on accuracy for M-estimator is a generalization of maximum like-

lihood estimation. Given a dataset D = {x1, x2, . . . , xN} and a target function ρ, it deter-

mines a parameter ω∗, such that

ω∗ = arg min
ω

N∑

ℓ=1

ρ(xℓ, ω).

Note that the only difference the above approach has from UG is in how the number of

cells is determined. We note that unlike UG, the above approach for choosing M does not

depend on ǫ.

DiffGen: Differentially Private Anonymization Based on Generalization

Mohammed et al. [34] proposed DiffGen to publish histogram for classification under

differential privacy. It consists of two steps, partition and perturbation. Given a dataset

D and taxonomy trees for each predictor attribute, the partition step starts by generalizing

all attribute’s values into the topmost nodes in their taxonomy trees and then iteratively

selects one attribute’s taxonomy tree node at a time for specialization by using the standard

exponential mechanism. The quality of each candidate specialization is based on the same

heuristics used by the decision tree constructions, such as information gain and majority

class. The partition step terminates after a given number of specializations. The perturba-

tion step injects Laplace noise into each cell of the partition and outputs all the cells with



42

their noisy counts as the noisy synopsis of the data. Privacy budget needs to be evenly

distributed to all the levels in the tree. Thus, only a small portion of budget can be assigned

to each node splitting. This would result the histogram structured to be far from optimal

and result performance of the algorithm.



43

3. DIFFERENTIALLY PRIVATE DATA PUBLICATION FOR

CLASSIFICATION

3.1 Introduction

Classification is an important tool for data analysis. However, publishing parameters

of a classifier learned from a dataset can result in privacy concerns [35], [36]. One way

to deal with the privacy concerns is to conduct classification while satisfying differential

privacy [5]. Several approaches for learning classifiers while satisfying differential privacy

have been proposed in recent years. Some methods compute a classifier as the output [16],

[8], [9], [10], [37], [38]. Other methods [34], [39], [12] publish a synopsis of the dataset,

often in the form of a noisy histogram, so that synthetic datasets can be generated and

classifiers can be learned from these synthetic datasets. Publishing a synopsis enables

additional exploratory and predictive data analysis tasks to be performed, and can be argued

to be more preferred.

Publishing noisy histograms for one-dimensional or two-dimensional datasets has been

studied extensively in recent years, see [40] for a recent survey. However, as observed

in [39], [41] these approaches do not work well when the number of attributes/dimensions

goes above a few. Many datasets that are of interest have multiple attributes. For a multi-

attribute dataset with more than a dozen or so attributes, publishing a histogram with all

the attributes results in a sparse histogram where noises may overwhelm the true counts.

Therefore it is necessary to select a subset of the attributes that are “useful” for the intended

data analysis tasks, and to determine how to discretize the attributes. These selections

partition the domain into a number of cells. We call the result a “grid”. Once a grid is

selected, the next step is straightforward: one adds Laplace noises [5] to the cell counts to

produce a noisy histogram.



44

Thus the key design choice in algorithms for publishing noisy histograms is how to

select a suitable grid. Publishing a histogram is similar to performing generalization for the

purpose of achieving k-anonymization, since the exact attribute values for records within

a cell no longer matter, and only the cell boundary and the number of records in a cell

matter. A key challenge studied in research on k-anonymization was also how to find a

high-quality grid [42], [43], [44]. However, these proposed methods for k-anonymization

have been found to be vulnerable to attacks exploiting background information, e.g., the

minimality attack [45], [46]. Fortunately, an approach to select a grid while satisfying

differential privacy, as proposed in this chapter, can defend against these attacks.

In this chapter we propose the PrivPfC (Private Publication for Classification) approach

for publishing projected histograms. On the key decision of how to select a grid, PrivPfC

differs from previous approaches in that it selects a high-quality grid in a single step,

whereas previous approaches use an iterative process and as a consequence suffer from

two weaknesses. First, an iterative process has to divide the privacy budget among all the

iterations, causing the choice made in each iteration to have significant noise. Second, an

iterative process is a greedy process and tends to result in a sub-optimal global choice even

without considering noises.

The exponential mechanism [14] enables the private selection of a grid in a single step.

However, there are a number of challenges to use it effectively. One needs to generate

a set of candidate grids that include the high-quality grids, without making the candidate

set too large, which affects both running time and accuracy. Furthermore, one needs a

quality function that can effectively identify high-quality grids and simultaneously has a

low sensitivity.

The first contribution of this chapter is PrivPfC, an algorithm for privately publish-

ing noisy histograms optimized for classification. PrivPfC has two novel ideas. One is a

method to enumerate through candidate grids when given a cap on how many grids the

algorithm is allowed to consider; and the other is a new quality function that enables the

selection of a high-quality “grid”. This quality function considers the impact of injected

noises on the classification accuracy, adapts to the privacy parameter ǫ, and has a low sen-



45

sitivity. As demonstrated in [14], any mechanism that satisfies differential privacy can be

simulated using the exponential mechanism; thus conceptually any private data analysis

problem can be solved by finding a way to enumerate the likely solutions and an effec-

tive quality function. PrivPfC solves the problem of finding a suitable grid for publishing

histograms optimized for classification.

Our second contribution is that, through extensive experiments on real datasets, we

have compared PrivPfC against other state-of-the-art methods for data publishing as well

as private classification, demonstrating that PrivPfC improves the state-of-the-art. We also

analyze variants of competing algorithms, showing that their weaknesses come from the

iterative structure of their algorithms. We note that the fact that PrivPfC outperforms

state-of-the-art algorithms specifically designed for privately publishing classifiers is quite

counter-intuitive. PrivPfC publishes a histogram, which contains more information than a

classifier; thus one would expect the classifiers it produces are less accurate. Experimental

results demonstrate otherwise. We believe this points to the posibility of designing better

private classification algorithms by using as few steps as possible, avoiding spreading the

privacy budget too thin.

The rest of this chapter is organized as follows. Our PrivPfC approach is presented in

Section 3.2. The experimental results are shown in Section 3.3.

3.2 PrivPfC Framework

In-family Not-in-family Other-relative Unmarried

Wife Husband Own-child

Any

Relationship

1-10 10-20

1-5 5-10 10-15

1-20

Education-num

15-20Not-in-family Other-relative Unmarried

Level-1

Level-2

Level-3

Figure 3.1.: Taxonomy hierarchies of Relationship attribute and Education-num attribute.

We consider a dataset with a set of predictor variables and one response variable. The

predictor variables can be numerical or categorical. Following [42], [47], [48], [34], for



46

each predictor variable Ai, we assume the existence of a taxonomy hierarchy (also called

a generalization hierarchy in the literature). Figure 3.1 shows the taxonomy hierarchies

for Relationship, a categorical variable, and Education-num, a numerical variable. In a

hierarchy, the root node represents the whole domain of the variable, and a parent node is

a generalization (or a cover) of its children. Child nodes under the same parent node are

semantically closer to each other than to nodes under a different parent node.

Each level of a predictor variable’s taxonomy hierarchy forms a partition of its domain.

On the basis of the taxonomy hierarchy and its levels, we introduce the notion of a grid.

Definition 3.2.1 (Grid) Let A = {A1, . . . , Ad} be the set of predictor variables in a

dataset and {T1, . . . , Td} be their taxonomy hierarchies respectively. Let hi be the height

of Ti, 1 ≤ i ≤ d. Then, a grid g is given by 〈ℓ1, . . . , ℓd〉, where 1 ≤ ℓi ≤ hi and 1 ≤ i ≤ d.

Such a grid g defines a partitioning of the data domain into cells where each attribute Ai

is partitioned into the values at level ℓi. The number of cells of a grid is Πd
i=1|Ti[li]|, where

|Ti[li]| is the number of nodes in the level li of the hierarchy Ti. And the number of all

possible grids is Πd
i=1hi.

Definition 3.2.2 (Histogram) Given a dataset D and a grid g, a histogram H(D, g) parti-

tions D into cells according to g, and in each cell outputs the number of records for each

value of the response variable.

PrivPfC publishes H̃(D, g), a noisy histogram of the input dataset D, which adds

Laplace noise into the counts in the histogram H(D, g). The key challenge lies in selecting

a suitable grid g. Our approach is to define a quality score for each grid, which measures

the usefulness for classification of each grid, and apply the exponential mechanism [14] to

privately select a grid.

3.2.1 The Quality Function

The quality function needs to satisfy two conditions. First, it needs to accurately mea-

sure the desirability of using a particular grid g. Second, it should have a low sensitivity.



47

Intuitively, we want to ensure that classifiers learned from H̃(D, g), a noisy histogram of

D using g to partition the data domain, are close to classifiers learned from D directly.

Furthermore, we desire this to hold regardless of which particular classification algorithm

is used.

We propose to define the quality function to maximize the number of records in D

that are classified correctly by the following classifier: for each cell in the grid defined

by g, it predicts the class with highest count according to the noisy histogram H̃(D, g).

This classifier is in the same spirit as histogram classifiers [49], and we use HC H̃(D,g) to

denote it. When a grid g is fixed, the noisy histogram includes random noises; therefore,

the number of correctly classified records is a random variable. We use the expected value

of this random variable as the quality function. Therefore, the quality of the grid g can be

defined as:

Definition 3.2.3 (Grid Quality) Given a dataset D with k different class labels, L =

{1, 2, . . . , k}, a grid g and ǫ for the parameter of adding Laplace noise to the counts,

the grid quality is measured by the expected number of correctly classified records of the

histogram classifier HC H̃(D,g):

gq(D, g) =
∑

c∈g

k∑

i=1

ni
c · pic, (3.1)



48

where i ∈ L ranges over the class labels, ni
c is the number of data points in the cell c with

class label i and pic is the probability that class i is the dominant class in cell c (i.e., with

the highest noise count) after injecting Laplace noises. The probability pic is given below:

pic = Pr [Class i is the dominant class after adding noise]

= Pr

[
ni
c + Zi ≥ max

j∈L/{i}

(
nj
c + Zj

)]

=

∫ ∞

−∞


Pr

[
ni
c + Zi = x

] ∏

j∈L/{i}
Pr
[
nj
c + Zj < x

]

 dx

=

∫ ∞

−∞


f

(
x− ni

c

) ∏

j∈L/{i}
F
(
x− nj

c

)

 dx, (3.2)

where Zi is the Laplace noise added to class i’s count, and f(·) and F (·) are, respectively,

the probabilistic density function and the cumulative distribution function of the Laplace

distributionLap(1/ǫ). The probability pic depends on ǫ, the privacy budget for perturbation,

as well as on the counts of the various classes in the cell c.

Intuitively, since the grid quality function gq (Eq. 3.1) counts number of records, it

should have a low sensitivity, since adding or removing a record affects only one of the

counts, and changes the count by just 1. However, changing the counts also affects the

probabilities. Thus, analyzing the sensitivity of the quality function is quite non-trivial.

3.2.2 Sensitivity in the Binary Classification Case

We first study the sensitivity of the grid quality (Eq. 3.1) in the special case where the

response variable is binary.

Lemma 1 (Grid Quality for Binary Classification) Given a dataset D with class labels

L = {1, 2}, the global sensitivity of the quality function gq is bounded by 1.1.

More specifically, for each ǫ value, the sensitivity is given by

∆gq(ǫ) = max
x∈{1,2,3,...}

fǫ(x), (3.3)



49

where

fǫ(x) =

∣∣∣∣(x− 1) ·
(
e−ǫ(x−1)

2

(
1 +

ǫ(x− 1)

2

)

− e−ǫx

2

(
1 +

ǫx

2

))
+

(
1− e−ǫx

2

(
1 +

ǫx

2

))∣∣∣∣, (3.4)

The global maximum points for fǫ(x), where x ranges over all positive real number, is given below.

x∗ =
ǫeǫ +

√
2− (4− 2eǫ) eǫ + ǫ2eǫ

−ǫ+ ǫeǫ
.

10-5 10-4 10-3 10-2 10-1 100 101 102

Perturbation budget, ǫ
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

∆
gq

Figure 3.2.: Illustration of the sensitivity of grid quality (Eq. 3.3).

Lemma 2 gives the distribution of the difference of two i.i.d. Laplace random variables,

which will be used in the proof of Lemma 1.

Lemma 2 ( [50]) Let Z1 and Z2 be two i.i.d. random variables that follow the Laplace

distribution with mean 0 and scale 1
ǫ
. Then the density of their difference Y = Z1 − Z2 is

fY (y) =
ǫ

4
e−ǫ|y|(1 + ǫ|y|) −∞ < y <∞,



50

and the corresponding cumulative distribution function is

FY (y) =





1− e−ǫy

2

(
1 +

ǫy

2

)
, if y ≥ 0,

eǫy

2

(
1− ǫy

2

)
, otherwise.

(3.5)

The following is the proof of Lemma 1.

Proof We show the global sensitivity of the grid quality (Eq. 3.1) in the binary classifica-

tion setting can be safely upperbounded.

Given a dataset D, and without loss of generality we assume that the neighboring

dataset of D is D′ = D − t , where the tuple t has class label 1. The quality value of

all cells other than cell e are the same, and n1
e = n′1

e + 1 and n2
e = n′2

e.

The sensitivity of the grid quality function for binary classification can be computed by,

∆gq = |gq(D, g)− gq(D′, g)|

= |(n1
ep

1
e + n2

ep
2
e)− (n

′1
e p

′1
e + n

′2
e p

′2
e )|

= |p1e + (n1
e − 1)(p1e − p

′1
e ) + n2

e(p
2
e − p

′2
e )|

= |p1e + (n1
e − n2

e − 1)(p1e − p
′1
e )|, (3.6)

where p1e is the probability of Class 1 is still the dominant class after adding noise. The last

equality holds, because p2e = 1− p1e and p
′2
e = 1− p

′1
e .

As for p1e, by Lemma 2,

p1e = Pr
[
n1
e + Z1 ≥ n2

e + Z2

]

= Pr
[
Z2 − Z1 ≤ n1

e − n2
e

]

=





1− e−ǫ(n1
e−n2

e)

2

(
1 +

ǫ(n1
e − n2

e)

2

)
if n1

e − n2
e ≥ 0

eǫ(n
1
e−n2

e)

2

(
1− ǫ(n1

e − n2
e)

2

)
, otherwise.

(3.7)



51

Case 1: n1

e
− n2

e
≥ 1 .

In this case,

n
′1
e − n

′2
e = n1

e − 1− n2
e ≥ 0.

By Eq. 3.6 and Eq. 3.7, we have

∆gq =

∣∣∣∣1−
e−ǫ(n1

e−n2
e)

2

(
1 +

ǫ(n1
e − n2

e)

2

)
+

(n1
e − n2

e − 1)

[
e−ǫ(n

′1
e −n

′2
e )

2

(
1 +

ǫ(n
′1
e − n

′2
e )

2

)

− e−ǫ(n1
e−n2

e)

2

(
1 +

ǫ(n1
e − n2

e)

2

)]∣∣∣∣.

By letting x = n1
e − n2

e, we have

∆gq =

∣∣∣∣1−
e−ǫx

2

(
1 +

ǫx

2

)

+ (x− 1)

[
e−ǫ(x−1)

2

(
1 +

ǫ(x− 1)

2

)

− e−ǫx

2

(
1 +

ǫx

2

)]∣∣∣∣

=

∣∣∣∣1 +
(x− 1)e−ǫ(x−1)

2

(
1 +

ǫ(x− 1)

2

)

− xe−ǫx

2

(
1 +

ǫx

2

)∣∣∣∣,

where x ≥ 1.

Consider the function

g1(x) =
xe−ǫx

2
(1 +

ǫx

2
).



52

g1(x) is differentiable and

g′1(x) =
e−ǫx

4
(2− ǫ2x2).

Thus, by Lagrange’s Mean Value Theorem, there exists some ξ between x− 1 and x (thus

ξ > 0), so that

∆gq = |1 + g1(x− 1)− g1(x)|

= |1− g′1(ξ)|

=

∣∣∣∣1−
e−ǫξ

4

(
2− ǫ2ξ2

)∣∣∣∣ .

To bound the expression above, consider another function

h(x) = 1− e−ǫx

4

(
2− ǫ2x2

)
,

where x > 0. The function h(x) reaches the maximum at the point 1+
√
3

ǫ
with the maximum

value 1.1, increases in the interval
[
0, 1+

√
3

ǫ

]
and decreases in the interval

(
1+

√
3

ǫ
,∞
)

.

When x ∈ [0, 1+
√
3

ǫ
], h(0) ≤ h(x) ≤ h(1+

√
3

ǫ
) which means h(x) ∈ [0.5, 1.1]. When

x ∈
(

1+
√
3

ǫ
,∞
)

, h(x) decreases and lies in (1, 1.1], because lim
x→+∞

h(x) = 1. Therefore, in

this case,

∆gq = |h(ξ)| ∈ [0.5, 1.1].

Case 2: n1

e
− n2

e
≤ 0

In this case,

n
′1
e − n

′2
e = n1

e − 1− n2
e < 0.



53

Similarly, by letting x = n1
e − n2

e, we have

∆gq =

∣∣∣∣
eǫ(n

1
e−n2

e)

2

(
1− ǫ(n1

e − n2
e)

2

)
+

(n1
e − n2

e − 1)

[
eǫ(n

1
e−n2

e)

2

(
1− ǫ(n1

e − n2
e)

2

)
−

eǫ(n
1
e−n2

e−1)

2

(
1− ǫ(n1

e − n2
e − 1)

2

)]∣∣∣∣

=

∣∣∣∣
eǫx

2

(
1− ǫx

2

)
+

(x− 1)

[
eǫx

2

(
1− ǫx

2

)
− eǫ(x−1)

2

(
1− ǫ(x− 1)

2

)]∣∣∣∣

=

∣∣∣∣
xeǫx

2

(
1− ǫx

2

)
− (x− 1)eǫ(x−1)

2

(
1− ǫ(x− 1)

2

)∣∣∣∣ ,

where x ≤ 0.

Let

g2(x) =
xeǫx

2

(
1− ǫx

2

)
.

And its first order derivative is

g′2(x) =
eǫx

4

(
2− ǫ2x2

)
.

Then, the sensitivity becomes

∆gq = |g2(x)− g2(x− 1)| .

The derivative g′2(x) decreases when x ∈
(
−∞,−1+

√
3

ǫ

)
, increases when x ∈[

−1+
√
3

ǫ
, 0
]
. And when x = −1+

√
3

ǫ
the function g′2(x) reaches the minimum value

−0.09. Thus, when x ≤ −1+
√
3

ǫ
, g′2(x) ∈ [−0.09, 0) because lim

x→−∞
g′2(x) = 0 and

g′2(x) ∈ [−0.09, 0.5] when x ∈ [−1+
√
3

ǫ
, 0]. Applying Lagrange’s Mean Value Theorem

to g2(x), there exists some η between x and x− 1, thus η ≤ 0, so that



54

∆gq = |g2(x)− g2(x− 1)|

= |g′2(η)|

≤ 0.5.

In summary, by considering the above two cases, the global sensitivity for grid quality

on binary classification is only determined by the Case 1, where the ∆gq reaches its global

maximum at

x∗ =
ǫeǫ +

√
2− (4− 2eǫ) eǫ + ǫ2eǫ

−ǫ+ ǫeǫ
.

The global maximum point x∗ is obtained by taking derivative of 1 + g1(x − 1) − g1(x).

This completes the proof.

Lemma 1 enables us to compute the sensitivity of the quality function for each ǫ value

used for adding noises. Figure 3.2 shows the calculated sensitivity for 700 different ǫ values

in the range of 0.00001 to 100. We note that each time one invokes PrivPfC, the ǫ value

is fixed and one can thus compute the sensitivity to be used in the exponential mechanism.

Using this instead of 1.1 slightly improves the utility, while ensuring the satisfaction of

differential privacy.

3.2.3 Sensitivity of Grid Quality in the Multiclass Classification Case

For the general multiclass classification case, where there are more than two class la-

bels, deriving an analytical formula similar to Lemma 1 is challenging. Recall that the

noisy histogram classifier determines the class label of each cell by ranking all classes ac-

cording to their noisy counts. The grid quality (Eq. 3.1) models the process by computing

the probability that each class is ranked first after adding noises count ranks first for each

cell. However, since k independent Laplace random variables are involved in this ranking



55

process, getting the closed form of the density of the joint distribution is very challenging.

To get a function for the multiclass case whose global sensitivity is easy to bound, we pro-

pose a simple and effective approximation of the grid quality (Eq. 3.1) which for each cell

considers only the two classes with the highest number of counts in that cell.

Definition 3.2.4 (Approximation of Grid Quality) Given a dataset D with class labels

L = {1, 2, . . . , k}, where k > 2, a grid g and ǫ for the parameter of adding Laplacian

noises to the counts, the grid quality is

gq(D, g) =
∑

c∈g
n(1)
c · p(1)c + n(2)

c · p(2)c (3.8)

where n
(1)
c and n

(2)
c are the highest class count and the second highest count in the cell c,

p
(1)
c is the probability that n

(1)
c + Z(1) >= n

(2)
c + Z(2) and p

(2)
c = 1− p

(1)
c .

15000 20000 25000 30000 35000 40000 45000 50000
Grid Quality Eq.(1)

20000

25000

30000

35000

40000

45000

50000

Ap
pr

ox
im

at
io

n 
Eq

.(9
)

Figure 3.3.: Correlation between grid quality (Eq 3.1) and its approximation (Eq 3.8).

Average Pearson correlation coefficient is 0.936 with standard deviation 0.026.

We experimentally study the correlation between the grid quality function (Eq. 3.1)

and its approximation (Eq. 3.8) over 4 multiclass real datasets and 5 privacy budgets. In



56

Figure 3.3, we can see that the simplified multiclass quality function is highly correlated

with the original one.

Lemma 3 For any ǫ > 0, the global sensitivity of the grid quality function for multiclass

classification (Eq. 3.8) is bounded by 1.1, that is, ∆gq ≤ 1.1.

The proof of this lemma is similar to that of Lemma 1 by replacing two class counts n1
c and

n2
c with the two highest class counts n

(1)
c and n

(2)
c .

Algorithm 9 PrivPfC: Differentially Privately Publishing Data for Classification

Input: dataset D, the set of predictor variables A and their taxonomy hierarchies, total

privacy budget ǫ, maximum grid pool size Ω.

1: function PrivPfC(D,A, ǫ, Ω)

2: ǫN ← 0.03ǫ, ǫsh ← 0.37ǫ, ǫph ← 0.6ǫ

3: N̂ ← |D|+ Lap(1/ǫN )
4: T ← 20% · N̂ · ǫph
5: H← Enumerate(A,Ω, T )
6: h← selectHist(D,H, ǫsh)
7: Î ← perturbHist(D, h, ǫph)

8: return Î
9: end function



57

Algorithm 10 PrivPfC: Differentially Privately Publishing Data for Classification

10: function Enumerate(A,Ω, T )

11: L0 ← {〈1, 1, . . . , 1〉}
12: count← 0
13: for k = 0→ |A| − 1 do

14: Lk+1 ← {}
15: for Each grid g ∈ Lk do

16: for j = 1→ |A| do

17: if gj = 1 then

18: for i = 2→ hj do

19: new g = g
20: new gj = i
21: if size(ng) ≤ T then

22: Lk+1 = Lk+1 ∪ ng
23: count← count+ 1
24: if count ≥ Ω then go to 34

25: end if

26: end if

27: end for

28: end if

29: end for

30: end for

31: if Lk+1 == {} then go to 34

32: end if

33: end for

34: return
|A|⋃
j=1

Lj

35: end function

3.2.4 Candidate Grids Enumeration

PrivPfC takes as input Ω, the maximum number of candidate grids, and generates a

pool of at most Ω candidate grids. We also limit the number of cells in each candidate

grid, to prevent the average counts from being dominated by the injected noises. More

specifically, we limit the maximum allowed number of cells in any candidate grid g to be

T = 0.2 ∗ N̂ ∗ ǫ, where ǫ is the privacy budget reserved for adding noises to the histogram,



58

Algorithm 11 PrivPfC: Differentially Privately Publishing Data for Classification

36: function selectHist(D,H, ǫsh)

37: for i = 1→ |H| do

38: qi ← qual(Hi)
39: pi ← e−(qiǫsh)/2

40: end for

41: h← sample i ∈ [1..|H|] according to pi
42: return h
43: end function

44: function perturbHist(D, h, ǫph)

45: Initialize I to empty

46: for each cell c ∈ h do

47: n̂+
c ← n+

c + Lap(1/ǫph)
48: n̂−

c ← n−
c + Lap(1/ǫph)

49: Add (n̂+
c , n̂

−
c ) to I

50: end for

51: Round all counts of I to their nearest non-negative integers.

52: return I
53: end function

and N̂ is a noisy estimate of the total number of tuples. This ensures that the average noise

magnitude is no more than the 20% of the average cell count. This non-dominating rule

has been used in several differentially private data publishing papers [51], [38].

PrivPfC generates candidate grids by a level-wise search. It starts from the most general

grid, 〈1, 1, . . . , 1〉, where the whole domain is a single cell, and first generates L1, the list

of all grids that have a single attribute going beyond the top level, then generates L2, the

list of all grids that have exactly two attributes going beyond the top level, and so on. It

will include a grid as a candidate only when the grid includes no more than T cells. It stops

when either it has included all grids with no more than T cells, or it has included Ω grids.

The choice of Ω depends on the amount of computing resources one is willing to spend.

When Ω is too large, one runs out of candidate grids that have at most T cells, and increas-

ing Ω further won’t increase the size of the pool.



59

3.2.5 Putting Things Together for PrivPfC

Algorithm 9 shows PrivPfC (Line 1). PrivPfC has three main steps: (1) Enumerate

candidate grid (Line 5); (2) Privately select grid (Line 6); (3) Publish noisy counts (Line 7).

We divide the privacy budget into three portions: 3%ǫ is used to privately estimate the

dataset size, 37%ǫ is used for selecting grid (Function selectHist) and 60%ǫ is used for

publishing noisy counts (Function perturbHist). The enumeration step does not access the

dataset D and does not consume any privacy budget.

Theorem 3.2.1 PrivPfC in Algorithm 9 satisfies ǫ-differential privacy.

The proof of Theorem 3.2.1 is straightforward based on the analysis above and the

sequential composability and parallel composability of differential privacy as discussed in

Section 2.5.

Time complexity. The most time consuming step of the algorithm is that of computing

the quality of all candidate grids (Line 6), which considers at most Ω candidate grids.

Computing the quality of one candidate grid takes time O(N) and therefore selecting the

grid takes a total time O(N ·Ω). Once a grid is selected, only a single pass over the dataset

is needed to do the perturbation (Line 44). Hence, the total running time for PrivPfC is

O(N · Ω).

3.3 Experiment

3.3.1 Experimental Settings

Datasets. We use 8 real datasets for our experiments, 4 for binary classification and

4 for multiclass classification. They are summarized in Table 5.1. The first one is the

Adult dataset from the UCI machine learning repository [52]. It contains 6 numerical

attributes and 8 categorical attributes, and is widely used for evaluating the performance

of classification algorithms. After removing missing values, the dataset contains 45,222

tuples. We create a multiclass version of the Adult dataset, called Adult-Multiclass, by

using the marital-status attribute as the class attribute.



60

Majority
NoiseFree

PrivPfC-DT
DiffGen-DT

PrivBayes-DT
PPH-DT

DiffP-C4.5

0.13

0.14

0.15

0.16

0.17

0.18
0.19

0.2

0.22

0.24

0.27

0.30

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0
0.080

0.085

0.090

0.096
0.1

0.105
0.11

0.115
0.12

0.13

0.14

0.15

0.17

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0

(a) Adult (b) Bank

0.12
0.13

0.15

0.17

0.20

0.22

0.25

0.30

0.35

0.40

0.45

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0
0.1

0.12

0.15

0.17

0.20
0.22

0.25

0.30

0.35

0.40

0.45

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0

(c) US (d) BR

Figure 3.4.: Comparison of PrivPfC, DiffGen, PrivBayes, PPH and DiffPC-4.5 by decision

tree classification. x-axis: privacy budget ǫ in log-scale. y-axis: misclassification rate in

log-scale.



61

Majority
NoiseFree

PrivPfC-SVM
DiffGen-SVM

PrivLocal-SVM
PrivBayes-SVM

PrivateERM
PPH-SVM

PrivGene-SVM

0.14
0.15
0.16
0.17
0.18
0.19

0.21

0.24

0.27

0.30
0.32

0.35

0.40

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0
0.080

0.090

0.10

0.11

0.12
0.13

0.15

0.17

0.20

0.23

0.27

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0

(a) Adult (b) Bank

0.12
0.13

0.15

0.17

0.20

0.22

0.25

0.30

0.35

0.42
0.45

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0
0.1

0.12

0.15

0.17

0.20
0.22

0.25

0.30

0.36

0.45

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0

(c) US (d) BR

Figure 3.5.: Comparison of PrivPfC, DiffGen, PrivBayes, PPH, PrivGene and PrivateERM

by SVM classification. x-axis: privacy budget ǫ in log-scale. y-axis: misclassification rate

in log-scale.



62

Majority
NoiseFree

PrivPfC-log
DiffGen-log

PrivBayes-log
PPH-log

PrivLocal-log
FM-log

PrivGene-log

0.13
0.14
0.15
0.16
0.17
0.18
0.19

0.2

0.22

0.24

0.27

0.30
0.32
0.34

0.37

0.40

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0
0.080

0.090

0.1

0.11

0.12
0.13

0.15

0.17

0.20

0.25
0.27

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0

(a) Adult (b) Bank

0.12
0.13

0.15

0.17

0.20
0.22

0.25

0.30

0.35

0.40

0.50

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0
0.1

0.12

0.15

0.17

0.20
0.22

0.25

0.30

0.35

0.40

0.50

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0

(c) US (d) BR

Figure 3.6.: Comparison of PrivPfC, DiffGen, PrivBayes, PPH and FunctionalMechanism

by logistic regression classification. x-axis: privacy budget ǫ in log-scale. y-axis: misclas-

sification rate in log-scale.



63

The second dataset is the Bank marketing dataset from the same repository. It contains

10 numerical attributes and 10 categorical attributes on 41,188 individuals. The multiclass

version of the bank dataset is created by using 3-valued the poutcome attribute as the class

attribute. The third is the US dataset from the Integrated Public Use Microdata Series

(IPUMS) [53]. It has 39,187 United States census records in 2010, with 15 numerical

attributes and 31 categorical ones. The multiclass version of the US dataset is created by

using the 4-valued SCHLTYPE attribute as the class attribute. We remove one categorical

attribute which is highly correlated with the SCHLTYPE attribute in the multiclass version

of US dataset. The fourth is the BR dataset (also from IPUMS), which contains 57,333

Brazil census records in 2010 and has 14 numerical attributes and 28 categorical ones. The

multiclass version of the BR dataset is created by using the 4-valued EMPSTAT attribute

as the class attribute.

Taxonomy Hierarchies. For the Adult and Adult-Multiclass datasets, we use the same

taxonomy hierarchies as those in DiffGen [34]. For the remaining 3 datasets, we create

taxonomy hierarchies as follows. For numerical attributes, we partition each domain into

equal size bins and build hierarchies over them. For categorical attributes, we build taxon-

omy hierarchies by considering the semantic meanings of the attribute values.

Competing Methods. We compare PrivPfC with 7 state-of-the-art methods in terms

of misclassification rate. These include 3 data-publishing methods that publish either a

noisy histogram or a noisy Bayesian network, which can be used to generate a synthetic

dataset: DiffGen [34], PrivBayes [38], and Private Projected Histogram (PPH) [39]; and

4 methods that directly output a classifier, PrivLocal, PrivGene [12], DiffPC-4.5 [9], and

PrivateERM [10]. Table 5.2 summarizes the competing methods mentioned in this chapter.

DiffGen [34]. DiffGen also uses taxonomy and publishes a noisy histogram. However,

it chooses the grid in a way different from PrivPfC. In DiffGen, one iteratively selects

one attribute at a time for specialization, using the exponential mechanism. The quality

function suggested in [34] aims to maximize the number of tuples that have the majority

class label in all cells. The number of specialization steps is an important parameter and



64

is an input to the algorithm. As suggested in [34], we set the number of specialization

steps to be 10 for the Adult dataset, Adult-Multiclass and the bank dataset. For the US and

BR datasets, we set the number to be 6 and 8 respectively, as beyond these numbers, the

DiffGen implementation runs into memory problems, because the taxonomy trees for these

datasets have larger fan-outs.

PPH [39]. PPH also publishes a noisy histogram. It uses the exponential mechanism to

select k attributes, using a quality function that maximizes the discernibility score regarding

the label attribute. The grid is determined by the k attributes. For each categorical attribute,

the full domain is used. For a numerical attribute, it uses the formula proposed in Lei [33]

to decide how many bins to discretize the attribute domain.

PrivBayes [38]. PrivBayes publishes a noisy Bayesian network. It determines the structure

of a Bayesian network by first randomly selecting an attribute as the first node, and then

iteratively selecting another attribute to create a new node and up to k already created nodes

as the new node’s parent nodes. After the structure is determined, PrivBayes perturbs the

marginals needed for computing the conditional distributions. The performance of the

PrivBayes algorithm depends on k. We set k = 3 for the Adult dataset and the Bank

dataset, which is the same as the one used in [38]. For the US and BR datasets, which

were not used in [38], setting k = 3 runs out of memory in our experiments because these

datasets have more attributes; we set k = 2 for them.

Classifier-outputting Methods. PrivGene [12] is a general-purpose private model fitting

framework based on genetic algorithms, which can be applied to SVM classification and

logistic regression. PrivLocal is a differentially private local search algorithm. DiffPC-

4.5 [9] outputs a C-4.5 decision tree classifier differential-privately. PrivateERM [10] out-

puts an SVM classifier by injecting noise into the risk function first and then optimizing

the perturbed risk function.



65

The source codes of DiffGen, PrivBayes, PPH, DiffPC-4.5, PrivLocal were shared by

authors of corresponding papers. The source code of PrivateERM was shared by the authors

of PrivGene. We implement the PrivGene algorithm by strictly following the paper [12].

Evaluation Methodology. The evaluation is based on 3 classification models: the CART

decision tree, the SVM with radial basis kernel and the logistic regression model. For all the

experiments, we vary ǫ from 0.05 to 1.0. Similar to the experiment settings of [9], [34], [39],

under each privacy budget, we execute 10-fold stratified cross-validation to evaluate the

misclassification rate of the above methods. For each train-test pair, we run the target

method 10 times. Each time we privately compute a classifier using the training data and

evaluates its accuracy on the testing data, which is disjoint from the training data. We

report the average measurements over the 10 runs and the 10-fold cross-validations. The

implementation and experiments of PrivPfC were done in Python 2.7 and all experiments

were conducted on an Intel Core i7-3770 3.40GHz PC with 16GB memory.

For methods that output a classifier, i.e., DiffPC-4.5, PrivateERM, PrivGene, PrivLocal

and FunctionalMechanism, we use parameters suggested by the corresponding papers. For

other data publishing methods, i.e., PrivPfC, PPH, DiffGen, and PrivBayes, we generate

private synthetic datasets and then use standard implementations of classification methods

on these datasets. To evaluate their performance in terms of the decision tree model, we

use the rpart [54] library to build decision trees on synthetic datasets. For evaluation in

terms of SVM model, we use the LibSVM package [55]. For evaluation in terms of logistic

regression, we use R’s glm (generalized linear model) function. When comparing different

approaches, We use the same sets of parameters for these classifiers.

We consider two baselines – Majority and NoiseFree. Majority is the misclassification

rate by majority voting on the class attribute, which predicts each test case with the majority

class label in the train dataset. NoiseFree is the misclassification rate of a decision tree, an

SVM classifier or a logistic regression classifier built on the true data. We expect that a

good algorithm to perform significantly better than Majority, and gets close to NoiseFree

as ǫ increases.



6
6

Table 3.1.: Dataset characteristics

Dataset # Dim # Num # Cate # Records # Classes Classification Task

Adult 15 6 8 45,222 2 Determine whether a person makes over 50K a year.

Adult-Multiclass 15 6 8 45,222 3 Determine the three classes marital status of a person.

Bank 21 10 10 2 41,188 Determine whether the client subscribed a term deposit.

Bank-Multiclass 21 10 10 3 41,188 Determine 3 types of outcome of previous marketing campaign.

US 47 15 31 39,187 2 Determine whether a person makes over 50K a year.

US-Multiclass 46 15 30 39,187 4 Determine the four types of school attended by a person.

BR 43 14 28 57,333 2 Determine whether a person makes over 300 per month.

BR-Multiclass 43 14 28 57,333 4 Determine the four types of employment status of a person.



6
7

Table 3.2.: Summary of differentially private classification methods

Methods Description

Data-publishing

PrivPfC Our proposed method.

PrivPfC-SelNF Our proposed method with noise-free grid selection.

DiffGen [34] Private data release for classification via recursive partitioning.

DiffGen-Struct-NF DiffGen with noise-free partitioning procedure.

PrivBayes [38] Private Data Release via Bayes network.

PrivBayes-Struct-NF PrivBayes with noise-free network learning procedure.

PPH [39] Private data release for classification by projection and perturbation.

Classifier-outputting

DiffPC-4.5 [9] Privately construct C4.5 decision tree classifier.

PrivGene [12] Private model fitting based on genetic algorithms.

PrivLocal [12] Private local search algorithm.

FunctionalMechanism [11] Private model fitting by perturbing the fitting function.

PrivateERM [10] Private classifier construction based on empirical risk minimization.



68

Majority
NoiseFree

PrivPfC-DT
DiffGen-DT

PrivLocal-log-MC
PPH-DT

PrivGene-log-MC

0.09

0.11

0.13

0.16

0.20

0.25

0.30

0.40

0.50

0.65

 0.1

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0
0.002

0.004

0.01

0.04

0.1

0.2

0.30
0.40

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0

(a) Adult-Multiclass (b) Bank-Multiclass

0.04

0.05

0.07

0.10

0.13

0.16

0.20

0.25

0.30

0.40

0.50

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0
0.05

0.07

0.10

0.13

0.16

0.20

0.25

0.30

0.40

0.50

0.6
0.7

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0

(c) US-Multiclass (d) BR-Multiclass

Figure 3.7.: Comparison of PrivPfC, DiffGen, PPH, PrivLocal and PrivGene by decision

tree classification and logistic regression classification on the multiclass datasets. y-axis:

misclassification rate in log-scale.

3.3.2 Comparison with Existing Solutions

For each classification method, we compare PrivPfC with Ω = 10, 000, with three

existing data-publishing methods DiffGen, PrivBayes, PPH and any classifier-outputting

method that can be applied to this classification method. We note that PrivBayes is not

designed to be optimized for a single classification task; thus in some sense is not expected

to perform well.

Figure 3.4 reports the average misclassification rates and the corresponding standard

deviations for decision tree. Clearly, PrivPfC has the best performance in most cases, fol-

lowed by DiffGen, PPH, DiffPC-4.5 and PrivBayes. The performance of PrivPfC is also the



69

most robust, as can be seen from the fact that the standard deviations of its misclassification

rates are always the lowest.

Figure 3.5 shows similar experimental results for SVM classification. PrivPfC has the

best performance, followed by DiffGen, PrivLocal, PPH, PrivateERM, PrivBayes and Priv-

Gene. PrivGene performs the worst, because the crossover operation in each iteration sig-

nificantly destroys the structure selected SVM parameter by misaligning the parameter val-

ues to their corresponding dimensions. On the other hand, PrivLocal only uses perturbation

to generate offsprings and the structure of SVM parameters can be largely kept. This result

also confirms our remarks on the effectiveness of PrivGene.

Figure 3.6 reports the experimental results on Logistic regression. Overall PrivPfC has

the best performance, followed by PrivLocal, DiffGen, PPH, PrivBayes, FunctionalMech-

anism and PrivGene. PrivGene performs the worst again. Note that, in the US and BR

dataset, when the privacy budget is large, PrivLocal outperforms PrivPfC with a slight ad-

vantage. This is because PrivLocal has a tighter sensitivity bound when applying to logistic

regression. Besides, when the privacy budget is large, PrivPfC selects a subset of features

to build histogram, whereas the PrivLocal can use the full set of dimensions to build the

classifier.

Comparison on multiclass classification. We compare 5 approaches: PrivPfC, Diff-

Gen, PPH, PrivLocal and PrivGene on multiclass classification on 4 real datasets, Adult-

Multiclass, Bank-Multiclass, US-Multiclass and BR-Multiclass. The evaluations of the

three non-interactive data publishing methods, PrivPfC, DiffGen and PPH are done by the

decision tree classification, since these methods privately generate synthetic datasets and

decision tree can naturally supports multiclass classification. The PrivLocal and PrivGene

methods only produce one classifier, SVM or Logistic regression at a time. We therefore

use the One-vs.-rest approach [56] to reduce the multiclass classification problem into the

binary classification problem and use ǫ/k budget to train each classifier, where k is the

number of classes. Figure 3.7 shows the experimental results. PrivPfC is again the winner

in most cases.



70

3.3.3 Varying Parameters in PrivPfC

ǫ=0.05 ǫ=0.5
0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26 NoiseFree
PrivPfC-DT-100
PrivPfC-DT-10K

PrivPfC-DT-200K
DiffGen-DT

Figure 3.8.: Varying the maximum pool size Ω on PrivPfC by decision tree classification

on the BR dataset. y-axis: misclassification rate.

We now explore the effect of changing Ω, the maximum grid pool size, and the effect

of using different privacy budget allocation plans in PrivPfC. Figure 3.8 reports the results

of PrivPfC’s performance under three Ω values, 100, 10,000 and 200,000. The evaluation

is done on the BR dataset with two privacy budgets, 0.05 and 0.5. We can see that with the

increasing of the maximum pool size, PrivPfC’s performance gets significant improvement

from Ω = 100 to Ω = 10, 000. When setting Ω to the larger value, 200,000, PrivPfC also

gets a small amount of improvement.

PrivPfC distributes the privacy budget among three steps, size estimation, grid selection

and perturbation, in a 3%-37%-60%. While these ratios are somewhat arbitrary, we have

experimentally evaluated other ratios, allocating between 20% and 60% to each of the step

other than size estimation. We have found that the differences among different budget

allocations are minor, so long as the last step receives at least 30% of the privacy budget.



71

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.22

0.24

0.27

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0

Majority
NoiseFree
PrivPfC-DT
PrivPfC-DT-10%-87%
DiffGen-DT

Figure 3.9.: Comparison of two different privacy budget allocations on PrivPfC by decision

tree classification on the Adult dataset. y-axis: misclassification rate in log-scale.

Figure 3.9 compares the result of PrivPfC with 3%-10%-87%, with PrivPfC (both when

Ω = 10, 000, and DiffGen; it shows that PrivPfC 3%-10%-87% performs reasonably well,

and in fact slightly better than the standard PrivPfC when ǫ ≥ 0.2.

3.3.4 Analyses of Sources of Errors

We have seen that PrivPfC outperforms the other data-publishing methods such as Dif-

fGen and PrivBayes. The key difference in PrivPfC is that we choose the grid g in a single

step, instead of arriving at the final grid through a series of decisions. For example, Diff-

Gen iteratively chooses the attributes and ways to partition them, and PrivBayes iteratively

builds a Bayesian network. There are two reasons why such an iterative approach does

not perform well. The first is that the decisions made in each iteration may be sub-optimal

because of the randomization necessary for satisfying differential privacy. The second is

that even if the decision made in each iteration is locally optimal, the combination of them

is not globally optimal. To see to what extent the latter factor affects accuracy, we con-

sider variants of them respectively, DiffGen-Struct-NF and PrivBayes-Struct-NF. In these



72

▼�✁✂✄☎✆✝

◆✂☎✞✟✠✄✟✟

P✄☎✡P☛☞✌✍✎

P✄☎✡P☛☞✌✏✟✑◆✠✌✍✎

✍☎☛☛❉✟✒✌✍✎

✍☎☛☛❉✟✒✌✏✆✄✓✔✆✌◆✠✌✍✎

P✄☎✡✕�✝✟✞✌✍✎

P✄☎✡✕�✝✟✞✌✏✆✄✓✔✆✌◆✠✌✍✎

0.13

0.14

0.15

0.16

0.17

0.18
0.19

0.2

0.22

0.24

0.27

0.30

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0
0.080

0.085

0.090

0.096

0.1

0.105

0.11

0.115

0.12

0.13

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0

(a) Adult (b) Bank

0.12
0.13

0.15

0.17

0.20

0.22

0.25

0.30

0.35

0.40

0.45

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0
0.1

0.12

0.15

0.17

0.20
0.22

0.25

0.30

0.35

0.40

0.45

0.05 0.07 0.1 0.15 0.2 0.3 0.4 0.5 0.7 1.0

(c) US (d) BR

Figure 3.10.: Analyses of PrivPfC, DiffGen and PrivBayes by decision tree classification.

x-axis: privacy budget ǫ in log-scale. y-axis: misclassification rate in log-scale.

variants, the decisions in each iteration are performed without any perturbation, but noises

are still added when publishing the counts. We also consider a variant of PrivPfC, called

PrivPfC-SelNF, in which the histogram selection step is noise-free. All these variants are

not private; they are used to understand the source of errors only.

Figure 3.10 reports the experimental results of comparing these methods, using De-

cision Tree. We first observe that PrivPfC-SelNF indeed outperforms PrivPfC, although

the differences tend to be smaller than the difference between PrivPfC and DiffGen. We

also observe that PrivBayes-Struct-NF still performs poorly; in fact, it performs signifi-

cantly worse than PrivPfC. Again, this is not surprising given that the iterative Bayes net-

work construction approach is not designed to optimize one classification task. Similarly

DiffGen-Struct-NF still underperforms PrivPfC. This suggests that the inherent iterative

structure of DiffGen is suboptimal.



73

3.3.5 Scalability over Dimensions and Runtime

We study the scalability of dimensions of our algorithm as well as our competitors. This

experiment is performed on the US dataset. First, we sort all of its predictor variables by

their degrees of correlation to the response variable in descending order. The correlation is

measured by the χ2 statistic, which is one of the most effective methods of feature selection

for classification [57], [58]. We then generate the set of datasets with lower number of

dimensions by projecting the US dataset to dimensions defined by the first d − 1 predictor

variables and the response variable, where d = 10, 15, 20, 25, 30, 35, 40, 47.

Figure 3.11 shows the results. We can see that as the increasing of dimensionality,

PrivPfC, DiffGen and PPH offer stable classification performance. PrivPfC is still the best

among them. PrivBayes is the poorest in all cases and its performance goes worse as the

dimensionality increases.

0.12
0.13

0.15

0.17

0.20

0.22

0.25

0.30

0.35

0.40

0.45

10 15 20 25 30 35 40 47

Majority
NoiseFree
PrivPfC-DT
DiffGen-DT
PPH-DT
PrivBayes-DT

Figure 3.11.: Comparison of PrivPfC, DiffGen, PrivBayes and PPH by varying dimensions

(decision tree classification). ǫ = 0.5. x-axis: dimensions. y-axis: misclassification rate in

log-scale.

We also compare the running time of 4 data publishing algorithms, PrivPfC, DiffGen,

PrivBayes and PPH, on the US dataset with privacy budget 0.05 and 0.5 respectively. Fig-

ure 3.12 shows the comparison results. PrivBayes is the most inefficient one, followed by



74

PrivPfC, PPH and DiffGen. By considering runtime comparison results and accuracy com-

parison results (Figure 3.4, 3.5, 3.6 and 3.7) together, we can see that PrivPfC trades more

runtime for accuracy improvement. From the runtime comparison result, we can also see

that under different privacy budgets, PrivBayes, PrivPfC and PPH have close runtime while

DiffGen needs longer time when the privacy budget gets larger. This is because with more

privacy budget DiffGen is likely to choose finer partitions in attribute taxonomy hierarchy,

which results in more time to project data into the partition structure.

ǫ=0.05 ǫ=0.5
100

101

102

103

104

Ru
nt

im
e 

(S
ec

)

PrivPfC-DT
PrivBayes-DT

PPH-DT
DiffGen-DT

Figure 3.12.: Runtime comparison of PrivPfC, DiffGen, PPH and PrivBayes on decision

tree classification. x-axis: privacy budget. y-axis: runtime in seconds.



75

4. DIFFERENTIALLY PRIVATE K-MEANS CLUSTERING

4.1 Introduction

In recent years, differential privacy [5] has been increasingly adopted as the privacy

notion of choice of data analysis while preserving individual privacy. Several broad classes

of approaches exist for developing differentially private techniques for data analysis. In

this chapter we study differentially private k-means clustering. Clustering analysis plays

an essential role in data analysis tasks. Clustering under differential privacy has also been

studied in [7, 12, 16, 25, 29, 30].

Our study has two goals. The first is to improve the techniques for performing k-means

clustering. The second is to use k-means clustering as a case study to compare several

classes of methods for private data analysis, and to identify the strengths and weaknesses

of these methods.

There are three state-of-the-art differentially private algorithms on k-means clustering.

The first method, which we call DPLloyd, makes the iterative Lloyd algorithm [7, 16] dif-

ferentially private by adding noises to each step. The second method, which we call PGkM,

uses PrivGene [12], a framework for differentially private model fitting based on genetic

algorithms. These two use an iterative optimization approach that tries to gradually im-

prove the choice of the centroids. The third algorithm uses the sample and aggregation

framework [25] and is implemented in the GUPT system [29], which we call GkM. This

algorithm uses a noisy average of the centroids computed from many subsamples of the

dataset.

An alternative approach is to publish a synopsis of the dataset in a way that satisfies

differential privacy. Then one can perform any k-means clustering algorithm on a synthetic

dataset generated from the synopsis. One immediate benefit is that one can run a k-means

clustering algorithm such as the Lloyd on the synthetic dataset many times and choose



76

the best, since we are only accessing the synopsis produced while satisfying differential

privacy. This also enables one to select an appropriate k value. An additional benefit is that

one can perform other analysis tasks beyond k-means clustering on the synthetic dataset at

the same time without affecting privacy.

In this chapter, we propose to combine the following differentially private synopsis

algorithms with k-means clustering. The dataset is viewed as a set of points over a d-

dimensional domain, which is divided into M equal-size cells, and a noisy count is ob-

tained from each cell. A key decision is to choose the parameter M . A larger M value

means lower average counts for each cell, and therefore noisy counts are more likely to be

dominated by noises. A smaller M value means larger cells, and therefore one has less ac-

curate information of where the points are. We propose a method that sets M =
(
Nǫ
10

) 2d
2+d ,

which is derived based on extending the analysis in [31], which aims to minimize errors

when answering rectangular range queries for 2-dimensional data, to higher dimensional

case. We call the resulting k-means algorithm EUGkM, where EUG is for Extended Uni-

form Grid.

We conducted extensive experimental evaluations for these algorithms on 6 datasets

used in the literature as well as 81 datasets that we synthesized by varying the dimension d

from 2 to 10 and the number of clusters from 2 to 10. Our experimental results contradict

findings in the literature. GkM was introduced after DPLloyd and was claimed to have

accuracy advantage over DPLloyd, and PGkM was introduced after and compared GkM.

However, we found that DPLloyd is the best method among these three methods, and GkM

is by far the worst. In the comparison of DPLloyd and GkM in [29], DPLloyd was run using

much larger number of iterations than necessary, and thus perform poorly. We are also able

to explain why DPLloyd is better. Our error analysis shows that errors due to GUPT’s

sample and aggregation approach are asymptotically worse than errors for DPLloyd, as

the number of data points increases. The reason why DPLloyd outperforms PGkM is that

the genetic programming style of PGkM needs more iterations to converge. When making

these algorithms differentially private, the privacy budget is divided among all iterations,



77

thus having more iterations means more noise is added to each iteration. Therefore, the

more direct DPLloyd outperforms PGkM.

The most intriguing results are those comparing DPLloyd with EUGkM. For most

datasets, EUGkM performs much better than DPLloyd. However, for a few, DPLloyd

outperforms EUGkM. Through further analytical and empirical analysis, we found that,

while the performance of both algorithms are greatly affected by the two key parameters:

the number of dimensions d and the number of clusters k, the ways they are affected by

these two parameters are different, due to the different structures of these two algorithms.

DPLloyd scales worse when k increases, while EUGkM scales worse when d increases.

An intriguing question is can we further improve upon DPLloyd and EUGkM? We note

that the accuracy of DPLloyd is affected by two key factors: the number of iterations and

the choice of initial centroids. In fact, these two are closely related. If the initially chosen

centroids are very good and close to the true centroids, one only needs perhaps one iteration

to improve it, and this reduction in the number of iterations would mean less noise is added.

This leads us to propose a novel hybrid method that combines the non-interactive EU-

GkM with the single-workload DPLloyd. We first use a portion of the total privacy budget

to run EUGkM, and then use the centroids outputted by EUGkM as the initial centroids

for one round of DPLloyd with the remaining privacy budget. Such a method, however,

may not actually outperform EUGkM, especially when the privacy budget ǫ is small, since

then one round of DPLloyd may actually worsen the centroids. We use our error analysis

formulas to determine whether there is sufficient privacy budget for such a hybrid approach

to outperform EUGkM. We then experimentally validate the effectiveness of the Hybrid

approach.

The hybrid approach is also applicable to other private data analysis tasks which have an

iterative/incremental algorithm structure. For example, a wide range of machine learning

algorithms, such as support vector machines and logistic regression, employ stochastic

gradient descent to train models. When making such algorithms differentially private, there

is always the tradeoff between the quality of the initial values and the number of iterations.

Applying the hybrid approach is potentially beneficial. One can first publish a private



78

synopsis of the input data, on which one can find an optimizer, and uses it as the starting

choice for iterative improvement.

In this chapter we advance the state-of-the-art on differentially private data mining in

several ways. First, we have introduced a new non-interactive method, EUGkM, for dif-

ferentially private k-means clustering, which are highly effective and often outperform

the state-of-the-art single-workload methods and non-interactive methods. Second, we

have developed techniques to analyze the error behaviors of DPLloyd and EUGkM. This

kind of empirical error analyses are missed in most differentially private data analysis pa-

pers. Third, based on the error analysis of DPLloyd, we proposed an improved version of

DPLloyd which significantly reduces the clustering error. Fourth, we introduce the novel

concept of hybrid approach to differentially private data analysis, which is so far the best

approach to k-means clustering. We conjecture that such a hybrid approach may prove use-

ful in other analysis tasks as well. Finally, we have extensively evaluated existing methods

for k-means clustering, and analyzed their strengths and weaknesses.

The rest of the chapter is organized as follows. In Section 4.2, we describe the

DPLloyd approach, systematically analyze its error behavior and propose an improvement

of DPLloyd. In Section 4.3, we describe and analyze other existing single-workload ap-

proaches, GkM and PGkM. In Section 4.4, we describe two non-interactive approaches

UGkM and MkM and derive a new non-interactive approach EUGkM. In Section 4.5 we

study the error behavior of DPLloyd and EUGkM, introduce the hybrid approach. In Sec-

tion 4.6, we show the experimental results on the performance comparison among the

single-workload, non-interactive and the proposed hybrid approaches, and analyze their

strengths and weaknesses.

4.2 Differentially Private Lloyd Algorithm and Its Improvements

In this section, we describe the DPLloyd approach for differentially private k-means

clustering, analyze its error behavior and propose an improvement of DPLloyd based on

the analysis.



79

4.2.1 DPLloyd

A differentially private version of the Lloyd’s algorithm was first proposed by Blum et

al. [16]. We call this the DPLloyd approach. As shown in Section 2.6.3, DPLloyd differs

from the standard Lloyd algorithm in the following ways. First, Laplace noises are added

to the iterative update steps in the Lloyd algorithm. Second, the number of iterations needs

to be fixed in order to decide how much noise needs to be added in each iteration.

Optimization Issues

The overall structure of DPLloyd is to first select initial values, and then iteratively

improve them. This same algorithmic structure also applies to many other data analysis

tasks, such as linear regression, SVM, etc. When making such a single-workload algorithm

differentially private, there are two important decisions one has to make.

The first decision is how to select the initial values. In the standard, non-private setting,

a purely random choice may suffice, since one could repeat the algorithm multiple times

and choose the best result among them. With privacy constraints, however, running the

single-workload algorithm multiple times results in each run can use only a fraction of the

total privacy budget, and make the results being even less accurate.

The second decision is how many iterations one runs. A large number of iterations

causes too much noises being added. A small number of iterations may be insufficient

for the algorithm to converge. Existing approaches fix a number. However, intuitively the

number of rounds would depend on the available privacy budget ǫ. With a smaller privacy

budget, one should run fewer number of rounds, to avoid the results being overwhelmed by

too much noise.

How to choose these parameters has not been carefully considered in the literature.

In the implementation of DPLloyd in PINQ [27], it is proposed to run 5 iterations, with

equal privacy budget allocation for each round. In [29], comparison of GkM with DPLloyd

was done by running DPLloyd with 20, 80, and 200 iterations, resulting in incorrect claim

that GkM outperforms DPLloyd. Dwork [30] considered the possibility of running k-



80

means clustering without knowing the number of rounds in advance, and proposed to use

exponentially decreasing allocation of privacy budgets, i.e., ǫ
2

in the first round, ǫ
4

in the

second round, and so on. This mostly likely results in deteriorating performance when the

number of rounds increases. The main reason is that in later rounds, when one gets closer

to the optimal value, it is desirable to have a larger privacy budget.

Below, we propose an approach to improve the selection of initial centroids for k-means

clustering, design a general framework for deciding the number of iterations and apply it

to improve DPLloyd. The improved version of DPLloyd is called DPLloyd-Impr.

Selecting Initial Centroids

The quality of initial centroids greatly affects the accuracy of DPLloyd. A poor choice

of initial centroids can result in converging to a local optimum that is far from global

optimum, or not converging after the given number of iterations. While many methods

for choosing the initial points have been developed [28], these methods were developed

without the privacy concern and need access to the dataset. In [7], k points at uniform

random from the domain are chosen as the initial centroids. We have observed empirically

that this can perform poorly in some settings, since some randomly chosen initial centroids

are close together. We thus introduce an improved method for choosing initial centroids

that is similar to the concept of sphere packing. Given a radius a, we randomly generate

k centroids one by one such that each new centroid is of distance at least a away from

every corner of the domain [−r, r]d and each new centroid is of distance at least 2a away

from any existing centroid. When a randomly chosen point does not satisfy this condition,

we generate another point. When we have failed repeatedly, e.g. failed over 80% of the

user defined maximum number of tries, we conclude that the radius a is too large, and try

a smaller radius. We use a binary search to find the maximal value for a such that the

process of choosing k centroids succeed. This process depends only on the shape of the

overall domain and not where the data points are, and thus does not affect privacy. The

pseudocode of this algorithm is shown in Algorithm 12.



81

Algorithm 12 SPHEREPACKINGINITIALCENTROIDSGENERATION

Input:d: number of dimensions, [−r, r]: dataset range, k: number of clusters

1: radiuslo ← 0.0
2: radiushi ← r

√
d

3: return BINARYSEARCH(k, r, radiuslo, radiushi)
4: Function BINARYSEARCH(k, r, radiuslo, radiushi)
5: while radiuslo < radiushi do

6: radiusmid ← (radiuslo + radiushi)/2
7: numTrials, 〈o1, . . . , ok〉 ← randomly choose k initial centroids with radius

radiusmid in [−r, r]d
8: if numTrials < 3 then

9: radiuslo ← radiusmid

10: else if numTrials > 0.8 ·MAXNUMTRIES then

11: radiushi ← radiusmid

12: else

13: break

14: end if

15: end while

16: return 〈o1, . . . , ok〉

Optimizing Rounds and Budget Allocation

We introduce the following general approach of determining the number of rounds and

privacy budget allocation. Our approach depends on the ability to analyze the amount

of noise introduced in each round, manifested as the mean squared error (MSE). Given

this, one also specifies a threshold for the maximum MSE. The basic idea is to choose the

number of iterations so that we try to ensure that each iteration’s MSE is no larger than the

threshold, and use a smaller number of rounds if necessary. Below we show how to apply

this idea to DPLloyd.

Error Study of DPLloyd

DPLloyd adds noises to each iteration of updating centroids. We now analyze the mean

squared error (MSE) between noisy centroids and true centroids in one iteration.



82

Consider one centroid and its update in one iteration. The true centroid’s i’th dimension

should be oi =
Si

C
, where C is the number of data points in the cluster and Si is the sum

of i’th dimension coordinates of data points in the cluster. Consider the noisy centroid ô;

its i’th dimension is ôi =
Si+∆Si

C+∆C
, where ∆C is the noise added to the count and ∆Si is the

noise added to the Si. The MSE is thus:

MSE (ô) = E

[
d∑

i=1

(
Si +∆Si

C +∆C
− Si

C

)2
]
. (4.1)

Derivation based on the above formula gives the following proposition.

Proposition 4.2.1 In one round of DPLloyd, the MSE is

Θ

(
(kt)2d3

(Nǫ)2

)
.

Proof Let us first consider the MSE on the i-th dimension.

MSE (ôi) = E

[(
Si +∆Si

C +∆C
− Si

C

)2
]

≈ E

[(
C∆Si − Si∆C

C2

)2
]

=
E[(∆Si)

2]

C2
+

E[S2
i (∆C)2]

C4
+

2CSiE[∆Si∆C]

C4

=
Var (∆Si)

C2
+

S2
i Var (∆C)

C4
.

The last step holds, because ∆Si and ∆C are independent zero-mean Laplace noises

and the following formulas hold:





E[∆Si∆C] = 0

E[(∆Si)
2] = E[(∆Si)

2]− (E[∆Si])
2 = Var (∆Si)

E[(∆C)2] = E[(∆C)2]− (E[∆C])2 = Var (∆C) ,



83

where Var (∆Si) and Var (∆C) are the variances of ∆Si and ∆C, respectively.

Suppose that on average
|Si|
2r·C = ρ, where [−r, r] is the range of the i’th dimension. That

is, ρ is the normalized coordinate of i-th dimension of the cluster’s centroid. Furthermore,

suppose that each cluster is about the same size, i.e., C ≈ N
k

. Then, MSE (ôi) can be

approximated as follows:

MSE (ôi) ≈
k2

N2

(
Var (∆Si) + (2ρr)2 · Var (∆C)

)
. (4.2)

DPLloyd adds to each sum/count function Laplace noise Lap
(

(dr+1)t
ǫ

)
. Therefore, both

Var (∆Si) and Var (∆C) are equal to
2((dr+1)t)2

ǫ2
. From Equation (4.2) we obtain

MSE (ôi) ≈
k2

N2

(
Var (∆Si) + (2ρr)2 · Var (∆C)

)
(4.3)

= 2(1 + (2ρr)2)

(
kt(dr + 1)

Nǫ

)2

. (4.4)

As the noise added to each dimension is independent, from Equation 4.1 we know that the

MSE is

MSE (ô) =
d∑

i=1

MSE (ôi) ≈ 2d(1 + (2ρr)2)

(
kt(dr + 1)

Nǫ

)2

. (4.5)

When r is a small constant, this becomes Θ
(

(kt)2d3

(Nǫ)2

)
.

Proposition 4.2.1 shows that the distortion to the centroid proportional to t2k2d3, while

inversely proportional to (Nǫ)2.

Optimizing Privacy Budget Allocation Within Each Round

An issue specific to DPLloyd and may not be shared by all iterative algorithms is that

within each round of DPLloyd, the privacy budget needs to be divided among the count

and the d sum queries. Suppose ǫ0 is allocated to the count query, and ǫi is allocated to the

sum query for the i-th dimension, for each i = 1, 2, . . . , d. While all dimensions should



84

be treated equally, i.e., ǫ1 = ǫ2 = . . . = ǫd, an interesting question is what should be the

right value of ǫi
ǫ0

? The DPLloyd approach allocates the privacy budget according to the

sensitivities of different queries; thus ǫi
ǫ0

= r, assuming that each dimension is normalized

to [−r, r]. Different r values will result in different allocations of privacy budget.

We observe that the analysis in Section 4.2.1 calls for a fixed allocation of ǫi
ǫ0

, in-

dependent from how the data ranges are normalized. Plugging Var (∆Si) = 2r2

ǫ2i
and

Var (∆C) = 2
ǫ20

into Equation (4.3), one obtains

d∑

i=1

MSE (ôi) ≈
k2

N2

d∑

i=1

(
Var (∆Si) + (2ρr)2 · Var (∆C)

)

=
2r2k2

N2

(
d∑

i=1

1

ǫ2i
+

4dρ2

ǫ20

)
. (4.6)

Minimization of the above subject to
∑d

i=1 ǫi + ǫ0 = z can be solved using the method

of Lagrange multipliers, where z is the privacy budget allocated to the current round. The

optimal proportion is

ǫ1 : ǫ2 : · · · : ǫd : ǫ0 = 1 : 1 : · · · : 1 : 3
√

4dρ2. (4.7)

To compute 3
√

4dρ2, we need an estimation of ρ, the normalized coordinate of i-th

dimension of the cluster’s centroid. We note that 0 ≤ ρ ≤ 0.5. If a cluster includes

points perfectly balanced between the negative side and the positive side, then ρ = 0. If

all points have r (−r) as its i-th coordinate, then ρ = 0.5. We empirically compute ρ from

81 synthetic datasets that are not used for purpose of evaluation. We use ρ = 0.225 in this

chapter, and conjecture that it provides a good enough approximation for most scenarios.

We note that in the DPLloyd approach, if one chooses r = 1, i.e., normalizes each

dimension to the range of [−1, 1], one would allocate the privacy budget with a ratio of

ǫi : ǫ0 = 1 : 1, which is suboptimal in most cases.

Algorithm 13 shows the privacy budget allocation improvement of DPLloyd within

each round.



85

Algorithm 13 DPLLOYDOPTIMIZATIONFORONEITERATION

Input:D: dataset, d: number of dimensions, [−r, r]: dataset range, k: number of clusters,

IC: set of initial centroids, ǫ: privacy budget

1: {o1, o2, . . . , ok} ← IC
2: Budget allocation ratio γs for sum query, γc for count queries by Eq. 4.7

3: for each j (j = 1, 2, . . . , k) do

4: Cluster Cj ← {xℓ : ‖xℓ − oi‖ ≤ ‖xℓ − oj‖, xℓ ∈ D, ∀1 ≤ i ≤ k}
5: 〈oj1, oj2, . . . , ojd〉 ← NOISYCENTROIDUPDATE(d, Cj, γs · ǫ, γc · ǫ)
6: end for

7: return {o1, o2, . . . , ok}

Determining the Number of Rounds

Based on our analysis in Section 4.2.1, we make several observations. First, it makes

no sense to run DPLloyd with a large number of rounds. From Proposition 4.2.1, the dis-

tortion on the centroid is on the order of Θ
(

t2

(Nǫ)2

)
. Thus, running DPLloyd with too many

rounds results in large distortion on the cluster centroids. Second, one should dynamically

determine the number of rounds based on parameters such as N and ǫ, since the distortion

on the centroid is inversely proportional to (Nǫ)2.

By exploiting these observations, we propose a way to determine the number of itera-

tions. We first determine a minimum privacy budget ǫm that needs to be allocated to each

iteration (see below). Then, the privacy budget allocation across the iterations is decided

by the following two cases. Case 1: ǫ ≤ 2ǫm. In this case, the total privacy budget is in-

adequate. If we distribute it to more than 2 iterations, then as stated before the added noise

in each round would easily dominate the centroid improvement. Therefore, we decide that

DPLloyd runs for two iterations only, each with privacy budget of ǫ
2
. Case 2: ǫ > 2ǫm. In

this case, the total privacy budget is able to meet the requirement of assigning minimum

budget to each iteration. We require that the total number of iterations is at most 7. Thus,

the total number of iterations t− = min{ ǫ
ǫm
, 7}, and the privacy budget allocated to each of

them is ǫ
t−

.

We now come to the calculation of ǫm. The intuition is that if the centroid improvement

of one iteration is effective, then the MSE value should not be too big. We use the heuristic



86

that the MSE of all the centroids improvement should be no more than 0.004 · rd. It follows

from Equation 4.6 that

2r2k3

N2

(
d∑

i=1

1

ǫ2i
+

4dρ2

ǫ20

)
≤ 0.004rd, (4.8)

where
∑d

i=0 ǫi = ǫm. According to the optimized ratio in Equation 4.7, the privacy budget

ǫm is distributed between ǫi’s as follows:





ǫ0 =
3
√

4dρ2

d+ 3
√

4dρ2
ǫm

ǫi =
1

d+ 3
√

4dρ2
ǫm, for i = 1, 2, . . . , d.

Plugging the above into Inequality 4.8 we can find the minimal ǫm value,

ǫm =

(
500k3

N2

(
d+ 3

√
4dρ2

)3)1/2

. (4.9)

For the Gowalla dataset, ǫm ≈ 0.011; for the Adult-num dataset, it is approximately equal

to 0.096.

Algorithm 14 summarizes our improvement of DPLloyd.

4.3 Other Approaches

In this section, we describe other existing approaches to differentially private k-means

clustering. Further analyses of them are presented in Section 4.6.

4.3.1 PGkM

PrivGene [12] is a general-purpose differentially private model fitting framework based

on genetic algorithms. Given a dataset D and a fitting-score function f(D, θ) that measures

how well the parameter θ fits the dataset D, the PrivGene algorithm initializes a candidate

set of possible parameters θ and iteratively refines them by mimicking the process of natu-



87

Algorithm 14 DPLLOYDIMPROVEMENT

Input:D: dataset, d: number of dimensions, [−r, r]: dataset range, k: number of clusters,

t: number of iterations, IC: set of initial centroids, ǫ: privacy budget

1: if IC is empty then

2: {o1, o2, . . . , ok} ← SPHEREPACKINGINITIALCENTROIDSGENERATION(d, r, k)
3: else

4: {o1, o2, . . . , ok} ← IC
5: end if

6: Compute the minimum budget ǫm by Eq. 4.9

7: if ǫ < 2ǫm then

8: t− ← 2
9: else

10: t− ← min{ ǫ
ǫm
, 7}

11: end if

12: ǫ′ ← ǫ
t−

13: for Loop t− times do

14: for each j (j = 1, 2, . . . , k) do

15: Cluster Cj ← {xℓ : ‖xℓ − oi‖ ≤ ‖xℓ − oj‖, xℓ ∈ D, ∀1 ≤ i ≤ k}
16: 〈oj1, oj2, . . . , ojd〉← DPLLOYDOPTIMIZATIONFORONEITERATION(D, d, [−r, r],

k, {o1, o2, . . . , ok}, ǫ′)
17: end for

18: end for

19: return {o1, o2, . . . , ok}

ral evolution. Specifically, in each iteration, PrivGene uses the exponential mechanism [14]

to privately select from the candidate set m′ parameters that have the best fitting scores, and

generates a new candidate set from the m′ selected parameters by crossover and mutation.

Crossover regards each parameter as an h-dimensional vector. Given two parameter vec-

tors, it randomly selects a number h̄ such that 0 < h̄ < h and splits each vector into the

first h̄ dimensions in the vector and the remaining h− h̄ dimensions (the lower half). Then,

it swaps the lower halves of the two vectors to generate two child vectors. These vectors

are then mutated by adding a random noise to one randomly chosen dimension.

In [12], PGkM is applied to logistic regression, SVM, and k-means clustering. In the

case of k-means clustering, the NICV formula in Equation 2.8, more precisely its non-

normalized version, is used as the fitting function f , and the set of k cluster centroids is

defined as parameter θ. Each parameter is a vector of h = k · d dimensions. Initially, the



88

candidate set is populated with 200 sets of cluster centroids randomly sampled from the

data space, each set containing exactly k centroids. Then, the algorithm runs iteratively

for max{8, (xNǫ)/m′} rounds, where x and m′ are empirically set to 1.25× 10−3 and 10,

respectively, and N is the dataset size.

We call the approach of applying PrivGene to k-means clustering PGkM, which is

similarly to DPLloyd in that it tries to iteratively improve the centroids. However, rather

than maintaining and improving a single set of k centroids, PGkM maintains a pool of

candidates, uses selection to improve their quality, and crossover and mutation to broaden

the pool.

By selecting multiple sets of centroids in each round and applying mutation, PGkM

reduces the chance that the iterative process is stuck in a suboptimal solution. At the same

time, doing this invariably slows down the converging process. At the same time, if one

increases the number of iterations, each iteration becomes highly inaccurate. Thus whether

PGkM is a suitable approach for a problem depends on whether the benefit of PGkM can

compensate for the slow converging speed. Our experimental results in Section 4.6 show

that for k-means clustering, this is not the case and PGkM performs poorly.

4.3.2 GkM

The k-means clustering problem was also used to motivate the sample and aggregate

framework (SAF) for satisfying differential privacy, which was developed in [25, 59], and

implemented in the GUPT system [29].

Given a dataset D and a function f , SAF first partitionsD into ℓ blocks, then it evaluates

f on each of the block, and finally it privately aggregates results from all blocks into a single

one. Since any single tuple in D falls in one and only one block, adding one tuple can affect

at most one block’s result, limiting the sensitivity of the aggregation step. Thus one can

add less noise in the final step to satisfy differential privacy.

As far as we know, GUPT [29] is the only implementation of SAF. Authors of [29]

implemented k-means clustering and used it to illustrate the effectiveness of GUPT. We call



89

this algorithm GkM. Given a dataset D, it first partitions D into ℓ blocks D1, D2, . . . , Dℓ.

Then, for each block Db (1 ≤ b ≤ ℓ), it calculates its k centroids ob,1, ob,2, . . . , ob,k. Finally,

it averages the centroids calculated from all blocks and adds noise. Specifically, the i’th

dimension of the j’th aggregated centroid is

oji =
1

ℓ

ℓ∑

b=1

ob,ji + Lap

(
2(maxi −mini) · k · d

ℓ · ǫ

)
, (4.10)

where ob,ji is the i’th dimension of ob,j , [mini, maxi] is the estimated output range of i’th

dimension. One half of the total privacy budget is used to estimate this output range, and

the other half is used for adding Laplace noise.

We have found that the implementation downloaded from [60], which uses Equation

(4.10), performed poorly. Analyzing the data closely, we found that mini and maxi often

fall outside of the data range, especially for small ǫ. We slightly modified the code to bound

mini and maxi to be within the data domain. This does not affect the privacy but is able to

greatly improve the accuracy. In this chapter we use this fixed version.

Here a key parameter is the choice of ℓ. Intuitively, a larger ℓ will result in each block

being very small and unable to preserve the cluster information in the blocks, and a smaller

ℓ, on the other hand, results in large noise added. (Note the inverse dependency on ℓ in

Equation (4.10)). Analysis in [29] suggests to set ℓ = N0.4. Our experimental results,

however, show that the performance of GkM with ℓ = N0.4 is quite poor.

We can analytically show why GkM performs worse than DPLloyd. There are two

sources of errors in GkM. The first is that the cluster centers obtained from different blocks

may not be accurate. Such errors increase when the number of blocks increases, since then

each block has fewer data points and is less likely to have centroids similar to the whole

dataset. The second is due to the added noise in the aggregation step. The MSE due to the

added noise is on the order of k2d2

ℓ2ǫ2
. Compared with the MSE analysis of DPLloyd, they are

comparable when ℓ ≈ N
t
√
d
, that is, when each block contains only a small number of data

points. It is unlikely that one could learn k centroids from such small blocks. At the same

time, if one chooses ℓ = N0.4, then MSE will be linear in k2d2

N0.8ǫ2
, which is much larger



90

than that of the DPLloyd method. This seems a fundamental limitation of the sample and

aggregation approach.

4.4 Using a Private Synopsis

Approaches such as DPLloyd and GkM suffer from two limitations. First, often times

the purpose of conducting k-means clustering is to visualize how the data points are parti-

tioned into clusters. The single-workload approaches, however, output only the centroids.

In the case of DPLloyd, one could also obtain the number of data points in each cluster;

however, it cannot provide more detailed information on what shapes data points in the

clusters take. The value of single-workload differentially private k-means clustering is thus

limited. Second, as the privacy budget is consumed by the single-workload method, one

cannot perform any other analysis on the dataset; doing so will violate differential privacy.

An approach where one first generates a synopsis of a dataset using a differentially

private algorithm, and then applies k-means clustering algorithm on the synopsis, avoids

these two limitations. In this chapter, we consider the following synopsis method. Given

a d-dimensional dataset, one partitions the domain into M equal-width grid cells, and then

releases the noisy count in each cell, by adding Laplace noise to each cell count.

The synopsis consists of a set of cells, each of which has a rectangular bounding box and

a (noisy) count of how many data points are in the bounding box. The synopsis tells only

how many points are in a cell, but not the exact locations of these points. For the purpose

of clustering, we treat all points as if they are at the center of the bounding box. In addition,

these noisy counts might be negative, non-integer, or both. A straightforward solution is to

round the noisy count of a cell to be a non-negative nearest integer and replicate the cell

center as many as the rounded count. This approach, however, may introduce a significant

systematic bias in the clustering result, when many cells in the synopsis are empty or close

to empty and these cells are not distributed uniformly. In this case, simply turning negative

counts to zero can produce a large number of points in those empty areas, which can pull

the centroid away from its true position. We take the approach of keeping the noisy count



91

unchanged and adapting the centroid update procedure in k-means to use the cell as a

whole. Specifically, given a cell with center c and noisy count ñ, its contribution to the

centroid is c× ñ. Using this approach, in one cluster, cells who have negative noisy count

can “cancel out” the effect of other cells with positive noise. Therefore, we can have better

clustering performance.

For this method, the key parameter is M , the number of cells. When M is large, the

average count per cell is low, and the noise will have more impact. When M is small, each

cell covers a large area, and treating all points as at the center may be inaccurate when the

points are not uniformly distributed. We now describe two existing methods of choosing

M and extend one of them.

4.4.1 MkM

Lei [33] proposed a scheme to release differentially private synopses tailored for the M-

estimator. Given a d-dimensional dataset with N tuples, statistical analysis in [33] suggests

that

M =

(
N√

log(N)

) 2d
2+d

(4.11)

We name the approach of applying the k-means clustering on this synopsis MkM.

4.4.2 UGkM

UG is a simple algorithm proposed in [31] for producing synopsis of 2-dimensional

datasets that can be used to answer rectangular range queries (i.e., how many data points

there are in a rectangular range) with high accuracy. The algorithm partitions the space into

M = m × m equal-width grid cells, and then releases the noisy count in each cell. It is

observed that for counting queries, a larger M value results in higher errors because more

noises are added, and a smaller M value results in higher errors due to the fact that points



92

within cells may be distributed nonuniformly, and queries including a portion of these cells

may be answered inaccurately. To balance these two kinds of errors, it is suggested to set

m =

√
Nǫ

10
, or equivalently,M =

Nǫ

10
(4.12)

It has been shown that UG performs quite well for answering rectangular range queries [31].

UG can be easily extended to d-dimensional dataset by setting m = d
√
M . We use UGkM

to represent the UG-based k-means clustering scheme.

4.4.3 EUGkM

We now analyze the choice of M for higher-dimensional case. Given a d-dimensional

rectangular range counting query, suppose that act is its precise answer and est is its es-

timated answer using the released noisy counts of the cells. We use mean squared error

(MSE) to measure the accuracy of est with respect to act. That is,

MSE (est) = E
[
(est− act)2

]
= Var (est) + (Bias (est))2,

where Var (est) is the variance of est and Bias (est) is its bias.

There are two error sources when computing est. First, Laplace noises are added to cell

counts to satisfy differential privacy. This results in the variance of est. Since counting a

cell size has the sensitivity of 1, Laplace noise Lap
(
1
ǫ

)
is added. Thus, the noisy count has

the variance of 2
ǫ2

. Suppose that the given counting query covers α portion of the total M

cells in the data space. Then, Var (est) = α 2M
ǫ2

. Second, the given counting query may

not fully contain the cells that fall on the border of the query rectangle. To estimate the

number of points in the intersection between the query rectangle and the border cells, it

assumes that data are uniformly distributed. This results in the bias of est, which depends

on the number of tuples in the border cells. The border of the given query consists of 2d

hyper rectangles, each being (d − 1)-dimensional. The number of cells falling on a hyper

rectangle is in the order of M
d−1
d . On average the number of tuples in these cells is in the



93

order of M
d−1
d · N

M
= N

M
1
d

. Therefore, we estimate the bias of est with respect to one hyper

rectangle to be β N

M
1
d

, where β ≥ 0 is a parameter. We thus estimate (Bias (est))2 to be

2d
(
β N

M
1
d

)2
. Summing the variance and the squared bias, it follows that

MSE (est) = α
2M

ǫ2
+ β22dN

2

M
2
d

.

To minimize the MSE, we set the derivative of the above equation with respect to M to 0.

This gives

M =

(
Nǫ

θ

) 2d
2+d

, (4.13)

where θ =
√

α
2β2 . We name the above extended approach as EUG (extended uniform grid-

ing approach). We use EUGkM to represent the EUG-based k-means clustering scheme.

The algorithm of EUGkM is shown in Algorithm 15.

4.5 The Hybrid Approach

As we will show in Section 4.6, DPLloyd still under-performs EUGkM in most set-

tings. Recall that EUGkM publishes a private synopsis of the the dataset, and thus enables

other analysis to be performed on the dataset, beyond k-means. An intriguing question is

“Whether one can do better for k-means clustering?” In particular, can we further improve

DPLloyd? Recall that there are two key issues that greatly affect the accuracy of DPLloyd:

the number of iterations and the choice of initial centroids. In fact, these two are closely

related. If the initially chosen centroids are very good and close to the true centroids, one

only needs perhaps just one iteration to improve it, and this reduction in the number of

iterations would mean less noise is added. Now if only we have a method to choose really

good centroids in a differentially private way, then we can use part (e.g., half) of the privacy

budget to get those initial centroids, and the remaining privacy budget to run one iteration

of DPLloyd to further improve it.

In fact, we do have such a method. EUGkM does it. This leads us to propose a hybrid

method that combines the synopsis-based EUGkM with the single-workload DPLloyd. We



94

Algorithm 15 EUGKM

Input:D: dataset, N : dataset size, d: number of dimensions, [−r, r]: dataset range, k:

number of clusters, IC: set of initial centroids, ǫ: privacy budget

1: if IC is empty then

2: {o1, o2, . . . , ok} ← SPHEREPACKINGINITIALCENTROIDSGENERATION(d, r, k)
3: else

4: {o1, o2, . . . , ok} ← IC
5: end if

6: M =
(
Nǫ
10

) 2d
2+d

7: Construct grid g by partitioning data space [−r, r]d into M equal width cells

8: Construct noisy histogram ĥ by projecting dataset D into grid g
9: for each cell c ∈ ĥ do

10: n̂c ← nc + Lap(1/ǫ)
11: end for

12: repeat

13: for each j (j = 1, 2, . . . , k) do

14: Cluster Cj ← {cℓ : ‖cℓ − oi‖ ≤ ‖cℓ − oj‖, cell center cℓ ∈ ĥ, ∀1 ≤ i ≤ k}
15: count←∑

cℓ∈Cj n̂cℓ

16: for each dimension i (i = 1, 2, . . . , d) do

17: sumi ←
∑

cℓ∈Cj cℓi · n̂cℓ

18: oji ← Π[−r,r]

(
sumi

count

)

19: end for

20: end for

21: until No more changes on cluster centroids

22: return Cluster centroids {o1, o2, . . . , ok} and noisy synopsis ĥ

first use a portion of the privacy budget to run EUGkM, and then use the centroids outputted

by EUGkM as the initial centroids for one round of DPLloyd. Such a method, however,

may not actually outperform EUGkM, especially when the privacy budget ǫ is small, since

then one round of DPLloyd may actually worsen the centroids. Therefore, when ǫ is small,

we should stick to the EUGkM method, and only when ǫ is large enough should we adopt

the EUGkM+DPLloyd approach. In order to determine what ǫ is large enough, we analyze

how the errors depend on the various parameters in DPLloyd and in EUGkM.



95

4.5.1 Error Study of EUGkM

Non-interactive approach partitions a dataset into a grid of M uniform cells. Then,

it releases private synopses for the cells, and runs k-means clustering on the synopses to

return the cluster centroids. Similar to the error analysis for DPLloyd, we analyze the MSE.

Let o be the true centroid of a cluster, and ô be its estimator computed by a non-interactive

approach. The MSE between ô and o is composed of two error sources. First, the count in

each cell is inaccurate after adding Laplace noise. This results in the variance (i.e., Var (ô))

of ô from its expectation E [ô]. Second, we no longer have the precise positions of data

points, and only assume that they occur at the center in a cell. Thus, the expectation of ô is

not equal to o, resulting in a bias (i.e., Bias (ô)). The MSE is the combination of these two

errors,

MSE (ô) = Var (ô) + (Bias (ô))2 (4.14)

Analyzing the variance. We assume that each cluster has a volume that is 1
k

of the total

volume of the data space, and has the shape of a cube. In d-dimensional case, the width

of the cube is w = 2r
d√k

. Suppose that the geometric center1 of the cube is τi. Let T be the

set of cells included in the cluster. For each cell t ∈ T , we use ct to denote the number of

tuples in t, ti to denote the i’th dimension coordinate of the center of cell t, and νt to denote

the noise added to the cell size. Let ôi be the i-th dimension of the noisy centroid. Then,

the variance of ôi is

Var (ôi) = Var (ôi − τi)

= Var
(

∑

t∈T ti(ct+νt)
∑

t∈T (ct+νt)
− τi

)

= Var
(

∑

t∈T (ti−τi)(ct+νt)
∑

t∈T (ct+νt)

)

≈ 1
C2

∑
t∈T ((ti − τi)

2 · Var (ct + νt)) .

1Note that this is not the cluster centroid.



96

In the above, the first step follows because τi as the cube geometric center is a constant.

The last step is derived by assuming
∑

t∈T (ct + νt) ≈ C, that is, the noisy cluster size is

approximately equal to the original cluster size C.

We can see that within the cube, different cells’ contribution to the variance is not

the same. Basically, the closer a cell is to the cube center, the less its contribution. The

contribution is proportional to the squared distance to the cube center. We thus approximate

the variance as follows:

Var (ôi) ≈
1

C2

∫ w
2

−w
2

x2

(
M

(2r)d
wd−1 2

ǫ2

)
dx

=
2Mr2

3C2ǫ2k
d+2
d

.

In the above integral, x in the first term is the distance from a cell center to the cube center

(i.e., ti − τi). The second term M
(2r)d

is the number of cells per unit volume, and wd−1 is the

volume of the (d − 1)-dimensional plane that has a distance of x to the cube center. The

last term 2
ǫ2

is the variance of the cell size (i.e., Var (ct + νt)). Suppose that clusters are of

equal size, that is, C = N
k

. Then, the variance of the noisy centroid by summing all the d

dimensions is

Var (ô) ≈ 2dMr2k
d−2
d

3N2ǫ2
. (4.15)

The analysis shows that the variance of the EUGkM is proportional to M
(Nǫ)2

. EUGkM

sets M to
(
Nǫ
10

) 2d
2+d . Plugging it into Equation 4.15, we get that the variance of EUGkM is

inversely proportional to (Nǫ)
4

2+d .

Analyzing the bias . Let xi be the i’th dimension coordinate of a tuple x. Then, the bias

of ôi is

Bias (ôi) = E [ôi]− oi

= E
[
∑

t∈T ti(ct+νt)
∑

t∈T (ct+νt)

]
−

∑

t∈T

∑

x∈t xi
∑

t∈T ct

≈
∑

t∈T

∑

x∈t(ti−xi)

C
,

where the last step is developed by approximating
∑

t∈T (ct + νt) to the cluster size C.



97

The bias developed in the above formula is dependent on data distribution. Its precise

estimation requires to access real data. We thus only estimate its upper bound. Let qi =

ti − xi. Non-interactive approach partitions each dimension into
d
√
M intervals of equal

length. Hence, qi falls in the range of [− r
d√M

, r
d√M

], and the upper bound of Bias (ôi) is

r
d√M

. Summing all the d dimensions, we obtain the upper bound of squared bias of noisy

centroid

(Bias (ô))2 ≤ dr2

M
2
d

. (4.16)

The estimation shows that the upper bound of squared bias decreases as a function of

M
2
d . This is consistent with the expectation. As M increases, the data space is partitioned

into finer-grained cells. Therefore, the distance between a tuple in a cell to the cell center

decreases on average.

Comparing DPLloyd and EUGkM. For DPLloyd, its MSE is inversely proportional

to (Nǫ)2 (Equation 4.5). For EUGkM, its MSE consists of variance and squared bias.

Plugging M =
(
Nǫ
10

) 2d
2+d into Equation 4.15 and Inequality 4.16, it follows that the MSE

of EUGkM is inversely proportional to (Nǫ)
4

2+d . Therefore, the MSE of DPLloyd drops

much faster than that of EUGkM as ǫ increases or the dataset size N increases.

The MSE of EUGkM is inversely proportional to (Nǫ)
4

2+d . Thus, it increases exponen-

tially as a function of d. Instead, from Equation 4.5, it follows that the MSE of DPLloyd

has only cubic growth with respect to d. Therefore, DPLloyd is more scalable to d than

EUGkM.

In Section 4.6.2, we will demonstrate the above analysis well explains the empirical

performance for DPLloyd and EUGkM.

4.5.2 Hybrid Approach

Our hybrid approach combines EUGkM and DPLloyd. Given a dataset and privacy

budget ǫ, the hybrid approach first checks whether it overtakes the DPLloyd method and

also the EUGkM method. If this is not the case, the hybrid approach simply falls back to

EUGkM. Otherwise, the hybrid approach allocates a portion of privacy budget to EUGkM



98

to output a synopsis and find k intermediary centroids that work well for the synopsis.

Then, it runs DPLloyd for one iteration using the remaining privacy budget to refine these

k centroids. The hybrid algorithm finally outputs a noisy synopsis as well as the cluster

centroids. The full algorithm of the hybrid approach is in Algorithm 16.

We use MSE to heuristically determine the conditions, on which the hybrid approach

overtakes the DPLloyd method and also the EUGkM method. Basically, we require that

the MSE of the hybrid approach be smaller than those of the other two approaches, since

smaller MSE implies smaller error to the cluster centroid. From Equation 4.5, it follows

that the MSE of DPLloyd with full privacy budget is

MSEDPLloyd(ǫ, t) = 2d(1 + (2ρr)2)

(
kt(dr + 1)

Nǫ

)2

. (4.17)

The MSE of the EUGkM method consists of two parts, the variance and the bias. The

variance of the approximate variance (Equation 4.15) by setting M =
(
Nǫ
10

) 2d
2+d .

VarEUGkM(ǫ) =
2dr2(k)

d−2
d

3× (10)
2d
2+d (Nǫ)

4
2+d

. (4.18)

Similarly, the bias part is

BiasEUGkM(ǫ) =
dr2

(Nǫ/10)
4

2+d

. (4.19)

Suppose that in the Hybrid approach, f portion of the total privacy budget ǫ is allocated

to the EUGkM part, we model the MSE of the hybrid approach,

MSEHybrid(ǫ, f) = ω1 · VarEUGkM(fǫ) + ω2 · BiasEUGkM(fǫ)

+ ω3 ·MSEDPLloyd((1− f)ǫ, t = 1). (4.20)

The LHS of Eq (4.20) is the the best actual MSE values that the hybrid approach can

achieve, while the RHS of Eq (4.20) are theoretical values of the EUGkM’s variance, bias

and DPLloyd’s MSE. We use linear regression to estimate the parameters of the above error

model on the ideal set of synthetic datasets (Synthe-PT dataset). After building the linear



99

regression model, we have ω1 = 0.14, ω2 = −0.0019 and ω3 = 0.42. Since the parameter

for the BiasEUGkM(fǫ) is very small, we remove it from the regression model.

Algorithm 16 Hybrid Method for k-means Clustering

Input:D: dataset, N : dataset size, d: number of dimensions, [−r, r]: dataset range, k:

number of clusters, IC: set of initial centroids , ǫ: privacy budget

1: Optimize Eq (4.20) to get the best MSEHybrid and the best allocation ratio f
2: if MSEHybrid(ǫ) < VarEUGkM(ǫ) then

3: Cinter, ĥ← EUGKM(D,N, d, [−r, r], k, ∅, f · ǫ)
4: Cfinal ← DPLLOYDOPTIMIZATIONFORONEITERATION(D, d, [−r, r], k, Cinter, (1−

f)ǫ)
5: else

6: Cfinal, ĥ← EUGKM(D,N, d, [−r, r], k, ∅, ǫ)
7: end if

8: return Cfinal

4.6 Performance and Analysis

Table 4.1.: Descriptions of datasets.

Dataset Number tuples Number of dimensions Number of clusters

S1 5,000 2 15

Gowalla 107,091 2 5

TIGER 16,281 2 2

Image 34,112 3 3

Adult-num 48,841 6 5

Lifesci 26,733 10 3

Synthe 10,000 + O {2, 3, . . . , 10} {2, 3, . . . , 10}
Synthe-PT 10,000 {2, 3, . . . , 10} {2, 3, . . . , 10}

O is # outliers and is uniformly sampled from [0, 100].



1
0

0

Table 4.2.: Summary of differentially private k-means methods

Methods Description

Non-interactive

EUGkM Our proposed method to release synopsis for k-means under DP.

UG [31] DP release synopsis for answering rectangular range queries on 2D data.

MkM [33] DP release synopsis tailored for the M-estimator.

Interactive

DPLloyd [16] DP Lloyd algorithm.

DPLloyd Impr Our proposed improvement of DPLloyd.

PGkM [12] Private model fitting based on genetic algorithms.

GkM [29] GUPT based k-means.



101

0.005

0.02

0.04

0.2

0.4

1.0

 0.01

 0.1

0.05 0.15 0.4 1.5 2.0 0.1  1

NoPrivacy
EUGkM
DPLloyd-Impr
UGkM
PGkM
GkM
MkM

0.07

0.2

0.3

0.4
0.5

1.0

2.5

 0.1

0.05 0.15 0.4 1.5 2.0 0.1  1

NoPrivacy
EUGkM
DPLloyd-Impr
UGkM
PGkM
GkM
MkM

(a) S1 [d = 2, k = 15] (b) Image [d = 3, k = 3]

0.015

0.04

0.07

0.1

0.15

0.2

0.4

1.0

0.05 0.15 0.4 1.5 2.0 0.1  1

NoPrivacy
EUGkM
DPLloyd-Impr
UGkM
PGkM
GkM
MkM

0.15

0.3

0.5

1.0

2.0

3.0

6.0

0.05 0.15 0.4 1.5 2.0 0.1  1

NoPrivacy
EUGkM
DPLloyd-Impr
UGkM
PGkM
GkM
MkM

(c) Gowalla [d = 2, k = 5] (d) Adult-num [d = 6, k = 5]

0.04

0.1

0.2

0.3

0.5

1.0

2.0

0.05 0.15 0.4 1.5 2.0 0.1  1

NoPrivacy
EUGkM
DPLloyd-Impr
UGkM
PGkM
GkM
MkM

0.5

0.7

1.0

2.0

5.0

10.0

0.05 0.15 0.4 1.5 2.0 0.1  1

NoPrivacy
EUGkM
DPLloyd-Impr
UGkM
PGkM
GkM
MkM

(e) TIGER [d = 2, k = 2] (f) Lifesci [d = 10, k = 3]

Figure 4.1.: The comparison of DPLloyd-Impr, PGkM, GkM, EUGkM, UGkM and MkM

by varying the privacy budget ǫ. x-axis: privacy budget ǫ in log-scale. y-axis: NICV in

log-scale.

In this section, we compare and analyze the performance of the seven methods de-

scribed in Table 5.2.

4.6.1 Evaluation Methodology

We experimented with six external datasets and two sets of syntheticly generated

datasets. The first external dataset is a 2D synthetic dataset S1 [61], which is a benchmark



102

0.005

0.02

0.04

0.2

 0.01

 0.1

0.05 0.15 0.4 1.5 2.0 0.1  1

NoPrivacy
EUGkM

DPLloyd-Impr
DPLloyd

UGkM

0.09

0.11

0.13

0.2

 0.1

0.05 0.15 0.4 1.5 2.0 0.1  1

NoPrivacy
EUGkM

DPLloyd-Impr
DPLloyd

UGkM

(a) S1 [d = 2, k = 15] (b) Image [d = 3, k = 3]

0.02

0.025

0.03

0.04

0.05

0.06

0.07

0.05 0.15 0.4 1.5 2.0 0.1  1

NoPrivacy
EUGkM

DPLloyd-Impr
DPLloyd

UGkM

0.17

0.2

0.25

0.3

0.4

0.5

0.7

0.05 0.15 0.4 1.5 2.0 0.1  1

NoPrivacy
EUGkM

DPLloyd-Impr
DPLloyd

UGkM

(c) Gowalla [d = 2, k = 5] (d) Adult-num [d = 6, k = 5]

0.048

0.05

0.055

0.06

0.063

0.05 0.15 0.4 1.5 2.0 0.1  1

NoPrivacy
EUGkM

DPLloyd-Impr
DPLloyd

UGkM

0.65

0.7

0.8

1.0

1.1

0.05 0.15 0.4 1.5 2.0 0.1  1

NoPrivacy
EUGkM

DPLloyd-Impr
DPLloyd

UGkM

(e) TIGER [d = 2, k = 2] (f) Lifesci [d = 10, k = 3]

Figure 4.2.: The close-up view of the comparison of DPLloyd-Impr, DPLloyd, EUGkM,

and UGkM by varying the privacy budget ǫ. x-axis: privacy budget ǫ in log-scale. y-axis:

NICV in log-scale.

to study the performance of clustering schemes. S1 contains 5,000 tuples and 15 Gaus-

sian clusters. The Gowalla dataset contains the user checkin locations from the Gowalla

location-based social network whose users share their checking-in time and locations (lon-

gitude and latitude). We sample one locaiton of each user ID and obtain a 2D dataset of

107,091 tuples. We set the number of clusters, k = 5, for this dataset. The third dataset is

a 1-percentage sample of road dataset which was drawn from the 2006 TIGER (Topologi-



103

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

(a) DPLloyd (b) DPLloyd-Impr (c) PGkM

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-

10
-1

1.0

10.0

(d) EUGkM (e) MkM (f) GkM

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-

10
-1

1.0

10.0

(g) UGkM (h) Hybrid (i) GkM-3K

Figure 4.3.: The heatmap by varying k and d on the Synthe datasets with ǫ = 1.0.

cally Integrated Geographic Encoding and Referencing) dataset [62]. It contains the GPS

coordinates of road intersections in the states of Washington and New Mexico. The fourth

is Image [61], a 3D dataset with 34,112 RGB vectors. We set k = 3 for it. We also use the

well known Adult dataset [52]. We use its six numerical attributes, and set k = 5. The last

dataset is Lifesci. It contains 26,733 records and each of them consists of the top 10 prin-

cipal components for a chemistry or biology experiment. As previous approaches [12, 29],

we set k = 3. Table 4.1 summarizes the datasets. For all the datasets, we normalize the

domain of each attribute to [-1.0, 1.0].

We generate two sets of synthetic datasets. The first set of synthetic datasets, which

we call Synthe, is generated by using the clusterGeneration [63] R package. It is designed



104

for generating cluster datasets with specified degree of separation which is a quantitative

measure of closeness between any cluster and its nearest neighboring cluster. Besides,

the clusterGeneration package can generate clusters with arbitrary diameters, shapes and

orientations. In this chapter, we generate 81 dataset by varying k and d from 2 to 10. We fix

the dataset size to 10,000 and distribute them into k clusters with size proportional to the

ratio 1 : 2 : . . . : k. We also inject few outliers whose number is uniformly sampled from

[0, 100]. For each dataset, we randomly sample its degree of separation from [0.16, 0.26],

which means from clusters with small overlapping to separated-but-close clusters.

The second set of synthetic dataset is mainly for tuning parameters of the EUGkM

algorithm. We fix the dataset size to be 10,000, and vary k and d from 2 to 10 respectively.

For each dataset, k well separated Gaussian clusters with equal size are generated. We call

the second set of synthetic dataset as the Synthe-PT set, where PT stands for parameter

tuning.

Implementations for DPLloyd and GkM were downloaded from [27] and [60], respec-

tively. The source code of PGkM [12] was shared by the authors. We implemented EU-

GkM, UGkM and MkM.

Configuration. Each algorithm outputs k centroids o = {o1, o2, · · · , ok}. The quality of

the centroids o is evaluated by the Normalized Intra-Cluster Variance (NICV) (Eq.2.8).

We note that since both DPLloyd, EUGkM, UGkM and MkM use Lloyd-style iteration,

they are affected by the choice of initial centroids. In addition, all algorithms have random

noises added somewhere to satisfy differential privacy. To conduct a fair comparison, we

need to carefully average out such randomness effects. GkM and PGkM do not take a set

of initial centroids as input. GkM divides the input dataset into multiple blocks, and for

each block invokes the standard k-means implementation from the Scipy package [64] with

a different set of initial centroids to get the result, and finally aggregates the outputs for all

the blocks. We run GkM and PGkM 100 times and report the average result.

DPLloyd-Impr generates 30 sets of initial centroids by using the proposed sphere pack-

ing method in Section 4.2.1. We run DPLloyd-Impr 100 times on each set of initial cen-

troids, and report the average of the 3,000 NICV values as the final evaluation of DPLloyd-



105

Impr. For DPLloyd, we randomly generate 30 sets of initial centroids and use the same

way to compute the averaged NICV values.

Algorithms based on a private synopsis (such as EUGkM) have the advantage that once

a synopsis is published, one can run k-means clustering with as many sets of initial cen-

troids as one wants and choose the result that has the best performance relative to the

synopsis. In our experiments, given a synopsis, we use the same 30 sets of initial cen-

troids as those generated for the DPLloyd-Impr method. For each set, we run clustering

and output a set of k centroids. Among all the 30 sets of output centroids, we select the

one that has the lowest NICV relative to the synopsis rather than to the original dataset.

This process ensures selecting the set of output centroids satisfies differential privacy. We

then compute the NICV of this selected set relative to the original dataset, and take it as the

resulting NICV with respect to the synopsis. To deal with the randomness introduced by

the process of generating synopsis, we generate 10 different synopses and take the average

of the resulting NICV values.

For EUGkM, we set the the parameter θ = 10. We experimentally compare the EU-

GkM’s performance on different θ choices and find that θ = 10 for EUGkM works well

in most cases. This parameter tuning for EUGkM is performed on the Synthe-PT dataset.

Therefore, the following evaluation of EUGkM on the Synthe dataset strictly satisfies dif-

ferential privacy, since the parameter is determined on an independent set of datasets.

As the baseline, we run standard k-means algorithm [24] over the same 30 sets of initial

centroids generated in DPLloyd-Impr and take the minimum NICV among all the 30 runs.

4.6.2 Experimental Results.

Fig. 4.1 and Fig. 4.2 report the results for the 6 external datasets. For these, we vary ǫ

from 0.05 to 2.0 and plot the NICV curves for the methods listed in Table 5.2. This enables

us to see how these algorithms perform under different privacy budgets.



106

Fig. 4.3 reports the results on the Synthe datasets. For these, we fix ǫ = 1.0 and report

the difference of NICV values between each approach and the baseline. This enables us to

see the scalability of these algorithms when k and d increase.

Among approaches not using a synopsis, DPLloyd-Impr has the best performance in

most cases. It also outperforms DPLloyd in most cases. For synopsis-based approaches,

both EUGkM and UGkM clearly outperform MkM, especially for small ǫ values. EUGkM

and UGkM has close performance on the low dimensional datasets. As the dimensionality

increases, the advantage of EUGkM to UGkM becomes obvious. Comparing DPLloyd-

Impr and EUGkM (Fig. 4.2), we observe that in the four low dimensional external datasets

(S1, Gowalla, TIGER and Image), EUGkM clearly outperforms DPLloyd-Impr at small ǫ

value and their gap becomes smaller as ǫ increases. However, in the two high dimensional

datasets (Adult-num and Lifesci), DPLloyd-Impr outperforms EUGkM almost in all given

privacy budgets. The similar observations can also be found in Fig. 4.3.

Fig. 4.3 also exhibits the effects of the number of clusters and the number of dimen-

sions. The EUGkM’s performance is more sensitive to the increase of dimension, while

DPLloyd-Impr gets worse quickly as the number of clusters increases. In addition, Fig-

ure 4.4 shows the difference of EUGkM’s performance on the synthetic dataset for param-

eter tuning under different θ choices. We can see that setting θ = 10 for EUGkM works

well in most cases.

The empirical performance of DPLloyd and EUGkM in Fig. 4.2 and Fig. 4.3 can be

well explained by our theoretical analysis in Section 4.2.1 and Section 4.5.1. Recall that

the MSE of DPLloyd is proportional to
(

(kt)2d3

(Nǫ)2

)
and that of EUGkM is proportional to

(
1

(Nǫ)
4

2+d

)
. This explains why the NICV of DPLloyd, which is inversely proportional to

(Nǫ)2, drops much faster than that of EUGkM as ǫ grows in Fig. 4.2. It also explains

why DPLloyd has better performance on ‘big’ dataset (e.g., the TIGER dataset). This also

explains that, as the dimensionality of dataset increases, DPLloyd outperforms EUGkM

(Fig. 4.2) and why DPLloyd is more scalable to d than EUGkM (Fig. 4.3).



107

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-

10
-1

1.0

(a) EUGkM θ = 2 (b) EUGkM θ = 5 (c) EUGkM θ = 10

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2  3  4  5  6  7  8  9  10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

(d) EUGkM θ = 20 (e) EUGkM θ = 50 (f) EUGkM θ = 100

Figure 4.4.: The heatmap by varying k and d on the Synthe-PT datasets. ǫ = 1.0. Varying

the θ value in EUGkM.

4.6.3 Performance of the Hybrid Approach

We now compare the hybrid approach with EUGkM and DPLloyd. The configuration

for EUGkM and DPLloyd is the same as in Section 4.6.1. For the hybrid approach, we

run EUGkM 10 times to output 10 sets of intermediate centroids. Then we run DPLloyd

10 times on each intermediate result. We finally report the average of 100 NICV values.

Fig. 4.5 gives the results on the six external datasets. In low dimensional datasets (S1,

Gowalla, TIGER, and Image), the hybrid approach simply falls back to EUGkM for small

ǫ value. When ǫ increases, both the hybrid approach and EUGkM converge to the baseline

with the former having slightly better performance. For example, in the Gowalla dataset

for ǫ = 0.7, the average NICV of the hybrid approach is 0.02172 and that of EUGkM is

0.02174.

In higher dimensional datasets (Adult-num and Lifesci), the hybrid approach outper-

forms the other two approaches in most cases. It is worse than DPLloyd only for a few

small ǫ values, on which it falls back to EUGkM. There are two possible reasons. The



108

first is that the MSE analysis assumes that datasets are well clustered and each cluster has

equal size, but the real datasets are skewed. For example, the baseline approach partitions

the Adult-num dataset into 5 clusters, in which the biggest cluster contains 13,894 tuples

and the smallest contains 3,160 tuples. The second is that we use the variance of EUGkM

as the lower bound of its MSE. Thus, it is possible that the MSE of the hybrid approach

(approximated by the MSE of one-iteration DPLloyd with half privacy budget) is larger

than the variance of EUGkM, but actually smaller than its MSE. In such cases, the hybrid

approach gives lower NICV if it does not fall back to EUGkM. For example, on the Adult-

num dataset for ǫ = 0.05, the hybrid approach of falling back to EUGkM has the NICV of

0.370, while its NICV is 0.244, if it applies EUGkM plus one-iteration of DPLloyd.

We also evaluate the hybrid approach using the Synthe datasets as generated in Sec-

tion 4.6.1. Fig. 4.3 clearly shows that the hybrid approach is more scalable than EUGkM

with respect to both k and d. This confirms the effectiveness of the hybrid approach.

4.6.4 The Analysis of the GkM Approach

From Fig. 4.1 and Fig. 4.3, it is clear that GkM is always much worse than others. There

are two sources of errors for GkM. One is that GkM is aggregating centroids computed from

the subsets of data, and this aggregation may be inaccurate even without adding noise. The

other is that the noise added according to Equation (4.10) may be too large. We find that

setting ℓ = N0.4 in GkM, which corresponds to block size of N0.6, is far from optimal, as

the error GkM is dominated by that from the noise, and is much higher than the error due

to sample and aggregation.

Fig. 4.6 shows the effect of varying block size from around N0.1 to N on the two

sources of errors. In Fig. 4.6, we show error from GkM, error from using the aggregation

without noise (SAG), and error from adding noise computed by Equation 4.10) to the best

known centroids (Noise). From the figure, it is clear that setting ℓ = N0.4, which corre-

sponds to block size of N0.6 is far from optimal, as the error GkM is dominated by that

from the noise, and is much higher than the error due to sample and aggregation. Indeed,



109

0.007

0.02

0.05

0.17

 0.01

 0.1

0.05 0.15 0.4 1.5 2.0 0.1  1

Baseline
EUGkM
DPLloyd-Impr
Hybrid

0.021

0.025

0.03

0.035

0.05 0.15 0.4 1.5 2.0 0.1  1

Baseline
EUGkM
DPLloyd-Impr
Hybrid

(a) S1 [d = 2, k = 15] (b) Gowalla [d = 2, k = 5]

0.049

0.05

0.055

0.06

0.05 0.15 0.4 1.5 2.0 0.1  1

Baseline
EUGkM
DPLloyd-Impr
Hybrid

0.09

0.1

0.13

0.17

0.05 0.15 0.4 1.5 2.0 0.1  1

Baseline
EUGkM
DPLloyd-Impr
Hybrid

(c) TIGER [d = 2, k = 2] (d) Image [d = 3, k = 3]

0.18

0.2

0.25

0.33

0.41

0.05 0.15 0.4 1.5 2.0 0.1  1

Baseline
EUGkM
DPLloyd-Impr
Hybrid

0.65

0.73

0.8

0.9

1.1

 1

0.05 0.15 0.4 1.5 2.0 0.1  1

Baseline
EUGkM
DPLloyd-Impr
Hybrid

(e) Adult-num [d = 6, k = 5] (f) Lifesci [d = 10, k = 3]

Figure 4.5.: The comparison of the Hybrid approach with EUGkM and DPLloyd-Impr.

x-axis: privacy budget ǫ in log-scale. y-axis: NICV in log-scale.

we observed that as the block size decreases the error of GkM keeps decreasing, until when

the block size gets close to k. It seems that even though many individual blocks result

in poor centroids, aggregating these relatively poor centroids can result in highly accurate

centroids. This effect is most pronounced in the Tiger dataset, which consists of two large

clusters. The two centroids computed from each small block can be approximately viewed

as choosing one random point from each cluster. When averaging these centroids, one gets

very close to the true centroids.



110

0.005

0.02

0.05

0.2

0.5

 0.01

 0.1

 1

0.32 0.4 3K 0.5 0.6 0.7 0.8 0.9 1.0

Baseline
SAG
GkM
Noise

0.2

0.5

1.0

2.0

3.0

 0.1

0.1 0.17 3K 0.26 0.3 0.4 0.5 0.6 0.7 0.8 1.0

Baseline
SAG
GkM
Noise

(a) S1 [d = 2, k = 15] (b) Image [d = 3, k = 3]

0.01

0.02

0.05

0.2

0.5

 0.1

 1

0.2 3K 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Baseline
SAG
GkM
Noise

0.2

0.5

1.0

2.0

6.0

0.15 0.21 3K 0.3 0.35 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Baseline
SAG
GkM
Noise

(c) Gowalla [d = 2, k = 5] (d) Adult-num [d = 6, k = 5]

0.05

0.2

0.5

1.0

2.0

3.0

 0.1

0.07 3K 0.3 0.4 0.5 0.6 0.7 0.8 1.0 0.1

Baseline
SAG
GkM
Noise

0.5

1.0

2.0

5.0

10.0

0.1 0.17 3K 0.3 0.4 0.5 0.6 0.7 0.8 1.0

Baseline
SAG
GkM
Noise

(e) TIGER [d = 2, k = 2] (f) Lifesci [d = 10, k = 3]

Figure 4.6.: The analysis of the GkM Approach. x-axis: block size exponent in log-scale,

y-axis: NICV in log-scale.

4.6.5 The Analysis of the PGkM Approach

PGkM is a stochastic k-means method based on genetic algorithms. A stochastic

method converges to global optimum [65]. On the contrary, DPLloyd is a gradient de-

scent method derived from the standard Lloyd’s algorithm [24], which may reach local

optimum. However, PGkM is still inferior to DPLloyd in Fig. 4.3.



111

There are two possible reasons. First, a stochastic approach typically takes a ‘larger’

number of iterations to converge [65]. We compare the Lloyd’s algorithm with Gene

(i.e., the non-private version of PGkM without considering differential privacy) in terms

of NICV over the number of iterations in Fig. 4.7. For Lloyd, we reuse the initial centroids

generated in Section 4.6.1. Given a dataset, we run Lloyd on the 30 sets of initial centroids

generated for the dataset, and report the average NICV. Generally, Gene overtakes Lloyd as

the number of iterations increases and finally converges to the global optimum. However,

Lloyd improves its performance much faster than Gene in the first few iterations, and con-

verges to the global optimal (or local optimum) more quickly. For example, in the Image

dataset, Lloyd reaches the best baseline after three iterations, while the Gene needs more

than 10 iterations to achieve the same.

The second reason is that the low privacy budget allocated to select a parameter (i.e.,

a set of k cluster centroids) from the candidate set. In each iteration PGkM selects 10 pa-

rameters, and the total number of iterations is at least 8. Thus, the privacy budget allocated

to select a single parameter is at most ǫ/80. Therefore, PGkM has reasonable performance

only for big ǫ value.

4.6.6 The Analysis of the EUGkM, UGkM and MkM Approaches

The difference between of the three synopsis-based methods, EUGkM, UGkM and

MkM is the choice of grid size M . The EUGkM method sets it to
(
Nǫ
10

) 2d
2+d , the UGkM

method sets it to
(
Nǫ
10

)
and the MkM method sets it to

(
N√
log(N)

) 2d
2+d

. Fig. 4.1 and Fig. 4.3

show that the performance of UGkM and EUGkM are superior to that of MkM. An impor-

tant reason is that MkM does not take ǫ as a factor in M . Thus, it is nonadaptive to the

variation of ǫ. This explains why EUGkM and UGkM perform much better than MkM for

small ǫ values. On the other hand, although UGkM considers the impact of the privacy bud-

get ǫ, it does not produce large enough grids for the high dimensional data. This explains

why EUGkM performs better on high dimensional data than UGkM.



112

0.007

0.014

0.02

0.03

0.05

 0.01

1 2 5 10 20 50

Gene
Lloyd
Baseline

0.09

0.15

0.2

0.3

 0.1

1 2 5 10 20 50

Gene
Lloyd
Baseline

(a) S1 [d = 2, k = 15] (b) Image [d = 3, k = 3]

0.02

0.03

0.04

0.05

0.066

1 2 5 10 20 50

Gene
Lloyd
Baseline

0.17

0.25

0.4

0.6

0.82

1 2 5 10 20 50

Gene
Lloyd
Baseline

(c) Gowalla [d = 2, k = 5] (d) Adult-num [d = 6, k = 5]

0.047

0.06

0.08

0.13

 0.1

1 2 5 10 20 50

Gene
Lloyd
Baseline

0.65

0.8

1.2

1.5

1.9

 1

1 2 5 10 20 50

Gene
Lloyd
Baseline

(e) TIGER [d = 2, k = 2] (f) Lifesci [d = 10, k = 3]

Figure 4.7.: The comparison of the convergence rate of the genetic algorithm based k-

means and Lloyd algorithm. x-axis: number of iterations in log-scale, y-axis: NICV in

log-scale.

4.6.7 Estimating the Number of Clusters.

In cluster analysis, an important problem is to estimate the number of clusters, which

has a deterministic effect on the clustering results. Such problem becomes more prominent

in the differential privacy setting, since the data analyst cannot access the private database

as many times as she/he wants.



113

Our EUGkM approach can address this problem. Several heuristics and statistics [66,

67] have been proposed to determine the number of clusters k automatically. Suppose we

have a list of candidate values of k and one statistics φ for determining the best k. Once

an EUGkM synopsis is published, we evaluate φ for each candidate k value on this noisy

synopsis. The k value with the best φ score will be selected for the following k-means

clustering. All the operations are performed on the released EUGkM synopsis. So the

estimation process satisfies the differential privacy. This is another advantage of using a

private synopsis.

We also experimentally evaluate the above method on the six external datasets and on

six privacy budget values. This method gives very accurate estimations on the k values

under most of the privacy budget settings. We omit the experimental results for space

reasons.

Fig. 4.8 presents the running time of DPLloyd and EUGkM on the six external datasets.

We follow the same experiment configuration as in Section 4.6.1. As expected, the running

time of DPLloyd is much lower than that of EUGkM. This is because EUGkM has to run

k-means clustering over 30 sets of initial centroids and output the centroids with the best

NICV relative to the noisy synopsis. Another reason is that DPLloyd sets the number of

iterations to 5 while EUGkM runs k-means clustering until converge.



114

S1 Gowalla TIGER Image Adult-num Lifesci
Datasets

10-1

100

101

102

103

Ti
m
e 
(s
ec
), 
lo
g 
sc
al
e

DPLloyd
EUGkM

Figure 4.8.: Comparing running time between DPLloyd and EUGkM, ǫ = 0.1



1
1

5

Table 4.3.: Likelihood of the Top-4 Selected k values based on RT-validity over S1 and Gowalla datasets.

Dataset
ǫ

Top-1 Top-2 Top-3 Top-4

k Range k Likelihood Validity k Likelihood Validity k Likelihood Validity k Likelihood Validity

S1 0.05 16 0.71 0.105676 15 0.28 0.103682 14 0.01 0.087395

[2, 16] 0.1 7 0.38 0.163604 15 0.29 0.156305 6 0.18 0.162932 4 0.11 0.172983

0.3 14 0.59 0.12504 15 0.29 0.101673 13 0.07 0.151193 6 0.02 0.163395

0.5 14 0.62 0.112746 15 0.26 0.084299 16 0.09 0.084636 13 0.03 0.124349

1.0 14 0.51 0.098129 15 0.49 0.067993

2.0 15 0.99 0.066126 14 0.01 0.09665

∞ 15 0.061424 14 0.092348 13 0.116655 10 0.15266

Gowalla 0.05 5 0.93 0.046851 4 0.04 0.048147 6 0.03 0.047906

[2, 6] 0.1 5 0.98 0.045948 6 0.02 0.044983

0.3 5 0.99 0.04394 6 0.01 0.04508

0.5 5 0.99 0.043698 6 0.01 0.043858

1.0 5 0.99 0.044303 6 0.01 0.043972

2.0 5 0.99 0.044324 6 0.01 0.044382

∞ 5 0.044348 4 0.055141 3 0.077007 7 0.08466



1
1

6

Table 4.4.: Likelihood of the Top-4 Selected k values based on RT-validity over the TIGER and Image datasets.

Dataset
ǫ

Top-1 Top-2 Top-3 Top-4

k Range k Likelihood Validity k Likelihood Validity k Likelihood Validity k Likelihood Validity

TIGER 0.05 2 0.98 0.013056 3 0.01 0.016129 4 0.01 0.000899

[2, 4] 0.1 2 1.0 0.01295

0.3 2 1.0 0.012226

0.5 2 1.0 0.01224

1.0 2 1.0 0.012206

2.0 2 1.0 0.012214

∞ 2 0.012178 4 0.240427 3 0.309628

Image 0.05 2 0.86 0.112783 3 0.14 0.113939

[2, 4] 0.1 2 0.72 0.108702 3 0.28 0.107116

0.3 2 0.78 0.109119 3 0.22 0.1076

0.5 2 0.63 0.10737 3 0.37 0.104306

1.0 2 0.54 0.107542 3 0.46 0.104778

2.0 3 0.54 0.105789 2 0.46 0.108082

∞ 3 0.105543 2 0.108335 4 0.15741



1
1

7

Table 4.5.: Likelihood of the Top-4 Selected k values based on RT-validity over the Adult-num and Lifesci datasets.

Dataset
ǫ

Top-1 Top-2 Top-3 Top-4

k Range k Likelihood Validity k Likelihood Validity k Likelihood Validity k Likelihood Validity

Adult-num 0.05 2 0.92 0.061897 3 0.05 0.088172 5 0.02 0.3036 4 0.01 0.04727

[2, 6] 0.1 2 0.87 0.059629 3 0.08 0.133769 4 0.04 0.072274 6 0.01 0.357226

0.3 2 0.89 0.062967 3 0.09 0.233581 4 0.01 0.059019 6 0.01 0.367765

0.5 2 0.84 0.071696 5 0.06 0.396922 3 0.05 0.110833 6 0.03 0.481508

1.0 2 0.81 0.062337 3 0.07 0.152268 4 0.07 0.339829 6 0.04 0.43002

2.0 2 0.82 0.072643 3 0.07 0.099015 5 0.05 0.372042 6 0.05 0.479522

∞ 2 0.090091 3 0.436318 6 0.464136 5 0.471094

Lifesci 0.05 7 0.4 0.820997 6 0.32 0.788941 5 0.11 0.762209 4 0.06 0.790328

[2, 7] 0.1 7 0.76 0.839943 6 0.22 0.882122 5 0.01 0.833441 4 0.01 1.044702

0.3 7 0.68 0.94046 6 0.21 0.936626 5 0.1 0.880875 3 0.01 0.822615

0.5 7 0.68 0.991935 6 0.23 0.978901 5 0.07 1.019253 4 0.02 1.020965

1.0 7 0.43 0.96385 6 0.29 0.977027 5 0.21 0.974339 2 0.05 0.350502

2.0 7 0.41 0.990653 6 0.38 0.998312 5 0.14 0.984321 4 0.05 0.949489

∞ 6 0.979265 5 1.036223 4 1.04051 7 1.055249



118

5. UNDERSTANDING THE SPARSE VECTOR TECHNIQUE

5.1 Introduction

Differential privacy (DP) is increasingly being considered the privacy notion of choice

for privacy-preserving data analysis and publishing in the research literature. In this chapter

we study the Sparse Vector Technique (SVT), a basic technique for satisfying DP, which

was first proposed by Dwork et al. [23] and later refined in [19] and [17], and used in [68–

72]. Compared with other techniques for satisfying DP, SVT has the unique quality that

one can output some query answers without apparently paying any privacy cost. More

specifically, in SVT one is given a sequence of queries and a certain threshold T , and

outputs a vector indicating whether each query answer is above or below T ; that is, the

output is a vector {⊥,⊤}ℓ, where ℓ is the number of queries answered, ⊤ indicates that the

corresponding query answer is above the threshold and ⊥ indicates below. SVT works by

first perturbing the threshold T and then comparing each perturbed individual query answer

against the noisy threshold. When one expects that the predominant majority of queries are

on one side, e.g., below the threshold, one can use SVT so that while each output of ⊤
(which we call a positive outcome) consumes some privacy budget, each output of ⊥
(negative outcome) consumes none. That is, with a fixed privacy budget and a given level

of noise added to each query answer, one can keep answering queries as long as the number

of ⊤’s does not exceed a pre-defined cutoff point.

This ability to avoid using any privacy budget for queries with negative outcomes is

very powerful for the interactive setting, where one answers a sequence of queries with-

out knowing ahead of the time what these queries are. Some well-known lower-bound

results [5, 20–22] suggest that “one cannot answer a linear, in the database size, number of

queries with small noise while preserving privacy” [23]. This limitation can be bypassed

using SVT, as in the iterative construction approach in [17, 19, 68]. In this approach, one



119

maintains a history of past queries and answers. For each new query, one first uses this

history to derive an answer for the query, and then uses SVT to check whether the error

of this derived answer is below a threshold. If it is, then one can use this derived answer

for this new query without consuming any privacy budget. Only when the error of this

derived answer is above the threshold, would one need to spend privacy budget accessing

the database to answer the query.

With the power of SVT come the subtlety of why it is private and the difficulty of ap-

plying it correctly. The version of SVT used in [17,68], which was abstracted into a generic

technique and described in Roth’s 2011 lecture notes [73], turned out to be not differentially

private as claimed. This error in [17,68] is arguably not critical because it is possible to use

a fixed version of SVT without affecting the main asymptotic results. Since 2014, several

variants of SVT were developed; they were used for frequent itemset mining [69], for fea-

ture selection in private classification [70], and for publishing high-dimensional data [71].

These usages are in the non-interactive setting, where all the queries are known ahead of

the time, and the goal is to find c queries that have large answers, e.g., finding the c most

frequent itemsets. Unfortunately, these variants do not satisfy DP, as pointed out in [74].

When using a correct version of SVT in these papers, one would get significantly worse

accuracy. Since these papers seek to improve the tradeoff between privacy and utility, the

results in them are thus invalid.

The fact that many usages of SVT are not private, even when proofs of their privacy

were given, is already known [74, 75]; however, we feel that what led to the erroneous

proofs were not clearly explained, and such an explanation can help researchers to avoid

similar errors in the future. One evidence of the continuing confusion over SVT appears

in [74], the first paper that identifies errors in some SVT variants. In [74], the SVT vari-

ants in [69–71] were modeled as a generalized private threshold testing algorithm (GPTT),

and a proof showing that GPTT does not satisfy ǫ-DP for any finite ǫ (which we use ∞-

DP to denote in this chapter) was given. However, as we show in this chapter, the proof

in [74] was incorrect. This error was not reported in the literature. One goal of this chapter



120

is to clearly explain why correct usages of SVT is private, and what are the most likely

confusions that caused the myriad of incorrect usages of SVT.

A second goal of this chapter is to improve the accuracy of SVT. A version of SVT

with a correct privacy proof appeared in Dwork and Roth’s 2014 book [76], and was used

in some recent work, e.g., [72]. In this chapter, we present a version of SVT that adds

less noise for the same level of privacy. In addition, we develop a novel technique that

optimizes the privacy budget allocation between that for perturbing the threshold and that

for perturbing the query answers, and experimentally demonstrate its effectiveness.

A third goal of this chapter is to point out that usage of SVT can be replaced by the

Exponential Mechanism (EM) [14] when used in the non-interactive setting. Most recent

usages of SVT in [69–72] are in the non-interactive setting, where the goal is to select up

to c queries with the highest answers. In this setting, one could also use the Exponential

Mechanism (EM) [14] c times to achieve the same objective, each time selecting the query

with the highest answer. Using analysis as well as experiments, we demonstrate that EM

outperforms SVT.

In summary, this chapter has the following novel contributions.

1. We propose a new version of SVT that provides better utility. We also introduce an

effective technique to improve the performance of SVT. These enhancements achieve

better utility than previous SVT algorithms and can be applied to improve utility in

the interactive setting.

2. While previous papers have pointed out most of the errors in usages of SVT, we use

a detailed privacy proof of SVT to identify the misunderstandings that likely caused

the different non-private versions. We also point out a previously unknown error in

the proof in [74] of the non-privacy of some SVT variants.

3. Through analysis and experiments on real datasets, we have evaluated the effects

of various SVT optimizations and compared them to EM. Our results show that for

non-interactive settings, one should use EM instead of SVT.



121

The rest of the chapter is organized as follows. We analyze six variants of SVT in Sec-

tion 5.2. In Section 5.3, we present our optimizations of SVT. We compare SVT with the

exponential mechanism in Section 5.4. The experimental results are shown in Section 5.5.

Related works are summarized in Section 5.6.

5.2 Variants of SVT

Figure 5.1.: An instantiation of the SVT proposed in this chapter

Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no

more than ∆, either a sequence of thresholds T = T1, T2, · · · or a single threshold T (see

footnote ∗), and c, the maximum number of queries to be answered with ⊤.

Output: A stream of answers a1, a2, · · · , where each ai ∈ {⊤,⊥} ∪ R and R denotes the

set of all real numbers.

Algorithm 17 An instantiation of the SVT proposed in this chapter.

1: Input: D,Q,∆,T = T1, T2, · · · , c.
2: ǫ1 = ǫ/2, ρ = Lap (∆/ǫ1)
3: ǫ2 = ǫ− ǫ1, count = 0

4: for each query qi ∈ Q do

5: νi = Lap (2c∆/ǫ2)
6: if qi(D) + νi ≥ Ti + ρ then

7: Output ai = ⊤
8: count = count + 1, Abort if count ≥ c.
9: else

10: Output ai = ⊥
11: end if

12: end for



122

Figure 5.2.: SVT in Dwork and Roth 2014 [76]

Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no

more than ∆, either a sequence of thresholds T = T1, T2, · · · or a single threshold T (see

footnote ∗), and c, the maximum number of queries to be answered with ⊤.

Output: A stream of answers a1, a2, · · · , where each ai ∈ {⊤,⊥} ∪ R and R denotes the

set of all real numbers.

Algorithm 18 SVT in Dwork and Roth 2014 [76].

1: Input: D,Q,∆, T, c.
2: ǫ1 = ǫ/2, ρ = Lap (c∆/ǫ1)
3: ǫ2 = ǫ− ǫ1, count = 0

4: for each query qi ∈ Q do

5: νi = Lap (2c∆/ǫ1)
6: if qi(D) + νi ≥ T + ρ then

7: Output ai = ⊤, ρ = Lap (c∆/ǫ2)
8: count = count + 1, Abort if count ≥ c.
9: else

10: Output ai = ⊥
11: end if

12: end for



123

Figure 5.3.: SVT in Roth’s 2011 Lecture Notes [73]

Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no

more than ∆, either a sequence of thresholds T = T1, T2, · · · or a single threshold T (see

footnote ∗), and c, the maximum number of queries to be answered with ⊤.

Output: A stream of answers a1, a2, · · · , where each ai ∈ {⊤,⊥} ∪ R and R denotes the

set of all real numbers.

Algorithm 19 SVT in Roth’s 2011 Lecture Notes [73].

1: Input: D,Q,∆, T, c.
2: ǫ1 = ǫ/2, ρ = Lap (∆/ǫ1),
3: ǫ2 = ǫ− ǫ1, count = 0

4: for each query qi ∈ Q do

5: νi = Lap (c∆/ǫ2)
6: if qi(D) + νi ≥ T + ρ then

7: Output ai = qi(D) + νi
8: count = count + 1, Abort if count ≥ c.
9: else

10: Output ai = ⊥
11: end if

12: end for



124

Figure 5.4.: SVT in Lee and Clifton 2014 [69]

Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no

more than ∆, either a sequence of thresholds T = T1, T2, · · · or a single threshold T (see

footnote ∗), and c, the maximum number of queries to be answered with ⊤.

Output: A stream of answers a1, a2, · · · , where each ai ∈ {⊤,⊥} ∪ R and R denotes the

set of all real numbers.

Algorithm 20 SVT in Lee and Clifton 2014 [69].

1: Input: D,Q,∆, T, c.
2: ǫ1 = ǫ/4, ρ = Lap (∆/ǫ1)
3: ǫ2 = ǫ− ǫ1, count = 0

4: for each query qi ∈ Q do

5: νi = Lap (∆/ǫ2)
6: if qi(D) + νi ≥ T + ρ then

7: Output ai = ⊤
8: count = count + 1, Abort if count ≥ c.
9: else

10: Output ai = ⊥
11: end if

12: end for



125

Figure 5.5.: SVT in Stoddard et al. 2014 [70]

Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no

more than ∆, either a sequence of thresholds T = T1, T2, · · · or a single threshold T (see

footnote ∗), and c, the maximum number of queries to be answered with ⊤.

Output: A stream of answers a1, a2, · · · , where each ai ∈ {⊤,⊥} ∪ R and R denotes the

set of all real numbers.

Algorithm 21 SVT in Stoddard et al. 2014 [70].

1: Input: D,Q,∆, T .

2: ǫ1 = ǫ/2, ρ = Lap (∆/ǫ1)
3: ǫ2 = ǫ− ǫ1
4: for each query qi ∈ Q do

5: νi = 0
6: if qi(D) + νi ≥ T + ρ then

7: Output ai = ⊤
8:

9: else

10: Output ai = ⊥
11: end if

12: end for



126

Figure 5.6.: SVT in Chen et al. 2015 [71]

Input: A private database D, a stream of queries Q = q1, q2, · · · each with sensitivity no

more than ∆, either a sequence of thresholds T = T1, T2, · · · or a single threshold T (see

footnote ∗), and c, the maximum number of queries to be answered with ⊤.

Output: A stream of answers a1, a2, · · · , where each ai ∈ {⊤,⊥} ∪ R and R denotes the

set of all real numbers.

Algorithm 22 SVT in Chen et al. 2015 [71].

1: Input: D,Q,∆,T = T1, T2, · · · .
2: ǫ1 = ǫ/2, ρ = Lap (∆/ǫ1)
3: ǫ2 = ǫ− ǫ1
4: for each query qi ∈ Q do

5: νi = Lap (∆/ǫ2)
6: if qi(D) + νi ≥ Ti + ρ then

7: Output ai = ⊤
8:

9: else

10: Output ai = ⊥
11: end if

12: end for



1
2

7

Alg. 17 Alg. 18 Alg. 19 Alg. 20 Alg. 21 Alg. 22

ǫ1 ǫ/2 ǫ/2 ǫ/2 ǫ/4 ǫ/2 ǫ/2
Scale of threshold noise ρ ∆/ǫ1 c∆/ǫ1 ∆/ǫ1 ∆/ǫ1 ∆/ǫ1 ∆/ǫ1

Reset ρ after each output of ⊤ (unnecessary) Yes

Scale of query noise νi 2c∆/ǫ2 2c∆/ǫ2 c∆/ǫ1 ∆/ǫ2 0 ∆/ǫ2
Outputting qi + νi instead of ⊤ (not private) Yes

Outputting unbounded ⊤’s (not private) Yes Yes

Privacy Property ǫ-DP ǫ-DP ∞-DP
(
1+6c
4

ǫ
)
-DP ∞-DP ∞-DP

Figure 5.7.: Differences among Algorithms 17-22.

∗ Algorithms 17 and 22 use a sequence of thresholds T = T1, T2, · · · , allowing different thresholds for different queries. The

other algorithms use the same threshold T for all queries. We point out that this difference is mostly syntactical. In fact, having

an SVT where the threshold always equals 0 suffices. Given a sequence of queries q1, q2, · · · , and a sequence of thresholds

T = T1, T2, · · · , we can define a new sequence of queries ri = qi − Ti, and apply the SVT to ri using 0 as the threshold to

obtain the same result. In this chapter, we decide to use thresholds to be consistent with the existing papers.



128

In this section, we analyze variants of SVT; six of them are listed in Figure 5.1 to

Figure 5.6. Alg. 17 is an instantiation of our proposed SVT. Alg. 18 is the version taken

from [76]. Alg. 19, 20, 21, and 22 are taken from [69–71, 73] respectively.

The table in Figure 5.7 summarizes the differences among these algorithms. Their

privacy properties are given in the last row of the table. Alg. 17 and 18 satisfy ǫ-DP, and

the rest of them do not. Alg. 19, 21, 22 do not satisfy ǫ-DP for any finite ǫ, which we denote

as∞-DP.

An important input parameter to any SVT algorithm is the number c, i.e., how many

positive outcomes one can answer before stopping. This number can be quite large. For

example, in privately finding top-c frequent itemsets [69], c ranges from 50 to 400. In using

selective stochastic gradient descent to train deep learning model privately [72], the number

of gradients to upload at each epoch ranges from 15 to 140,106.

To understand the differences between these variants, one can view SVT as having the

following four steps steps:

1. Generate the threshold noise ρ (Line 1 in each algorithm), which will be added to

the threshold during comparison between each query and the threshold (line 5). In

all except Alg. 18, ρ scales with ∆/ǫ1. In Alg. 18, however, ρ scales with c∆/ǫ1.

This extra factor of c in the noise scale causes Alg. 18 to be much less accurate than

Alg. 17. We show that including the factor of c is an effect of Alg. 18’s design to

resample ρ each time a query results in a positive outcome (Line 6). When keeping

ρ unchanged, ρ does not need to scale with c to achieve privacy.

2. For each query qi, generate noise νi to be added to the query (Line 4), which should

scale with 2c∆/ǫ2. In Alg. 20 and 22, νi scales with ∆/ǫ2. Removing the factor

of c from the magnitude of the noise will result in better utility; however, this is

done at the cost of being non-private. Alg. 21 adds no noise to qi at all, and is also

non-private.

3. Compare the perturbed query answer with the noisy threshold and output whether

it is above or below the threshold (Lines 5, 6, 9). Here Alg. 17 differs in that it



129

outputs the noisy query answer qi(D) + νi, instead of an indicator ⊤. This makes it

non-private.

4. Keep track of the number of ⊤’s in the output, and stop when one has outputted c

⊤’s (Line 7). This step is missed in Alg. 21 and 22. Without this limitation, one can

answer as many queries as there are with a fixed accuracy level for each query. If this

was to be private, then one obtains privacy kind of “for free”.

5.2.1 Privacy Proof for Proposed SVT

We now prove the privacy of Alg. 17. We break down the proof into two steps, to

make the proof easier to understand, and, more importantly, to enable us to point out what

confusions likely cause the different non-private variants of SVT to be proposed. In the

first step, we analyze the situation where the output is ⊥ℓ, a length-ℓ vector 〈⊥, · · · ,⊥〉,
indicating that all ℓ queries are tested to be below the threshold.

Lemma 4 Let A be Alg. 17. For any neighboring datasets D and D′, and any integer ℓ,

we have

Pr
[
A(D) = ⊥ℓ

]
≤ eǫ1Pr

[
A(D′) = ⊥ℓ

]
.

Proof We have

Pr
[
A(D) = ⊥ℓ

]
=

∫ ∞

−∞
Pr [ρ = z] fD(z) dz,

where fD(z) = Pr
[
A(D) = ⊥ℓ | ρ = z

]
(5.1)

=
∏

i∈{1,2,··· ,ℓ}
Pr [qi(D) + νi < Ti + z] . (5.2)

The probability of outputting ⊥ℓ over D is the summation (or integral) of the product

of Pr [ρ = z], the probability that the threshold noise equals z, and fD(z), the conditional

probability that ⊥ℓ is the output on D given that the threshold noise ρ is z. The step from

(5.1) to (5.2) is because, given D, T, the queries, and ρ, whether one query results in ⊥ or



130

not depends completely on the noise νi and is independent from whether any other query

results in ⊥.

The key observation underlying the SVT technique is that for any neighboring D,D′,

we have fD(z) ≤ fD′(z +∆). Suppose that we have qi(D) = qi(D
′)−∆ for each qi, then

the ratio fD(z)/fD′(z) is unbounded when |L| is unbounded. However, fD(z) is upper-

bounded by the case where the dataset is D′ but the noisy threshold is increased by ∆,

because for any query qi, |qi(D)− qi(D
′)| ≤ ∆. More precisely, we have

Pr [qi(D) + νi < Ti + z] = Pr [νi < Ti − qi(D) + z]

≤ Pr [νi < Ti +∆− qi(D
′) + z]

= Pr [qi(D
′) + νi < Ti + (z +∆)] . (5.3)

Because ρ = Lap (∆/ǫ1), by the property of the Laplace distribution, we have:

∀z, Pr [ρ = z] ≤ eǫ1 Pr [ρ = z +∆] , and thus

Pr
[
A(D) = ⊥ℓ

]
=

∫ ∞

−∞
Pr [ρ = z] fD(z) dz

≤
∫ ∞

−∞
eǫ1Pr [ρ = z +∆] fD′(z +∆) dz

= eǫ1
∫ ∞

−∞
Pr [ρ = z′] fD′(z′) dz′ let z′ = z +∆

= eǫ1Pr
[
A(D′) = ⊥ℓ

]
.



131

We can obtain a similar result when the output is ⊤ℓ instead of ⊥ℓ, i.e.,

Pr
[
A(D) = ⊤ℓ

]
≤ eǫ1Pr

[
A(D′) = ⊤ℓ

]
, because Pr [ρ = z] ≤ eǫ1 Pr [ρ = z −∆] and

gD(z) ≤ gD′(z −∆), where

gD(z) =
∏

i

Pr [qi(D) + νi ≥ Ti + z] . (5.4)

The fact that this bounding technique works both for positive outputs and negative

outputs likely contributes to the misunderstandings behind Alg. 21 and 22, which treat

positive and negative outputs exactly the same way. The error is that when the output

consists of both ⊥ and ⊤, one has to choose one side (either positive or negative) to be

bounded by the above technique, and cannot do both at the same time.

We also observe that the proof of Lemma 4 will go through if no noise is added to the

query answers, i.e., νi = 0, because Eq (5.3) holds even when νi = 0. It is likely because of

this observation that Alg. 21 adds no noise to query answers. However, when considering

outcomes that include both positive answers (⊤’s) and negative answers (⊥’s), one has to

add noises to the query answers, as we show below.

Theorem 5.2.1 Alg. 17 is ǫ-DP.

Proof Consider any output vector a ∈ {⊥,⊤}ℓ. Let a = 〈a1, · · · , aℓ〉, I⊤ = {i : ai =
⊤}, and I⊥ = {i : ai = ⊥}. Clearly, |I⊤| ≤ c. We have

Pr [A(D) = a] =

∫ ∞

−∞
Pr [ρ=z] fD(z) gD(z) dz, (5.5)

where fD(z) =
∏

i∈I⊥

Pr [qi(D)+νi<Ti+z]

and gD(z) =
∏

i∈I⊤

Pr [qi(D)+νi≥Ti+z] .



132

The following, together with ǫ = ǫ1 + ǫ2, prove this theorem:

Pr [ρ=z] ≤ eǫ1Pr [ρ=z +∆]

fD(z) ≤ fD′(z +∆) (5.6)

gD(z) ≤ eǫ2gD′(z +∆). (5.7)

Eq. (5.6) deals with all the negative outcomes. Eq. (5.7), which deals with posi-

tive outcomes, is ensured by several factors. At most c positive outcomes can occur,

|qi(D) − qi(D
′)| ≤ ∆, and the threshold for D′ is just ∆ higher that for D; thus adding

noise νi = Lap (2c∆/ǫ2) to each query ensures the desired bound. More precisely,

gD(z) =
∏

i∈I⊤

Pr [νi ≥ Ti+z−qi(D)]

≤
∏

i∈I⊤

Pr [νi ≥ Ti+z −∆− qi(D
′)] (5.8)

≤
∏

i∈I⊤

eǫ2/cPr [νi ≥ Ti+z−∆−qi(D′)+2∆] (5.9)

≤ eǫ2
∏

i∈I⊤

Pr [qi(D
′) + νi ≥ Ti + z +∆] (5.10)

= eǫ2gD′(z +∆).

Eq. (5.8) is because−qi(D) ≥−∆−qi(D
′), Eq. (5.9) is from the Laplace distribution’s

property, and Eq. (5.10) is because there are at most c positive outcomes, i.e., |I⊤| ≤ c.

We observe that while gD(z) ≤ gD′(z−∆) is true, replacing (5.7) with it does not help

us prove anything, because (5.6) uses (z+∆) and (5.7) uses (z−∆), and we cannot change

the integration variable in a consistent way.



133

5.2.2 Privacy Properties of Other Variants

Alg. 18 is taken from the differential privacy book published in 2014 [76]. It satisfies ǫ-DP.

It has two differences when compared with Alg. 17. First, ρ follows Lap (c∆/ǫ1) instead of

Lap (∆/ǫ1). This causes Alg. 18 to have significantly worse performance than Alg. 17, as

we show in Section 5.5. Second, Alg. 18 refreshes the noisy threshold T after each output

of ⊤. We note that making the threshold noise scale with c is necessary for privacy only

if one refreshes the threshold noise after each output of ⊤; however, such refreshing is

unnecessary.

Alg. 19 is taken from [73], which in turn was abstracted from the algorithms used

in [17, 68]. It has two differences from Alg. 17. First, νi follows Lap (c∆/ǫ2) instead

of Lap (2c∆/ǫ1); this is not enough for ǫ-DP (even though it suffices for 3ǫ
2

-DP). Second,

it actually outputs the noisy query answer instead of ⊤ for a query above the threshold.

This latter fact causes Alg. 19 to be not ǫ′-DP for any finite ǫ′. A proof for this appeared

in Appendix A of [75]; The error in the proof for Alg. 19’s privacy in [73] occurs in the

following steps:

Pr [A(D) = a]

=

∫ ∞

−∞
Pr [ρ=z] fD(z)

∏

i∈I⊤

Pr [qi(D)+νi≥T+z ∧ qi(D)+νi=ai] dz

=

∫ ∞

−∞
Pr [ρ=z] fD(z)

∏

i∈I⊤

Pr [qi(D)+νi = ai] dz (5.11)

≤
∫ ∞

−∞
eǫ1Pr [ρ=z +∆] fD′(z +∆) dz

∏

i∈I⊤

eǫ2/cPr [qi(D
′) + νi = ai]

The error occurs when going to (5.11), which is implicitly done in [73]. This step

removes the condition qi(D)+νi ≥ T+z.

Another way to look at this error is that outputting the positive query answers reveals

information about the noisy threshold, since the noisy threshold must be below the out-



134

putted query answer. Once information about the noisy threshold is leaked, the ability to

answer each negative query “for free” disappears.

Alg. 20, taken from [69], differs from Alg. 17 in the following ways. First, it sets ǫ1 to be

ǫ/4 instead of ǫ/2. This has no impact on the privacy. Second, νi does not scale with c.

As a result, Alg. 20 is only
(
1+6c
4

)
ǫ-DP in general. In [69], Alg. 20 is applied for finding

frequent itemsets, where the queries are counting queries and are monotonic. Because of

this monotonicity, the usage of Alg. 20 here is
(
1+3c
4

)
ǫ-DP. Theorem 5.3.1 can be applied

to Alg. 20 to establish this privacy property; we thus omit the proof of this.

Alg. 22, taken from [71], was motivated by the observation that the proof in [69] can go

through without stopping after encountering c positive outcomes, and removed this limita-

tion.

Alg 21, taken from [70], further used the observation that the derivation of Lemma 4 does

not depend on the addition of noises, and removed that part as well. The proofs for Alg. 20,

21, 22 in [69–71] roughly use the logic below.

∫ ∞

−∞
Pr [ρ=z] fD(z)gD(z)dz ≤ eǫ

∫ ∞

−∞
Pr [ρ=z] fD′(z)gD′(z)dz

because

∫ ∞

−∞
Pr [ρ=z] fD(z) dz ≤ eǫ/2

∫ ∞

−∞
Pr [ρ=z] fD′(z) dz

and

∫ ∞

−∞
Pr [ρ=z] gD(z) dz ≤ eǫ/2

∫ ∞

−∞
Pr [ρ=z] gD′(z),

This logic incorrectly assumes the following is true:

∫ ∞

−∞
p(z)f(z)g(z)dz =

∫ ∞

−∞
p(z)f(z)dz

∫ ∞

−∞
p(z)g(z)dz

A proof that Alg. 22 does not satisfy ǫ-DP for any finite ǫ is given in Appendix B of [75].

While these proofs also apply to Alg. 21, we give a much simpler proof of this below.



135

Theorem 5.2.2 Alg. 21 is not ǫ′-DP for any finite ǫ′.

Proof Consider a simple example, with T = 0, ∆ = 1, q = 〈q1, q2〉 such that q(D) =

〈0, 1〉 and q(D′) = 〈1, 0〉, and a = 〈⊥,⊤〉. Then by Eq (5.5), we have

Pr [A(D) = a] =

∫ ∞

−∞
Pr [ρ = z]Pr [0 < z]Pr [1 ≥ z] dz

=

∫ 1

0

Pr [ρ = z] dz > 0,

which is nonzero; and

Pr [A(D′) = a] =

∫ ∞

−∞
Pr [ρ = z′]Pr [1 < z′]Pr [0 ≥ z′] dz′,

which is zero. So the probability ratio
Pr[A(D)=a]
Pr[A(D′)=a]

=∞.

5.2.3 Error in Privacy Analysis of GPTT

In [74], the SVT variants in [69–71] were modeled as a generalized private threshold

testing algorithm (GPTT). In GPTT, the threshold T is perturbed using ρ = Lap (∆/ǫ1) and

each query answer is perturbed using Lap (∆/ǫ2) and there is no cutoff; thus GPTT can be

viewed as a generalization of Algorithm 22. When setting ǫ1 = ǫ2 = ǫ
2
, GPTT becomes

Alg. 22.

There is a constructive proof in [74] to show that GPTT is not ǫ′-DP for any finite ǫ′.

However, this proof is incorrect. This error is quite subtle. We discovered the error only

after observing that the technique of the proof can be applied to show that Alg. 17 (which

we have proved to be private) to be non-private.



136

Pr [GPTT(D) = a]

Pr [GPTT(D′) = a]
=

∫∞
−∞ Pr [ρ = z] (Fǫ2(z)−Fǫ2(z)Fǫ2(z−1))t dz∫∞

−∞ Pr [ρ = z] (Fǫ2(z−1)−Fǫ2(z)Fǫ2(z−1))t dz

where Fǫ(x) is the cumulative distribution function of Lap (1/ǫ) .

The goal of the proof is to show that the above is unbounded as t increases. A key

observation is that the ratio of the integrands of the two integrals is always larger than 1,

i.e.,

κ(z) =
Fǫ2(z)− Fǫ2(z)Fǫ2(z − 1)

Fǫ2(z − 1)− Fǫ2(z)Fǫ2(z − 1)
> 1

For example when z = 0, Fǫ2(0) = 1/2, and κ(0) =
1−Fǫ2 (−1)

Fǫ2(−1)
. However, when |z| goes to

∞, κ(z) goes to 1.

The proof tries to limit the integrals to be a finite interval. It denotes α =

Pr [GPTT(D′) = a]. Then choose parameter δ = |F−1
ǫ1 (α

4
)| and thus

α ≤ 2

∫ δ

−δ

Pr [ρ = z] (Fǫ2(z − 1)− Fǫ2(z)Fǫ2(z − 1))t dz.

Denote the minimum of κ(z) in the closed interval [−δ, δ] by κ. Then we have

Pr[GPTT(D)=a]
Pr[GPTT(D′)=a]

> κt

2
. They claimed that for any ǫ′ > 1 there exists a t to make the above

ratio larger than eǫ
′

.

The proof is incorrect because of dependency in the parameters. First, α is a function of

t; and when t increases, α decreases because the integrand above is positive and decreasing.

Second, δ depends on α, and when α decreases, δ increases. Thus when t increases, δ

increases. We write δ as δ(t) to make the dependency on t explicit. Third, κ, the minimum

value of κ(z) over the interval [−δ(t), δ(t)], decreases when t increases. That is, κ is also

dependent on t, denoted by κ(t), and decreases while t increases. It is not sure that there

exists such a t that
κ(t)t

2
> eǫ

′

for any ǫ′ > 1.

To demonstrate that the error in the proof is fundamental, we point out that following

the logic of that proof, one can prove that Alg. 17 is not ǫ′-DP for any finite ǫ′. We now

show such a “proof” that contradicts Lemma 4. Let A be Alg. 17, with c = 1. Consider



137

an example with ∆ = 1, T = 0, a sequence q of t queries such that q(D) = 0t and

q(D′) = 1t, and output vector a = ⊥t. Let

β = Pr

[
A(D) = ⊥ℓ

]
=

∫ ∞

−∞
Pr [ρ = z]

(
F ǫ

4
(z)
)t

dz

α = Pr

[
A(D′) = ⊥ℓ

]
=

∫ ∞

−∞
Pr [ρ = z]

(
F ǫ

4
(z − 1)

)t
dz,

where F ǫ
4
(x) is the cumulative distribution function of Lap

(
4

ǫ

)
.

Find a parameter δ such that
∫ δ

−δ
Pr [ρ = z] dz ≥ 1 − α

2
. Then

∫ δ

−δ
Pr [ρ = z]

(
F ǫ

4
(z − 1)

)t
dz ≥ α

2
. Let κ be the minimum value of

F ǫ
4
(z)

F ǫ
4
(z−1)

in

[−δ, δ]; it must be that κ > 1. Then

β >

∫ δ

−δ

Pr [ρ = z]
(
F ǫ

4
(z)
)t
dz ≥

∫ δ

−δ

Pr [ρ = z]
(
κF ǫ

4
(z − 1)

)t
dz

= κt

∫ δ

−δ

Pr [ρ = z]
(
F ǫ

4
(z − 1)

)t
dz ≥ κt

2
α.

Since κ > 1, one can choose a large enough t to make β
α
= κt

2
to be as large as needed.

We note that this contradicts Lemma 4. The contradiction shows that the proof logic used

in [74] is incorrect.

5.2.4 Other Variants

Some usages of SVT aim at satisfying (ǫ, δ)-DP [5], instead of ǫ-DP. These often exploit

the advanced composition theorem for DP [77], which states that applying k instances of

ǫ-DP algorithms satisfies (ǫ′, δ′)-DP, where ǫ′ =
√

2k ln(1/δ′)ǫ+kǫ(eǫ−1). In this chapter,

we limit our attention to SVT variants to those satisfying ǫ-DP, which are what have been

used in the data mining community [69–72].

The SVT used in [17, 19] has another difference from Alg. 19. In [17, 19], the goal

of using SVT is to determine whether the error of using an answer derived from past

queries/answers is below a threshold. This check takes the form of “if |q̃i − qi(D) + νi| ≥



138

T + ρ then output i,” where q̃i gives the estimated answer of a query obtained using past

queries/answers, and qi(D) gives the true answer. This is incorrect because the noise νi

should be outside the absolute value sign. In the usage in [17,19], the left hand of the com-

parison is always ≥ 0; thus whenever the output includes at least one ⊤, one immediately

knows that the threshold noise ρ≥−T . This leakage of ρ is somewhat similar to Alg. 19’s

leakage caused by outputting noisy query answers that are found to be above the noisy

threshold. This problem can be fixed by using “if |q̃i−qi(D)|+νi ≥ T +ρ then output i”

instead. By viewing ri = |q̃i− qi(D)| as the query to be answered; this becomes a standard

application of SVT.

5.3 Optimizing SVT

Alg. 17 can be viewed as allocating half of the privacy budget for perturbing the thresh-

old and half for perturbing the query answers. This allocation is somewhat arbitrary, and

other allocations are possible. Indeed, Alg. 20 uses a ratio of 1 : 3 instead of 1 : 1. In this

section, we study how to improve SVT by optimizing this allocation ratio and by introduc-

ing other techniques.

5.3.1 A Generalized SVT Algorithm

We present a generalized SVT algorithm in Alg. 23, which uses ǫ1 to perturb the thresh-

old and ǫ2 to perturb the query answers. Furthermore, to accommodate the situations where

one wants the noisy counts for positive queries, we also use ǫ3 to output query answers us-

ing the Laplace mechanism.

We now prove the privacy for Alg. 23; the proof requires only minor changes from the

proof of Theorem 5.2.1.

Theorem 5.3.1 Alg. 23 is (ǫ1 + ǫ2 + ǫ3)-DP.

Proof Alg. 23 can be divided into two phases, the first phase outputs a vector to mark

which query is above the threshold and the second phase uses the Laplace mechanism to



139

Algorithm 23 Our Proposed Standard SVT

1: Input: D,Q,∆,T = T1, T2, · · · , c and ǫ1, ǫ2 and ǫ3.
2: Output: A stream of answers a1, a2, · · ·
3: ρ = Lap

(
∆
ǫ1

)
, count = 0

4: for Each query qi ∈ Q do

5: νi = Lap
(

2c∆
ǫ2

)

6: if qi(D) + νi ≥ Ti + ρ then

7: if ǫ3 > 0 then

8: Output ai = qi(D) + Lap
(

c∆
ǫ3

)

9: else

10: Output ai = ⊤
11: end if

12: count = count + 1, Abort if count ≥ c.
13: else

14: Output ai = ⊥
15: end if

16: end for



140

output noisy counts for the queries that are found to be above the threshold in the first phase.

Since the second phase is ǫ3-DP, it suffices to show that the first phase is (ǫ1 + ǫ2)-DP. For

any output vector a ∈ {⊤,⊥}ℓ, we want to show

Pr [A(D) = a] =

∫ ∞

−∞
Pr [ρ=z] fD(z) gD(z) dz

≤
∫ ∞

−∞
eǫ1+ǫ2Pr [ρ=z +∆] fD′(z +∆) gD′(z +∆) dz

= eǫ1+ǫ2Pr [A(D′) = a] .

This holds because, similarly to the proof of Theorem 5.2.1,

Pr [ρ=z] ≤ eǫ1Pr [ρ=z +∆] ,

fD(z) =
∏

i∈I⊥

Pr [qi(D)+νi<Ti+z] ≤ fD′(z +∆),

gD(z) =
∏

i∈I⊤

Pr [qi(D)+νi≥Ti+z] ≤ eǫ2gD′(z +∆).

5.3.2 Optimizing Privacy Budget Allocation

In Alg. 23, one needs to decide how to divide up a total privacy budget ǫ into ǫ1, ǫ2, ǫ3.

We note that ǫ1+ ǫ2 is used for outputting the indicator vector, and ǫ3 is used for outputting

the noisy counts for queries found to be above the threshold; thus the ratio of (ǫ1 + ǫ2) : ǫ3

is determined by the domain needs and should be an input to the algorithm.

On the other hand, the ratio of ǫ1 : ǫ2 affects the accuracy of SVT. Most variants use

1 : 1, without a clear justification. To choose a ratio that can be justified, we observe that

this ratio affects the accuracy of the following comparison:



141

qi(D) + Lap

(
2c∆

ǫ2

)
≥ T + Lap

(
∆

ǫ1

)
.

To make this comparison as accurate as possible, we want to minimize the variance of

Lap
(

∆
ǫ1

)
− Lap

(
2c∆
ǫ2

)
, which is

2

(
∆

ǫ1

)2

+ 2

(
2c∆

ǫ2

)2

,

when ǫ1 + ǫ2 is fixed. This is minimized when

ǫ1 : ǫ2 = 1 : (2c)2/3. (5.12)

We will evaluate the improvement resulted from this optimization in Section 5.5.

5.3.3 SVT for Monotonic Queries

In some usages of SVT, the queries are monotonic. That is, when changing from D

to D′, all queries whose answers are different change in the same direction, i.e., there do

not exist qi, qj such that (qi(D) > qi(D
′)) ∧ (qj(D) < qj(D

′)). That is, we have either

∀i qi(D) ≥ qi(D
′), or ∀i qi(D′) ≥ qi(D). This is the case when using SVT for frequent

itemset mining in [69] with neighboring datasets defined as adding or removing one tuple.

For monotonic queries, adding Lap
(

c∆
ǫ2

)
instead of Lap

(
2c∆
ǫ2

)
suffices for privacy.



142

Theorem 5.3.2 Alg. 23 with νi = Lap
(

c∆
ǫ2

)
in line 3 satisfies (ǫ1 + ǫ2 + ǫ3)-DP when all

queries are monotonic.

Proof Because the second phase of Alg. 23 is still ǫ3-DP, we just need to show that for

any output vector a,

Pr [A(D) = a] =

∫ ∞

−∞
Pr [ρ=z] fD(z) gD(z) dz

≤ eǫ1+ǫ2Pr
[
A(D′) = a

]
,

where fD(z) =
∏

i∈I⊥
Pr [qi(D)+νi<Ti+z] ,

and gD(z) =
∏

i∈I⊤
Pr [qi(D)+νi≥Ti+z] .

It suffices to show that either Pr [ρ=z] fD(z)gD(z) ≤ eǫ1+ǫ2Pr [ρ=z] fD′(z)gD′(z), or

Pr [ρ=z] fD(z)gD(z) ≤ eǫ1+ǫ2Pr [ρ=z +∆] fD′(z +∆)gD′(z +∆).

First consider the case that qi(D) ≥ qi(D
′) for any query qi. In this case, we have

Pr [qi(D) + νi < Ti + z] ≤ Pr
[
qi(D

′) + νi < Ti + z
]
,

and thus fD(z) ≤ fD′(z). Note that qi(D)− qi(D
′) ≤ ∆. Therefore, gD(z) ≤ eǫ2gD′(z),

without increasing the noisy threshold by ∆, because Pr [qi(D) + νi ≥ Ti + z] ≤
Pr [qi(D

′) + νi ≥ Ti + z −∆] ≤ e
ǫ2
c Pr [qi(D

′) + νi ≥ Ti + z] since νi = Lap
(

c∆
ǫ2

)
.

Then consider the case in which qi(D) ≤ qi(D
′) for any query qi. We have the usual

fD(z) ≤ fD′(z +∆),

and Pr [ρ=z] ≤ eǫ1Pr [ρ=z +∆] ,

as in previous proofs. With the constraint qi(D) ≤ qi(D
′), using νi = Lap

(
c∆
ǫ2

)
suffices

to ensure that Pr [qi(D) + νi ≥ Ti + z] ≤ e
ǫ2
c Pr [qi(D

′) + νi ≥ Ti +∆+ z]. Thus gD(z) ≤
eǫ2gD′(z +∆) holds.

For monotonic queries, the optimization of privacy budget allocation (5.12) becomes

ǫ1 : ǫ2 = 1 : c2/3.



143

5.4 SVT versus EM

We now discuss the application of SVT in the non-interactive setting, where all the

queries are known ahead of the time. We note that most recent usages of SVT, e.g., [38,

69–72], are in the non-interactive setting. Furthermore, these applications of SVT aim at

selecting up to c queries with the highest answers. In [69], SVT is applied to find the c

most frequent itemsets, where the queries are the supports for the itemsets. In [71], the

goal of using SVT is to determine the structure of a Bayesian Network that preserves as

much information of the dataset as possible. To this end, they select attribute groups that

are highly correlated and create edges for such groups in the network. While the algorithm

in [71] takes the form of selecting attribute groups with score above a certain threshold,

the real goal is to select the groups with the highest scores. In [72], SVT is used to select

parameters to be shared when trying to learn neural-network models in a private fashion.

Once selected, noises are added to these parameters before they are shared. The selection

step aims at selecting the parameters with the highest scores.

EM or SVT. In non-interactive setting, one can also use the Exponential Mechanism

(EM) [14] to achieve the same objective of selecting the top c queries. More specifically,

one runs EM c times, each round with privacy budget ǫ
c
. The quality for each query is its

answer; thus each query is selected with probability proportion to exp
(

ǫ
2c∆

)
in the general

case and to exp
(

ǫ
c∆

)
in the monotonic case. After one query is selected, it is removed from

the pool of candidate queries for the remaining rounds.

An intriguing question is which of SVT and EM offers higher accuracy. Theorem 3.24

in [76] regarding the utility of SVT with c = ∆ = 1 states: For any sequence of k queries

f1, . . . , fk such that |{i < k : fi(D) ≥ T−α}| = 0 (i.e. the only query close to being above

threshold is possibly the last one), SVT is (α, β) accurate (meaning that with probability at

least 1 − β, all queries with answer below T − α result in ⊥ and all queries with answers

above T − α result in ⊤) for: αSVT = 8(log k + log(2/β))/ǫ.

In the case where the last query is at least T +α, being (α, β)-correct ensures that with

probability at least 1 − β, the correct selection is made. For the same setting, we say that



144

EM is (α, β)-correct if given k−1 queries with answer≤ T−α and one query with answer

≥ T + α, the correct selection is made with probability at least 1 − β. The probability of

selecting the query with answer ≥ T + α is at least eǫ(T+α)/2

(k−1)eǫ(T−α)/2+eǫ(T+α)/2 by the definition

of EM. To ensure this probability is at least 1− β,

αEM = (log(k − 1) + log((1− β)/β))/ǫ,

which is less than 1/8 of the αSVT, which suggests that EM is more accurate than SVT.

The above analysis relies on assuming that the first k − 1 queries are no more than

T − α. When that is not assumed, it is difficult analyze the utility of either SVT or EM.

Therefore, we will use experimental methods to compare SVT with EM.

SVT with Retraversal. We want to find the most optimized version of SVT to compare

with EM, and note that another interesting parameter that one can tune when applying SVT

is that of the threshold T . When T is high, the algorithm may select fewer than c queries

after traversing all queries. Since roughly each selected query consumes 1
c
’th of the privacy

budget, outputting few than c queries kind of “wasted” the remaining privacy budget. When

T is low, however, the algorithm may have selected c queries before encountering later

queries. No matter how large some of these later query answers are, they cannot be selected.

We observe that in the non-interactive setting, there is a way to deal with this chal-

lenge. One can use a higher threshold T , and when the algorithm runs out of queries before

finding c above-threshold queries, one can retraverse the list of queries that have not been

selected so far, until c queries are selected. However, it is unclear how to select the optimal

threshold. In our experiments, we consider SVT-ReTr, which increases the threshold T

by different multiples of the scale factor of the Laplace noise injected to each query, and

applies the retraversal technique.



145

5.5 Evaluation

In this section, we experimentally compare the different versions of the SVT algorithm,

including our proposed SVT algorithm with different privacy budget allocation methods.

We also compare the SVT variants applicable in the non-interactive setting with EM.

Utility Measures. Since the goal of applying SVT or EM is to select the top queries,

one standard metric is False negative rate (FNR), i.e., the fraction of true top-c queries that

are missed. When an algorithm outputs exactly c results, the FNR is the same as the False

Positive Rate, the fraction of incorrectly selected queries.

The FNR metric has some limitations. First, missing the highest query will be penalized

the same as missing the c-th one. Second, selecting a query with a very low score will be

penalized the same as selecting the (c + 1)-th query, whose score may be quite close to

the c’th query. We thus use another metric that we call Score Error Rate (SER), which

measures the ratio of “missed scores” by selecting S instead of the true top c queries,

denoted by Topc.

SER = 1.0− avgScore(S)

avgScore(Topc)
.

We present results for both FNR and SER and observe that the correlation between

them is quite stable.

Table 5.1.: Dataset characteristics

Dataset Number of Records Number of Items

BMS-POS 515,597 1,657

Kosarak 990,002 41,270

AOL 647,377 2,290,685

Zipf 1,000,000 10,000

Datasets. The performance of different algorithms would be affected by the distribution

of query scores, we thus want to evaluate the algorithms on several representative distribu-

tions. In the experiments, we use the item frequencies in three real datasets: BMS-POS,

Kosarak and AOL as representative distributions of query scores. In addition, we also use



146

Table 5.2.: Summary of algorithms

Settings Methods Description

Interactive
SVT-DPBook DPBook SVT (Alg. 18).

SVT-S Standard SVT (Alg. 23).

Non-interactive
SVT-ReTr Standard SVT with Retraversal.

EM Exponential Mechanism.

100 101 102

Rank, logscale
102

103

104

105

106

Su
pp

or
t, 
lo
gs

ca
le

AOL
BMS-POS
Kosarak
Zipf

Figure 5.8.: The distribution of 300 highest scores from experiment datasets.

the distribution inspired by the Zipf’s law, which states that given some corpus of natu-

ral language utterances, the frequency of any word is inversely proportional to its rank in

the frequency table. Similar phenomenon occurs in many other rankings unrelated to lan-

guage, such as the population ranks of cities in various countries, corporation sizes, income

rankings, ranks of number of people watching the same TV channel, and so on. In this dis-



147

tribution, the i’th query has a score proportional to 1
i
. The characteristics of these datasets

are summarized in Table 5.1, and the distribution of the 300 highest scores are shown in

Figure 5.8.

Evaluation Setup. We consider the following algorithms. SVT-DPBook is from Dwork

and Roth’s 2014 book [76] (Algorithm 18). SVT-S is our proposed standard SVT, i.e.,

Algorithm 23 without numerical outputs (ǫ3 = 0); and since the count query is monotonic,

we use the version for monotonic queries in Section 5.3.3. We consider four privacy budget

allocations, 1:1, 1:3, 1:c and 1:c2/3, where the last is what our analysis suggests for the

monotonic case. These algorithms can be applied in both the interactive and the non-

interactive setting.

For the non-interactive setting, we consider EM and SVT-ReTr, which is SVT with the

optimizations of increasing the threshold and retraversing through the queries (items) until

c of them are selected. We fix the privacy budget allocation to be 1 : c2/3 and vary the

amount we increase the threshold from 1D, 2D, . . ., to 5D, where 1D means adding one

standard deviation of the added noises to the threshold.

We vary c from 25 to 300, and each time uses the average score for the c’th query and

the c + 1’th query as the threshold. We show results for privacy budget ǫ = 0.1 in the

paper. We omit results for other ǫ values because of space limitation. We note that varying

c have a similar impact of varying ǫ, since the accuracy of each method is mostly affect

by ǫ
c
; therefore the impact of different ǫ can be seen from different c values. We run each

experiment 100 times, each time randomizing the order of items to be examined. We report

the average and standard deviation of SER. All algorithms are implemented in Python 2.7

and all the experiments are conducted on an Intel Core i7-3770 3.40GHz PC with 16GB

memory.

Results in the Interactive Setting. Figure 5.9, 5.10, 5.11 and 5.12 reports the results for

the algorithms that can be applied in the interactive setting. While it is clear that in some

settings (such as when c = 25) all methods are quite accurate, and in some other settings

all methods are very inaccurate (such as when c ≥ 100 for the Zipf dataset), in the settings

in between the two extremes, the differences between these methods are quite large.



148

SVT-DPBook performs the worst, followed by SVT-S-1:1, then by SVT-S-1:3, and

finally by SVT-S-1:c and SVT-S-1:c23. The differences among these algorithms can be

quite pronounced. For example, on the Kosarak dataset, with ǫ = 0.1, c = 50, SVT-

DPBook’s SER is 0.705, which means that the average support of selected items is only

around 30% of that for the true top-50 items, which we interpret to mean that the output is

meaningless. In contrast, all four SVT-S algorithms have SER less than 0.05, suggesting

high accuracy in the selection. SVT-DPBook’s poor performance is due to the fact that the

threshold is perturbed by a noise with scale as large as c∆/ǫ.

For the differences among the four budget allocation approaches, it appears that the

performance of 1 : c and 1 : c
2
3 are clearly better than the others; and their advantages over

the standard 1 : 1 allocation is quite pronounced. Which of 1 : c and 1 : c
2
3 is better is less

clear. In general, the former is better for larger c values, where the error is higher, and the

latter is better for smaller c values, where the error is lower. Also note that 1 : c results

in a significantly larger standard deviation. For these reasons, we interpret the results as

supporting the recommendation of using 1:c2/3 budget allocation.

Results in the Non-interactive Setting. Figure 5.13, 5.14, 5.15 and, 5.16 reports the

results for the algorithms that can be applied in the noninteractive setting. We observe that

EM clearly performs better than SVT-ReTr-1:c23, which performs essentially the same as

SVT-S-1:c23, which is the best algorithm for the interactive case, and is already much

better than SVT algorithms used in the literature. For example, for the AOL dataset with

c = 150, EM’s SER is 0.15, while SVT-S with 1 : c2/3 allocation has SER of 0.59, and

SVT-S with 1 : 1 allocation has SER of 0.99.

It is interesting to see that increasing the threshold can significantly improve the accu-

racy of SVT with Retraversal. However, the best threshold increment value depends on the

dataset and the number of items to be selected. For example, 5D works well for Zipf, and

for Kosarak and AOL when c is large, but works not as well for BMS and for Kosarak and

AOL when c is small. Since it is unclear how to select the best threshold increment value,

and even with the best threshold increment, SVT-ReTr performs no better than EM, our



149

experiments suggest that usage of SVT should be replaced by EM in the non-interactive

setting.

Table 5.3, 5.4, 5.5,5.6 gives the numerical values for SER.

SVT-DPBook
SVT-S-1:1

SVT-S-1:3 SVT-S-1:c
SVT-S-1:c23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(a) BMS-POS, SER (b) BMS-POS, FNR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(c) Kosarak, SER (d) Kosarak, FNR

Figure 5.9.: Comparison of interactive approaches: SVT-DPBook and SVT-S with different

budget allocation, ǫ = 0.1, BMS-POS and Kosarak datasets. x-axis: top-c



150

SVT-DPBook
SVT-S-1:1

SVT-S-1:3 SVT-S-1:c
SVT-S-1:c23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(e) AOL, SER (f) AOL, FNR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(g) Zipf Synthe, SER (h) Zipf Synthe, FNR

Figure 5.10.: Comparison of interactive approaches: SVT-DPBook and SVT-S with differ-

ent budget allocation, ǫ = 0.1, AOL and Zipf datasets. x-axis: top-c



151

SVT-DPBook
SVT-S-1:1

SVT-S-1:3 SVT-S-1:c
SVT-S-1:c23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(a) BMS-POS, SER (b) BMS-POS, FNR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(c) Kosarak, SER (d) Kosarak, FNR

Figure 5.11.: Comparison of interactive approaches: SVT-DPBook and SVT-S with differ-

ent budget allocation, ǫ = 0.5, BMS-POS and Kosarak datasets. x-axis: top-c



152

SVT-DPBook
SVT-S-1:1

SVT-S-1:3 SVT-S-1:c
SVT-S-1:c23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(e) AOL, SER (f) AOL, FNR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(g) Zipf Synthe, SER (h) Zipf Synthe, FNR

Figure 5.12.: Comparison of interactive approaches: SVT-DPBook and SVT-S with differ-

ent budget allocation, ǫ = 0.5, AOL and Zipf datasets. x-axis: top-c



153

SVT-S-1:c23
SVT-ReTr-1:c23-1D

SVT-ReTr-1:c23-2D
SVT-ReTr-1:c23-3D

SVT-ReTr-1:c23-4D
SVT-ReTr-1:c23-5D

EM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(a) BMS-POS, SER (b) BMS-POS, FNR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

Figure 5.13.: Comparison of non-interactive approaches: EM and SVT-ReTr with different

thresholds, ǫ = 0.1, BMS-POS and Kosarak datasets. x-axis: top-c



154

SVT-S-1:c23
SVT-ReTr-1:c23-1D

SVT-ReTr-1:c23-2D
SVT-ReTr-1:c23-3D

SVT-ReTr-1:c23-4D
SVT-ReTr-1:c23-5D

EM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(e) AOL, SER (f) AOL, FNR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(g) Zipf Synthe, SER (h) Zipf Synthe, FNR

Figure 5.14.: Comparison of non-interactive approaches: EM and SVT-ReTr with different

thresholds, ǫ = 0.1, AOL and Zipf datasets. x-axis: top-c



155

SVT-S-1:c23
SVT-ReTr-1:c23-1D

SVT-ReTr-1:c23-2D
SVT-ReTr-1:c23-3D

SVT-ReTr-1:c23-4D
SVT-ReTr-1:c23-5D

EM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(a) BMS-POS, SER (b) BMS-POS, FNR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

Figure 5.15.: Comparison of non-interactive approaches: EM and SVT-ReTr with different

thresholds, ǫ = 0.5, BMS-POS and Kosarak datasets. x-axis: top-c



156

SVT-S-1:c23
SVT-ReTr-1:c23-1D

SVT-ReTr-1:c23-2D
SVT-ReTr-1:c23-3D

SVT-ReTr-1:c23-4D
SVT-ReTr-1:c23-5D

EM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(e) AOL, SER (f) AOL, FNR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

S
E

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

25 50 75 100 125 150 175 200 225 250 275 300

F
N

R

(g) Zipf Synthe, SER (h) Zipf Synthe, FNR

Figure 5.16.: Comparison of non-interactive approaches: EM and SVT-ReTr with different

thresholds, ǫ = 0.5, AOL and Zipf datasets. x-axis: top-c



1
5

7

Table 5.3.: Comparison of SVT-DPBook, SVT-S, SVT-ReTr and EM on selecting top-c queries in terms of SER when ǫ = 0.1
on datasets BMS-POS and Kosarak. For each row, the best SER value in the non-interactive setting is marked by italics and

the best SER value in the interactive setting is marked by boldface. Each cell gives the average value of SER with standard

deviation.

Dataset

c

Interactive Setting Non-interactive Setting

Budget SVT- SVT-S SVT-ReTr-1 : c2/3
EM

DPBook 1 : 1 1 : 3 1 : c 1 : c2/3 1D 2D 3D

BMS-
50 0.0720.051 0.0170.027 0.0160.025 0.0300.040 0.0170.029 0 .0010 .001 0.0040.007 0.0170.010 0 .0010 .001
100 0.5610.085 0.2550.078 0.0960.047 0.1010.097 0.0630.055 0.0100.019 0 .0070 .003 0.0180.011 0 .0070 .003

POS 150 0.6690.073 0.5050.079 0.3410.080 0.2890.221 0.2200.083 0.0490.012 0 .0470 .007 0.0560.013 0.0480.006

ǫ = 0.1
200 0.6820.071 0.6280.069 0.5620.070 0.5080.223 0.4780.101 0.1730.067 0 .0910 .007 0.0920.007 0.0920.008
300 0.6210.069 0.6310.065 0.6070.064 0.5350.225 0.5810.083 0.2240.092 0 .1340 .008 0.1380.007 0.1410.009

Kosarak

50 0.7050.142 0.0470.061 0.0320.062 0.0330.063 0.0250.049 0.0090.034 0.0010.001 0.0050.005 0 .0000 .000
100 0.9680.043 0.8960.080 0.6400.142 0.3730.247 0.3980.144 0.1030.098 0.0380.009 0.0400.008 0 .0330 .005
150 0.9720.037 0.9560.046 0.9040.075 0.7720.208 0.8180.108 0.6270.134 0.2760.141 0.1410.008 0 .1390 .007

ǫ = 0.1
200 0.9740.037 0.9670.044 0.9600.034 0.8650.177 0.9420.045 0.8330.107 0.6560.121 0.2650.083 0 .2190 .008
300 0.9710.040 0.9710.034 0.9610.039 0.9450.065 0.9500.052 0.9020.079 0.8010.099 0.5180.130 0 .3150 .007



1
5

8

Table 5.4.: Comparison of SVT-DPBook, SVT-S, SVT-ReTr and EM on selecting top-c queries in terms of SER when ǫ = 0.1
on datasets AOL and Zipf. For each row, the best SER value in the non-interactive setting is marked by italics and the best

SER value in the interactive setting is marked by boldface. Each cell gives the average value of SER with standard deviation.

Dataset

c

Interactive Setting Non-interactive Setting

Budget SVT- SVT-S SVT-ReTr-1 : c2/3
EM

DPBook 1 : 1 1 : 3 1 : c 1 : c2/3 1D 2D 3D

AOL

50 0.2250.062 0.0160.016 0.0130.015 0.0230.023 0.0110.013 0.0020.005 0.0030.007 0.0120.011 0 .0010 .001
100 0.9930.008 0.7390.046 0.0720.029 0.0930.093 0.0250.017 0.0070.006 0.0070.010 0.0680.034 0 .0050 .002
150 0.9980.003 0.9860.009 0.9020.028 0.5320.215 0.5870.075 0.3460.082 0.1780.033 0.1730.014 0 .1530 .015

ǫ = 0.1
200 0.9990.002 0.9960.005 0.9870.009 0.9240.090 0.9550.019 0.8940.031 0.7870.050 0.5910.073 0 .4120 .014
300 0.9990.002 0.9980.003 0.9970.003 0.9860.033 0.9950.005 0.9900.006 0.9790.011 0.9550.020 0 .6830 .014

Zipf

50 0.9570.054 0.9170.076 0.8320.103 0.6650.269 0.7110.151 0.4230.171 0.1640.118 0.0900.016 0 .0820 .011
100 0.9690.029 0.9600.053 0.9550.041 0.9240.116 0.9440.057 0.8760.083 0.7500.123 0.4040.118 0 .2620 .015
150 0.9520.053 0.9520.050 0.9580.035 0.9220.094 0.9360.067 0.8960.072 0.7650.108 0.4680.112 0 .3550 .017

ǫ = 0.1
200 0.9470.049 0.9460.052 0.9480.038 0.8980.128 0.9400.047 0.8870.077 0.7690.105 0.4680.087 0 .4120 .016
300 0.9370.048 0.9390.038 0.9330.050 0.8740.113 0.9280.045 0.8670.077 0.7190.108 0.4850.040 0 .4810 .020



1
5

9

Table 5.5.: Comparison of SVT-DPBook, SVT-S, SVT-ReTr and EM on selecting top-c queries in terms of SER when ǫ = 0.5
on datasets BMS-POS and Kosarak. For each row, the best SER value in the non-interactive setting is marked by italics and

the best SER value in the interactive setting is marked by boldface. Each cell gives the average value of SER with standard

deviation.

Dataset

c

Interactive Setting Non-interactive Setting

Budget SVT- SVT-S SVT-ReTr-1 : c2/3
EM

DPBook 1 : 1 1 : 3 1 : c 1 : c2/3 1D 2D 3D

BMS-
50 0.0090.011 0.0080.017 0.0060.016 0.0070.017 0.0040.006 0 .0000 .002 0.0020.003 0.0050.005 0 .0000 .000
100 0.0400.034 0.0110.012 0.0090.017 0.0130.021 0.0080.016 0 .0000 .001 0.0000.001 0.0030.003 0 .0000 .000

POS 150 0.1130.047 0.0120.014 0.0070.005 0.0170.019 0.0080.008 0 .0010 .001 0.0020.002 0.0140.006 0 .0010 .000

ǫ = 0.5
200 0.3690.067 0.1230.051 0.0400.023 0.0480.057 0.0240.031 0 .0030 .001 0 .0030 .001 0.0090.005 0 .0030 .001
300 0.5160.068 0.4290.068 0.3120.061 0.2840.224 0.2370.069 0.0340.028 0 .0210 .002 0.0220.003 0.0220.002

Kosarak

50 0.0200.044 0.0210.053 0.0020.005 0.0060.028 0.0010.003 0.0020.012 0 .0000 .001 0 .0000 .001 0 .0000 .000
100 0.1400.104 0.0360.056 0.0180.032 0.0390.082 0.0250.052 0.0020.018 0 .0000 .001 0.0040.003 0 .0000 .000
150 0.6400.126 0.0420.050 0.0080.013 0.0620.109 0.0150.036 0 .0010 .000 0.0030.003 0.0180.007 0 .0010 .000

ǫ = 0.5
200 0.8690.075 0.4300.112 0.0850.061 0.0770.102 0.0370.045 0 .0040 .003 0 .0040 .002 0.0180.007 0 .0040 .001
300 0.9360.051 0.8450.077 0.6280.095 0.4230.270 0.4120.123 0.1080.086 0 .0470 .004 0.0490.003 0.0480.004



1
6

0

Table 5.6.: Comparison of SVT-DPBook, SVT-S, SVT-ReTr and EM on selecting top-c queries in terms of SER when ǫ = 0.5
on datasets AOL and Zipf. For each row, the best SER value in the non-interactive setting is marked by italics and the best SER

value in the interactive setting is marked by boldface. Each cell gives the average value of SER with standard deviation.

Dataset

c

Interactive Setting Non-interactive Setting

Budget SVT- SVT-S SVT-ReTr-1 : c2/3
EM

DPBook 1 : 1 1 : 3 1 : c 1 : c2/3 1D 2D 3D

AOL

50 0.0080.010 0.0050.009 0.0050.009 0.0060.011 0.0040.005 0.0010.004 0.0020.004 0.0040.006 0 .0000 .000
100 0.0170.015 0.0100.009 0.0070.007 0.0220.018 0.0090.009 0 .0000 .001 0.0030.005 0.0200.010 0 .0000 .000
150 0.1360.029 0.0130.010 0.0080.008 0.0200.021 0.0070.007 0 .0000 .000 0.0010.002 0.0140.009 0 .0000 .000

ǫ = 0.5
200 0.8000.032 0.0160.009 0.0080.005 0.0320.031 0.0080.007 0 .0010 .000 0.0030.004 0.0230.010 0 .0010 .000
300 0.9880.007 0.7480.031 0.0980.017 0.0740.070 0.0180.012 0 .0050 .002 0.0060.003 0.0360.012 0 .0050 .001

Zipf

50 0.4260.142 0.0340.059 0.0110.019 0.0220.042 0.0200.043 0.0040.032 0.0020.003 0.0090.007 0 .0000 .000
100 0.9190.061 0.8080.093 0.5710.111 0.3530.260 0.3610.138 0.0900.068 0.0350.006 0.0360.006 0 .0330 .005
150 0.9350.053 0.9160.052 0.8640.072 0.7450.224 0.7840.108 0.5700.143 0.2320.126 0.1140.007 0 .1110 .007

ǫ = 0.5
200 0.9320.054 0.9190.050 0.8960.065 0.8480.156 0.8630.077 0.7340.111 0.4350.134 0.1730.024 0 .1700 .009
300 0.9030.067 0.9120.052 0.8990.059 0.8320.178 0.9070.058 0.7670.098 0.4840.127 0 .2470 .018 0 .2470 .011



161

5.6 Related Work

SVT was introduced by Dwork et al. [23], and improved by Roth and Roughgarden [19]

and by Hardt and Rothblum [17]. These usages are in an interactive setting. An early

description of SVT as a stand-alone technique appeared in Roth’s 2011 lecture notes [73],

which is Alg. 19 in this chapter, and is in fact ∞-DP. The algorithms in [17, 19] also has

another difference, as discussed in Section 5.2.4. Another version of SVT appeared in the

2014 book [76], which is Alg. 18. This version is used in some papers, e.g., [72]. We

show that it is possible to add less noise and obtain higher accuracy for the same privacy

parameter.

Lee and Clifton [69] used a variant of SVT (see Algorithm 20) to find itemsets whose

support is above the threshold. Stoddard et al. [70] proposed another variant (see Algorithm

21) for private feature selection for classification to pick out the set of features with scores

greater than the perturbed threshold. Chen et al. [71] employed yet another variant of

SVT (see Algorithm 22) to return attribute pairs with mutual information greater than the

corresponding noisy threshold. These usages are not private. Some of these errors were

pointed in [74], in which a generalized private threshold testing algorithm (GPTT) that

attempts to model the SVT variants in [69–71] was introduced. The authors showed that

GPTT did not satisfy ǫ′-DP for any finite ǫ′. But there is an error in the proof, as shown

in Section 5.2.3. Independent from our work, Zhang et al. [75] presented two proofs that

the variant of SVT violates DP without discussing the cause of the errors. Also presented

in [75] is a special case of our proposed Alg. 1 for counting queries. To our knowledge, the

general version of our improved SVT (Alg. 17 and Alg. 23), the techniques of optimizing

budget allocation, the technique of using re-traversal to improve SVT, and the comparison

of SVT and EM are new in our work.



162

6. SUMMARY

In this dissertation, we considered the problem of differentially private data publishing for

data analysis.

First, we have introduced PrivPfC, a novel framework for publishing data for classifica-

tion under differential privacy. As a core part of PrivPfC, we have introduced a novel qual-

ity function that enables the selection of a good “grid” for publishing noisy histograms. We

have also introduced a new technique for privately selecting of most relevant features for

classification, which enables PrivPfC to scale to higher-dimension datasets. We have con-

ducted extensive experiments on four real datasets, and the results show that our approach

greatly outperforms several other state-of-the-art methods for private data publishing as

well as private classification.

Second, we have improved the state-of-the-art on differentially private k-means cluster-

ing in several ways. We have introduced the EUGkM approach and improved the DPLloyd

method based on a systemized error analysis. Extensive analysis and experimental com-

parison improves the understanding of the effectiveness of algorithms for private k-means

clustering. We have introduced the novel concept of hybrid approach to differentially pri-

vate data analysis, which is so far the best approach to k-means clustering, and may prove

useful in other analysis tasks as well.

Third, we have introduced a new version of SVT that provides better utility. We also

introduce an effective technique to improve the performance of SVT by optimizing the

distribution of privacy budget. These enhancements achieve better utility than the state

of the art SVT and can be applied to improve utility in the interactive setting. We have

also explained the misunderstandings and errors in a number of papers that use or analyze

SVT; and believe that these will help clarify the misunderstandings regarding SVT and help

avoid similar errors in the future. We have also shown that in the non-interactive setting,

EM should be preferred over SVT.



REFERENCES



163

REFERENCES

[1] L. Sweeney, “k-anonymity: A model for protecting privacy,” International Journal of
Uncertainty, Fuzziness, and Knowledge-Based Systems, vol. 10, no. 5, pp. 557–570,
2002.

[2] M. Barbaro and J. Tom Zeller, “A face is exposed for AOL searcher no. 4417749,”
New York Times, August 2006.

[3] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,”
in Proceedings of the 2008 IEEE Symposium on Security and Privacy, 2008, pp. 111–
125.

[4] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pear-
son, D. A. Stephan, S. F. Nelson, and D. W. Craig, “Resolving individuals contributing
trace amounts of DNA to highly complex mixtures using high-density SNP genotyp-
ing microarrays,” PLoS Genet, vol. 4, no. 8, p. e1000167, 2008.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in
private data analysis,” in Proceedings of the 3rd Conference on Theory of Cryptogra-
phy, 2006, pp. 265–284.

[6] C. Dwork, “Differential privacy,” in Proceedings of the 33rd International Conference
on Automata, Languages and Programming, 2006, pp. 1–12.

[7] F. McSherry, “Privacy integrated queries: An extensible platform for privacy-
preserving data analysis,” in Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, 2009, pp. 19–30.

[8] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regression,” in Ad-
vances in Neural Information Processing Systems, 2008, pp. 289–296.

[9] A. Friedman and A. Schuster, “Data mining with differential privacy,” in Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2010, pp. 493–502.

[10] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private empirical
risk minimization,” Journal of Machine Learning Research, vol. 12, pp. 1069–1109,
2011.

[11] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett, “Functional mechanism: Re-
gression analysis under differential privacy,” Proceedings of the VLDB Endowment,
vol. 5, no. 11, pp. 1364–1375, 2012.

[12] J. Zhang, X. Xiao, Y. Yang, Z. Zhang, and M. Winslett, “Privgene: Differentially
private model fitting using genetic algorithms,” in Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data, 2013, pp. 665–676.



164

[13] D. Kifer and A. Machanavajjhala, “No free lunch in data privacy,” in Proceedings of
the 2011 ACM SIGMOD International Conference on Management of Data, 2011,
pp. 193–204.

[14] F. McSherry and K. Talwar, “Mechanism design via differential privacy,” in Proceed-
ings of the 48th Annual IEEE Symposium on Foundations of Computer Science, 2007,
pp. 94–103.

[15] S. L. Warner, “Randomized response: A survey technique for eliminating evasive
answer bias,” Journal of the American Statistical Association, vol. 60, no. 309, pp.
63–69, 1965.

[16] A. Blum, C. Dwork, F. McSherry, and K. Nissim, “Practical privacy: The SuLQ
framework,” in Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, 2005, pp. 128–138.

[17] M. Hardt and G. N. Rothblum, “A multiplicative weights mechanism for privacy-
preserving data analysis,” in Proceedings of the IEEE 51st Annual Symposium on
Foundations of Computer Science, 2010, pp. 61–70.

[18] M. Hardt and K. Talwar, “On the geometry of differential privacy,” in Proceedings of
the 42nd ACM Symposium on Theory of Computing, 2010, pp. 705–714.

[19] A. Roth and T. Roughgarden, “Interactive privacy via the median mechanism,” in
Proceedings of the 42nd ACM symposium on Theory of computing, 2010, pp. 765–
774.

[20] I. Dinur and K. Nissim, “Revealing information while preserving privacy,” in Pro-
ceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, 2003, pp. 202–210.

[21] C. Dwork, F. McSherry, and K. Talwar, “The price of privacy and the limits of LP
decoding,” in Proceedings of the 39th Annual ACM Symposium on Theory of Com-
puting, 2007, pp. 85–94.

[22] C. Dwork and S. Yekhanin, “New efficient attacks on statistical disclosure control
mechanisms,” in Proceedings of the 28th Annual Conference on Cryptology: Ad-
vances in Cryptology, 2008, pp. 469–480.

[23] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. Vadhan, “On the complex-
ity of differentially private data release: Efficient algorithms and hardness results,”
in Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing,
2009, pp. 381–390.

[24] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 129–136, 1982.

[25] K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth sensitivity and sampling in
private data analysis,” in Proceedings of the 39th Annual ACM Symposium on Theory
of Computing, 2007, pp. 75–84.

[26] B. I. P. Rubinstein, P. L. Bartlett, L. Huang, and N. Taf, “Protecting respondent’s
privacy in microdata release,” Journal of Privacy and Confidentiality, vol. 4, no. 1,
pp. 65–100, 2012.



165

[27] F. McSherry, “Privacy integrated queries (PINQ) infrastructure,” 2009, https://www.
microsoft.com/en-us/download/details.aspx?id=52363.

[28] J. M. Peña, J. A. Lozano, and P. Larrañaga, “An empirical comparison of four ini-
tialization methods for the k-means algorithm,” Pattern Recognition Letters, vol. 20,
no. 10, pp. 1027–1040, 1999.

[29] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. E. Culler, “GUPT: Privacy preserving
data analysis made easy,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, 2012, pp. 349–360.

[30] C. Dwork, “A firm foundation for private data analysis,” Communications of the ACM,
vol. 54, no. 1, pp. 86–95, 2011.

[31] W. H. Qardaji, W. Yang, and N. Li, “Differentially private grids for geospatial data,” in
Proceedings of the 29th IEEE International Conference on Data Engineering, 2013,
pp. 757–768.

[32] D. Su, J. Cao, N. Li, E. Bertino, and H. Jin, “Differentially private k-means cluster-
ing,” in Proceedings of the 6th ACM CODASPY Conference on Data and Application
Security and Privacy, 2016, pp. 26–37.

[33] J. Lei, “Differentially private m-estimators,” in Proceedings of the 24th International
Conference on Neural Information Processing Systems, 2011, pp. 361–369.

[34] N. Mohammed, R. Chen, B. C. M. Fung, and P. S. Yu, “Differentially private data
release for data mining,” in Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2011, pp. 493–501.

[35] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Privacy in phar-
macogenetics: An end-to-end case study of personalized Warfarin dosing,” in Pro-
ceedings of the 23rd USENIX Security Symposium, 2014, pp. 17–32.

[36] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit con-
fidence information and basic countermeasures,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, 2015, pp. 1322–
1333.

[37] G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright, “A practical differentially
private random decision tree classifier,” Transactions on Data Privacy, vol. 5, pp.
273–295, 2012.

[38] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao, “Privbayes: Pri-
vate data release via Bayesian networks,” in Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, 2014, pp. 1423–1434.

[39] S. A. Vinterbo, “Differentially private projected histograms: Construction and use for
prediction,” in Proceedings of the 2012 European Conference on Machine Learning
and Knowledge Discovery in Databases, 2012, pp. 19–34.

[40] M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen, and D. Zhang, “Principled evalua-
tion of differentially private algorithms using DPBench,” in Proceedings of the 2016
ACM SIGMOD International Conference on Management of Data, 2016, pp. 139–
154.



166

[41] W. Qardaji, W. Yang, and N. Li, “Understanding hierarchical methods for differen-
tially private histograms,” Proceedings of the VLDB Endowment, vol. 6, no. 14, pp.
1954–1965, 2013.

[42] R. J. Bayardo and R. Agrawal, “Data privacy through optimal k-anonymization,” in
Proceedings of the 21st International Conference on Data Engineering, 2005, pp.
217–228.

[43] K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Incognito: Efficient full-domain k-
anonymity,” in Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, 2005, pp. 49–60.

[44] ——, “Mondrian multidimensional k-anonymity,” in Proceedings of the 22nd Inter-
national Conference on Data Engineering, 2006, pp. 25–35.

[45] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei, “Minimality attack in privacy
preserving data publishing,” in Proceedings of the 33rd International Conference on
Very Large Data Bases, 2007, pp. 543–554.

[46] G. Cormode, D. Srivastava, N. Li, and T. Li, “Minimizing minimality and maximizing
utility: Analyzing method-based attacks on anonymized data,” PVLDB, vol. 3, no. 1-
2, pp. 1045–1056, Sep. 2010.

[47] V. S. Iyengar, “Transforming data to satisfy privacy constraints,” in Proceedings of
the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2002, pp. 279–288.

[48] B. C. M. Fung, K. Wang, and P. S. Yu, “Top-down specialization for information and
privacy preservation,” in Proceedings of the 21st International Conference on Data
Engineering, 2005, pp. 205–216.

[49] L. Devroye, L. Györfi, and G. Lugosi, A probabilistic theory of pattern recognition.
Springer, 1996.

[50] S. Kotz, T. Kozubowski, and K. Podgorski, The Laplace Distribution and general-
izations: A revisit with applications to communications, economics, engineering, and
finance. Springer, 2001.

[51] W. Qardaji, W. Yang, and N. Li, “Differentially private grids for geospatial data,” in
Proceedings of the 2013 IEEE International Conference on Data Engineering, 2013,
pp. 757–768.

[52] A. Asuncion and D. Newman, “UCI machine learning repository,” 2010, http://
archive.ics.uci.edu/ml/.

[53] S. Ruggles, J. T. Alexander, K. Genadek, R. Goeken, M. B. Schroeder, and M. Sobek,
“Integrated Public Use Microdata Series: Version 5.0 [machine-readable database],”
https://www.ipums.org/.

[54] T. Therneau, B. Atkinson, and B. Ripley, “Rpart: Recursive partitioning and regres-
sion trees,” http://cran.r-project.org/web/packages/rpart/index.html.

[55] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011,
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.



167

[56] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[57] Y. Yang and J. O. Pedersen, “A comparative study on feature selection in text catego-
rization,” in Proceedings of the 14th International Conference on Machine Learning,
1997, pp. 412–420.

[58] X. Geng, T.-Y. Liu, T. Qin, and H. Li, “Feature selection for ranking,” in Proceedings
of the 30th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 2007, pp. 407–414.

[59] A. Smith, “Privacy-preserving statistical estimation with optimal convergence rates,”
in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, 2011,
pp. 813–822.

[60] P. Mohan, “GUPT: A platform for privacy-preserving data mining,” 2012, https://
github.com/prashmohan/GUPT.

[61] P. Fränti, “Clustering datasets,” http://cs.joensuu.fi/sipu/datasets/.

[62] U. S. Census, “Topologically integrated geographic encoding and referencing,”
http://www.census.gov/geo/maps-data/data/tiger.html.

[63] W. Qiu, “ClusterGeneration: Random cluster generation (with specified degree of
separation),” http://cran.r-project.org/web/packages/clusterGeneration/index.html.

[64] Scipy.org, “Scientific computing tools for Python,” http://scipy.org/.

[65] K. Kummamuru and M. N. Murty, “Genetic k-means algorithm,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 29, no. 3, pp. 433–439, 1999.

[66] S. Ray and R. H. Turi, “Determination of number of clusters in k-means clustering and
application in colour image segmentation,” in Proceedings of the 4th International
Conference on Advances in Pattern Recognition and Digital Techniques, 1999, pp.
137–143.

[67] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clusters in a data
set via the gap statistic,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 63, no. 2, pp. 411–423, 2001.

[68] A. Gupta, A. Roth, and J. Ullman, “Iterative constructions and private data release,”
in Proceedings of the 9th International Conference on Theory of Cryptography, 2012,
pp. 339–356.

[69] J. Lee and C. W. Clifton, “Top-k frequent itemsets via differentially private FP-trees,”
in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2014, pp. 931–940.

[70] B. Stoddard, Y. Chen, and A. Machanavajjhala, “Differentially private algorithms for
empirical machine learning,” CoRR, vol. abs/1411.5428, 2014.

[71] R. Chen, Q. Xiao, Y. Zhang, and J. Xu, “Differentially private high-dimensional data
publication via sampling-based inference,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2015, pp. 129–
138.



168

[72] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
2015, pp. 1310–1321.

[73] A. Roth, “The sparse vector technique,” 2011, lecture notes for “ The Algorithmic
Foundations of Data Privacy”.

[74] Y. Chen and A. Machanavajjhala, “On the privacy properties of variants on the sparse
vector technique,” CoRR, vol. abs/1508.07306, 2015.

[75] J. Zhang, X. Xiao, and X. Xie, “Privtree: A differentially private algorithm for hi-
erarchical decompositions,” in Proceedings of the 2016 International Conference on
Management of Data, 2016, pp. 155–170.

[76] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Theo-
retical Computer Science, vol. 9, no. 3-4, pp. 211–407, 2013.

[77] C. Dwork, G. N. Rothblum, and S. Vadhan, “Boosting and differential privacy,” in
Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, 2010, pp. 51–60.



VITA



169

VITA

Dong Su was born and raised in Tianjin, China. He gradudated from Tianjin Univer-

sity with a Bachelor of Engineering in software engineering in 2005 and gradudated from

University of Chinese Academy of Sciences in 2010 with a Master of Engineering in com-

puter science. Dong entered Purdue University in the Fall of 2010, and worked under the

supervision of Dr. Ninghui Li in the Department of Computer Science. Dong’s graduate

work and research was in the area of differentially private data publishing. He received his

Master of Science in computer science in December of 2015, and his Ph.D. in computer

science in December of 2016.


	Purdue University
	Purdue e-Pubs
	12-2016

	Differentially private data publishing for data analysis
	Dong Su
	Recommended Citation


	Blank Page

