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Differentially Private Data Release through

Multidimensional Partitioning

Yonghui Xiao1,2, Li Xiong1, and Chun Yuan2

1 Emory University, Atlanta GA 30322, USA
2 Tsinghua University Graduate School at Shenzhen, Shenzhen 518055, China

Abstract. Differential privacy is a strong notion for protecting indi-
vidual privacy in privacy preserving data analysis or publishing. In this
paper, we study the problem of differentially private histogram release
based on an interactive differential privacy interface. We propose two
multidimensional partitioning strategies including a baseline cell-based
partitioning and an innovative kd-tree based partitioning. In addition to
providing formal proofs for differential privacy and usefulness guaran-
tees for linear distributive queries , we also present a set of experimental
results and demonstrate the feasibility and performance of our method.

1 Introduction

As information technology enables the collection, storage, and usage of massive
amounts and types of information about individuals and organizations, privacy
becomes an increasingly important issue. Governments and organizations recog-
nize the critical value in sharing such information while preserving the privacy
of individuals. Privacy preserving data analysis and data publishing [5, 10, 3]
has received considerable attention in recent years as a promising approach for
sharing information while preserving data privacy. There are two models for
privacy protection [5]: the interactive model and the non-interactive model. In
the interactive model, a trusted curator (e.g. hospital) collects data from record
owners (e.g. patients) and provides an access mechanism for data users (e.g.
public health researchers) for querying or analysis purposes. The result returned
from the access mechanism is perturbed by the mechanism to protect privacy.
In the non-interactive model, the curator publishes a “sanitized” version of the
data, simultaneously providing utility for data users and privacy protection for
the individuals represented in the data.

Differential privacy [6, 4, 5, 3] is widely accepted as one of the strongest known
unconditional privacy guarantees with the advantage that it makes no assump-
tion on the attacker’s background knowledge. It requires the outcome of com-
putations to be formally indistinguishable when run with and without any par-
ticular record in the dataset, as if it makes little difference whether an indi-
vidual is being opted in or out of the database. Many meaningful results have
been obtained for the interactive model with differential privacy [6, 4, 5, 3]. Non-
interactive data release with differential privacy has been recently studied with
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hardness results obtained and it remains an open problem to find efficient algo-
rithms for many domains [7].
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Fig. 1. Differentially Private Histogram Release

In this paper, we study the problem of differentially private histogram release
based on an interactive differential privacy interface, as shown in Figure 1. A
histogram is a disjoint partitioning of the database points with the number of
points which fall into each partition. An interactive differential privacy inter-
face, such as the Privacy INtegrated Queries platform (PINQ) [19], provides a
differentially private access to the raw database. An algorithm implementing the
partitioning strategy submits a sequence of queries to the interface and gener-
ates a differentially private histogram of the raw database. The histogram can
then serve as a sanitized synopsis of the raw database and, together with an
optional synthesized dataset based on the histogram, can be used to support
count queries and other types of OLAP queries and learning tasks.

An immediate question one might wonder is what is the advantage of the
non-interactive release compared to using the interactive mechanism to answer
the queries directly. A common mechanism providing differential private answers
is to add carefully calibrated noise to each query determined by the privacy pa-
rameter and the sensitivity of the query. The composability of differential privacy
[19] ensures privacy guarantees for a sequence of differentially-private computa-
tions with additive privacy depletions in the worst case. Given an overall privacy
requirement or budget, expressed as a privacy parameter, it can be allocated to
subroutines or each query in the query sequence to ensure the overall privacy.
When the number of queries grow, each query gets a lower privacy budget which
requires a larger noise to be added. When there are multiple users, they have
to share a common privacy budget which degrades the utility rapidly. The non-
interactive approach essentially exploits the data distribution and the query
workload and uses a carefully designed algorithm or query strategy such that
the overall noise is minimized for a particular class of queries. As a result, the
partitioning strategy and the algorithm implementing the strategy for generat-
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ing the query sequence to the interface are crucial to the utility of the resulting
histogram or synthetic dataset.

Contributions. We study two partitioning strategies for the differentially pri-
vate histogram release for random query workload and evaluate their utility. We
summarize our contributions below.

– We study two partitioning strategies for the differentially private histogram
release problem: 1) a baseline strategy using the most fine-grained cell par-
titioning, and 2) a kd-tree based partitioning strategy. There are several
innovative features in our kd-tree based strategy. First, we incorporate a uni-
formity measure in the partitioning process which seeks to produce partitions
that are close to uniform so that approximation errors within partitions are
minimized. Second, we implement the strategy using a two-step algorithm
that generates the kd-tree partitions based on the histogram generated from
a cell partitioning so that the access to the differentially private interface is
minimized.

– We present formal results and discuss the applications of the histogram for
general online analytical processing (OLAP) and learning, and present a set
of experimental evaluations and show the actual performance of our algo-
rithm. We show that the cell partitioning strategy, while simple, provides
formal bounded utility for linear distributive queries including count and
sum. The kd-tree based partitioning, on the other hand, achieves better re-
sults empirically.

2 Related works

Privacy preserving data analysis and publishing has received considerable atten-
tion in recent years. We refer readers to [5, 10, 3] for several up-to-date surveys.
We briefly review here the most relevant work to our paper and discuss how our
work differs from existing work.

There has been a series of studies on interactive privacy preserving data anal-
ysis based on the notion of differential privacy [6, 4, 5, 3]. A primary approach
proposed for achieving differential privacy is to add Laplace noise [6, 5, 4] to the
original results. McSherry and Talwar[21] give an alternative method to imple-
ment differential privacy based on the probability of a returned result, called the
exponential mechanism. Roth and Roughgarden [23] proposes a median mecha-
nism which improves upon the Laplace mechanism. McSherry implemented the
interactive data access mechanism into PINQ[19], a platform providing a pro-
gramming interface through a SQL-like language.

There are recently a few works that studied general non-interactive data re-
lease with differential privacy [6, 2, 8, 24]. Blum et al. [2] proved the possibility of
non-interactive data release satisfying differential privacy for queries with poly-
nomial VC-dimension, such as predicate queries. It also proposed an inefficient
algorithm based on the exponential mechanism. The result largely remains the-
oretical and the general algorithm is inefficient for the complexity and required
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data size. Feldman et al. [8] proposed the notion “private coreset” to release
data for certain queries: k-median, k-mean, k-center. X. Xiao et al. [24] devel-
oped a differentially private data release algorithm for predicate queries using
wavelet transforms. In addition, several recent work studied differentially pri-
vate mechanisms for particular kinds of data such as search logs [16, 11] or for
specific applications such as recommender systems [20] or record linkage [14].
It is important to note that [14] uses several tree strategies including k-d tree
in its partitioning step and our results show that our our uniformity-driven k-d
tree strategy achieves better utility for random count queries. Another closely
related work is [13] which generates differentially private histograms for single
dimensional range queries through a consistency check technique. Several works
[12, 17] studies mechanisms for a given query workload. [12] proposes an en-
hanced Laplace mechanism by examining the geometry shape of a given set of
linear queries. [17] proposes a query matrix mechanism that generates an opti-
mal query strategy based on the query workload of linear count queries. It is
worth noting that the cell-based partitioning in our approach is essentially the
identity query matrix referred in [17]. On the other hand, our kd-tree based
partitioning will generate a query matrix that is dependent on the approximate
data distribution.

In summary, our work complements and advances the above works in that we
focus on differentially private histogram release for random query workload us-
ing a multidimensional partitioning approach that is “data-aware”. The method
provides a formal utility guarantee for a set of queries and also supports appli-
cations for general OLAP and learning.

3 Preliminaries and definitions

Given an original database D, we use A(D) to denote an interactive mechanism
to access the database D. For a query Q(D) the interactive query mechanism
returns a perturbed result of AQ(D). In the non-interactive mechanism, our

goal is to release a database D̂ to answer user queries, which satisfies differential
privacy. For simplicity, we assume the output range of queries is arbitrary. In
this section, we formally introduce the definitions of differential privacy, (�, �)-
usefulness, and the notion of a data cube to facilitate our discussions.

3.1 Differential Privacy

Definition 31 (�-Differential privacy[4]) In the interactive model, an ac-
cess mechanism A satisfies �-differential privacy if for any neighboring databases3

D1 and D2, for any query function Q, r ⊆ Range(Q), AQ(D) is the mechanism
to return an answer to query Q(D),

Pr[AQ(D1) = r] ≤ e�Pr[AQ(D2) = r]

3 We use the definition of neighboring databases consistent with [19] which treats the
databases as multisets of records and requires their symmetric difference to be 1.
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In the non-interactive model, a data release mechanism A satisfies �-differential
privacy if for all neighboring database D1 and D2, and released output D̂,

Pr[A(D1) = D̂] ≤ e�Pr[A(D2) = D̂]

To achieve differential privacy, we use the Laplace mechanism [6] that adds
random noise of Laplace distribution to the true answer of a query Q, A(x) =
Q(x)+Y , where Y is the Laplace noise. The magnitude of the noise depends on
the privacy level and the query’s sensitivity.

Definition 32 (Sensitivity) For arbitrary neighboring databases D1 and D2,
the sensitivity of a query Q is the maximum difference between the query results
of D1 and D2,

GSQ = max∣Q(D1)−Q(D2)∣

To achieve �-differential privacy for a given query Q on dataset D, it is
sufficient to return Q(D)+Y in place of the original result Q(D) where we draw
Y from Lap(GSQ/�) [6].

3.2 Composition

The composability of differential privacy [19] ensures privacy guarantees for a
sequence of differentially-private computations. For a general series of analysis,
the privacy parameter values add up, i.e. the privacy guarantees degrade as we
expose more information. In a special case that the analyses operate on disjoint
subsets of the data, the ultimate privacy guarantee depends only on the worst
of the guarantees of each analysis, not the sum.

Theorem 31 (Sequential Composition [19]) Let Mi each provide �i-differential
privacy. The sequence of Mi provides (

∑
i �i)-differential privacy.

Theorem 32 (Parallel Composition [19]) If Di are disjoint subsets of the
original database and Mi provides �-differential privacy for each Di, then the
sequence of Mi provides �-differential privacy.

3.3 Sufficient Bound of �

The level of differential privacy is determined by the parameter �. However,
there is no specific guidelines on how to choose a proper � value. We attempt
to analyze the risk of large �, and give a sufficient condition of � to guarantee
privacy through the analysis of the prior and posterior probability of a value
disclosure.

Theorem 33 Assume an attacker has a priori belief for a target victim’s value
being d as P0. After l queries that include the target victim using the Laplace
noise based differential privacy mechanism, we have (l�)-differentially privacy
[19]. The posteriori belief after l queries, Pl, satisfies Pl ≤ P0 ∗ exp(l�). (Proof
in Appendix A)
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Corollary 31 (Sufficient bound of �) � < ln(x)/l is a sufficient bound for
guaranteeing Pl/P0 < x. � < −ln(P0)/l is a sufficient bound for guaranteeing
Pl < 1.

3.4 Data cube

We use a “data cube” to represent the data space Dn. For example, if the
database has N dimensions, it is an N -dimensional cube. We denote the data
cube by 
, a query Q : 
 → ℛ maps the data in 
 to output range ℛ. All the
records in the database are points in the data cube. We use the term “partition”
to refer to any sub-cube in the data cube. We denote any sub-cube that that
is not divided by any more dimensions by “cell”, meaning it’s the “smallest”
sub-cube. We denote the number of cells by �.

3.5 (�, �)-usefulness

We represent the utility of the released data, by considering whether it is (�, �)-
useful.

Definition 33 ((�, �)-usefulness[2]) A database mechanism A is (�, �)-useful
for queries in class C if with probability 1 − �, for every Q ∈ C, and every
database D, A(D) = D̂, ∣Q(D̂)−Q(D)∣ ≤ �.

3.6 Categorization of Aggregate Queries

Definition 34 (Distributive query [18]) A distributive aggregate query is a
function that can be computed for a given data set by partitioning the data into
small subsets, computing the function of each subset, and then merging the results
in order to arrive at the function’s value for the original (entire) data set.

Definition 35 (Linear distributive query) A linear distributive query is a
function with result that can be computed as a linear function of the result from
each subset.

For example, sum() can be computed by first partitioning the data, then
summing up the sums of each partition. avg() can not be distributively computed
but it can be computed by a function of sum() and count().

In this paper, we mainly focus on linear count queries which will be used to
generate the histogram and to form a query workload to evaluate the released
histogram. We will discuss later how the released histogram can be used to
support other types of OLAP queries such as sum and average.

Definition 36 (count query) Absolute count query AC and relative count RC
on a multi-dimensional database D is defined to be:

ACP (x)(D) =
∑
x∈D

P (x) RCP (x)(D) =

∑
x∈D P (x)

n

where P (x) returns 1 or 0 depending on the predicate.
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Note that GSAC = 1, GSRC = 1
n

4.

3.7 PINQ

PINQ [19] is a programming interface that provides a differentially private in-
terface to a database. It provides operators for database aggregate queries such
as count (NoisyCount) and sum (NoisySum) which uses Laplace noise and
the exponential mechanism to enforce differential privacy. It also provides a
Partition operator that can partition the dataset based on the provided set of
candidate keys. The Partition operator takes advantage of parallel composition
and thus the privacy costs do not add up.

4 Multidimensional Partitioning Approach

4.1 Overview

For differentially private histogram release, a multi-dimensional histogram on
a set of attributes is constructed by partitioning the data points into mutually
disjoint subsets called buckets or partitions. The counts or frequencies in each
bucket is then released. Any access to the original database is conducted through
the differential privacy interface to guarantee differential privacy. The histogram
can be then used to answer random count queries and other types of queries.

The partitioning strategy will largely determine the utility of the released his-
togram to arbitrary count queries. Each partition introduces a bounded Laplace
noise or perturbation error by the differential privacy interface. If a query pred-
icate covers multiple partitions, the perturbation error is aggregated. If a query
predicate falls within a partition, the result has to be estimated assuming cer-
tain distribution of the data points in the partition. The dominant approach in
histogram literature is making the uniform distribution assumption, where the
frequencies of records in the bucket are assumed to be the same and equal to the
average of the actual frequencies[15]. This introduces an approximation error.

We illustrate the errors and the impact of different partitioning strategies
through an example shown in Figure 2. Consider an original database that has
4 cells, each of which has 100 data points. In the first partitioning, the 4 cells
are grouped into one partition and we release a noisy count for the partition.
Alternatively, the 4 cells are separated into 4 partitions, each of which contain
one cell, and we release a noisy count for each of the partitions or cells. Note that
the noise are independently generated for each partition. Because the sensitivity
of the count query is 1 and the partitioning only requires parallel composition
of differential privacy, the magnitude of the noise in the two approaches are
the same. Then if we have a query, count(A), to ask how many data points are
in the region A, the best estimate for the first strategy based on the uniform
distribution assumption will be an approximate answer, which is 100 + Y/4.
So the query error is Y/4. In this case, the approximation error is 0 because

4 n should be the upper bound of data size, so it’s constant.
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Fig. 2. Data-aware query strategy and simple query strategy

the cells in the partition are indeed uniform. If not, approximation error will
be introduced. In addition, the perturbation error is also amortized among the
cells. For the cell-based partitioning, the query error is Y which only consists of
the perturbation error.

In general, a finer-grained partitioning will introduce smaller approximation
errors but larger aggregated perturbation errors. Finding the right balance in
this tradeoff to optimize the overall approximation of the data distribution and
minimize the overall error for a random query workload is a key question. Not
surprisingly, finding the optimal multi-dimensional histogram even without the
privacy constraints is a challenging problem and optimal partitioning even in
two dimensions is NP-hard[22]. Motivated by the above example and guided
by the composition theorems, we summarize our two design goals: 1) generate
uniform or close to uniform partitions so that the approximation error with the
partitions is minimized, and 2) carefully and efficiently use the privacy budget to
minimize the perturbation error. In this paper, we study two heuristic strategies:
1) the most fine-grained cell-based partitioning as a baseline strategy, which does
not introduce approximation error but only perturbation error, and 2) a kd-tree
based partitioning strategy that seeks to produce close to uniform partitions and
an efficient implementation that seeks to minimize the perturbation error.

4.2 Cell-based algorithm

A simple strategy is to partition the data based on the domain and then release
the count for each cell. The implementation is quite simple, taking advantage
the Partition operator followed by NoisyCount on each partition.

Theorem 41 Algorithm 1 achieves �-differential privacy.

Proof. Because every cell is a disjoint subset of the original database, according
to theorem 32, it’s �-differentially private.
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Algorithm 1 Cell-based algorithm

Require: �: differential privacy budget
1. Partition the data based on all domains.
2. release NoisyCount of each partition using privacy parameter �

Utility. We present a general theorem following a lemma that states a formal
utility guarantee with cell-based partitioning for linear distributive queries.

Lemma 41 If Yi is the random variables i.i.d from Lap(b) with mean 0, then

Pr[

�∑
i=1

∣Yi∣ ≤ �] ≥ 1− � ⋅ exp(−
�

�b
)

Theorem 42 The released D̂ of algorithm 1 maintain (�, �)-useful for linear
distributive query Q(D) =

∑x
i=1 Q(Di), if GS ≤ ��

�ln(�/�) , where x is the number

of cells contained in the predicate, x ≤ �, � is the number of partitioned cells of
the data cube.

Proof. By interactive mechanism of differential privacy, the returned answer
AQ(D) = Q(D) + Y , where Q(D) is the true answer of the query and Y is
the Laplace noise Lap(b) where b=GS/�. we use Di to present the data in the
cells, then the returned answer of D̂ is

Q(D̂) =

x∑
i=1

(Q(Di) + Yi) =

x∑
i=1

Q(Di) +

x∑
i=1

Yi = Q(D) +

x∑
i=1

Yi

With Lemma 41(proved in Appendix B), we have

Pr[∣Q(x,D)−Q(x, D̂)∣ ≤ �] ≥ 1− � ⋅ exp(−
�

�b
)

If � ⋅ exp(− �
�b ) ≤ �, then we can get

Pr[∣Q(x,D)−Q(x, D̂)∣ ≤ �] ≥ 1− �

So, � ⋅ exp(− �
�b ) ≤ �, b=GS/�, we have

GS ≤
��

�ln(�/�)

Corollary 41 Algorithm 1 is (�, �)-useful for absolute count queries if � ≥

�ln(�/�)/�, for relative count queries if n ≥ �ln(�/�)
�� .
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4.3 K-d Tree based Algorithm

We now present our kd-tree based partitioning strategy. A kd-tree (k-dimensional
tree) is a space-partitioning data structure for organizing data points in a k-
dimensional space. A typical kd-tree construction starts from the root node which
covers the entire space. At each step, a splitting dimension and a split value,
typically median, from the range of the current partition on that dimension are
chosen heuristically to divide the space into subspaces. The algorithm repeats
until a pre-defined requirement (such as tree height or number of data points in
each partition) are met. This method leads to a balanced kd-tree, in which each
leaf node is about the same distance from the root, which is desired in indexing.
In our setting, our main design goal is to generate uniform or close to uniform
partitions so that the approximation error within the partitions is minimized.
Thus we propose a uniformity based heuristic to make the decision whether to
split the current partition. Concretely, we do not split a partition if it is close
to uniform and split it otherwise. There are several metrics that can be used to
measure the uniformity of a partition such as information entropy and variance.
In our current implementation, we use a variance-like metric H defined below.
If H > �1 where �1 is a threshold, then we split.

Definition 41 Assuming we have an sub-cube D0 with � cells, the average count
would be a0 =

∑
ci∈D0

count(ci)/� where ci is each cell in D0. The heuristic
metric is defined as:

H(D0) =
∑

ci∈D0

∣count(ci)− a0∣

A straightforward implementation of the above kd-tree strategy is similar to
that used in [14]. At each step, a NoisyCount is requested for each value of the
splitting attribute in order to determine the split value median. The process re-
peats until the stop criteria is reached. As each step queries the original database,
the composition theorem applies which results in cumulated privacy cost. Hence
the privacy budget needs to be divided among all the steps and the final step
to obtain the NoisyCount of each partition which is an inefficient use of the
privacy budget. To this end, we propose a two-step algorithm that generates the
kd-tree partitions based on the histogram generated from the cell partitioning.
First, we generate a synthetic database Dc based on the cell-based algorithm.
Then we perform kd-tree partitioning on Dc and use the resulting partition-
ing keys to Partition the original database. We finally release NoisyCount
for each of the partitions. Essentially, the kd-tree is based on an approximate
distribution of the original data. The original database is not queried during
the kd-tree construction which saves the privacy budget. Our experiments verify
that the benefit of having smaller perturbation error outweighs the aggregated
approximation error. Algorithm 2 is the framework; Algorithm 3 is the step 2 of
Algorithm 2.

5 In this paper, we take the dimension which has the largest range in the current
partition.
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Algorithm 2 K-d tree based algorithm

Require: �: number of cells; �: the overall privacy budget
1. Partition the original database based on all domains.
2. get NoisyCount of each partition using privacy parameter �/2 and generate a
synthetic dataset Dc.
3. Partition Dc by algorithm 3.
4. Partition the original database based on the partition keys returned from step
3. 5. release NoisyCount of each partition using privacy parameter �/2

Algorithm 3 K-d tree partitioning

Require: Dt: input database; �0: threshold of generating k-d tree; �1: threshold for
function H;
1. Find a dimension of Dt

5;
2. Find the median m of the dimension;
3.
if H(Dt) > �1 or Count(Dt) > �0 then

Divide Dt into Dt1 and Dt2 by m.
partition Dt1

and Dt2
by algorithm 3.

end if

return partitions

Theorem 43 Algorithm 2 is �-differentially private.

Proof. Step 2 and Step 5 are �/2-differentially private. So the sequence is �-
differentially private because of theorem 31.

Utility. The utility of the algorithm is directly decided by the parameter �1
and �0 as well as the data distribution. We resort to experiments to evaluate the
utility of the algorithm.

4.4 Applications

Having presented the multidimensional partitioning approach for differentially
private histogram release, we now briefly discuss the applications that the re-
leased histogram can support.

OLAP On-line analytical processing (OLAP) is a key technology for business-
intelligence applications. The computation of multidimensional aggregates, such
as count(), sum(), max(), avg(), is the essence of on-line analytical processing. We
discuss the applications of the above released data to common OLAP aggregate
functions. We assume all queries have a predicate '. An example form of the
predicate can be '1 and '2 . . . and 'm where 'j can be a range predicate of the
form al ≤ Aj ≤ aℎ. The predicate determines a set of cells S' that satisfies the
predicate. We denote the value of attribute A for cell i as ai, and the perturbed
count for cell i as ci.

– Count queries are supported directly by the released data. The cell-based
partitioning provides a guaranteed utility bound.
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– Sum queries sum(A) for an attribute or dimension A can be computed as∑
i∈S'

(ai ∗ ci). Based on Theorem 42, the cell-based partitioning also pro-
vides a formal guarantee for sum query which is a linear distributive query.

– Average queries avg(A) for an attribute or dimension A can be computed

as

∑
i∈S'

(Ai∗ci)
∑

i∈S'
(ci)

. The algorithm, however, does not provide a formal utility

guarantee for the average queries. We experimentally evaluate the utility for
average queries in Section 5.

Learning. The released data can be also used for learning tasks such as con-
struction of decision tree. Below we use a simple learning task of learning parity
function to illustrate the idea. Given a non-zero vector v ∈ {0, 1}d−1, a data set

D ∈ {0, 1}d, let k be the kth row of the data set and x
(j)
k is the jth attribute of

xk. Without loss of generality, we define parity function as the inner product of
v and the first d− 1 attributes of xi modulo 2 and the result is saved to the dth
attribute of xi, that is

g(k, v) = ⊕j≤d−1x
(j)
k v(j) = x

(d)
k ,

Without loss of generality, we assume the parity query has the form:

PQv = Pr[g(v) = 1] =
∣{i ∈ [n] : g(k, v) = 1}∣

∣D∣

So if without noise, the more Pr[g(v)] is near 1, the more likely hypothesis v is
correct.

Our problem is to learn the parity function based on the perturbed counts
with noise. [1, 9] proposed a learning algorithm for parity function in the presence
of random classification noise and adversarial noise. We introduce the algorithm
in Appendix C.

5 Experiment

We use the CENSUS data(http://www.ipums.org) for our experiments. It has 1
million tuples and 4 attributes: Age, Education, Occupation and Income, whose
domain sizes are 79, 14, 23 and 100 respectively. All experiments were run on a
computer with Intel P8600(2 ∗ 2.4 GHz) CPU and 2GB memory.

5.1 Cell-based algorithm

Absolute count queries We use the Income attribute to simulate 1D count
queries. The following parameters are used for the desired level of differential
privacy and utility guarantee: � = 100;� = 0.05; � = 0.05. The run time for this
experiment is 0.155 seconds.

Figure 3, 4 show the original and released distribution. The x-axis is the
Income, the y-axis is the corresponding count of each income value over the
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complete domain. Figure 5 is the difference(Laplace noise) between the original
and released distribution. We performed 100 independent releases and tested
1000 randomly generated queries for each data release and averaged the results.
The average error is 62.2. We counted the times each error happens in Figure
6. The x-axis is the query error �, and y-axis is the probability of each error.
Figure 7 shows the actual error that is far less than the theoretical error.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4 Original Distributionprint
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Fig. 7. Actual Error and
Bound
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5.2 Average query

We use average query to demonstrate our method could be used for other queries
which are not distributive queries. We extend the 1D count to 2D count using
Age and Income as dimensions. Then we compare the difference of average(age)
between original data and released data by each Income. Figure 8 shows the
comparison. The blue line is the result of original data, red line is the result of
perturbed data. We can see that the difference of the two sets of value differs
lightly.
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5.3 K-d tree based algorithm

We use the Age and Income attribute to simulate 2D rectangle queries with data
generated by algorithm 2. We also implemented an alternative kd-tree strategy
similar to that used in [14], referred to as hierarchical kd-tree, for comparison.

Hierarchical kd-tree The height of hierarchical kd-tree is the key for the query
error of random workload. Figure 9 and 10 show the query error of absolute count
and relative count. We can see that the least noise appears when the height is
around 13.
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Query error vs different thresholds We analyze the different thresholds of
�0 and �1 in our kd-tree algorithm. Figure 11 and 12 show the results. We can
see that the threshold �0 significantly affects the query error.
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Query error vs alpha We fix the height in hierarchical kd-tree algorithm and
the threshold in our kd-tree algorithm to compare the query error. Figure 13 and
14 show the results. We can see that our kd tree algorithm provides best utility
for random workload. Note that for relative count query, the utility outperforms
other algorithm much more because for sparse data, the error of relative count
query vary very much. Therefore, our kd-tree algorithm provides better results
for sparse data.
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Fig. 13. Query error and �: Absolute
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count

Query error vs Number of queries in interactive model When number
of queries is small, the interactive model provides better result than our non-
interactive approach. However, when the number of queries increases, the query
error of random workload in interactive model may becomes larger. We can see
form Figure 15 and 16 that when the number of queries are around 3 and 7, our
kd-tree algorithm outperforms interactive model for absolute query and relative
query.
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6 Conclusions and Future works

We have described our preliminary studies on two multidimensional partitioning
algorithms for differentially private histogram release based on an interactive
differential privacy mechanism. By carefully designing the partitioning strategy
and allocating the usage of the privacy budget, we show that our kd-tree based
algorithm outperforms the baseline cell-based algorithm and an alternative kd-
tree based algorithm for a random workload of counting queries. We also show
that the result is significantly better than answering the queries directly through
the interactive mechanism which is oblivious of the correlations of the queries and
the data. We are interested in mapping the algorithms to the matrix mechanism
framework [17] and conduct a formal error analysis. In addition, we are interested
in exploring other spatial indexing techniques and integrating them with the
consistency check techniques [13]. Finally, we plan to investigate in algorithms
that are both data- and workload-aware to boost the accuracy for a specific
workload.
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A Proof of Theorem 33

Proof.

Pr[D∣A1, A2] =
Pr[A1, A2∣D]

Pr[A1, A2]
=

Pr[A2∣D] ⋅ Pr[A1∣D] ⋅ Pr[D]

Pr[A1, A2]

=
Pr[A2∣D] ⋅ Pr[D∣A1] ⋅ Pr[A1]

Pr[A2] ⋅ Pr[A1]
=

Pr[A2∣D] ⋅ Pr[D∣A1]

Pr[A2]

Let’s recap the model of differential privacy. Assume the attacker knows all
the record except the ith record di. Let ql be the lth query, Q(ql) be the true
answer of ql, al be the perturbed answer of ql. Let x be the range of d, D be
the event that di = x1, Pl be the posterior probability of Pr[D∣a1, a2, ⋅ ⋅ ⋅ al]. Let
A1 = {a1, a2, ⋅ ⋅ ⋅ , al−1}, A2 = {al}, then

Pl = Pr[D∣A1, A2] = Pl−1 ⋅
Pr[A2∣D]

Pr[A2]

= Pl−1 ⋅
Pr[al∣di = x1]∑

xj∈x Pr[al∣di = xj ] ⋅ Pr[di = xj ]

If we adopt Laplace noise to achieve differential privacy, then

pl
pl−1

=
1
2bexp(−∣al −Q(ql, x1)∣/b)∑

xj∈x
1
2bexp(−∣al −Q(ql, xj)∣/b) ⋅ Pr[di = xj ]

≤
1∑

xj∈x exp(−∣Q(ql, xj)−Q(ql, x1)∣/b) ⋅ Pr[di = xj ]

Recall the definition of GS, then

∣Q(ql, xj)−Q(ql, x1)∣ ≤ GS

Pl

Pl−1
≤

1∑
xj∈x exp(−GS/b) ⋅ Pr[di = xj ]

Because b = GS/�, then Pl/Pl−1 ≤ e�. So, Pr[V = d] ≤ P0 ∗ exp(l�).

B Proof of Lemma 41

Lemma B1 If Yi is the random variables i.i.d from Lap(b) with mean 0, then

Pr[

�∑
i=1

∣Yi∣ ≤ �] ≥ 1− � ⋅ exp(−
�

�b
)
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Proof (of Lemma 41). We assume each ∣Yi∣ ≤ �1 where �1 = �/�. Otherwise we
call ∣Yi∣ > �1 a FAILURE. If no FAILURE happens,we have

�∑
i=1

∣Yi∣ ≤ � ⋅ �1 = �

If a FAILURE happens, then we have ∣Lap(b)∣ > �1, which means

Pr[a FAILURE]=2
∫∞

�1
1
2bexp(−

x
b )=e−�1/b

For each Yi, Pr[no FAILURE happens]=1-Pr[FAILURE happens] and each Yi is
i.i.d distributed, we have

Pr[

�∑
i=1

∣Yi∣ ≤ �] ≥ (1− e−�1/b)�

Let F (x) = (1−x)� +�x−1, then F (0) = 0. F ′(x) = −�(1−x)�−1+� = �(1−
(1 − x)�−1) > 0 when 0 < x < 1. Note that 0 < e−�1/b < 1, so F (e−�1/b) > 0.
We get (1− e−�1/b)� > 1− � ⋅ e−�1/b. Because �1 = �/�,

Pr[

�∑
i=1

∣Yi∣ ≤ �] ≥ 1− � ⋅ exp(−
�

�b
)

C Learning algorithm of parity

We assume the data is uniformly distributed and the noise added is classification
noise. For the cell that satisfies the parity vector r, even if we add Laplace noise
to the cell by the mechanism of differential privacy, it is not noise for the parity
query. We use �1 to present the original noise rate. Our algorithm add �2 noise
rate to the data. The total noise rate � in the released data is �1+�2. Therefore,
�2 ≤ �, � ≤ �1 + �.

Theorem C1 ([1]) the length-d parity problem, for noise rate � equal to any
constant less than 1/2, can be solved with number of samples and total computation-
time 2O(d/logd).

Therefore, if � < 1/2, the D̂ is learnable. � ≤ �1 + � and n ≥
ln �

�

�� �, so if

n ≥
ln �

�

�(1/2−�1)
�, the D̂ is learnable.

Lemma C1 ([1]) Take s samples from a database with parity vector v and noise
rate �, then

Pr[⊕s
i=1x

(d)
i = ⊕s

i=1g(i, v)] =
1

2
+

1

2
(1− 2�)s.

note that each x
(d)
i may not be the correct answer of g(i,v) because of noise.
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We give the algorithm as follows:

Learning steps for parity vector:
For every target bit j of vector v, j = 1 : d− 1
1. Draw s samples from the released data where s > d− 1 to avoid linear
dependence.
2. for k = 1 : d− 1,

choose a record xi where x
(k)
i = 1, remove xi from the samples and

XOR the rest samples with xi, x = x⊕ xi.

3. if in left samples doesn’t exists x(j) = 1, then goto 1; else after the
elimination of step 2, we discard those samples which become 0, then
randomly draw a sample t from the left samples.

Pr[v(j) = 1] = Pr[t(j) = 1] =
1

2
+

1

2
(1− 2�)d−2

with the lemma described above, we know that every x(j) has probability
1
2 +

1
2 (1− 2�)d−2 to be correct. Therefore, with probability 1

2 +
1
2 (1− 2�)d−2, we

output the correct bit of vector v.

D Expected error of Laplace noise

Theorem D1 (Expected error of laplace noise) The expected error of laplace
noise with parameter � is GS/�.

Proof.

err = ∣Q(D̂)−Q(D)∣ = ∣Lap(GS/�)∣ (1)

b = GS/� (2)

E(err) =

∫ +∞

−∞

err ∗ (
1

2b
exp(−

∣x∣

b
)) (3)

solve the equations, we get E(err) = GS/�.




