
Differentially Private Database Release via Kernel Mean Embeddings

Matej Balog 1 2 Ilya Tolstikhin 1 Bernhard Schölkopf 1

Abstract

We lay theoretical foundations for new database

release mechanisms that allow third-parties to con-

struct consistent estimators of population statis-

tics, while ensuring that the privacy of each indi-

vidual contributing to the database is protected.

The proposed framework rests on two main ideas.

First, releasing (an estimate of) the kernel mean

embedding of the data generating random vari-

able instead of the database itself still allows third-

parties to construct consistent estimators of a wide

class of population statistics. Second, the algo-

rithm can satisfy the definition of differential pri-

vacy by basing the released kernel mean embed-

ding on entirely synthetic data points, while con-

trolling accuracy through the metric available in a

Reproducing Kernel Hilbert Space. We describe

two instantiations of the proposed framework,

suitable under different scenarios, and prove the-

oretical results guaranteeing differential privacy

of the resulting algorithms and the consistency of

estimators constructed from their outputs.

1. Introduction

We aim to contribute to the body of research on the trade-off

between releasing datasets from which publicly beneficial

statistical inferences can be drawn, and between protecting

the privacy of individuals who contribute to such datasets.

Currently the most successful formalisation of protecting

user privacy is provided by differential privacy (Dwork &

Roth, 2014), which is a definition that any algorithm operat-

ing on a database may or may not satisfy. An algorithm that

does satisfy the definition ensures that a particular individ-

ual does not lose too much privacy by deciding to contribute

to the database on which the algorithm operates.

While differentially private algorithms for releasing entire
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databases have been studied previously (Blum et al., 2008;

Wasserman & Zhou, 2010; Zhou et al., 2009), most algo-

rithms focus on releasing a privacy-protected version of a

particular summary statistic, or of a statistical model trained

on the private dataset. In this work we revisit the more diffi-

cult non-interactive, or offline setting, where the database

owner aims to release a privacy-protected version of the

entire database without knowing what statistics third-parties

may wish to compute in the future.

In our new framework we propose to use the kernel mean

embedding (Smola et al., 2007) as an intermediate represen-

tation of a database. It is (1) sufficiently rich in the sense that

it captures a wide class of statistical properties of the data,

while at the same time (2) it lives in a Reproducing Kernel

Hilbert Space (RKHS), where it can be handled mathemati-

cally in a principled way and privacy-protected in a unified

manner, independently of the type of data appearing in the

database. Although kernel mean embeddings are functions

in an abstract Hilbert space, in practice they can be (at least

approximately) represented using a possibly weighted set of

data points in input space (i.e. a set of database rows). The

privacy-protected kernel mean embedding is released to the

public in this representation, however, using synthetic data-

points instead of the private ones. As a result, our framework

can be seen as leading to synthetic database algorithms.

We validate our approach by instantiating two concrete algo-

rithms and proving that they output consistent estimators of

the true kernel mean embedding of the data generating pro-

cess, while satisfying the definition of differential privacy.

The consistency results ensure that third-parties can carry

out a wide variety of statistically founded computation on

the released data, such as constructing consistent estimators

of population statistics, estimating the Maximum Mean Dis-

crepancy (MMD) between distributions, and two-sample

testing (Gretton et al., 2012), or using the data in the kernel

probabilistic programming framework for random variable

arithmetics (Schölkopf et al., 2015; Simon-Gabriel et al.,

2016, Section 3), repeatedly and unlimitedly without being

able to, or having to worry about, violating user privacy.

One of our algorithms is especially suited to the interesting

scenario where a (small) subset of a database has already

been published. This situation can arise in a wide variety of

settings, for example, due to weaker privacy protections in

https://github.com/matejbalog/RKHS-private-database/
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the past, due to a leak, or due to the presence of an incentive,

financial or otherwise, for users to publish their data. In such

a situation our algorithm provides a principled approach for

reweighting the public data in such a way that the accu-

racy of statistical inferences on this dataset benefits from

the larger sample size (including the private data), while

maintaining differential privacy for the undisclosed data.

In summary, the contributions of this paper are:

1. A new framework for designing database release algo-

rithms with the guarantee of differential privacy. The

framework uses kernel mean embeddings as intermedi-

ate database representations, so that the RKHS metric

can be used to control accuracy of the released syn-

thetic database in a principled manner (Section 3).

2. Two instantiations of our framework in the form of

two synthetic database algorithms, with proofs of their

consistency, convergence rates and differential privacy,

as well as basic empirical illustrations of their perfor-

mance on synthetic datasets (Sections 4 and 5).

2. Background

2.1. Differential Privacy

Definition 1 (Dwork, 2006). For ε > 0, δ ≥ 0, algorithmA
is said to be (ε, δ)-differentially private if for all neighbour-

ing databases D ∼ D′ (differing in at most one element)

and all measurable subsets S of the co-domain of A,

P (A(D) ∈ S) ≤ eεP (A(D′) ∈ S) + δ. (1)

The parameter ε controls the amount of information the

algorithm can leak about an individual, while a positive δ
allows the algorithm to produce an unlikely output that leaks

more information, but only with probability up to δ. This

notion is sometimes called approximate differential privacy;

an algorithm that is (ε, 0)-differentially private is simply

said to be ε-differentially private. Note that any non-trivial

differentially private algorithm must be randomised; the

definition asserts that the distribution of algorithm outputs

is not too sensitive to changing one row in the database.

When the algorithm’s output is a finite vector A(D) ∈ R
J ,

two standard random perturbation mechanisms for making

this output differentially private are the Laplace and Gaus-

sian mechanisms. As the perturbation needs to mask the

contribution of each individual entry of the database D, the

scale of the added noise is closely linked to the notion of

sensitivity, measuring how much the algorithm’s output can

change due to changing a single data point:

∆1 := sup
D∼D′

‖A(D)−A(D′)‖1 , (2)

∆2 := sup
D∼D′

‖A(D)−A(D′)‖2 . (3)

The Laplace mechanism adds i.i.d. Lap(∆1/ε) noise to

each of the J coordinates of the output vector and ensures

pure ε-differential privacy, while the Gaussian mechanism

adds i.i.d. N (0, σ2) noise to each coordinate, where σ2 >
2∆2

2 ln(1.25/δ)/ε
2, and ensures (ε, δ)-differential privacy.

Applying these mechanisms thus requires computing (an

upper bound on) the relevant sensitivity.

Differential privacy is preserved under post-processing: if

an algorithm A is (ε, δ)-differentially private, then so is its

sequential composition B(A(·)) with any other algorithm

B that does not have direct or indirect access to the private

database D (Dwork & Roth, 2014).

2.2. Kernels, RKHS, and Kernel Mean Embeddings

A kernel on a non-empty set (data type) X is a binary

positive-definite function k(·, ·) : X × X → R. Intuitively

it can be thought of as expressing the similarity between

any two elements in X . The literature on kernels is vast

and their properties are well studied (Schölkopf & Smola,

2002); many kernels are known for a large variety of data

types such as vectors, strings, time series, graphs, etc, and

kernels can be composed to yield valid kernels for compos-

ite data types (e.g. the type of a database row containing

both numerical and string data).

The kernel mean embedding (KME) of an X -valued random

variable X in the RKHS is the function µk
X : X → R,

y 7→ EX [k(X, y)], defined whenever EX [
√

k(X,X)] <
∞ (Smola et al., 2007). Several popular kernels have been

proved to be characteristic (Fukumizu et al., 2008), in which

case the map pX 7→ µk
X , where pX is the distribution of

X , is injective. This means that no information about the

distribution of X is lost when passing to its KME µk
X .

In practice, the KME of a random variable X is approx-

imated using a sample x1, . . . , xN drawn from X , which

can be used to construct an empirical KME µ̂k
X of X in

the RKHS: a function given by y 7→ 1
N

∑N
n=1 k(xn, y).

When the xn’s are i.i.d., under a boundedness condition µ̂k
X

converges to the true KME µk
X at rate Op(N

−1/2), inde-

pendently of the dimension of X (Lopez-Paz et al., 2015)1.

Our approach relies on the metric of the RKHS in which

these KMEs live. The RKHS Hk is a space of functions,

endowed with an inner product 〈·, ·〉Hk
that satisfies the

reproducing property 〈k(x, ·), h〉 = h(x) for all x ∈ X and

h ∈ Hk. The inner product induces a norm ‖ · ‖Hk
, which

can be used to measure distances ‖µk
X − µk

Y ‖Hk
between

distributions of X and Y . This can be exploited for various

1The KME can be viewed as a smoothed version of the density,
which is easier to estimate than the density itself; rates of nonpara-
metric density estimation or statistical powers of two-sample or
independence tests involving pX are known to necessarily degrade
with growing dimension (Tolstikhin et al., 2017, Section 4.3).



Differentially Private Database Release via Kernel Mean Embeddings

purposes such as two-sample tests (Gretton et al., 2012), in-

dependence testing (Gretton et al., 2005), or one can attempt

to minimise this distance in order to match one distribution

to another.

An example of such minimisation are reduced set meth-

ods (Burges, 1996; Schölkopf & Smola, 2002, Chap. 18),

which replace a set of points S = {x1, . . . , xN} ⊆ X with

a weighted set R = {(z1, w1), . . . , (zM , wM )} ⊆ X × R

(of potentially smaller size), where the new points zm can,

but need not equal any of the xns, such that the KME com-

puted using the reduced set R is close to the KME computed

using the original set S, as measured by the RKHS norm:

∥

∥µk
S − µk

R

∥

∥

Hk
=

∥

∥

∥

∥

∥

1

N

N
∑

n=1

k(xn, ·)−
M
∑

m=1

wmk(zm, ·)

∥

∥

∥

∥

∥

Hk

.

Reduced set methods are usually motivated by the computa-

tional savings arising when |R| < |S|; we will invoke them

mainly to replace a collection S of private data points with

a (possibly weighted) set R of synthetic data points.

3. Framework

3.1. Problem Formulation

Throughout this work, we assume the following setup.

A database curator wishes to publicly release a database

D = {x1, . . . xN} ∈ X
N containing private data about N

individuals, with each data point (database row) xn taking

values in a non-empty set X . The set X can be arbitrarily

rich, for example, it could be a product of Euclidean spaces,

integer spaces, sets of strings, etc.; we only require avail-

ability of a kernel function k : X × X → R on X . We

assume that the N rows x1, . . . , xN in the database D can

be thought of as i.i.d. observations from some X -valued

data-generating random variable X (but see Section 7 for

a discussion about relaxing this assumption). The database

curator, wishing to protect the privacy of individuals in the

database, seeks a database release mechanism that satisfies

the definition of (ε, δ)-differential privacy, with ε > 0 and

δ ≥ 0 given. The main purpose of releasing the database

is to allow third parties to construct estimators of popula-

tion statistics (i.e. properties of the distribution of X), but

it is not known at the time of release what statistics the

third-parties will be interested in.

To lighten notation, henceforth we drop the superscript k
from KMEs (such as µk

X ) and the subscript k from the

RKHS Hk, whenever k is the kernel on X chosen by the

database curator.

3.2. Algorithm Template

We propose the following general algorithm template for

differentially private database release:

1. Construct a consistent estimator µ̂X of the KME µX

of X using the private database.

2. Obtain a perturbed version µ̃X of the constructed esti-

mate µ̂X to ensure differential privacy.

3. Release a (potentially approximate) representation

of µ̃X in terms of a (possibly weighted) dataset

{(z1, w1), . . . , (zM , wM )} ⊆ X × R.

The released representation should be such that
∑M

m=1 wmk(zm, ·) is a consistent estimator of the

true KME µX , i.e. such that the RKHS distance between

the two converges to 0 in probability as the private database

size N , and together with it the synthetic database size M ,

go to infinity.

Each step of this template admits several possibilities. For

the first step we have discussed the standard empirical KME
1
N

∑N
n=1 k(xn, ·) with x1, . . . , xN i.i.d. observations of X ,

but the framework remains valid with improved estimators

such as kernel-based quadrature (Chen et al., 2010) or the

shrinkage kernel mean estimators of (Muandet et al., 2016).

As the KMEs µ̂X and µX live in the RKHSH of the kernel

k, a natural mechanism for privatising µ̂X in the second

step would be to follow (Hall et al., 2013) and pointwise

add to µ̂X a suitably scaled sample path g of a Gaussian

process with covariance function k(·, ·). This does ensure

(ε, δ)-differential privacy of the resulting function µ̃X =
µ̂X + g, but unfortunately µ̃X 6∈ H, because the RKHS

norm ‖g‖H of a Gaussian process sample path with the same

kernel k is infinite almost surely (Rasmussen & Williams,

2005). While our framework allows pursuing this direction

by, for example, moving to a larger function space that does

contain the Gaussian process sample path, in this work we

will present algorithms that achieve differential privacy by

mapping µ̂X into a finite-dimensional Hilbert space and then

employing the standard Laplace or Gaussian mechanisms

to the finite coordinate vector.

Differential privacy is preserved under post-processing, but

the third step does require some care to ensure that pri-

vate data is not leaked. Specifically, when several possible

(approximate) representations µ̃X ≈
∑M

m=1 wmk(zm, ·)
in terms of a weighted dataset (w1, z1), . . . , (wM , zM ) are

possible, committing to a particular one reveals more infor-

mation than just the function µ̃X (consider, for example, the

extreme case where the representation would be in terms

of the private points x1, . . . , xN ). One thus needs to either

control the privacy leak due to choosing a representation in

a way that depends on the private data, or, as we do in our

concrete algorithms below, choose a representation indepen-

dently of the private data (but still minimising its RKHS

distance to the privacy-protected µ̃X ).
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3.3. Versatility

Algorithms in our framework release a possibly weighted

synthetic dataset {(z1, w1), . . . , (zM , wM )} ⊆ X ×R such

that
∑M

m=1 wmk(zm, ·) is a consistent estimator of the true

KME µX of the data generating random variable X . This

allows third-parties to perform a wide spectrum of statistical

computation, all without having to worry about violating

differential privacy:

1. Kernel probabilistic programming (Schölkopf et al.,

2015): The versatility of our approach is greatly ex-

panded thanks to the result of (Simon-Gabriel et al.,

2016), who showed that under technical conditions,

applying a continuous function f to all points zm
in the synthetic dataset yields a consistent estima-

tor
∑M

m=1 wmkf (f(zm), ·) of the KME µf(X) of the

transformed random variable f(X), even when the

points z1, . . . , zM are not i.i.d. (as they may not be,

depending on the particular synthetic database release

algorithm).

2. Consistent estimation of population statistics: For

any RKHS function h ∈ H, we have 〈µX , h〉H =
E[h(X)], so a consistent estimator of µX yields a con-

sistent estimator of the expectation of h(X). It can be

evaluated using the reproducing kernel property:

E[h(X)] = 〈µX , h〉H ≈

〈

M
∑

m=1

wmk(zm, ·), h

〉

H

=

M
∑

m=1

wmh(zm). (4)

For example, approximating the indicator function 1S

of a set S ⊆ X with functions in the RKHS allows

estimating probabilities: E[1S(X)] = P[X ∈ S] (note

that 1S itself may not be an element of the RKHS).

3. MMD estimation and two-sample testing (Gretton et al.,

2012): Given another random variable Y on X , one

can consistently estimate the Maximum Mean Discrep-

ancy (MMD) distance ‖µX − µY ‖H between the dis-

tributions of X and Y , and in particular to construct a

two-sample test based on this distance. Given a sample

y1, . . . , yL ∼ Y :

‖µX − µY ‖H ≈

∥

∥

∥

∥

∥

M
∑

m=1

wmk(zm, ·)−
1

L

L
∑

l=1

k(yl, ·)

∥

∥

∥

∥

∥

H

,

which can again be evaluated using the reproducing

property.

4. Subsequent use of synthetic data: Since the output of

the algorithm is a (possibly weighted) database, third-

parties are free to use this data for arbitrary purposes,

such as training any machine learning model on this

data. Models trained purely on this data can be released

with differential privacy guaranteed; however, the accu-

racy of such models on real data remains an empirical

question that is beyond the scope of this work.

An orthogonal spectrum of versatility arises from the fact

that the third step in the algorithm template can constrain the

released dataset (z1, w1), . . . , (zM , wM ) to be more conve-

nient or more computationally efficient for further process-

ing. For example, one could fix the weights to uniform

wm = 1
M to obtain an unweighted dataset, or to replace an

expensive data type with a cheaper subset, such as request-

ing floats instead of doubles in the zm’s. All this can be

performed while an RKHS distance is available to control

accuracy between µ̃X and its released representation.

3.4. Concrete Algorithms

As a first illustrative example, we describe how a partic-

ular case of an existing, but inefficient synthetic database

algorithm already fits into our framework. The exponen-

tial mechanism (McSherry & Talwar, 2007) is a general

mechanism for ensuring ε-differential privacy, and in our

setting it operates as follows: given a similarity measure

s : XN × XM → R between (private) databases of size

N and (synthetic) databases of size M , output a random

(synthetic) database R with probability proportional to

exp( ε
2∆1

s(D,R)), where D is the actual private database

and ∆1 is the L1 sensitivity of s w.r.t. D. This ensures

ε-differential privacy (McSherry & Talwar, 2007).

To fit this into our framework, we can take s(D,R) =
−‖µD − µR‖H to be the negative RKHS distance be-

tween the KMEs computed using D and R, and achieve

ε-differential privacy by releasing R with probability pro-

portional to exp(− ε
2∆1

‖µD − µR‖H). This solves steps

2 and 3 of our general algorithm template simultaneously,

as it directly samples a concrete representation of a “per-

turbed” KME µR. The algorithm essentially corresponds

to the SmallDB algorithm of Blum et al. (2008), except for

choosing the RKHS distance as a well-studied similarity

measure between two databases.

The principal issue with this algorithm is its computational

infeasibility except in trivial cases, as it requires sampling

from a probability distribution supported on all potential

synthetic databases, and employing an approximate sam-

pling scheme can break the differential privacy guarantee of

the exponential mechanism. In Sections 4 and 5 respectively,

we describe two concrete synthetic database release algo-

rithms that may possess failure modes where they become

inefficient, but employing approximations in those cases

can only affect their statistical accuracy, not the promise of

differential privacy.
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Algorithm 1 Differentially private database release via a synthetic data subspace of the RKHS

Input: database D = {x1, . . . , xN} ⊆ X , kernel k on X , privacy parameters ε > 0 and δ > 0
Output: (ε, δ)-differentially private, weighted synthetic database (representing an estimate of µX in the RKHSH of k)

1: M ←M(N) ∈ ω(1) ∩ o(N2), number of synthetic data points to use

2: z1, . . . , zM ← initialised deterministically or randomly from some distribution q on X
3: HM ← Span({k(z1, ·), . . . , k(zM , ·)}) ≤ H
4: b1, . . . , bF ← orthonormal basis ofHM (obtained using, e.g. Gram-Schmidt)

5: µ̂X ←
1
N

∑N
n=1 k(xn, ·), empirical KME of X inH

6: µX ←
∑F

f=1〈bf , µ̂X〉Hbf =:
∑F

f=1 αfbf , projection of µ̂X ontoHM

7: β ← α+N (0, 8 ln(1.25/δ)
N2ε2 IF ), an (ε, δ)-differentially private version of the coordinate vector α (Gaussian mechanism)

8: µ̃X ←
∑F

f=1 βfbf =
∑M

m=1 wmk(zm, ·), re-expressed in terms of k(zm, ·)’s
9: return (z1, w1), . . . , (zM , wM )

4. Perturbation in Synthetic-Data Subspace

In this section we describe an instantiation of the frame-

work proposed in Section 3 that achieves differential privacy

of the KME by projecting it onto a finite-dimensional sub-

space of the RKHS spanned by feature maps k(zm, ·) of

synthetic data points z1, . . . , zM , and perturbing the result-

ing finite coordinate vector. To ensure differential privacy,

the synthetic data points are chosen independently of the

private database. As a result, statistical efficiency of this

approach will depend on the choice of synthetic data points,

with efficiency increasing if there are enough synthetic data

points to capture the patterns in the private data. Therefore

this algorithm is especially suited to the scenario discussed

in Section 1, where a part of the database (or of a similar

one) has already been published, as this can serve as a good

starting set for the synthetic data points.

The setting where some observations from X have already

been released highlights the fact that differential privacy

only protects against additional privacy violation due to an

individual deciding to contribute to the private database; if a

particular user’s data has already been published, differential

privacy does not protect against privacy violations based on

exploiting this previously published data.

The algorithm is formalised as Algorithm 1 above. Lines 1-

2 choose synthetic data points z1, . . . , zM independently of

the private data (only using the database size N ). Lines 3-4

construct the linear subspaceHM ofH spanned by feature

maps of the chosen synthetic data points, and compute a (fi-

nite) basis for it. Only then the private data is accessed: the

empirical KME µ̂X is computed (line 5), projected onto the

subspace HM and expressed in terms of the precomputed

basis (line 6). The basis coefficients of the projection are

then perturbed to achieve differential privacy (line 7), and

the perturbed element µ̃X ∈ HM is then re-expressed in

terms of the spanning set containing feature maps of syn-

thetic data points (line 8). This expansion is finally released

to the public (line 9).

Line 1 stipulates that the number of synthetic data points

M → ∞ as N → ∞, but asymptotically slower than N2.

This is to ensure that the privatisation noise added in the

subspace HM to each coordinate is small enough overall

to preserve consistency, as stated in the following Theo-

rem 2. This theorem assures us that Algorithm 1 produces

a consistent estimator of the true KME µX , if the synthetic

data points are sampled from a distribution with sufficiently

large support. Due to space constraints, all proofs appear in

Appendix A.

Theorem 2. Let X be a compact metric space and k a con-

tinuous kernel on X . If the synthetic data points z1, z2, . . .
are sampled i.i.d. from a distribution q on X such that

the support of X is included in the support of q, then Al-

gorithm 1 outputs a consistent estimator of the KME µX :
∑M

m=1 wmk(zm, ·)
P
→ µX as N →∞.

As discussed by Simon-Gabriel et al. (2016), these assump-

tions are usually satisfied: X can be taken to be compact

whenever the data comes from measurements with any

bounded range, and many kernels are continuous, including

all kernels on discrete spaces (w.r.t. to the discrete topology).

In order to use the output of Algorithm 1 in the very general

kernel probabilistic programming framework and obtain a

consistent estimator of the KME µf(X) of f(X) for any

continuous function f , there is a technical condition that the

L1 norm
∑M

m=1 |wm| of the released weights may need to

remain bounded by a constant as N →∞ (Simon-Gabriel

et al., 2016). This is not enforced by Algorithm 1, but Theo-

rem 11 in Appendix A.1 shows how a simple regularisation

in the final stage of the algorithm achieves this without

breaking consistency (or privacy).

The next result about Algorithm 1 shows that it is differen-

tially private whenever k(x, x) ≤ 1 for all x ∈ X . This is a

weak assumption that holds for all normalised kernels, and

can be achieved by simple rescaling for any bounded kernel

(such that supx∈X k(x, x) < ∞). When X is a compact

domain, all continuous kernels are bounded.
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Figure 1: RKHS distance (lower is better) to the (private) empirical KME µ̂X computed using the entire private database of size
N = 100, 000. The dimension of the database was D = 2 (left) or D = 5 (right); please see Appendix B for further details of the setup.
Horizontally we varied M , the number of publicly releasable data points. Stricter privacy requirements (lower ε) naturally lead to lower
accuracy. Increasing M does not always necessarily improve accuracy, since a new public data point always increases the total amount of
privatising noise that needs to be added, but this might not be outweighed by its positive contribution towards covering relevant parts of
the input space. In all cases, for sufficiently small M Algorithm 1 provided a significantly more accurate estimate than µbaseline.

Proposition 3. If k(x, x) ≤ 1 for all x ∈ X , then Algo-

rithm 1 is (ε, δ)-differentially private.

Remark 4. One usually requires that δ decreases faster than

polynomially with the database size N (Dwork & Roth,

2014). The proof of Theorem 2 remains valid whenever

M(N) ∈ o(N2/ ln(1.25/δ(N))), so for example we could

have δ(N) = e−
√
N and M(N) ∈ o(N3/2).

For a finite private database, actual performance will heavily

depend on how the synthetic data points are chosen. We

consider the following two extreme scenarios:

1. No publishable subset: No rows of the private database

are, or can be made public unmodified.

2. Publishable subset: A small proportion of the private

database is already public, or can be made public.

Proposition 5 (Algorithm 1, No publishable subset). Say

X is a bounded subset of RD, the kernel k is Lipschitz, and

the synthetic data points z1, z2, . . . are sampled i.i.d. from

a distribution q with density bounded away from 0 on any

bounded subset of RD. Then M = M(N) can be chosen

so that the output of Algorithm 1 converges to the true KME

µX in RKHS norm at a rate Op(N
−1/(D+1+c)), where c is

any fixed positive number c > 0.

Unsurprisingly, the convergence rate deteriorates with input

dimension D, since without prior information about the pri-

vate data manifold it is increasingly difficult for randomly

sampled synthetic points to capture patterns in the private

data. One of the main strengths of KMEs is that the em-

pirical estimator converges to the true embedding at a rate

Op(N
−1/2) independently of the input dimension D, so we

see that in this unfavourable scenario Algorithm 1 incurs a

substantial privacy cost in high dimensions. On the other

hand, if a small, but fixed proportion of the private database

is publishable, then Algorithm 1 incurs no privacy cost in

terms of the convergence rate:

Proposition 6 (Algorithm 1, Publishable subset). Say that a

fixed proportion η of the private database can be published

unmodified. Using this part of the database as the synthetic

data points, Algorithm 1 outputs a consistent estimator of

µX that converges in RKHS norm at a rate Op(N
−1/2).

Note that in this scenario the rate Op(N
−1/2) can be also

achieved by uniform weighting of the synthetic data points,

since µ̂baseline := 1
M

∑M
m=1 k(zm, ·) with zm = xm is al-

ready a consistent estimator of µX (although based on a

much smaller sample size M = ηN ≪ N ). The purpose of

Algorithm 1 is to find (generally non-uniform) w1, . . . , wM

that reweight the public data points using the information in

the large private dataset, but respecting differential privacy.

Proposition 6 confirmed theoretically that this does not hurt

the convergence rate, while Figure 1 shows empirically on

two synthetic datasets of dimensions D = 2 and D = 5
that Algorithm 1 can in fact yield more accurate estimates

of the KME than µ̂baseline, especially when the proportion

of public data points is small. This is encouraging, since

obtaining permission to publish a larger subset of the pri-

vate data unchanged will usually come at an increased cost.

The ability to instead reweight a smaller public dataset in a

differentially private manner using Algorithm 1 is therefore

useful.
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Algorithm 2 Differentially private database release via a random features RKHS

Input: database D = {x1, . . . , xN} ⊆ X , kernel k on X , privacy parameters ε > 0 and δ > 0
Output: (ε, δ)-differentially private, weighted synthetic database (representing an estimate of µX in the RKHSH of k)

1: J ← J(N) ∈ ω(1) ∩ o(N2), number of random features to use

2: φ← random feature map X 7→ R
J for kernel k with J features

3: µ̂φ
X ←

1
N

∑N
n=1 φ(xn) ∈ R

J , empirical KME of X in RKHSHφ of the random features kernel kφ(·, ·) := φ(·)Tφ(·)

4: µ̃φ
X ← µ̂φ

X +N (0, 8 ln(1.25/δ)
N2ε2 IJ), an (ε, δ)-differentially private version of the vector µ̂φ

X (Gaussian mechanism)

5: M ←M(N) ≥ N , number of synthetic expansion points to use for representing µ̃φ
X

6: (z1, w1), . . . , (zM , wM )← approximate µ̃φ
X in the RKHSHφ using a Reduced set method:

(z1, w1), . . . , (zM , wM ) ≈ argmin
(z′

1
,w′

1
),...,(z′

M ,w′

M ) s.t.
∑

m
|w′

m|≤1

∥

∥

∥

∥

∥

M
∑

m=1

w′
mφ(z′m)− µ̃φ

X

∥

∥

∥

∥

∥

Hφ

(5)

7: return (z1, w1), . . . , (zM , wM )

5. Perturbation in Random-Features RKHS

Another approach to ensuring differential privacy is to map

the potentially infinite dimensional RKHS H of k into a

different, finite-dimensional RKHSHφ using random fea-

tures (Rahimi & Recht, 2007), privacy-protect the finite

coordinate vector in this space (Chaudhuri et al., 2011),

and then employ a reduced set method to find an expansion

of the resulting RKHS element in terms of synthetic data

points. In contrast to Algorithm 1, both the weights and

locations of synthetic data points can be optimised here.

The algorithm is formalised as Algorithm 2 above. Lines 1-

2 pick the number J = J(N) of random features to use, and

construct a random feature map φ with that many features.

Lines 3-4 compute the empirical KME of X in the RKHS

Hφ corresponding to the kernel induced by the random

features, and then privacy-protect the resulting finite, real-

valued vector. Lines 5-6 run a blindly initialised Reduced

set method to find a weighted synthetic dataset whose KME

inHφ is close to the privacy-protected KME of the private

database. Line 7 releases this weighted dataset to the public.

The following theorem confirms that Algorithm 2 outputs a

consistent estimator of the true KME µX , provided that the

optimisation problem (5) is solved exactly, and the random

features converge to the kernel k uniformly on X . On com-

pact sets X this requirement is satisfied by general schemes

such as random Fourier features and random binning for

shift-invariant kernels (Rahimi & Recht, 2007), or by ran-

dom features for dot product kernels (Kar & Karnick, 2012).

Theorem 7. If φ(·)Tφ(·)→ k(·, ·) converges uniformly in

X × X as J → ∞, then the output of Algorithm 2 is a

consistent estimator of the true KME µX as N →∞.

Moreover, a uniform convergence rate for the random fea-

tures, such as the one for random Fourier features by Sripe-

rumbudur & Szabo (2015), can be used to derive a conver-

gence rate for the output of Algorithm 2:

Proposition 8. If φ(·)Tφ(·)→ k(·, ·) converges uniformly

in X ×X at a rate Op(J
−1/2) as J →∞, then J = J(N)

can be chosen so that the output of Algorithm 2 converges

to the true KME µX at a rate Op(N
−1/3).

The empirical KME of the private database µ̂X converges at

a rateOp(N
−1/2), so we see that under perfect optimisation,

the privacy cost incurred by Algorithm 2 is a factor of N1/6.

In practice performance will also depend on the Reduced

set method used, and the computational budget allocated

to it. Figure 2 shows how the incurred error (in terms of

RKHS distance) varies with the number of synthetic data

points M . The additional ability of Algorithm 2 to optimise

the locations of the synthetic data points (rather than just

the weights, as in Algorithm 1) seems to be more helpful

in the higher-dimensional case D = 5, where the randomly

sampled synthetic data points are less likely to land close to

private data points.

Proposition 9. If ‖φ(x)‖2 ≤ 1 for all x ∈ X , then Algo-

rithm 2 is (ε, δ)-differentially private.

This L2-boundedness requirement on the random feature

vectors φ(x) is reasonable under the weak assumption

k(x, x) ≤ 1 for all x ∈ X discussed in Section 4, as in

that case ‖φ(x)‖22 = φ(x)Tφ(x) ≈ k(x, x) ≤ 1.

6. Related Work

Synthetic database release algorithms with a differential

privacy guarantee have been studied in the literature before.

Machanavajjhala et al. (2008) analyzed such a procedure for

count data, ensuring privacy by sampling a distribution and

then synthetic counts from a Dirichlet-Multinomial poste-

rior. Blum et al. (2008) studied the exponential mechanism

applied to synthetic database generation, which leads to a

very general, but unfortunately inefficient algorithm (see

also Section 3.4). Wasserman & Zhou (2010) provided a the-

oretical comparison of this algorithm to sampling synthetic
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Figure 2: RKHS distance (lower is better) to the (private) empirical KME µ̂X computed using the same databases as in Figure 1, of
dimensions D = 2 (left) and D = 5 (right), but this time without a publishable subset. The synthetic data points for Algorithm 1 were
therefore sampled from a wide Gaussian distribution; please see Appendix B for further details. Algorithm 2 is capable of outperforming
Algorithm 1 thanks to its ability to optimise the synthetic data point locations, but this depends on the precise optimisation procedure used
and the optimisation problem becomes harder in higher dimensions.

databases from deterministically smoothed, or randomly

perturbed histograms. Unlike our approach, these algo-

rithms achieve differential privacy by sampling synthetic

data points from a specific distribution, where resorting to

approximate sampling can break the privacy guarantee. In

our framework we propose to arrive at the synthetic database

using a reduced set method, where poor performance could

affect statistical usefulness of the synthetic database, but

cannot break its differential privacy.

Zhou et al. (2009) and Kenthapadi et al. (2012) proposed

randomised database compression schemes that yield syn-

thetic databases useful for particular types of algorithms,

while guaranteeing differential privacy. The former com-

presses the number of data points using a random linear or

affine transformation of the entire database, and the result

can be used by procedures that rely on the empirical covari-

ance of the original data. The latter compresses the number

of data point dimensions while approximately preserving

distances between original, private data points.

Differentially private learning in a RKHS has also been stud-

ied, with Chaudhuri et al. (2011) and Rubinstein et al. (2012)

having independently presented release mechanisms for the

result of an empirical risk minimisation procedure (such

as a SVM). Similarly to our Algorithm 2, they map data

points into a finite-dimensional space defined by random

features and carry out the privacy-protecting perturbation

there. However, they do not require the final stage of invok-

ing a Reduced set method to construct a synthetic database,

because the output (such as a trained SVM) is only used for

evaluation on test points, for which it suffices to additionally

release the used random feature map φ.

As our framework stipulates privacy-protecting an empirical

KME, which is a function X → R, the work on differential

privacy for functional data is of relevance. Hall et al. (2013)

showed how an RKHS element can be made differentially

private via pointwise addition of a Gaussian process sample

path, but as discussed in Section 3.2, the resulting function

is no longer an element of the RKHS. Recently, Aldà & Ru-

binstein (2017) proposed a general Bernstein mechanism for

ε-differentially private function release. The released func-

tion can be evaluated pointwise arbitrarily many times, but

again, the geometry of the RKHS to which the unperturbed

function belonged cannot be easily exploited anymore.

7. Discussion

We proposed a framework for constructing differentially

private synthetic database release algorithms, based on the

idea of using KMEs in RKHS as intermediate database rep-

resentations. To justify our framework, we presented two

concrete algorithms and proved theoretical results guaran-

teeing their consistency and differential privacy. We also

studied their finite-sample convergence rates, and provided

empirical illustrations of their performance on synthetic

datasets. We believe that exploring other instantiations of

this framework, and comparing them theoretically and em-

pirically, can be a fruitful direction for future research.

The i.i.d. assumption on database rows can be relaxed. For

example, if they are identically distributed (as a random

variable X), but not necessarily independent, the framework

remains valid as long as a consistent estimator of the KME

µX can be constructed from the database rows. A common

situation where this arises is, for example, duplication of

database rows due to user error.



Differentially Private Database Release via Kernel Mean Embeddings

Acknowledgements

The authors would like to thank Bharath Sriperumbudur and

the anonymous reviewers for helpful feedback.

References
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