
Noname manuscript No.
(will be inserted by the editor)

Differentially Private Histogram Publication

Jia Xu · Zhenjie Zhang · Xiaokui Xiao ·

Yin Yang · Ge Yu · Marianne Winslett

Received: date / Accepted: date

Abstract Differential privacy (DP) is a promising scheme

for releasing the results of statistical queries on sensitive

data, with strong privacy guarantees against adversaries with

arbitrary background knowledge. Existing studies on dif-

ferential privacy mostly focus on simple aggregations such

as counts. This paper investigates the publication of DP-

compliant histograms, which is an important analytical tool

for showing the distribution of a random variable, e.g., hos-

pital bill size for certain patients. Compared to simple ag-

gregations whose results are purely numerical, a histogram

query is inherently more complex, since it must also deter-

mine its structure, i.e., the ranges of the bins. As we demon-

strate in the paper, a DP-compliant histogram with finer bins

may actually lead to significantly lower accuracy than a coarser

one, since the former requires stronger perturbations in or-

der to satisfy DP. Moreover, the histogram structure itself

may reveal sensitive information, which further complicates

the problem.

Motivated by this, we propose two novel mechanisms,

namely NoiseFirst and StructureFirst, for computing DP-

compliant histograms. Their main difference lies in the rel-

J. Xu (☞), G. Yu

College of Information Science and Engineering,

Northeastern University, Shenyang, China

E-mail: {xujia,yuge}@ise.neu.edu.cn

Z. Zhang, Y. Yang

Advanced Digital Sciences Center,

Illinois at Singapore Pte. Ltd, Singapore

E-mail: zhenjie@adsc.com.sg

X. Xiao

School of Computer Engineering,

Nanyang Technological University, Singapore

E-mail: xkxiao@ntu.edu.sg

M. Winslett

Department of Computer Science,

University of Illinois at Urbana-Champaign, Illinois, USA

E-mail: winslett@illinois.edu

ative order of the noise injection and the histogram struc-

ture computation steps. NoiseFirst has the additional bene-

fit that it can improve the accuracy of an already published

DP-complaint histogram computed using a naive method.

For each of proposed mechanisms, we design algorithms for

computing the optimal histogram structure with two differ-

ent objectives: minimizing the mean square error and the

mean absolute error, respectively. Going one step further, we

extend both mechanisms to answer arbitrary range queries.

Extensive experiments, using several real data sets, confirm

that our two proposals output highly accurate query answers,

and consistently outperform existing competitors.

Keywords Differential privacy · query processing ·

Histogram

1 Introduction

Digital techniques have enabled various organizations to eas-

ily gather vast amounts of personal information, such as

medical records, web search history, etc. Analysis on such

data can potentially lead to valuable insights, including new

understandings of a disease and typical consumer behaviors

in a community. However, currently privacy concerns is a

major hurdle for such analysis, in two aspects. First, it in-

creases the difficulty for third-party data analyzers to ac-

cess their input data. For instance, medical researchers are

routinely required to obtain the approval of their respec-

tive institutional review boards, which is tedious and time-

consuming, before they can even look at the data they need.

Second, privacy concerns complicate the publication of anal-

ysis results. A notable example is the dbGaP1 database, which

contains results of genetic studies. Such results used to be

publicly available, until a recent paper [14] describes an at-

tack that infers whether a person has participated in a certain

1 http://www.ncbi.nlm.nih.gov/gap

2 Jia Xu et al.

Name Age HIV+

Alice 42 Yes

Bob 31 Yes

Carol 32 Yes

Dave 36 No

Ellen 43 Yes

Frank 41 Yes

Grace 26 Yes

...

(a) Example sensitive data

Age

of HIV+ patients

25 30 35 40 45 50 55 60

1

2

3

4

5

2

1 1

3

5

1 1

2 if we remove Alice

(b) Unperturbed histogram

Fig. 1 Example sensitive dataset and its corresponding histogram

study (e.g., on patients with diabetes) from its results; there-

after, access to such results is strictly controlled. Further-

more, a strengthened version of this attack [22] threatens the

publication of any research paper on genome-wide associa-

tion studies, which currently is an active field in biomedical

research.

The recently proposed concept of differential privacy (DP)

[7–9,13,18,24] addresses the above issues by injecting a

small amount of random noise into statistical results. DP

is rapidly gaining popularity, because it provides rigorous

privacy guarantees against adversaries with arbitrary back-

ground information. This work focuses on the computation

of DP-compliant histograms, which is a common tool for

presenting the distribution of a random variable. Fig. 1(a)

shows sample records in an imaginary sensitive dataset about

HIV-positive patients, and Fig. 1(b) illustrates its histogram

showing the age distribution of such patients. Such histograms

are commonly found, e.g., in the published statistics by Sin-

gapore’s Ministry of Health2. The application of DP to such

histograms guarantees that changing or removing any record

from the database has negligible impact on the output his-

togram. This means that the adversary cannot infer whether

a specific patient (say, Alice) is infected by HIV, even if s/he

knows the HIV status of all the remaining patients in the

database.

A histogram with a given structure reduces to a set of

disjoint range-count queries, one for each bin. The state-of-

the-art method [7] (called the Laplace Mechanism, or LM)

for perturbing the output of such counts to satisfy DP works

as follows. First, LM determines the sensitivity ∆ of these

counts, which is the maximum possible changes in the query

results if we remove one record from (or add one into) the

database. In our example, we have ∆ = 1, since each patient

affects the value of exactly one bin in the histogram by at

most 13. For instance, removing Alice decreases the number

of HIV+ patients aged 40-45 by 1. Then, LM adds to every

2 http://www.moh.gov.sg/content/moh_web/home/

statistics.html
3 An alternative definition of sensitivity [7] concerns the maximum

changes in the query results after modifying a record in the database.

bin a random value following the Laplace distribution with

mean 0 and scale ∆/ǫ, where ǫ is a parameter indicating the

level of privacy. For instance, when ǫ = 1, the noise added

to each bin has a variance of 2 [17], which intuitively covers

the impact (i.e., 1) of any individual in the database.

A key observation made in this paper is that the accuracy

of a DP-compliant histogram depends heavily on its struc-

ture. In particular, a coarser histogram can sometimes lead

to higher accuracy than a finer one, as shown in the example

below.

Example 1 Fig. 2(a) exhibits a different histogram of the

dataset in Fig. 1(a) with 3 bins 25-40, 40-50 and 50-60, re-

spectively. In the following, we use the term ”unit-length

range” to mean the range corresponding to a bin in the his-

togram in Fig. 1(b), e.g., 25-30. In the histogram in Fig. 2(a),

each bin covers multiple unit-length ranges, and the num-

bers on top of each bin correspond to the mean count of each

unit-length range, e.g., 1.33 above range 25-30 is calculated

by dividing the total number of patients (i.e., 4) in the bin

25-40 by the number of unit-length ranges it covers (i.e. 3).

As we prove later in the paper, such averaging decreases

the amount of noise therein. Specifically, the Laplace noise

added to each unit-length range inside a bin covering b such

ranges has a scale of 1/b · ǫ, compared to the 1/ǫ scale in the

histogram of Fig. 1(b).

Age

of HIV+ patients

25 30 35 40 45 50 55 60

1

2

3

4

5

1.33

4

1 1
1.331.33

Noise scale:
1/3ε

Noise scale:
1/2ε

4

(a) Optimal histogram with 3 bins

Age

of HIV+ patients

25 30 35 40 45 50 55 60

1

2

3

4

5

1.5
1

1.5

Noise scale:

1/2ε

Noise scale:

1/ ε

3 3

2 2

(b) Poor histogram structure

Fig. 2 Impact of histogram structures on noise scales

The above example demonstrates that a coarser histogram

can lead to a lower amount of noise added to each bin. How-

ever, the use of larger bins also introduces information loss,

In our example this leads to ∆ = 2, since in the worst case, changing

a person’s age can affect the values in two different bins by 1 each.

Differentially Private Histogram Publication 3

as the mean statistic (e.g., 1.33 for bin 25-30 in Fig. 2(a)) re-

places their respective original values (1). Accordingly, the

quality of the histogram structure depends on the balanc-

ing between the information loss and the error reduction.

Fig. 2(b), for example, shows yet another histogram for the

same data set in Example 1, which intuitively has poor accu-

racy because (i) it merges unit-length ranges with very dif-

ferent values, e.g., ranges 35-40 and 40-45, leading to high

information loss; and (ii) it contains a very small bin, i.e.,

55-60, that requires a high noise scale 1/ǫ, especially for

small values of ǫ. This example implies that the best struc-

ture depends on the data distribution as well as ǫ. A further

complication is that if we build the optimal histogram struc-

ture on the original count sequence, as shown in Example

1, the optimal structure itself may reveal sensitive informa-

tion. This is because removing a record from the original

database may cause the optimal structure to change, which

can be exploited by the adversary to infer sensitive informa-

tion. Thus, simply selecting the best structure with an exist-

ing histogram construction technique violates DP, regardless

of the amount of noise injected to the counts.

Facing these challenges, we propose two effective solu-

tion frameworks for DP-compliant histogram computation,

namely NoiseFirst and StructureFirst. The former determines

the histogram structure after the injecting random noise, and

the latter derives the histogram structure before the addition

of the Laplace noise. In particular, NoiseFirst can be used to

improve the accuracy of an already published histogram us-

ing an existing method [7]. We discuss both methods under

both mean-histograms, which publishes the mean value for

each bin, and median-histograms, which reports the median

value for each bin. Although median-histograms are rarely

used in conventional databases, we show that it often obtains

a more accurate representation of the original data under DP

requirements.

Furthermore, we adapt DP-histograms to answer arbi-

trary range-count queries, which has drawn considerable re-

search attention (e.g., [7,13]). For such queries, NoiseFirst

achieves better accuracy for short ranges, whereas Structure-

First is more suitable for longer ones. Extensive experiments

using several real data sets demonstrate that our two pro-

posals, namely NoiseFirst and StructureFirst output highly

accurate histograms, and significantly outperform existing

methods for range count queries.

In the remainder of this paper, Section 2 provides nec-

essary background on Differential Privacy(DP). Section 3

and 4 present the solution frameworks of NoiseFirst and

StructureFirst, respectively, for mean-histograms . Section 5

extends our solutions to median-histograms. Section 6 dis-

cusses the range-count query processing for our proposed

methods. Section 7 contains a thorough experimental study.

Section 8 overviews existing DP techniques. Finally, Section

9 provides concluding remarks.

2 Preliminaries

2.1 Histogram Construction

Given a series of n counts D = {x1, x2, . . . , xn} and a pa-

rameter k, a histogram H merges neighboring counts into

k bins H = {B1, B2, . . . , Bk}, and uses a representative

count for each bin. Each bin Bj = (lj , rj , cj) contains an in-

terval [lj , rj] ⊆ [1, n], and a count cj that approximates the

counts in D that fall into the interval [lj , rj], i.e., {xi | lj ≤

i ≤ rj}. The bins in a histogram must be disjoint and yet

collectively cover all the counts in D. Since a histogram

uses fewer counts than the original sequence D, it inevitably

introduces error. This error is often measured by Sum of

Squared Error (SSE) between the histogram H and the orig-

inal sequence D, as follows.

SSE(H,D) =
∑

j

∑

lj≤i≤rj

(cj − xi)
2. (1)

SSE(H,D) can also be interpreted as the sum of squared

error for all unit-length range count queries. Given the struc-

ture of the histogram, the interval [lj , rj] for each bin Bj , the

optimal value of cj for each Bj that minimizes SSE(H,D)
is simply the mean value of the counts in [lj , rj], i.e., cj =
∑rj

i=lj
xi

rj−lj+1 . Accordingly, the problem of conventional histogram

construction [15,12] aims to identify the optimal histogram

structure H∗ containing k bins (k is a given parameter) that

minimizes SSE(H,D).

Jagadish et al. [15] propose a dynamic programming so-

lution, with time complexity O(n2k) and space complex-

ity O(nk). Fig. 3 lists the intermediate results of the dy-

namic programming process, using the data sequence in Fig.

1(b) and setting k = 3. Each entry in the i-th column and

k-th row, denoted as T (i, k), represents the minimum er-

ror of any histogram with k bins covering the prefix Di =

{x1, . . . , xi}. Let SSE(D, l, r) to denote the sum of squared

error incurred by merging a partial sequence {xl, . . . , xr}
into a single bin. The mean count for this merged bin is then

x̄(l, r) =
∑r

i=l xi/(r − l + 1). Therefore, SSE(D, l, r) =
∑r

i=l(xi − x̄(l, r))2.

0.50 140.67 11.22.75 12.8

0 11.20.5 2.670.67 8.67

2.670.670.5 2.670

i=1 2 3 4 5 6 7

k=1

2

3

Fig. 3 Building the optimal histogram for the dataset in Figure 1(b)

The dynamic programming algorithm in [15] recursively

computes the minimum SSE T (n, k) of the optimal histogram,

4 Jia Xu et al.

Table 1 Summary of frequent notations

∆ query sensitivity

D = {x1, . . . , xi, . . . , xn} a count sequence

D′ = {x1, . . . , xi ± 1, . . . , xn} a neighbor count sequence of D

D̂ = {x̂1, . . . , x̂n} a noisy count sequence of D
Di = {x1, . . . , xi} a partial sequence of D

H∗

k the optimal k-bin histogram on D

Ĥ∗

k the optimal k-bin histogram on the noisy count sequence D̂
H∗(Di, k) the optimal k-bin histogram on the partial sequence Di

SSE(D, l, r)/SAE(D, l, r) the SSE/SAE error if we merge a partial sequence {xl, . . . , xr} into a single bin

SSE(H,D)/SAE(H,D) the SSE/SAE error if we build histogram H on D

using the following equation:

T (i, k) = min
k−1≤j≤i−1

(T (j, k − 1) + SSE(D, j + 1, i)) .

Given the minimum SSE values, we can determine the

optimal histogram structure by tracing back the selections

of the optimal bin boundaries (shown as gray cells in Figure

2(a)). In our example, the optimal histogram is H∗ = {(1,

3, 1.33), (4, 5, 4.5), (6, 7, 1.0)}.

2.2 Differential Privacy

Given a count sequence D = {x1, x2, . . . , xn}, another se-

quence D′ is a neighbor sequence to D, if and only if D′

differs from D in only one count, and the difference in that

count is exactly 1. Formally, there exists an integer 1 ≤ m ≤

n, such that D′ = {x1, x2, . . . , xm−1, xm±1, xm+1, . . . , xn}.

A histogram publication mechanism Q satisfies ǫ-differential

privacy (ǫ-DP), if it outputs a randomized histogram H , such

that

∀D,D′, H : Pr(Q(D) = H) ≤ eǫ × Pr(Q(D′) = H),

where D and D′ denote two arbitrary neighbor sequences,

and Pr(Q(D) = H) denotes the probability that Q outputs

H with input D. The first and most commonly used mech-

anism for differential privacy is the Laplace mechanism [7],

which relies on the concept of sensitivity. In particular, the

sensitivity ∆ of the query (e.g., a histogram query in our

problem) is defined as the maximum L1-distance between

the exact answers of the query Q on any neighbor databases

D and D′, i.e.,

∆ = max
D,D′

‖Q(D)−Q(D′)‖1

Dwork et al. [7] prove that differential privacy can be

achieved by adding random noise to the each output of Q

that follows a zero-mean Laplace distribution with scale b =
∆
ǫ

. In our problem, note that the simple solution that simply

injects Laplace noise to each bin count of the optimal his-

togram (e.g., computed with the algorithm in [15]) does not

satisfy differential privacy, because the structure of the op-

timal histogram depends on the original data. Consequently,

the adversary can infer sensitive information based on the

optimal histogram structure. For instance, consider again the

example in Fig. 1(b), and assume that the adversary knows

all the AIDS patients except for Alice. If Alice were not an

HIV+ patient, there would be only two patients between 40

and 45 years old, which leads to a different optimal 3-bin

histogram as shown in Figure 4. Since the published opti-

mal histogram structure is the one shown in Figure 2(a), the

adversary infers that Alice must be an HIV+ patient, leading

to a privacy breach.

Age25 30 35 40 45 50 55 60

1

2

3

4

5

of HIV+ patients

Fig. 4 Optimal histogram when Alice is excluded from the dataset

Table 1 summarizes frequently used notations through-

out the paper.

3 NoiseFirst

In this and the next section, we present the proposed solu-

tions under the mean-histogram, in which each bin outputs

the mean value of the unit-length counts therein. Our first

solution, NoiseFirst, involves two steps. First, it computes

a differentially private histogram with the finest granular-

ity, i.e., with unit-length bins, using the Laplace Mechanism

(LM) [7]. Clearly, the sensitivity of this step is exactly 1,

since adding or removing a record can change the count of

one bin by 1. Therefore, it suffices to inject Laplace noise

with magnitude b = 1
ǫ

into each bin to satisfy ǫ-DP. The

result is a noisy sequence D̂ = {x̂1, . . . , x̂n}.

In the second step, NoiseFirst computes the optimal his-

togram structure based on the noisy sequence D̂, using the

Differentially Private Histogram Publication 5

dynamic programming algorithm [15]. The complete pseu-

docode of NoiseFirst is listed in Algorithm 1. Clearly, Noise-

First can be used as a post-processing step for optimizing an

already published histogram D̂ computed by LM, by merg-

ing adjacent noisy counts.

Algorithm 1 Mean-NoiseFirst (count sequence D, the

number of bins k, privacy guarantee ǫ)

1: Generate a new database D̂ by adding independent Lap(1
ǫ
) on

every count xi ∈ D.

2: Build the optimal k-bin histogram on D̂, denoted as Ĥ∗

k , with dy-

namic programming method.

3: Return histogram Ĥ∗

k = {(l1, r1, c1), . . . , (lk, rk, ck)}, in

which every cj is the mean of the noisy data {x̂lj , . . . , x̂rj
}.

Since NoiseFirst computes the histogram structure based

on the noisy counts, a natural question is whether the result-

ing histogram indeed has high quality. To answer this, in

the rest of the section, we provide some theoretical analy-

sis on the expected Sum of Squared Error(SSE) incurred by

NoiseFirst. The main objective in the analysis is to derive

the connection between (i) the error of the histogram built

with the noisy count sequence D̂ and (ii) the error of the

optimal histogram built with the original data D. Note that

(ii) is only used in the analysis; NoiseFirst does not compute

or report such a histogram. First, we analyze the impact of

merging consecutive noisy counts into a single bin. The fol-

lowing lemmata quantify the expected errors of a bin on the

noisy sequence and original sequence, respectively.

Lemma 1 Given subsequence of counts {xl, xl+1, . . . , xr}.

Let {x̂l, . . . , x̂r} be the noisy counts after the first step in

Algorithm 1. If (l, r, c) is the result bin by merging all the

counts, the expected squared error of the bin with respect to

{x̂l, . . . , x̂r} is

E (Error((l, r, c), {x̂l, . . . , x̂r}) = SSE(D, l, r)+
2(r − l)

ǫ2

Proof Assume that Xi is the variable of the count xi after

adding noise following Lap(1
ǫ
). Let C be the variable of the

average count c, i.e., C =
∑r

i=l Xi

r−l+1 . We use δi to denote the

residual variable on Xi, i.e., δi = Xi − xi, and let the size

of the bin s = r − l + 1. The expected error of the result

bin (l, r, c) on the noisy count sequence {x̂l, . . . , x̂r} is thus

derived as follows.

E

{

r
∑

i=l

(Xi − C)
2

}

= E







r
∑

i=l

(Xi)
2 −

1

s

(

r
∑

i=1

Xi

)2






= E







r
∑

i=l

(xi)
2 +

r
∑

i=l

(δi)
2 −

1

s

(

r
∑

i=l

xi

)2

−
1

s

(

r
∑

i=l

δi

)2






=
r
∑

i=l

(xi)
2 −

1

s

(

r
∑

i=l

xi

)2

+ E







r
∑

i=l

(δi)
2 −

1

s

(

r
∑

i=l

δi

)2






= SSE(D, l, r) + E

{

r
∑

i=l

(δi)
2 −

1

s

r
∑

i=l

(δi)
2

}

= SSE(D, l, r) +
2(s− 1)

ǫ2

Since s = r − l + 1, we reach the conclusion in the

lemma. ⊓⊔

The above is the sum of squared error computed using

the the average count in the noisy data D̂. The following

lemma shows how to estimate the error of a bin with respect

to the original counts in D.

Lemma 2 Given subsequence of counts {xl, xl+1, . . . , xr}.

Let {x̂l, . . . , x̂r} be the noisy counts after the first step in

Algorithm 1. If (l, r, c) is the result bin by merging all the

counts, the expected squared error of the bin with respect to

{xl, . . . , xr} is

E (Error({(l, r, c}, {xl, . . . , xr})) = SSE(D, l, r) +
2

ǫ2

Proof Similar to the proof of Lemma 1, we derive the error

as follows. Notations Xi, C and s have the same meanings

as defined in the proof for Lemma 1.

E

{

r
∑

i=l

(xi − C)
2

}

=

r
∑

i=l

(xi)
2 −

2

s

(

r
∑

i=l

xi

)2

+
1

s
E







(

r
∑

i=l

Xi

)2






= SSE(D, l, r)−
1

s

(

r
∑

i=l

xi

)2

+
1

s
E







(

r
∑

i=l

(xi + δi)

)2






= SSE(D, l, r) +
1

s
E

{

r
∑

i=l

(δi)
2

}

= SSE(D, l, r) +
2

ǫ2

This completes the proof. ⊓⊔

The expected SSE of the histogram with the finest gran-

ularity (i.e., with unit-length bins)is exactly
2(r−l+1)

ǫ2
, i.e.,

E (Error({(l, l, x̂l), . . . , (r, r, x̂r)}, {xl, . . . , xr})) (2)

=
2(r − l + 1)

ǫ2

6 Jia Xu et al.

Lemma 2 shows that the expected error of histogram with

a single bin is SSE(D, l, r) + 2
ǫ2

. This implies that the ac-

curacy of the coarsest (i.e., single-bin) histogram is more

accurate than the finest one (i.e., unit-bin), when ǫ is suffi-

ciently small, i.e., ǫ <
√

2(r−l)
SSE(D,l,r) . Next we extend the

analysis of Lemma 1 and Lemma 2 to multiple bins.

Let Hk denote the k-bin histogram with the same struc-

ture as Ĥ∗
k but with different counts in the bins. Instead of

using noisy counts {x̂lj , . . . , x̂rj}, Hk calculates the mean

count for bin Bj with the original counts (xlj+. . .+xrj)/(rj−

lj + 1). It is straightforward to see that Error(Hk, D) =
∑k

j SSE(D, lj , rj), which helps proving the following the-

orem.

Theorem 1 Given Hk and Ĥ∗
k as defined above, the ex-

pected error of the histogram on D̂ and D are respectively,

E(Error(Ĥ∗
k , D̂)) = Error(Hk, D) +

2(n− k)

ǫ2

E(Error(Ĥ∗
k , D)) = Error(Hk, D) +

2k

ǫ2

Since k is fixed before running the algorithm, the the-

orem above implies that optimizing the histogram by min-

imizing on Error(Ĥ∗
k , D̂) leads to the solution that mini-

mizes Error(Ĥ∗
k , D), i.e.,

argmin
Ĥ∗

k

E(Error(Ĥ∗
k , D̂)) = argmin

Ĥ∗

k

E(Error(Ĥ∗
k , D))

(3)

The equation provides the intuition behind the correct-

ness of NoiseFirst method in Algorithm 1, which runs the

dynamic programming on the noisy data sequence D̂.

It remains to clarify how to select an appropriate value

for parameter k. Since the noisy data already satisfies ǫ-DP,

and NoisyFirst does not require any additional privacy bud-

get, we simply execute it n times, with parameter values

k = 1, . . . , n and returning the result with the minimum

expected SSE. Although it is impossible to directly evaluate

the expected error on D, we can utilize Theorem 1 again. If

Ĥ∗ is the optimal histogram returned by Algorithm 1 with

k = 1, . . . n bins, the final result histogram is selected based

on the following optimization objective:

Ĥ∗ = argmin
Ĥ∗

k

E

(

Error(Ĥ∗
k , D̂)−

2n− 4k

ǫ2

)

(4)

Algorithm 2 details the computation of the optimal pa-

rameter k∗ for NoiseFirst. We use the notation T̂ SSE[i, j]

to represent the minimum SSE of merging the partial noisy

count sequence D̂i into j bins. The algorithm first fills the ta-

ble T̂ SSE (Lines 1-6) using dynamic programming. Then, k∗

is obtained by comparing the expected SSE under different

ks based on the Equation 3 (Lines 7-12). Since Algorithm

2 runs entirely on the noisy count sequence D̂ rather than

Algorithm 2 ComputeOptimalK (noisy count sequence D̂

with |D̂| = n, privacy guarantee ǫ)

1: for each i from 1 up to n do

2: T̂ SSE[i, 1] := SSE(D, 1, i)
3: for each j from 2 to n do

4: T̂ SSE[i, j] := +∞
5: for each l := j − 1 down to 1 do

6: T̂ SSE[i, j] := min (T̂ SSE[i, j],

T̂ SSE[l, j − 1] + SSE(D̂, l+ 1, i))
7: minErr = MAX
8: for each k from 1 up to n do

9: Err = T̂ SSE[n, k]− 2n−4k
ǫ2

10: if Err < minErr then

11: minErr = Err
12: k∗ = k
13: Return k∗

the original sequence D, it does not consumes any privacy

budget, either.

NoiseFirst obtains improved accuracy by canceling out

the zero-mean Laplace noise injected into different bins. On

the other hand, NoiseFirst has the same sensitivity as LM,

and injects Lap(1
ǫ
) in each bin during its first step. As shown

in the Example 1 of Section 1, the sensitivity of the his-

togram can be further reduced, if we add noise after the

histogram construction. Next we describe a novel algorithm

based on this idea.

4 StructureFirst

Unlike NoiseFirst, the StructureFirst algorithm computes the

histogram structure using the original data, before adding

the noise to each of its bins. Note that the optimal histogram

structure is sensitive information itself; hence, StructureFirst

spends a portion of the privacy budget ǫ to protect it. In the

rest of the section, we use Di to denote the partial database

Di = {x1, x2, . . . , xi}, and H∗(Di, j) to denote the opti-

mal histogram with j bins on Di.

Algorithm 3 presents the StructureFirst algorithm. It first

constructs the optimal histogram H∗ on the basis of the orig-

inal data D. All the intermediate results are stored in a table,

as is done in Figure 3. To protect the structure of the optimal

histogram, StructureFirst randomly moves the boundaries

between the bins. When choosing the boundary between Bj

and Bj+1, it picks up rj for bin Bj at the count xq ∈ D with

probability proportional to

exp

{

−
ǫ1ESSE(q, j, rj+1)

2(k − 1)(2F + 1)

}

Here, ESSE(q, j, rj+1) is the SSE of the histogram, which

consists of the optimal histogram with j bins covering [1, q]

and the j+1th bin covering [q+1, rj+1]. If (q+1, rj+1, c) is

a new bin constructed by merging counts {xq+1, . . . , xrj+1
}

Differentially Private Histogram Publication 7

Algorithm 3 Mean-StructureFirst (count sequence D, the

number bins k, privacy parameter ǫ, count upper bound F)

1: Partition ǫ into two parts ǫ1 and ǫ2 that ǫ1 + ǫ2 = ǫ.
2: Build the optimal histogram H∗

k and keep all intermediate results,

i.e. Error(H∗(Di, j), Di) for all 1 ≤ i ≤ n and 1 ≤ j ≤ k
3: Set right boundary of kth bin at rk = n
4: for each j from k − 1 down to 1 do

5: for each q from j up to rj+1 − 1 do

6: Calculate ESSE(q, j, rj+1) =
Error(H∗(Dq, j), Dq) + SSE(D, q + 1, rj+1)

7: select rj = q from k − 1 ≤ q < rj+1 with probability

proportional to exp
{

−
ǫ1ESSE(q,j,rj+1)

2(k−1)(2F+1)

}

8: Set lj+1 = rj + 1
9: Calculate average count cj for every bin on interval [lj , rj].

10: Add noise to counts as ĉj = cj + Lap
(

1
ǫ2(rj−lj+1)

)

11: Return histogram {(l1, r1, ĉ1), . . . , (lk, rk, ĉk)}

and c is the average count, it is straightforward to verify that

ESSE(q, j, rj+1)

= Error(H∗(Dq, j) ∪ {(q + 1, rj+1, c)}, Drj+1)

= Error(H∗(Dq, j), Dq) + SSE(D, q + 1, rj+1) (5)

In the probability function, F is some prior knowledge

on the upper bound on the maximum count in the sequence,

which is assumed to be independent of the database. After

setting all the boundaries, Laplace noise is added on count

in each bin. For bin (lj , rj , cj), the magnitude of the Laplace

noise on cj is 1
ǫ2(rj−lj+1) .

Next we analyze the correctness and expected accuracy

of the algorithm, and discuss how to set the values of ǫ1 and

ǫ2. Unlike NoiseFirst, StructureFirst does not decide on the

value of k itself; instead, the user must specify the desired

k before running the algorithm. In Section 7, we provide

some empirical guidelines on how to choose generally good

k value on real data sets.

4.1 Correctness

To pave the way for the correctness proof, we first derive

some worst case sensitivity analysis on the intermediate re-

sults during the computation of the histogram structure.

Lemma 3 Let F be an upper bound of the maximum count

in any of the bins. Given two neighbor database D and D′,

the error of the optimal histograms on D and D′ with re-

spect to the first i counts changes by at most

|Error(H∗(D′
i, j), D

′
i)−Error(H∗(Di, j), Di)| ≤ 2F+1

Proof Given two neighbor databases D and D′, there is ex-

actly one count xm changes by 1, i.e., xm − 1 ≤ x′
m ≤

xm + 1. Assume that xm is in bin (lz, rz, cz) in H∗(Di, j).

Since H∗(D′
i, j) is the optimal histogram for D′

i with j bins,

it is straightforward to know that given any histogram H ′

covering interval [1, i], we have

Error(H∗(D′
i, j), D

′
i) ≤ Error(H ′, D′

i) (6)

In particular, we construct a special histogram H ′ by

reusing all bins in H∗(Di, j), except that c′z =
∑rz

q=lz
xq+(x′

m−xm)

rz−lz+1

replaces cz =
∑rz

q=lz
xq

rz−lz+1 . Let s = rz − lz + 1. In the follow-

ing, we derive some upper bound on the error of such H ′ on

D′
i.

Error(H ′, D′
i)− Error(H∗(Di, j), Di)

= (x′
m)2 − (xm)2 − s(c′z)

2 + s(cz)
2 (7)

When x′
m = xm + 1, the difference on the error above

is

Error(H ′, D′
i)− Error(H∗(Di, j), Di)

= (xm + 1)2 − (xm)2 − s

(

cz +
1

s

)2

+ s(cz)
2

= 2xm + 1− 2cz −
1

s
≤ 2xm + 1 (8)

When x′
m = xm − 1, the difference can be estimated

similarly as

Error(H ′, D′
i)− Error(H∗(Di, j), Di)

= (xm − 1)2 − (xm)2 − s

(

cz −
1

s

)2

+ s(cz)
2

= −2xm + 1 + 2cz −
1

s
≤ 2cz + 1

≤ 2 max
ls≤q≤rs

xq + 1 (9)

Combining Equations 8 and 9, we have

Error(H∗(D′
i, j), D

′
i) ≤ Error(H ′, D′

i)

≤ Error(H∗(Di, j), Di) + 2F + 1

This reaches the conclusion of the lemma. ⊓⊔

Given the above worst case analysis on the change of er-

ror, we next prove that the bin-boundary perturbation scheme

satisfies differential privacy.

Lemma 4 The selection of rj on line 7 of Algorithm 3 sat-

isfies ǫ1
k−1 -differential privacy.

Proof Let ESSE(q, j, rj+1) be the SSE cost of setting rj =

q, we use E′
SSE(q, j, rj+1) to denote the cost when the same

histogram is constructed on D′ instead. Based on Lemma 3,

we have

|E′
SSE(q, j, rj+1)− ESSE(q, j, rj+1)| ≤ 2F + 1

8 Jia Xu et al.

According to the pseudocodes of StructureFirst, when

rj+1 is fixed, the probability of selecting rj = q on D′ is

Pr(rj = q) =
exp

{

−
ǫ1E

′

SSE(q,j,rj+1)
2(k−1)(2F+1)

}

∑

z exp
{

−
ǫ1E

′

SSE
(z,j,rj+1)

2(k−1)(2F+1)

}

≤
exp

{

−
ǫ1(ESSE(q,j,rj+1)−2F−1)

2(k−1)(2F+1)

}

∑

z exp
{

−
ǫ1(ESSE(z,j,rj+1)+2F+1)

2(k−1)(2F+1)

}

= exp

(

ǫ1
k − 1

) exp
{

−
ǫ1ESSE(q,j,rj+1)
2(k−1)(2F+1)

}

∑

z exp
{

−
ǫ1ESSE(z,j,rj+1)
2(k−1)(2F+1)

}

Hence, the selection of rj follows (ǫ1
k−1)-differential pri-

vacy. ⊓⊔

Based on the above lemmata, we prove the correctness

of Algorithm 3 in the following theorem.

Theorem 2 Algorithm 3 satisfies ǫ-differential privacy.

Proof In Algorithm 3, the output histogram relies on the re-

sults on Line 7 and Line 12, which are all independent of

each other. Line 7 is run k times and Line 12 is run exactly

once. According to Lemma 4, each execution on line 7 costs

the privacy budget ǫ1
k

. Based on the concept of generalized

sensitivity used in [24], the privacy cost of line 12 is ǫ2. It is

because we can define Wj = (rj − lj + 1) to meet the re-

quirement of generalized sensitivity. Consider two databases

D and D′ with the same boundary structure calculated in the

StructureFirst algorithm, we have ĉj and ĉ′j being the noisy

average counts. They satisfy the following function in form

of weighted sensitivity.

∑

j

Wj · ĉj −
∑

j

Wj · ĉ
′
j ≤ 1

The total privacy budget spent in the algorithm is thus

k ǫ1
k
+ ǫ2 = ǫ, since ǫ1 + ǫ2 = ǫ. ⊓⊔

4.2 Accuracy Analysis

Next we quantify the expected error incurred by Structure-

First.

Lemma 5 Given any non-negative real number x and posi-

tive constant c, we have x · e−cx ≤ 1
2c .

Lemma 6 The SSE of the histogram increases by no more

than
8(k−1)(2F+1)2

ǫ1(8(k−1)(2F+1)−ǫ1nF 2) , every time we move the bound-

ary by line 7 in Algorithm 3.

Proof Assume that the optimal histogram with j + 1 bins

is supposed to selection q∗ as the boundary between jth bin

and (j+1)th bin, to minimize the error Error(H∗(Dq, j), Dq)+

SSE(q + 1, rj+1). We are interested in the expected in-

crease on the error when the randomized algorithm fails to

select q∗. Note that the probabilities remain the same if we

reduce each ESSE(q, j, rj+1) by ESSE(q
∗, j, rj+1). Since

each ESSE(q)−E(q∗) ≥ 0 and there is at least one z = q∗

that ESSE(z, j, rj+1)−ESSE(q
∗, j, rj+1) = 0, the follow-

ing inequalities must be valid, using the well known fact

e−x ≥ 1− x for any positive x.

∑

z

exp

{

−
ǫ1(ESSE(z, j, rj+1)− ESSE(q

∗, j, rj+1))

2(k − 1)(2F + 1)

}

≥
∑

z

(

1−
ǫ1(ESSE(z, j, rj+1)− ESSE(q

∗, j, rj+1))

2(k − 1)(2F + 1)

)

≥ n

(

1−
ǫ1nF

2

8(k − 1)(2F + 1)

)

(10)

To simplify the notation, we use E(q) to replace ESSE(q, j, rj+1),

when j and rj+1 are clear in the context. Thus, the expec-

tation on the additional error over the optimal one with q∗

is
∑

q

{(E(q)) Pr(rj = q)} − E(q∗, j, rj+1)

=
∑

q

{(E(q)− E(q∗)) Pr(rj = q)}

=
∑

q







(E(q)− E(q∗))
exp

{

− ǫ1(E(q)−E(q∗)
2(k−1)(2F+1)

}

∑

z exp
{

− ǫ1(E(z)−E(q∗)
2(k−1)(2F+1)

}







≤
∑

q







(E(q)− E(q∗))
exp

{

− ǫ1(E(q)−E(q∗)
2(k−1)(2F+1)

}

n− ǫ1n2F 2

8(k−1)(2F+1)







≤
∑

q

(k − 1)(2F + 1)

ǫ1

(

n−
ǫ1n

2F 2

8(k − 1)(2F + 1)

)−1

≤
8(k − 1)2(2F + 1)2

ǫ1 (8(k − 1)(2F + 1)− ǫ1nF 2)
(11)

Here, the first inequality is due to Equation 10. The sec-

ond inequality applies to Lemma 5. The last inequality is

due to the fact that the number of candidate q is no larger

than the size of the database. ⊓⊔

Note that the cost analysis in Lemma 6 does not rely on j

or rj+1. Therefore, the total additional SSE over the optimal

histogram without noise is simply k−1 times of the error in

Lemma 6. Combined with the error introduced on line 10 in

Algorithm 3, the total expected SSE is bounded, as stated in

the following theorem.

Theorem 3 The output histogram of Algorithm 3, the ex-

pected SSE is at most

SSE(H∗(D, k), D)+
8(k − 1)3(2F + 1)2

ǫ1 (8(k − 1)(2F + 1)− ǫ1nF 2)
+

2k

(ǫ2)2

Differentially Private Histogram Publication 9

The error analysis in the theorem above shows the ad-

vantages of StructureFirst method. We can interpret the ex-

pected SSE of StructureFirst as Error(H∗(D, k), D)+O(k
ǫ2
),

by ignoring all constant items. This is a significant theo-

retical improvement over all previous methods, including

NoiseFirst.

4.3 Budget Assignment

Given k, the expected SSE of the histogram obtained by

StructureFirst depends upon the values of ǫ1 and ǫ2 = ǫ−ǫ1.

In the error analysis of Theorem 3, the total error consists of

three parts. The first part Error(H∗(D, k), D) relies on k

and the original data D. The other two parts are independent

of the data, but are decided by n, k, F , ǫ1 and ǫ2. Therefore,

we minimize the expected error by finding the optimal com-

bination of ǫ1 and ǫ2:

Minimize

(

8(k − 1)3(2F + 1)2

ǫ1 (8(k − 1)(2F + 1)− ǫ1nF 2)
+

2k

(ǫ2)2

)

s.t. ǫ1 + ǫ2 = ǫ

The optimization problem above does not always has a

closed-form solution. Hence, we employ numerical methods

to identify a near-optimal assignment on ǫ1 and ǫ2. Specif-

ically, we apply a simple sampling technique that tries dif-

ferent 0 < ǫ1 < ǫ and returns the best ǫ1 and ǫ2 = ǫ − ǫ1
encountered. Since it takes constant time to verify the cost

when a specific pair of ǫ1 and ǫ2 are given, the computational

overhead of the budget assignment optimization is insignif-

icant.

5 Publishing Median-Histograms

So far, we have discussed NoiseFirst and StructureFirst for

mean-histograms, which reports the mean value for each of

its bins. One drawback of using the mean is that it is sensi-

tive to outliers with extreme values, e.g., a single very high

or very low unit count can significant distort the mean value.

In contract, the median value is more robust in the presence

of such outliers. Thus, reporting the median for each bin is

more appropriate for some applications, e.g., salary statis-

tics. Besides application requirements, there is also a tech-

nical motivation for using median instead of mean: that the

sensitivity of StructureFirst discussed in Section 4 depends

on the maximum possible unit-count F . As we show soon,

reporting median value for each bin eliminates this depen-

dence, leading to a more robust version of StructureFirst.

One difference between mean and median is that the

former minimizes the expected sum of squared error with

respect to the original data values, whereas the latter min-

imizes the sum of absolute error (SAE). Hence, minimiz-

ing overall SAE is a more appropriate objective for median-

histograms. Specifically, given an ordered count sequence

D = {x1, x2, . . . , xn}, the sum of absolute error (SAE) of

a histogram H = {B1, B2, . . . , Bk} on D is calculated by

Equation 12:

SAE(H,D) =

k
∑

j

∑

lj≤i≤rj

|mj − xi| (12)

where mj , lj and rj denote the median, the left boundary

and the right boundary in the jth bin, respectively.

The computation of the optimal structure of a median-

histogram is more complicated, in the sense that the me-

dian value cannot be incrementally computed. Algorithm 4

shows the procedure for building an optimal median-histogram,

without considering the privacy issue. Let H∗(Di, j) be the

optimal j-bin histogram representation on prefix sequence

Di with minimum SAE, and table TSAE[i, j] records the

best SAE value corresponding to the H∗(Di, j). Then, the

optimum median-histogram construction problem is to find

the optimal histogram H∗(D, k)) with the minimum error

TSAE[|D|; k]. Here, D is the original data and k is the num-

ber of bins in the histogram.

Algorithm 4 Median-Histogram Construction (count se-

quence D with |D| = n, the number of bins k)

1: for each i from 1 up to n do

2: TSAE[i, 1] := SAE(D, 1, i)
3: for each j from 2 to k do

4: TSAE[i, j] := +∞
5: for each l := j − 1 down to 1 do

6: TSAE[i, j] := min (TSAE[i, j],
TSAE[l, j − 1] + SAE(D, l+ 1, i))

7: update H∗(Di, j) based on the recent TSAE[i, j]
8: Return the optimal histogram H∗(D, k) w.r.t. TSAE[|D|, k].

Compared with the mean-histogram construction algo-

rithm, the major bottleneck of Algorithm 4 lies in the calcu-

lation of the SAEs. Since SAE is an order statistic, the calcu-

lation of SAE is naturally more time-consuming than that of

SSE. Fortunately, the median value can still be computed in

linear time, using the algorithm in [4]. Next we adapt Noise-

First and StructureFirst to median histograms.

5.1 Median-NoiseFirst

Algorithm 5 describes the Median-NoiseFirst framework.

Median-NoiseFirst (Median-NF) follows similar ideas

as Mean-NoiseFirst described in Algorithm 1. The major

difference between Algorithms 5 and 1 is that Median-NF

builds the optimal histogram over the noisy count sequence

D̂ based on the median statistic and the SAE metric, rather

than the mean statistic and the SSE metric used in Algorithm

1. Next we analyze the expected SAE incurred by Median-

NF. The key is to make a connection between (i) the SAE

10 Jia Xu et al.

Algorithm 5 Median-NoiseFirst (count sequence D, the

number of bins k, privacy guarantee ǫ)

1: Generate a noisy database D̂ by adding independent Laplace noise

Lap(1
ǫ
) on each count xi ∈ D.

2: Run Algorithm 4 to build the median-based optimal k-bin his-

togram on D̂, denoted as Ĥ∗

k .

3: Return histogram Ĥ∗

k = {(l1, r1,m1), . . . , (lk, rk,mk)}, in

which every mj is the median of the noisy data subsequence

{x̂lj , . . . , x̂rj
}.

of the histogram towards the noisy count sequence D̂ and

(ii) the SAE of the same histogram on the original count

sequence D. To do this, we first derive Lemmata 7 and 8

to quantify the expected SAE of a single bin on noisy se-

quence D̂ and original sequence D respectively. After that,

we extend their conclusions to multiple bins in Theorem 4.

Lemma 7 Given subsequence of counts {xl, xl+1, . . . , xr}.

Let {x̂l, x̂l+1, . . . , x̂r} be the noisy counts after the first step

in Algorithm 5. If (l, r,m) represents the result bin by using

the median as the representative of all the noisy counts, the

lower bound on the expected SAE of the bin with respect to

{x̂l, x̂l+1 . . . , x̂r} is

E (Error((l, r,m), {x̂l, . . . , x̂r}) ≤ SAE(D, l, r)+
2(r − l)

ǫ

Proof Let Xi represent the variable of the count xi after

adding the noise following Lap(1
ǫ
). Assume that the me-

dian of the noisy sequence {Xl,. . . ,Xr} equals to Xe. Mean-

while, xd denotes the median of the original count sequence

{xl,. . . ,xr}. In practice, xe may not equal to xd. Let δi de-

note the residual variable on Xi, i.e., δi = Xi − xi, and let

the size of the bin be s = r − l + 1. Then the upper bound

on the expected SAE of the result bin (l, r,m) with respect

to the noisy count sequence {x̂l, . . . , x̂r} is as follows.

E







r
∑

i=l,i 6=m

|Xi −Xe|







≤ E







∑

i 6=e

(|xi − xe|+ |xi −Xi|+ |xe −Xe|)







=
∑

i 6=e

|xi − xe|+ E







∑

i 6=e

|xi −Xi|+
∑

i 6=e

|xe −Xe|







= SAE(D, l, r) + E







∑

i 6=e

|δi|







+ E







∑

i 6=e

|δe|







= SAE(D, l, r) +
2(s− 1)

ǫ

The above follows the triangle inequality and the prop-

erty of the median. The last equality is because each 0-mean

Laplace variable, e.g., δi, satisfies the exponential distribu-

tion with an expected value of 1
ǫ
. Since s = r − l + 1, this

leads to the conclusion of this lemma. ⊓⊔

Lemma 7 shows the upper bound on the expected SAE

with respect to the noisy count sequence D̂ if we merge

some consecutive noisy counts into a single bin. Next, in

Lemma 8, we discuss the expected SAE of merging con-

secutive noisy counts with respect to the original count se-

quence D.

Lemma 8 Given subsequence of counts {xl, xl+1, . . . , xr}.

Let {x̂l, x̂l+1, . . . , x̂r} be the noisy counts after the first step

in Algorithm 5. If (l, r,m) is the result bin by using the

median as the representative of all the noisy counts, the

lower bound on the expected SAE of the bin with respect

to {xl, xl+1, . . . , xr} is

E (Error({(l, r,m}, {xl, . . . , xr})) ≥ SAE(D, l, r)−
r − l

ǫ

Proof Similar to the proof of Lemma 7, we again use the no-

tations Xi and Xe to represent the random variable of count

xi after the injection of Laplacian noise and the median in

the noisy count sequence {Xl, Xl+1, · · · , Xr}, respectively.

E







r
∑

i=l,i6=m

|xi −Xm|







≥ E







∑

i 6=m

(|xi − xm| − |xm −Xm|)







=
∑

i 6=m

|xi − xm| − E







∑

i 6=m

|xm −Xm|







= SAE(D, l, r)− E







∑

i 6=m

|δm|







= SAE(D, l, r)−
s− 1

ǫ

This completes the proof. ⊓⊔

Extending the conclusions in Lemma 7 and Lemma 8

to k bins, we obtain Theorem 4. In the following analysis,

Ĥ∗
k denotes the optimal k-bin histogram built on the noisy

count sequence D̂, and Hk represents the histogram with the

same k-bin structure as Ĥ∗
k but with different median val-

ues in the bins. Specifically, instead of using noisy counts

{x̂lj , . . . , x̂rj}, Hk calculates the median for each bin Bj

on the original count sequence {xlj , . . . , xrj}. It can be un-

derstood that Error(Hk, D) =
∑k

j SAE(D, lj , rj), which

leads to the Theorem below.

Differentially Private Histogram Publication 11

Theorem 4 Given Hk and Ĥ∗
k , the expected SAE of the his-

togram on D̂ and D are

E(Error(Ĥ∗
k , D̂)) ≤ Error(Hk, D) +

2(n− k)

ǫ

E(Error(Ĥ∗
k , D)) ≥ Error(Hk, D)−

n− k

ǫ

Note that Error(Hk, D) depends on the sensitive data,

and, thus, cannot be published or used in the algorithm. The-

orem 4 builds a connection between E(Error(Ĥ∗
k , D)) and

E(Error(Ĥ∗
k , D̂)). Specifically, based on Theorem 4, we

estimate the expected SAE lower bound of Ĥ∗
k on D based

on the expected SAE upper bound of Ĥ∗
k on D̂, as follows.

E(Error(Ĥ∗
k , D)) ≥ E

(

Error(Ĥ∗
k , D̂)−

3(n− k)

ǫ

)

(13)

To minimize the expected value of Error(Ĥ∗
k , D), we

minimize its upper bound shown in the Equation 13. While

the analysis above assumes that parameter k is given by the

users, we can also automatically derive the optimal k fol-

lowing the idea of Algorithm 2 in Section 3. Equation 14

summarizes this optimization problem.

Ĥ∗ ≈ argmin
Ĥk

E

(

Error(Ĥ∗
k , D̂)−

3(n− k)

ǫ

)

(14)

5.2 Median-StructureFirst

Algorithm 6 shows the StructureFirst algorithm for building

a median-histogram under ǫ-differential privacy. The nota-

tion ESAE(q, j, rj+1) represents the SAE of the histogram,

which corresponds to the optimal histogram H∗(Dq, j) cov-

ering [1, q] using at most j bins and the (j+1)th bin covering

the following subsequence of [q + 1, rj+1].

Although Median-StructureFirst (median-SF) resembles

Mean-StructureFirst (Mean-SF) described in Algorithm 3,

the former involves some modifications that further improve

the accuracy of the output histogram. First, SSE calculation

is replaced by the computation of SAE in Lines 2 and 6. Sec-

ond, in Line 7, the probability of setting the jth boundary of

the histogram to q is changed from exp
{

−
ǫ1ESSE(q,j,rj+1)
2(k−1)(2F+1)

}

to exp
{

−
ǫ1ESAE(q,j,rj+1)

2(k−1)

}

. F is the upper bound of the

maximum possible count in the original data. Finally, the

output histogram (Line 10) consists of medians instead of

means. Each median value is added a Laplace noise with

a scale of 1
ǫ2

rather than the 1
ǫ2(rj−lj+1) in Mean-SF. Al-

though in Median-SF, the scale of Laplace noise added to

each bin increases, Median-SF still has advantages com-

pared to Mean-SF. This is because the boundary adjustment

Algorithm 6 Median-StructureFirst (count sequence D,

the number of bins k, privacy parameter ǫ)
1: Partition ǫ into two parts ǫ1 and ǫ2 that ǫ1 + ǫ2 = ǫ.
2: Build the optimal median-based k-bin histogram H∗

k and keep all

the intermediate results, i.e. TSAE(i, j) for all 1 ≤ i ≤ n and

1 ≤ j ≤ k
3: Set the right boundary of the kth bin at rk = n
4: for each j from k − 1 down to 1 do

5: for each q from j up to rj+1 − 1 do

6: Calculate ESAE(q, j, rj+1) = TSAE(q, j)+SAE(D, q+
1, rj+1)

7: select rj = q from k − 1 ≤ q < rj+1 with a probability

proportional to exp
{

−
ǫ1ESAE(q,j,rj+1)

2(k−1)

}

8: Set lj+1 = rj + 1
9: Calculate the median mj for every bin on interval [lj , rj].

10: Add Laplace noise to median counts as m̂j = mj + Lap
(

1
ǫ2

)

11: Return histogram {(l1, r1, m̂1), . . . , (lk, rk, m̂k)}

procedure in Median-SF does not depend on the factor (2F+

1), which decreases the randomness in the adjusted bound-

aries, as shown in the experiments.

In the following, we analyze the correctness and accu-

racy of Algorithm 6 in Section 5.2.1 and Section 5.2.2. Sec-

tion 5.2.3 presents the strategy for finding a good assignment

for privacy budgets ǫ1 and ǫ2 is proposed based on the cost

analysis results in the Section 5.2.2.

5.2.1 Correctness

The worst case sensitivity analysis on the intermediate dy-

namic programming with respect to Median-StructureFirst

is given in Lemma 9, where H∗(Di, j) represents the opti-

mal SAE-based histogram constructed on the subsequence

Di using at most j bins.

Lemma 9 Given two neighbor database D and D′ which

differs from each other by at most 1 on a certain count, the

SAE of the optimal histograms on D and D′ with respect to

the first i counts changes by at most

|ESAE(H
∗(D′

i, j), D
′
i)− ESAE(H

∗(Di, j), Di)| ≤ 1

Proof Given two neighbor databases as D and D′, there is

one and only one count xe changes by 1, i.e., xe − 1 ≤

x′
e ≤ xe+1. Assume that xe is in the bin (lz, rz,mz) of the

histogram H∗(Di, j), where mz denotes the median of the

bin (lz, rz). Since H∗(D′
i, j) is the optimal j-bin histogram

for subsequence D′
i, it is straightforward to know that given

any histogram H ′ with j bins covering the interval [1, i], we

have

ESAE(H
∗(D′

i, j), D
′
i) ≤ ESAE(H

′, D′
i) (15)

Assume that H ′ is a special histogram on D′
i which em-

ploys all bins in H∗(Di, j), except that m′
z may not equal

12 Jia Xu et al.

to mz due to the difference between x′
e and xe. Accord-

ing to the property of the median on the integer sequence,

|m′
z −mz| ≤ 1. In the following, we derive an upper bound

for the SAE of H ′ on D′
i.

ESAE(H
′, D′

i)− ESAE(H
∗(Di, j), Di)

= m′
z −mz ≤ 1 (16)

Based on Equations 15 and 16, we have

ESAE(H
∗(D′

i, j), D
′
i)

≤ ESAE(H
′, D′

i)

≤ ESAE(H
∗(Di, j), Di) + 1 (17)

This reaches the conclusion of the lemma. ⊓⊔

Given the worst case analysis on the change of SAE be-

tween the two optimal histograms of two neighbor databases,

we further prove that the boundary readjustment strategy in

Algorithm 6 satisfies differential privacy.

Lemma 10 The selection of rj on line 7 of Algorithm 6 sat-

isfies ǫ1
k−1 -differential privacy.

Proof Let ESAE(q, j, rj+1) be the SAE cost of setting the

rth boundary rj to q, and let the notation E′
SAE(q, j, rj+1)

represent the SAE cost when the same histogram structure

is used on D′. On the basis of the conclusion in Lemma 9,

we have

|E′
SAE(q, j, rj+1)− ESAE(q, j, rj+1)| ≤ 1

Pr(rj = q) =
exp

{

−
ǫ1E

′

SAE(q,j,rj+1)
2(k−1)

}

∑

z exp
{

−
ǫ1E

′

SAE
(z,j,rj+1)

2(k−1)

}

≤
exp

{

−
ǫ1(ESAE(q,j,rj+1)−2F−1)−1

2(k−1)

}

∑

z exp
{

−
ǫ1(ESAE(z,j,rj+1)+2F+1)+1

2(k−1)

}

= exp

(

ǫ1
k − 1

) exp
{

−
ǫ1ESAE(q,j,rj+1)

2(k−1)

}

∑

z exp
{

−
ǫ1ESAE(z,j,rj+1)

2(k−1)

}

Hence, the selection of rj follows (ǫ1
k−1)-differential pri-

vacy. ⊓⊔

The derivation of Lemma 10 follows the Exponential

Mechanism.

Lemma 10 tells us that each execution of the line 7 in

Algorithm 6 consumes a privacy budget of ǫ1
k−1 . Based on

similar analysis in Theorem 2, we prove the correctness of

the following theorem.

Theorem 5 Algorithm 6 satisfies ǫ-differential privacy.

5.2.2 Accuracy Analysis

Based on the analysis of SAE in the expectation case, we

first derive Lemma 11 below, which discusses the SAE in-

curred by every time we randomly adjust a boundary in the

optimal histogram structure.

Lemma 11 The SAE of the histogram increments by no more

than
2(k−1)2

ǫ1(2(k−1)−ǫ1nF) , every time we move the boundary by

line 7 in Algorithm 6.

Proof We also assume the optimal (j + 1)-bin histogram

utilizes the optimal location q∗ as the boundary between

the jth bin and the (j + 1)th bin to minimize the error of

ESAE(H
∗(Dq, j), Dq) +SAE(q+1, rj+1). In the follow-

ing, we discuss the expected growth on the SAE when the

randomized algorithm fails to select the optimal location q∗.

We employ the notation ESAE(z, j, rj+1) to represent the

SAE of the histogram, that consists of the optimal histogram

with j bins covering [1, z] and the (j + 1)th bin covering

[q + 1, rj+1]. Based on the fact that has been proposed in

Lemma 5 of Section 4, the following inequalities hold.

∑

z

exp

{

−
ǫ1(ESAE(z, j, rj+1)− ESAE(q

∗, j, rj+1))

2(k − 1)

}

≥
∑

z

(

1−
ǫ1(ESAE(z, j, rj+1)− ESAE(q

∗, j, rj+1))

2(k − 1)

)

≥ n

(

1−
ǫ1nF

2(k − 1)

)

(18)

As we have mentioned in Section 4, F is some priori

knowledge on the upper bound of the maximum count on the

sequence D. Given F , the second inequality of Equation 18

holds since ESAE(z, j, rj+1)− ESAE(q
∗, j, rj+1) < nF .

To simplify our symbolic system, we use E(q) to replace

ESAE(q, j, rj+1) if the variables j and rj+1 are clear in the

context. The expection on the additional SAE towards the

optimal jth boundary, i.e., q∗, is,

∑

q

{(E(q)) Pr(rj = q)} − E(q∗, j, rj+1)

=
∑

q

{(E(q)− E(q∗)) Pr(rj = q)}

=
∑

q







(E(q)− E(q∗))
exp

{

− ǫ1(E(q)−E(q∗)
2(k−1)

}

∑

z exp
{

− ǫ1(E(z)−E(q∗)
2(k−1)

}







≤
∑

q







(E(q)− E(q∗))
exp

{

− ǫ1(E(q)−E(q∗)
2(k−1)

}

n− ǫ1n2F
2(k−1)







Differentially Private Histogram Publication 13

≤
∑

q

k − 1

ǫ1

(

n−
ǫ1n

2F

2(k − 1)

)−1

≤
2(k − 1)2

ǫ1 (2(k − 1)− ǫ1nF)
(19)

The first inequality is the result of applying the Equation

18. The second inequality is due to the Lemma 5 and the last

inequality is because the number of candidate locations for

q is smaller than the database cardinality. This completes the

proof of the Lemma 11. ⊓⊔

As being indicated in Lemma 11 that the error upper

bound of each boundary adjustment never depends on j or

rj+1. Consequently, the total incremental SAE after (k− 1)
times of boundary adjustment (see Line 7 in Algorithm 6) is

(k− 1) times of the error in Lemma 11. Taking into account

the error produced by Laplacian noise injection (see Line 10

in Algorithm 6) together, we can answer the question pro-

posed at the beginning of this section by putting forward

Theorem 6.

Theorem 6 For the output histogram of Algorithm 6, the

expected SAE is at most

ESAE(H
∗(D, k), D) +

2(k − 1)3

ǫ1 (2(k − 1)− ǫ1nF))
+

2k

(ǫ2)2

5.2.3 Budget Assignment

When parameter k is fixed, we find a good budget assign-

ment scheme between ǫ1 and ǫ2 by solving the following

optimization problem which minimizes the expected SAE

derived in Section 5.2.2. We use the same numerical meth-

ods as in Section 4.3 to obtain a near-optimal assignment

between ǫ1 and ǫ2.

Minimize

(

2(k − 1)3

ǫ1 (2(k − 1)− ǫ1nF))
+

2k

(ǫ2)2

)

s.t. ǫ1 + ǫ2 = ǫ

6 Answering Arbitrary Range Counts

So far, we construct a histogram to minimize either the Sum

of Squared Error (SSE) or the Sum of Absolute Error (SAE),

which correspond to the error of unit-length queries. When

the user queries on the sum of consecutive counts, the his-

togram synopsis may not be optimal in terms of query accu-

racy. To understand the underlying reason behind the inef-

fectiveness of histogram synopsis on large range queries, let

us revisit the example in Figure 2(a). If the user queries for

patients with age between 25 and 35, the average count of

the first bin is not sufficient to return accurate result, even

when there is no Laplace noise added on the histogram.

Therefore, in some cases, more accurate results can be ob-

tained if a bin adopts a non-uniform scheme of count com-

putation.

In this section, we discuss how to implement such non-

uniform scheme in both NoiseFirst and StructureFirst re-

spectively. Two different strategies are employed in Noise-

First and StructureFirst because of the different properties

of the algorithms.

6.1 Range Counting Using NoiseFirst

In Algorithm 1, after finding the structure of the histogram,

Mean-NoiseFirst uses the average count to replace the orig-

inal noisy counts. Another option is to keep using the noisy

data instead of the average counts in some of the bins. To

ensure that a better selection, we propose to compare the

estimations on the errors of the two options and adopt the

one with smaller expected SSE error. In particular, for every

bin Bi, we assume that [l, r] is the interval Bi covers in the

data domain, and c is the mean count over the noisy counts.

Mean-NoiseFirst uses the average count for Bi only when

SSE(D̂, l, r) <
4(r − l)

ǫ2
(20)

Otherwise, the noisy counts {x̂l, . . . , x̂r} are kept as the

original values. The Equation 20 is derived by combining

the conclusions of Equations 2 and 4 (with k = 1 and n =
r−l+1) in Section 3. Intuitively, when the structural error of

the histogram is small, our scheme prefers to use the average

counts in the bin. It is because the average count is capable

of reducing the noise in consecutive noisy counts. When the

original counts are very different from each other in the bin,

averaging over all counts does not help reduce the errors. In

such situations, the noisy counts may perform better.

Regarding Median-NoiseFirst, the median statistic takes

the place of the mean statistic to represent a merged bin, the

condition that we output the median count for bin Bi is

SAE(D̂, l, r) <
4(r − l) + 1

ǫ
(21)

Otherwise, the original noisy counts {x̂l, . . . , x̂r} are

employed to represent the bin Bi. The Equation 21 is ob-

tained on the basis of Equation 14 in Section 5 and Equa-

tion 22 below. Equation 22 denotes the expected SAE of the

noisy counts {x̂l, · · · , x̂r} with respect to the original data

sequence {xl, · · · , xr}.

E {{(l, l, x̂l), · · · , (r, r, x̂r)}, {xl, · · · , xr}}

=
(r − l + 1)

ǫ
(22)

14 Jia Xu et al.

6.2 Range Counting Using StructureFirst

Unfortunately, the non-uniform strategy used for NoiseFirst

method is not applicable in StructureFirst, since Structure-

First calculates the histogram on the original counts. To ap-

ply the non-uniform scheme, we mainly borrow the ideas

from [13]. Generally speaking, after constructing all the bins,

StructureFirst runs the boosting algorithm [13] on every bin,

with differential privacy parameter ǫ2. The following scheme

is applicable to both of Mean-StructureFirst and Median-

StructureFirst.

Given a bin Bi covering [l, r], Laplace noise with mag-

nitude Lap
(

2
ǫ2

)

is added on every count xj for l ≤ j ≤ r,

as well as the sum si =
∑

l≤j≤r xj . Assume xj is the re-

sult noisy count and si is the noisy sum. Our algorithm runs

normalization on {xl, . . . , xr, si} and returns a new group

of counts {x′
l, . . . , x

′
r, s

′
i} satisfying that s′i =

∑

l≤j≤r x
′
j .

These counts are used to approximate the original counts in

the database. By [13], this scheme is always consistent with

ǫ2-differential privacy. Therefore, the complete modified al-

gorithm of StructureFirst is still fulfilling ǫ-different privacy.

There is some connection between such method and [13].

StructureFirst with this non-uniform count assignment scheme

can be considered as an adaptive version of the boosting al-

gorithm in [13]. In the original boosting algorithm, the user

must specify the fan-out of the tree structure before run-

ning the algorithm. This fan-out decides how the algorithm

partitions the count sequence and how the normalization is

run bottom-up and top-down. In our histogram technique,

an adaptive partitioning is used instead, which is supposed

to better capture the distribution of the data. This is the un-

derlying reason that our StructureFirst method outperforms

the algorithms [13]. In the following section, some empirical

studies verify the advantages of our proposal.

7 Experiments

This section experimentally compares the effectiveness of

the four proposed algorithms, namely Mean-NoiseFirst, Median-

NoiseFirst, Mean-StructureFirst and Median-StructureFirst

for range count queries with three state-of-the-art methods,

referred to as Dwork[7], Privlet[24] and Boost[13]. Specif-

ically, in our implementation of StructureFirst, the param-

eter F , i.e., maximal possible count in a histogram bin, is

fixed to 104∗NumOfRecords
DomainSize

. Meanwhile, the implementa-

tion of Boost follows the same settings in [13], and employs

binary trees as the synopsis structure as in [13]. Similarly,

both StructureFirst solutions also utilize a binary tree inside

each bin of the histogram, in order to ensure the fairness in

the comparisons. Akin to [13], we evaluate the accuracy of

all algorithms over range queries with varying lengths and

locations. In particular, given a query length L, we test all

its possible range queries and report the average squared er-

ror average absolute error, and average relative error for

each method. We run experiments with three popular val-

ues of ǫ: 0.01, 0.1 and 1. All methods are implemented in

C++ and tested on an Intel Core 2 Duo 2.33 GHz CPU with

2GB RAM running Windows XP. In each experiment, every

method is executed for 10 times, and its average accuracy is

reported. The experiments involve four real-world datasets:

• Age[24] contains 100,078,675 records, each of which

corresponds to the age of an individual, extracted from

the IPUM’s census data of Brazil. The ages range from 0

to 101. Differential privacy guarantees the hardness for

adversaries to infer any individual’s true age from pub-

lished statistics.

• Search Logs[13] is a synthetic dataset generated by inter-

polating Google Trends data and America Online search

logs. It contains 32, 768 records, each of which stores

the frequency of searches (ranging from 1 to 496) with

the keyword “Obama” within a 90 minutes interval, from

Jan. 1, 2004 to Aug. 9, 2009. DP ensures that the adver-

sary cannot derive if any specific person has searched

the keyword “Obama” at a particular time.

• NetTrace[13] contains the IP-level network trace at a

border gateway in a major university. Each record re-

ports the number of external hosts connected to an in-

ternal host. There are 65, 536 records with connection

number ranging from 1 to 1423. The application of DP

protects the information of individual connections.

• SocialNetwork[13] records the friendship relations among

11K students from the same institution, derived from an

online social network website. Each record contains the

number of friends of certain student. There are 32, 768

students, each of which has at most 1678 friends. DP

protects the sensitive information of individuals’ con-

nections from adversaries.

To generate histograms, we transform each of the four

datasets to statistical counts on every possible value. On

Age, for example, each xi indicates the number of individ-

uals aged i (1 ≤ i ≤ 101). We observed that the distribu-

tion of Age is very different from the other three, in that the

counts therein are more evenly distributed over the entire

domain, while all the other datasets exhibit a high degree of

skewness.

In the following, we use NoiseFirst to represent both

Mean-NoiseFirst and Median-NoiseFirst, and StructureFirst

for both Mean-StructureFirst and Median-StructureFirst. Mean-

while, mean-based solutions refer to Mean-NoiseFirst and

Mean-StructureFirst, and median-based solutions refer to Median-

NoiseFirst and Median-StructureFirst. Since in Structure-

First, the parameter k (i.e., the number of bins in the result-

ing histogram) can not be derived by the theoretical analysis,

in Section 7.1, we first test the effect of different ks on the

Differentially Private Histogram Publication 15

accuracy of the algorithm. These results provide guidelines

on the selection of k in StructureFirst. After that, Section 7.2

compares the mean-based solutions with their correspond-

ing median-based solutions. For example, Mean-NoiseFirst

is compared with Median-NoiseFirst and then the better one

of the two is selected to participate into the comparisons in

Section 7.3. Finally, Section 7.3 compares the performance

of NoiseFirst and StructureFirst against state-of-the-art so-

lutions mentioned above.

7.1 Impact of Parameter k on StructureFirst

This subsection evaluates the effectiveness of StructureFirst

with different the number of bins k in the resulting his-

togram. Specifically, for each dataset with domain size n, we

test five different values of k: 1, n
15 , n

10 , n
5 , n. Since Mean-

StructureFirst and Median-StructureFirst are designed to min-

imize SSE and SAE, respectively, we report query accuracy

in terms of squared error for Mean-StructureFirst, and abso-

lute error for Median-StructureFirst.

Figures 5-8 illustrate the average squared error of Mean-

StructureFirst with different values of k and different query

range sizes on all the four datasets. Figures 9-12 repeat the

same experiments for Median-StructureFirst, reporting ab-

solute rather than squared error. From the experimental re-

sults, we obtain the following important observations. First,

when k equals to the domain size n, StructureFirst reduces

to the Laplace Mechanism[7] that adds random Laplace noise

with magnitude 1
ǫ

to every count in the dataset. In this case,

the error incurred by StructureFirst increases linearly with

the query range size, for all values of ǫ. Note that the his-

togram structure is fixed to the finest one with one bin per

count; hence, there is no need to spend privacy budget to

protect the histogram structure.

Second, when k = 1, StructureFirst is equivalent to Boost

[13]. Similar to the case for k = n, the histogram struc-

ture is fixed, and there is no need to spend privacy budget

on it. StructureFirst’s performance follows the properties of

Boost, with more accurate results on queries with very small

or very large ranges.

Third, when 1 < k < n, StructureFirst achieves gener-

ally better performance compared to the cases with extreme

values. This shows that StructureFirst successfully constructs

histograms adaptively to the data distribution, reducing the

error for queries covering different bins in the data domain.

Finally, on all datasets, both Mean-StructureFirst and

Median-StructureFirst simultaneously achieve their highest

accuracy when k is around n/10. In such cases, each bin

consists of 10 counts by average, offering a balanced results

for all types of queries with different lengths. Moreover, the

normalization technique from [13] also works well, since

every bin only involves 10 random counts in the processing

by average. Therefore, we employ k = n/10 for Structure-

First in the rest of the paper.

7.2 Comparison of mean-based and median-based solutions

In this section, we compare the the proposed mean-based

and median-based methods. In particular, Mean-NoiseFirst

is tested against Median-NoiseFirst (Figure 13a-d), and Mean-

StructureFirst is compared with Median-StructureFirst (Fig-

ure 14a-d). As the SSE can also reflect the value of SAE,

we uniformly exhibit the tendency changes of all the above

mentioned methods in consideration of the SSE error metric.

We observe the following from the results shown in Figure

13. First, in both Mean-NoiseFirst (Mean-NF) and Median-

NoiseFirst (Median-NF), the error increases linearly with

the size of the query range. This is because these two meth-

ods spend the whole privacy budget on the noise injected to

each bin. Therefore, they incur a noise variance of O(m
ǫ2
),

where m is a variable corresponding to the query range size.

Second, Median-NF performs apparently better than Mean-

NF on all datasets when the degree of privacy protection is

high (i.e., for ǫ = 0.1 and ǫ = 0.01). The error reduction in

Median-NF is due to the fact that with a higher amount of

noise injected to each count, there is a higher probability for

the algorithm to produce extreme counts in each merged bin.

Considering that the mean statistic is susceptible to those

extreme counts, and consequently the estimation accuracy

of Mean-NoiseFirst is decreased, while Median-NoiseFirst

performs well since those outlier counts have little or no ef-

fect on the median statistic.

Third, Mean-NF outperforms Median-NF for all datasets

when ǫ = 1. To explain this, we restate that a larger number

of privacy budget ǫ leads to a smaller scale of noise added to

each count. When the noise scale is small, the mean statistic

has its inherent advantage in summarizing all counts drop-

ping into the same merged bin. Up to now, we can conclude

that Median-NF has advantage in handling data with higher

amount of noise and Mean-NF performs well when the noise

added to each bin is not so big.

From Figure 14, we make the following observations.

First, Median-StructureFirst (Median-SF) has higher ac-

curacy than Mean-StructureFirst (Mean-SF) when the noise

scale is relatively small (i.e., for ǫ = 1 and ǫ = 0.1 here).

This is because the Median-SF does not rely on the param-

eter F , which represents the prior knowledge on the upper

bound of the maximal count in the original data. Therefore,

during the boundary random adjustment phase, Median-SF

adjust boundaries in the optimal histogram structure accord-

ing to a probability of exp
{

−
ǫ1ESAE(q,j,rj+1)

2(k−1)

}

, which does

not depend on F . On the other hand, Mean-SF must consider

F into its boundary adjustment. The absence of parameter F

in such a probability equation reduce the randomness of the

16 Jia Xu et al.

Mean-SF (k=7)Mean-SF (k=1) Mean-SF (k=10) Mean-SF (k=20) Mean-SF (k=102)

 0

 0.5

 1

 1.5

 2

 2.5

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

6
)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

 2.5

1 10 20 30 40 50 60 70 80 90 100
A

v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

4
)

Range size

ε=0.1

 0

 0.5

 1

 1.5

 2

 2.5

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

2
)

Range size

ε=1

Fig. 5 Varying k on Age

Mean-SF (k=33)Mean-SF (k=1) Mean-SF (k=50) Mean-SF (k=100) Mean-SF (k=497)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 100 200 300 400 500

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

7
)

Range size

ε=0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 100 200 300 400 500

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

5
)

Range size

ε=0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 100 200 300 400 500
A

v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

3
)

Range size

ε=1

Fig. 6 Varying k on Search Logs

Mean-SF (k=95)Mean-SF (k=1) Mean-SF (k=142) Mean-SF (k=285) Mean-SF (k=1424)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

8
)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

5
)

Range size

ε=0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

3
)

Range size

ε=1

Fig. 7 Varying k on NetTrace

Mean-SF (k=112)Mean-SF (k=1) Mean-SF (k=168) Mean-SF (k=336) Mean-SF (k=1679)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

8
)

Range size

ε=0.01

 0

 1

 2

 3

 4

 5

 6

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
+

0
5

)

Range size

ε=0.1

 0

 1

 2

 3

 4

 5

 6

 7

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

3
)

Range size

ε=1

Fig. 8 Varying k on Social Network

adjustment and hence produce a more accurate histogram

structure. This is due to the accurate histogram structure,

which improves the accuracy of Median-SF.

Second, when the privacy budget ǫ = 0.01, Mean-SF

outperforms Median-SF on most datasets. Based on the above

analysis, Median-SF has advantages in producing more ac-

curate histogram structure after the boundary adjustment phase.

Such an advantage can be ascribed to the fact that it is based

on the median statistic. However, when the privacy budget is

small, the randomness of noisy counts increased, and there-

fore there is little gain in producing a more accurate his-

togram structure. On the other hand, as we have stated in

the Section 1, the utilizing of the mean statistic decreases

the sensitivity in each merged bin and hence cuts down the

Differentially Private Histogram Publication 17

Median-SF (k=7)Median-SF (k=1) Median-SF (k=10) Median-SF (k=20) Median-SF (k=102)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
3

)

Range size

ε=0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 10 20 30 40 50 60 70 80 90 100
A

v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
2

)

Range size

ε=0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
1

)

Range size

ε=1

Fig. 9 Varying k on Age

Median-SF (k=33)Median-SF (k=1) Median-SF (k=50) Median-SF (k=100) Median-SF (k=497)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 100 200 300 400 500

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
3

)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

1 100 200 300 400 500

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
2

)

Range size

ε=0.1

 0

 0.5

 1

 1.5

 2

 2.5

1 100 200 300 400 500
A

v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
1

)
Range size

ε=1

Fig. 10 Varying k on Search Logs

Median-SF (k=95)Median-SF (k=1) Median-SF (k=142) Median-SF (k=285) Median-SF (k=1424)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
3

)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
2

)

Range size

ε=0.1

 0

 1

 2

 3

 4

 5

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

 e
rr

o
r(

e
+

0
1

)

Range size

ε=1

Fig. 11 Varying k on NetTrace

Median-SF (k=112)Median-SF (k=1) Median-SF (k=168) Median-SF (k=336) Median-SF (k=1679)

 0

 1

 2

 3

 4

 5

 6

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
3

)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

+
0

2
)

Range size

ε=0.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
1

)

Range size

ε=1

Fig. 12 Varying k on Social Network

scale of noise added to each mean count. When the privacy

budget is small, the noise scale becomes rather large. Under

such conditions, a method that reduces noise scale has sig-

nificant advantage in producing more an accurate histogram.

Although Mean-SF outperforms Median-SF on most datasets,

a special case happens on the Age dataset. This is because

Age is different from the other three datasets in that it con-

tains a series of large counts. The noise injected to each

count is relatively low although the absolute noise scale is as

large as 1
0.01 . For this reason, Median-SF still outperforms

Mean-SF due to its good histogram structure.

18 Jia Xu et al.

Dataset Age Search Logs NetTrace Social Network

ǫ 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1

Dwork 18,865 187 2.38 19,986 204 1.98 19,927 204 1.99 20,153 198 2.05

Boost 730,466 7,666 76 1,264,010 12,037 127 1,774,689 16,956 178 1,701,026 17,769 172

Privlet 360,774 4,745 42 678,763 6,975 62 978,884 9,987 91 972,103 9,426 92

Median-NF 20,825 197 1.88 4,944 65 1.47 3,394 34 1.75 4,028 49 0.79

Mean-NF 21,178 205 1.98 12,231 131 1.79 13,198 128 1.34 12,677 135 1.40

Median-SF 285,923 2,929 26 876,980 9,091 88 1,351,249 12,412 121 1,383,363 11,694 138

Mean-SF 598,750 5,541 58 854,311 9,668 90 1,156,542 12,154 129 1,362,108 12,687 123

Table 2 Comparison of average squared errors on unit-length queries

Dataset Age Search Logs NetTrace Social Network

ǫ 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1 0.01 0.1 1

Dwork 99 9.99 1.04 100 10 1 101 10 1 100 9.97 1

Boost 653 67 7 851 83 8 1008 99 10 991 102 10

Privlet 453 51 4.90 615 62 5.89 732 74 7.16 730 73 7.21

Median-NF 104 9.87 0.95 26 3.42 0.67 19 1.72 0.97 22 2.49 0.30

Mean-NF 104 10 0.96 62 6.86 0.88 63 6.32 0.67 62 6.50 0.71

Median-SF 390 40 3.74 666 68 6.76 832 80 7.94 836 78 8.36

Mean-SF 535 56 5.59 662 68 6.80 263 79 8.20 831 81 8.08

Table 3 Comparison of the average absolute errors on unit-length queries

7.3 Evaluation on all methods

Next we compare the proposed methods with existing solu-

tions. Tables 2 and 3 show the comparison results on unit-

length queries in terms of squared error and absolute error,

respectively. Each value in the tables equals to the corre-

sponding SSE/SAE divided by the domain size n. The best

results on each dataset and ǫ value are marked in bold. We

made the following observations from these results.

First, Dwork and NoiseFirst have significant advantages

compared to the other solutions on unit-length range count

queries. The main reason for their good performance is that

both Dwork and NoiseFirst spend the whole privacy bud-

get ǫ on the injected Laplace noise, leading to a smaller

noise scale. On the other hand, the remaining methods (i.e.,

Boost, Privlet, and StructureFirst) all adopt a hierarchy tree

structure to reorganize the original data in order to improve

the query accuracy of range queries with large ranges. The

utilization of such tree structures leads to the partition of

the privacy budget ǫ to each tree level, resulting in a higher

amount of noise added to each single count. Therefore, all

these tree-based solutions are outperformed by Dwork and

NoiseFirst on unit-length queries.

Second, NoiseFirst achieves better accuracy on Search

Log, NetTrace and Social Network than Dwork, while the

latter sometimes performs better than NoiseFirst on the Age

dataset. This is because data values Age are more evenly dis-

tributed; consequently, it is more difficult for NoiseFirst to

find a good histogram structure after adding random noise

to the unit-length counts. On the other hand, the remaining

three datasets have a large number of small unit counts, and

NoiseFirst is more effective in merging consecutive small

unit counts into bins, and eliminating the impact of the ran-

dom noise in the bins. Especially, on NetTrace with ǫ = 0.1,

Median-NF is over 6 times better than Dwork in terms of

squared error. To the best of our knowledge, NoiseFirst is

the first solution outperforming Dwork for unit-length range

count queries.

Third, Median-NF is better than Mean-NF in answer-

ing unit-length queries under most of the settings. This is

because there exist some extreme counts after the injection

of Laplace noise to each unit count. Median-NF is designed

based on the median statistic is more robust to those extreme

counts, whereas Mean-NF is more easily affected by those

extreme values, leading to unstable mean values, and, con-

sequently lower accuracy.

Finally, Median-NF shows better performance in terms

of absolute errors. This is expected since Median-NF builds

the histogram with the optimization objective of minimizing

the SAE error.

Next we evaluate the performance of all methods on queries

with arbitrary ranges, reporting their accuracy in terms of

average squared error, average absolute error as well as av-

erage relative error. Recall that StructureFirst sets k = n
10 in

all settings, based on the conclusion drawn in Section 7.1.

We select the best result for both NoiseFirst (NF) and Struc-

tureFirst (SF) based on the experimental results shown in

Section 7.2. For example, the Mean-NF is chosen to partici-

pate into this round of comparison with ǫ = 1 on Social Net-

work. On the Age dataset with ǫ = 0.1 Median-SF is picked

up to compared with all the other state-of-the-art methods.

For simplicity, regardless whether Mean-NF or Median-NF

is used, we denote it as NF in the figures. Similarly, Mean-

SF and Median-SF in the comparison are denoted as SF.

In order to clearly display the relative performance of all

methods, some points on large range sizes are discarded

for Dwork and NoiseFirst in Figures 15-16. This is because

these two methods have a linear growth trend with the in-

creasing query range sizes.

Differentially Private Histogram Publication 19

Median-NF Mean-NF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

6
)

Range size

ε=0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 10 20 30 40 50 60 70 80 90 100
A

v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

4
)

Range size

ε=0.1

 0

 0.5

 1

 1.5

 2

 2.5

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

2
)

Range size

ε=1

(a) On Age

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 100 200 300 400 500

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

7
)

Range size

ε=0.01

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 100 200 300 400 500

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

5
)

Range size

ε=0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 100 200 300 400 500

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

4
)

Range size

ε=1

(b) On Search Log

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

7
)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

 2.5

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

5
)

Range size

ε=0.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

5
)

Range size

ε=1

(c) On NetTrace

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

7
)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

5
)

Range size

ε=0.1

 0

 0.5

 1

 1.5

 2

 2.5

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

4
)

Range size

ε=1

(d) On Social Network

Fig. 13 Average squared error of Mean-NoiseFirst and Median-NoiseFirst

The results shown in Figures 15 and 16 lead to the fol-

lowing conclusions.

First, on all datasets, the average squared error of Noise-

First and Dwork increases linearly with the query range.

Both methods significantly outperform the other three algo-

rithms on small range sizes. As the query length grows, the

performance gap between NoiseFirst and Dwork expands,

and NoiseFirst is better than Dwork by a certain margin on

most of the query ranges. These results again verify the ad-

vantage of NoiseFirst for short ranges, which is consistent

with the results in Tables 2 and 3.

Second, the accuracy of both Privlet and Boost is high

for queries with very long or very short ranges; for other

queries, they tend to incur rather high errors. This is due to

the binary tree structures used in their algorithms (note that

the Haar wavelet used in Privlet is essentially a binary tree).

20 Jia Xu et al.

Median-SF Mean-SF

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

6
)

Range size

ε=0.01

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 10 20 30 40 50 60 70 80 90 100
A

v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

4
)

Range size

ε=0.1

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

2
)

Range size

ε=1

(a) On Age

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1 100 200 300 400 500

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

6
)

Range size

ε=0.01

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 100 200 300 400 500

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

4
)

Range size

ε=0.1

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 100 200 300 400 500

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

2
)

Range size

ε=1

(b) On Search Log

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

6
)

Range size

ε=0.01

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

4
)

Range size

ε=0.1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

3
)

Range size

ε=1

(c) On NetTrace

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

7
)

Range size

ε=0.01

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

5
)

Range size

ε=0.1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

3
)

Range size

ε=1

(d) On Social Network

Fig. 14 Average squared error of Median-StructureFirst and Mean-StructureFirst

Hence, very short queries favor both methods, as they only

need to access a small number of nodes close to the leaf

level. Very long queries, on the other hand, are answered

mainly using a small number of nodes close to the top of the

tree, leading to high accuracy. When queries with length in

neither extremes, these methods return poorer results, since

a large number of nodes from different levels of the tree are

involved in query processing. In addition, we also observe

that Privlet outperforms Boost on most of the datasets with

most of the settings of ǫ. This is because after reorganiz-

ing the original count sequence using a Haar Wavelet Tree,

Privlet decides the amount of noise for each wavelet coef-

ficient on each tree level based on its weight, and a larger

weight leads to a smaller noise. Such a strategy ensures that

the main trend of the original count sequence is not altered

significantly by the noise. However, in Boost, all interme-

Differentially Private Histogram Publication 21

diate counts on different tree levels are treated equally and

added with the same scale of Laplace noise. It is the strategy

of adding noise that helps Privlet outperform Boost signifi-

cantly.

Third, StructureFirst produces more accurate estimates

than both Privlet and Boost on all datasets under most set-

tings of range sizes. Specifically, StructureFirst performs on

average twice as well as those two methods. The main rea-

sons are (i) that StructureFirst utilizes the count similarities

in consecutive bins; (ii) that StructureFirst avoids building a

large tree over the whole data domain; reducing the num-

ber of nodes required to answer a range query; and (iii)

that bins in a domain partition tend to have similar counts,

and, thus, building trees separately on each partition benefits

from both the consistency and the similarities amongst bins.

Another interesting observation concerning StructureFirst is

that when the range size is as large as the domain size, Boost

and Privlet have better accuracy than StructureFirst. This is

because both Boost and Privlet build hierarchical trees to

summarize data on the whole domain, and hence, have a bet-

ter overview on range counts on the complete domain.

Figure 17 exhibits the relative error of all methods on the

four datasets. Similar to [24], the relative error of a variable

C is computed as
|C−Cact|

max{cact,S} , where Cact denotes the ac-

tual query result, and s is a sanity bound that alleviates the

effects of the queries with extremely small results. In our

experiment, parameter s is set to a value that equals to 0.1%

of the number of tuples in the dataset. From the figure, we

see that the error of StructureFirst is consistently lower than

that of the other methods on larger range sizes. NoiseFirst

is often the best method in handling the queries with small

range sizes. On the Age dataset, all methods tend to have a

relatively small error. This is because the bin counts of Age

are apparently larger than that of the other three datasets due

to its largest tuple cardinality (i.e., 100,078,675). Therefore,

when the same scale of noise is added to Age, its relative

error is not large due to its high count values. Another ob-

servation in Figure 17 is that when the privacy budget ǫ is

as small as 0.01, all methods incur relative errors higher

than 20. This indicates the trade-off between the utility of

the query results and the degree of privacy protection.

7.4 Summary

The experimental results show that compared to the state-

of-the-art methods, NoiseFirst usually returns more accurate

results for range count queries with short ranges, especially

for unit-length queries. Since the error of unit-length queries

has direct impacts on the histogram shape, the histogram

produced by NoiseFirst provides better visualization of the

data distribution. StructureFirst, on the other hand, has ap-

parent advantages with queries with larger ranges. Thus, a

query executer can provide the users more precise results by

querying the DP-complaint histogram published by Struc-

tureFirst. To sum up, NoiseFirst and StructureFirst comple-

ment each other, and they can be simultaneously embedded

into a DBMS for more accurate query processing while pro-

tecting data privacy.

8 Related Work

Numerous techniques have been proposed for publishing var-

ious types of data while achieving differential privacy (see

[6] for a survey). For example, Bhaskar et al. [2] investigate

how frequent itemsets from transaction data can be pub-

lished. Friedman et al. [10] devise methods for construct-

ing decision trees. Korolova et al. [16] and Götz et al. [11]

present methods for publishing statistics in search logs, while

McSherry and Mahajan [19] develop techniques for network

trace analysis. Zhang et al. [26] study the problem of dif-

ferentially private regression analysis. Finally, Mohan et al.

build a general-purpose system GUPT [20] for applications

where the level of required privacy protection change with

time.

Among the existing approaches, the ones most related to

ours are by Blum et al. [3], Hay et al. [13], Xiao et al. [24],

and Li et al. [18,?]. Specifically, Blum et al. [3] propose to

construct one-dimensional histograms by dividing the input

counts into several bins, such that the sum of counts in each

bin is roughly the same. The bin counts are then published

in a differentially private manner. This approach, however, is

shown to be inferior to the method by Hay et al. [13] in terms

of the variance of the noise in range count query results.

Hay et al.’s method works by first (i) computing the re-

sults of a set of range count queries (with Laplace noise in-

jected), and then (ii) refining the noisy results by exploiting

the correlations among the queries. The results obtained thus

can then be used to answer any range count queries, and the

variance of noise in the query answers is O(log3 n), where n
is the number of counts in the input data. Hay et al.’s method,

as with our solutions, is designed only for one-dimensional

data. Meanwhile, Xiao et al. [24] develop a wavelet-based

approach that can handle multi-dimensional datasets, and

it achieves a noise variance bound of O(log3d n), where d
is the dimensionality of the data set. As shown in our ex-

periments, however, both Hay et al.’s and Xiao et al.’s ap-

proaches are outperformed by our techniques in terms of

query accuracy.

Li et al. [18,?] propose an approach that generalizes both

Hay et al.’s and Xiao et al.’s techniques in the sense that it

can achieve optimal noise variance bound for a large spec-

trum of query workloads, which is later improved in [25].

In contrast, Hay et al.’s and Xiao et al.’s techniques only op-

timizes the accuracy of range count queries. Nevertheless,

Li et al.’s approach incurs significant computation cost, and

hence is inapplicable on large data sets.

22 Jia Xu et al.

BoostDwork Privelet NF SF

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

6
)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

 2.5

1 10 20 30 40 50 60 70 80 90 100
A

v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

4
)

Range size

ε=0.1

 0

 0.5

 1

 1.5

 2

 2.5

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

2
)

Range size

ε=1

(a) On Age

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 100 200 300 400 500

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

7
)

Range size

ε=0.01

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 100 200 300 400 500

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

5
)

Range size

ε=0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 100 200 300 400 500

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

3
)

Range size

ε=1

(b) On Search Log

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

7
)

Range size

ε=0.01

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

5
)

Range size

ε=0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

3
)

Range size

ε=1

(c) On NetTrace

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

7
)

Range size

ε=0.01

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

5
)

Range size

ε=0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 s

q
u

a
re

d
 e

rr
o

r(
e

+
0

3
)

Range size

ε=1

(d) On Social Network

Fig. 15 Average squared error of different methods

There are also quite a lot works handling the multi-dimensional

data in a differentially private way [?][?] [?]. Cormode et

al. [?] develop a general framework to privately release the

multi-dimensional sparse data in an efficient way. Their effi-

ciency stems from the utilization of a certain compact sum-

mary for the noisy data with the same privacy guarantee. The

main difference between our proposals and Cormode et al.’s

work is that they focus on optimizing the cost of comput-

ing the private summaries while we target at improving the

query accuracy at full stretch. Li et al. in [?] present a couple

of multidimensional partitioning strategies for differentially

private histogram release. Their first method constructs a

fine-grained grid on multi-dimensional data. They then con-

sider the data uniformity in consecutive grids and discuss

the problem of partitioning the noisy count tables using the

classical kd-tree. At first glance, their kd-tree based solu-

Differentially Private Histogram Publication 23

BoostDwork Privelet NF SF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
3

)

Range size

ε=0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 10 20 30 40 50 60 70 80 90 100
A

v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
2

)

Range size

ε=0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
1

)

Range size

ε=1

(a) On Age

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 100 200 300 400 500

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
3

)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

1 100 200 300 400 500

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
2

)

Range size

ε=0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 100 200 300 400 500

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
1

)
Range size

ε=1

(b) On Search Log

 0

 0.5

 1

 1.5

 2

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
3

)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

 2.5

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
2

)

Range size

ε=0.1

 0

 0.5

 1

 1.5

 2

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
1

)

Range size

ε=1

(c) On NetTrace

 0

 0.5

 1

 1.5

 2

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
3

)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

 2.5

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
2

)

Range size

ε=0.1

 0

 0.5

 1

 1.5

 2

 2.5

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 a

b
s
o

lu
te

 e
rr

o
r(

e
+

0
1

)

Range size

ε=1

(d) On Social Network

Fig. 16 Average absolute error of different methods

tion is seemingly similar to our StructureFirst method, since

we both at first merge consecutive similar counts into differ-

ent partitions and then consume a certain amount of privacy

budget to hind the optimal partition structure which may

compromise users’ privacy. However, their kd-tree based so-

lution simply assigns ǫ
2 budget to partition adjustment while

we theoretically give a near-optimal budget assignment strat-

egy for users. In [?], Cormode et al. focus on the prob-

lem of multi-dimensional query processing on spatial data.

In particular, their query processing is strongly supported

by the “private spatial decomposition” indices which take

into account both of the data-dependent partitioning (e.g.,

quadtree) and data-dependent partitioning (e.g., kd-tree). Al-

though they show that their spatial decomposition indices

highly improve the data utility of the query results than Hay

et al. and Xiao et al.’s methods, their problem is different

24 Jia Xu et al.

BoostDwork Privelet NF SF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r(

e
-0

2
)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

 2.5

1 10 20 30 40 50 60 70 80 90 100
A

v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r(

e
-0

3
)

Range size

ε=0.1

 0

 0.5

 1

 1.5

 2

 2.5

1 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r(

e
-0

4
)

Range size

ε=1

(a) On Age

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 100 200 300 400 500

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r(

e
+

0
1

)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 100 200 300 400 500

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r

Range size

ε=0.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 100 200 300 400 500

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r(

e
-0

1
)

Range size

ε=1

(b) On Search Log

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r(

e
+

0
2

)

Range size

ε=0.01

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r(

e
+

0
1

)

Range size

ε=0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 200 400 600 800 1000 1200 1400

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r

Range size

ε=1

(c) On NetTrace

 0

 0.5

 1

 1.5

 2

 2.5

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r(

e
+

0
2

)

Range size

ε=0.01

 0

 0.5

 1

 1.5

 2

 2.5

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r(

+
e

0
1

)

Range size

ε=0.1

 0

 0.5

 1

 1.5

 2

 2.5

1 200 400 600 800 1000 1200 1400 1600

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r

Range size

ε=1

(d) On Social Network

Fig. 17 Average relative error of different methods

from that of ours. For we are centered on publishing the

differentially private histogram to users while they concern

with accurately answering users’ queries by accessing dif-

ferent level of nodes in the index structures.

In addition, there exist several techniques that address

problems similar to (but different from) ours. Barak et al. [1]

and Ding et al. [5] propose methods for releasing marginals,

i.e., projections of a data set onto subsets of its attributes.

The core ideas of their methods are to exploit the correla-

tions among the marginals to reduce the amount of noise

required for privacy protection. However, neither Barak et

al.’s nor Ding et al.’s method can be applied for our prob-

lem, as we consider the release of one histogram instead of

multiple marginals.

Xiao et al. [23] devise a differentially private approach

that optimizes the relative errors of a given set of count

Differentially Private Histogram Publication 25

queries. The approach targets the scenario where the count

queries overlap with each other (i.e., there exist at least one

tuple that satisfies multiple queries), in which case adding

less noise in one query result may necessitate a larger amount

of noise for another query, so as to ensure privacy protec-

tion. Under this setting, Xiao et al.’s approach calibrates the

amount of noise in each query result, such that queries with

smaller (larger) answers are likely to be injected with less

(more) noise, which leads to reduced relative errors. This

approach, however, is inapplicable for our problem, since

the count queries concerned in a histogram are mutually dis-

joint.

Rastogi and Nath [21] develop a technique for releasing

aggregated results on time series data collected from dis-

tributed users. The technique injects noise into a time series

by first (i) deriving an approximation of the time series and

then (ii) perturbing the approximation. Our histogram con-

struction algorithm is similar in spirit to Rastogi and Nath’s

technique, in the sense that our algorithm (i) approximates

a set D of counts with several bins and (ii) perturbs the bin

counts. One may attempt to apply Rastogi and Nath’s tech-

nique for histogram construction, by regarding the set D of

counts as a time series. This approach, however, would lead

to highly suboptimal results, since Rastogi and Nath’s tech-

nique assumes that all information in a time series concerns

the same user, in which case changing one user’s informa-

tion could completely change all counts in D.

9 Conclusion

In this paper, we present two new differential privacy mech-

anisms, namely NoiseFirst and StructureFirst, supporting ar-

bitrary range count queries on numeric domains. Utilizing

commonly used histogram techniques, our mechanisms gen-

erate randomized estimations on the counts in the database.

By summarizing similar consecutive counts using aggregates

(mean of median), our mechanisms dramatically improve

the query accuracy. Experimental results on four real data

sets show that NoiseFirst outperforms the Laplace Mecha-

nism, which is the best solution supporting the range count

queries with small lengths, by up to 6 times. Our second so-

lution, namely StructureFirst, performs on average twice as

good as the state-of-the-art methods on queries with longer

ranges.

References

1. B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and

K. Talwar. Privacy, accuracy, and consistency too: a holistic solu-

tion to contingency table release. In PODS, pages 273–282, 2007.
2. R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta. Discovering

frequent patterns in sensitive data. In KDD, pages 503–512, 2010.
3. A. Blum, K. Ligett, and A. Roth. A learning theory approach to

non-interactive database privacy. In STOC, pages 609–618, 2008.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction

to Algorithms, Second Edition., pages 185–192. MIT Press and

McGraw-Hill, 2001.

5. B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private data

cubes: optimizing noise sources and consistency. In SIGMOD,

pages 217–228, 2011.

6. C. Dwork. Differential privacy: A survey of results. In TAMC,

pages 1–19, 2008.

7. C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating

noise to sensitivity in private data analysis. In TCC, pages 265–

284, 2006.

8. C. Dwork, F. McSherry, and K. Talwar. The price of privacy and

the limits of LP decoding. In STOC, pages 85–94, 2007.

9. C. Dwork, G. N. Rothblum, and S. P. Vadhan. Boosting and dif-

ferential privacy. In FOCS, pages 51–60.

10. A. Friedman and A. Schuster. Data mining with differential pri-

vacy. In KDD, pages 493–502, 2010.

11. M. Götz, A. Machanavajjhala, G. Wang, X. Xiao, and J. Gehrke.

Publishing search logs - a comparative study of privacy guaran-

tees. In TKDE, in press.

12. S. Guha, N. Koudas, and K. Shim. Approximation and stream-

ing algorithms for histogram construction problems. ACM TODS,

31(1):396–438, 2006.

13. M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the ac-

curacy of differentially private histograms through consistency.

PVLDB, 3(1):1021–1032, 2010.

14. N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,

J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W.

Craig. Resolving individuals contributing trace amounts of dna to

highly complex mixtures using high-density snp genotyping mi-

croarrays. PLoS Genetics, 4(8), 2008.

15. H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C.

Sevcik, and T. Suel. Optimal histograms with quality guarantees.

In VLDB, pages 275–286, 1998.

16. A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas. Releas-

ing search queries and clicks privately. In WWW, pages 171–180,

2009.

17. S. Kotz, T. Kozubowski, and K. Podgórski. The Laplace distri-

bution and generalizations: a revisit with applications to com-

munications, economics, engineering, and finance, pages 23–23.

Birkhäuser Publication, 2001.

18. C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimiz-

ing linear counting queries under differential privacy. In PODS,

pages 123–134, 2010.

19. F. McSherry and R. Mahajan. Differentially-private network trace

analysis. In SIGCOMM, pages 123–134, 2010.

20. P. Mohan, A. Thakurta, E. Shi, D. Song, and D. E. Culler. Gupt:

privacy preserving data analysis made easy. In SIGMOD, pages

349–360, 2012.

21. V. Rastogi and S. Nath. Differentially private aggregation of dis-

tributed time-series with transformation and encryption. In SIG-

MOD, pages 735–746, 2010.

22. R. Wang, Y. Li, X. Wang, H. Tang, and X. Zhou. Learning your

identity and disease from research papers: Information leaks in

genome wide association study. In ACM CCS, 2009.

23. X. Xiao, G. Bender, M. Hay, and J. Gehrke. ireduct: differential

privacy with reduced relative errors. In SIGMOD, pages 229–240,

2011.

24. X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet

transforms. In ICDE, pages 225–236, 2010.

25. G. Yuan, Z. Zhang, M. Winslett, X. Xiao, Y. Yang, and Z. Hao.

Low-rank mechanism: Optimizing batch queries under differential

privacy. In PVLDB, 2012.

26. J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. Func-

tional mechanism: Regression analysis under differential privacy.

In PVLDB, 2012.

