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ABSTRACT

The iterative consensus problem requires a set of processes
or agents with different initial values, to interact and update
their states to eventually converge to a common value. Pro-
tocols solving iterative consensus serve as building blocks in
a variety of systems where distributed coordination is re-
quired for load balancing, data aggregation, sensor fusion,
filtering, and synchronization. In this paper, we introduce
the private iterative consensus problem where agents are re-
quired to converge while protecting the privacy of their ini-
tial values from honest but curious adversaries. Protecting
the initial states, in many applications, suffice to protect all
subsequent states of the individual participants.

We adapt the notion of differential privacy in this setting
of iterative computation. Next, we present (i) a server-based
and (ii) a completely distributed randomized mechanism for
solving differentially private iterative consensus with adver-
saries who can observe the messages as well as the internal
states of the server and a subset of the clients. Our analysis
establishes the tradeoff between privacy and the accuracy:
for given €,b > 0, the e-differentially private mechanism for
N agents, is guaranteed to convergence to a value within

O(s\/lev) of the average of the initial values, with probabil-

ity at least (1 —b).

Categories and Subject Descriptors
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Communication Networks—Distributed Systems
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1. INTRODUCTION

This paper addresses the problem of iteratively reaching
agreement in a group while preserving the individual’s pri-
vacy. The setup consists of N agents, each with some initial
information modeled as the valuation of a variable. The
problem requires the agents to interact with each other and
update their internal states incrementally, so that eventu-
ally they all converge to a common decision or value. This
agreement to a common decision can then be used for co-
ordinating the actions of the participating agents. Indeed,
solutions to this iterative consensus problem has been used
as a building block for designing a variety of distributed co-
ordination protocols for load balancing [7, 30], filtering and
sensor fusion [22, 31], clock synchronization, and flocking [4,
25, 16, 26, 17], to name a few.

A natural, synchronous, and widely studied consensus
mechanism involves, at each round, for every agent to up-
date its state as a weighted average of its neighboring agents’.
This update rule can be expressed as z(t + 1) = Pz(t),
where z(t) is the vector of agent values and P is a sym-
metric N x N matrix with P;; defining the communication
weight between agents ¢ and j. It turns out that this class
of consensus mechanisms' converge to the average of the
initial values of the agents. More general necessary and suf-
ficient conditions for achieving consensus with synchronous
mechanisms, including cases where the matrix P is time-
varying, have been studied in [28, 23] (see the book for a
complete overview [20]). Sufficient conditions for achieving
consensus with message delays and losses has been devel-
oped in [29, 3] and more recently, a theorem prover-based
verification framework for these mechanisms has been pre-
sented in [21, 5]. Furthermore, stochastic variants of the
convergence mechanism under the presence of communica-
tion noises has been studied in [30, 15].

In this paper we study the private consensus problem
which requires the agents to preserve the privacy of their
initial values from an adversary who can see all the mes-
sages being exchanged, while also achieving convergence to
the average of the initial values. This is motivated by sce-
narios where each individual agent is a closed-loop control
system evolving according to both its own dynamics and

!We refrain from calling these mechanisms algorithms be-
cause they are designed to converge and not to terminate.



preferences, as well as the state of the world. For instance
(a) a smart GPS device in the car which reacts to traffic,
(b) a smart-electric meter that schedules appliances in the
home depending on the dynamic cost of electricity. Initially,
each individual agent has a set of values (waypoints for cars)
which only depend on the individual’s goals and are oblivi-
ous of the world. As the system evolves, some of the local
variables change to capture the publicly known aggregate
dynamics (e.g. traffic distribution, average demand of elec-
tricity), while other local variables capture the current state
of the individual. We illustrate with a simple example later
that if the initial individual preferences are protected, then
even with the knowledge of the aggregate dynamics, the cur-
rent state of the individuals cannot be estimated accurately.

The notion of privacy used in this paper is derived from
the idea of differential privacy introduced in the context of
“one-shot” computations on statistical databases [9] (see [10]
for a survey). Roughly speaking, differential privacy ensures
that the participation of a single agent in a database does not
affect the output of any analysis substantially. It follows that
an adversary looking at the output of any analysis cannot
threaten to breach the privacy and security of the individual
participants.

In [12], the notion of differential privacy is expanded along
two dimensions. First, it included streaming and online com-
putations in which the adversary can look at the entire se-
quence of outputs from the analysis algorithm. Secondly,
it allowed the adversary to look at the internal state of the
algorithm (Pan privacy) in addition to the communication
messages. In this paper, we are concerned with protecting
the privacy of the initial value of an agent instead of its (bi-
nary) participation status. Consequently, like the definitions
presented in [14, 24], differential privacy is defined here in
terms of adjacent states that are identical for all agents ex-
cepting one agent whose values are close (as measured by a
metric on its real-valued variables). This notion of differen-
tial privacy guarantees that two sets of behaviors, starting
from two adjacent initial states and corresponding to any
output sequence, are statistically close.

As a starting point in this investigation, we use a client-
server setup for iterative consensus. The clients are the
agents with private initial values. In each round, the clients
send some information to the server based on their cur-
rent state. Then, the server updates its own state based
on clients’ information and sends feedback to the clients.
Finally, the clients update their state according to a local
control law based on the server’s feedback. The clients re-
quire to converge, while their initial values should be pro-
tected from any honest but curious adversary with access
to the messages (between the clients and the server) as well
as the server’s internal state. We call this the Synchronous
Private Consensus (SPC) problem.

In distributed control systems, protected initial informa-
tion often implies protection of the current state. For exam-
ple, consider a platoon of vehicles which require to move as
a group with the same speed, while keeping their positions
private. If the agents use a solution to the SPC problem
for deciding on the common speed, then their initial veloci-
ties as well as their current positions will be protected, even
if their initial positions and control laws are compromised.
Protecting the initial velocities suffice because to obtain the
current position x(7T") at time 7T, from the initial position
2(0), one has to integrate v(t) over [0,7]. Even though for

large t, v(t) will be close to the average velocity of the group,
but the error in the initial part of this integral makes the
estimation error for z(7T') to be large. The same argument
holds for any control system where the aggregate values (av-
erage velocity, traffic, demand, etc.) serve as an input to the
individual’s dynamics.

In Section 3 we propose a randomized mechanism for solv-
ing the SPC problem. The key idea is to add a particular
type of random noise to the clients’ messages to the server.
In contrast to the various mechanisms proposed earlier [13,
12], our mechanism adds a stream of noise drawing from a
time-varying distribution. Specifically, for a client with in-
ternal state 6(t) at round ¢, the message it sends to the server
is 6(t) + n(t) where n(t) is a random (real) number chosen
according to a Laplace distribution with a parameter that
decays geometrically with ¢. The feedback y(t) provided by
the server is the mean of the noisy messages it receives. And,
the clients update their states by taking a linear combina-
tion of y(t) and their earlier state. This weighted average is
an example of a simple type of client dynamics.

In Section 4, we generalize the client-server mechanism to
a distributed setting where the adversary can access the mes-
sages and the states of a subset of compromised clients. The
mechanism guarantees differential privacy of the good clients
and we derive a sufficient condition for convergence based on
the communication and update pattern of the clients.

As randomization is used for achieving privacy, this mech-
anism guarantees convergence to the average in a probabilis-
tic sense: Given a probability b and a radius r, we say that
the mechanism is (b, r)-accurate if from any initial state,
with probability (1 — b) the system converges to a value
within r distance of the average. In Section 4.2, we dis-
cuss the tradeoff between privacy and accuracy realized by
our proposed mechanisms. There are two parameters in the
definition of the mechanism which can be chosen to get dif-
ferent levels of privacy and accuracy. If these parameters
are tuned to obtain e-differential privacy, then we show that
the accuracy that can be achieved is (b, O(e\/lbe). That is,
the accuracy radius depends inversely on the privacy level
(¢) , the square root of the number of agents (N), and in the
probability (b).

The rest of the paper is organized as follows. In Section 2,
we introduce the synchronous private consensus problem,
and then formally define differential privacy, convergence,
and accuracy. In Sections 3 and 4, we present and analyze
the client-server and the distributed mechanisms for SPC.
In Section 5, we compare our work with existing research
papers in this area. In Section 6, we summarize our results
and discuss possible future directions.

2. PRELIMINARIES

For a natural number N € N, we denote the set {1,..., N}
by [N]. For an S-valued vector 6 of length N, and i € [N],
we denote the i*" component by 6;.

The mechanisms presented in this paper rely on random
real numbers drawn according to the Laplace distribution.
Lap(b) denotes the Laplace distribution with probability
density given by pr(z|b) = Q—ieflzl/b. This distribution has

z|b lz—yl
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mean 0 and variance 2b%. For any z,y € R

2.1 Problem Statement
We state the synchronous private consensus (SPC) prob-



lem in the following setting. The system consists of N clients
with private initial values 6:1(0),...,0n(0) and one server.
The clients and the server may have internal states and they
communicate over channels. In each round, there are four
phases: First, the clients send some messages to the server;
next, the server performs computations to update its state;
then it responds to the clients with some messages, and fi-
nally, the clients smoothly update their own internal states
based on the response from the server.

Several vulnerabilities threaten to compromise the private
initial values of the clients: An intruder can have full access
to all the communication channels. That is, he can peek
inside all the messages going back and forth between the
clients and the server. Furthermore, the intruder can access
the server’s internal state.

Roughly, a randomized mechanism for the clients and the
server solves the synchronous private consensus problem if
eventually all the clients converge to the average of their
initial values with high probability and it guarantees that the
intruder cannot learn about the initial private client values
with any high level of confidence. We proceed to precisely
define accuracy, convergence, and privacy.

Our definition of privacy is a modification of the notion
of differential privacy introduced in [12] in the context of
streaming algorithms. A state of an agent is typically de-
fined by a valuation for each of its local variables. Let © C R
be the set of states of an individual agent or client. For a sys-
tem with N agents, ©Y is the set of collective agent states.
Each elementary step or iteration of a syncrhonous mech-
anism transforms one collective state to another. During
one such step, the agent sends messages to the server, the
server updates its own state, and the server responds to the
clients. These messages and the state of server constitute
the observable part of the state transition. We will study
ezecutions of synchronous mechanisms which are (possibly
infinite) sequence of elementary steps. The orbservable part
of such an execution are the corresponding (possibly infinite)
sequence of messeages and server states.

More formally, for each mechanism Alg there is a map
Alg : ©F » X x Y from an initial collective state to a
sequence of observations. Here X is the set of all (possibly
infinite) sequences of messages and Y is the set of all (pos-
sibly infinite) sequences of internal server states. Concrete
definitions of these objects will be given in Section 3 where
we introduce our mechanism.

Definition 1 (Adjacency). Two vectors 0,0' € O are §-
adjacent, for some & > 0, if there exists one i € [N], such
that |0; — 07 < 6 and for all j #1, 6; = 0.

Definition 2 (Differential Privacy). Let ©~ C RY be the
domain of global state. A randomized mechanism Alg pre-
serves e-differential privacy if for all sets X' C X and Y’ C
Y;Vand for all pairs of §-adjacent initial global states 0,0’ €
(C]

PrlAlg(d) € (X', Y")] < e PriAlg(®) € (X', Y)].

This definition of adjacency uses a l-norm whereas the
standard definition (found in [11], for example) uses the
Hamming distance. This choice of the metric has ramifica-
tions on the privacy guarantees. In cases where each agent’s
local value comes from a bounded set, by letting d equals to
the range of local value, Definition 2 subsumes the standard
definition. In cases where each agent’s local value comes

from an unbounded set, the sensitivity of a query can be
unbounded. In such cases, the mechanisms introduced in
this paper fail to provide differential privacy (in the sense
of [11]) and the é-adjacency notion becomes useful.

We use the mean square notion of convergence which has
been used in the context of consensus protocols [15]. Let
0;(t) € © be the local states of agent A; at the beginning of
round ¢. 0;(0) denotes the secret initial state of A;.

Definition 3 (Convergence). A randomized mechanism is
said to converge if for any initial configuration, for anyi,j €
[N], limy—s o0 E[(0:(t) — 0;(1))?] = 0, where the expectation is
over the coin-flips of the algorithm.

Definition 4 (Accuracy). For any initial state 6(0), b €
[0,1] and r € R>¢ a randomized mechanism is said to achieve
(b,r)-accuracy if every execution starting from 6(0) con-
verges to a state within r of & >, 0:(0), with probability at
least 1 —b.

By Definition 2, a smaller € implies a stronger guarantee
of privacy. On the other hand, by Definition 4, to enjoy a
higher level of accuracy, a smaller probability b and a smaller
radius r are favorable.

Our goal is to design a solution to the SPC problem that
is guaranteed to converge. In addition, for an adversary,
looking at all the sequence of messages passing through the
channels as well as the sequence of internal states of the
server (and possibly some of the clients), the probabilities
of two sets of executions starting from teo adjacent initial
states and corresponding to these observations, have to sat-
isfy the Equation in Definition 2.

3. A CLIENT-SERVER MECHANISM AND
ITS ANALYSIS

In this section, we present a randomized mechanism to
solve the synchronous private consensus problem. This mech-
anism has three parameters o € (0,1), ¢ and g € (0,1). The
mechanism is specified by the following client and server
actions which define the four phases of each round. Let
T = {0} UN be the infinite time domain. At each round
teT:

(i) Client ¢ sends a message z;(t) = 6;(t) + n:(t) to the
server, where 7;(t) is a random noise generated from
the distribution Lap(cq").

(ii) The server updates its own state as the average of all
client messages y(t) = ~ Y, zi(t).

(iii) The server sends y(t) to all clients.

(iv) Client ¢ updates its state by linearly interpolating be-
tween 6;(t) and y(t) with coefficient o, that is,

0:(t+1) = (1 —0)0;(t) + oy(t). (1)

3.1 Analysis

For t € T, let 0(t) = [01(t),...,0n(t)]" be the vector
defining the state of the clients at the beginning of round t.
Similarly, n(¢) and x(t) are vectors for noise and messages.
An execution of the mechanism is an infinite sequence of the
form a = 8(0), (n(0), (0), 4(0)), 6(1), ((1), z(1), y(1)), ...
Observe that given an initial vector #(0) and the sequence
of noise vectors 7(0),7n(1),..., the execution of the system



is completely specified. That is, for all ¢ € T, it defines the
messages z(t),y(t), the internal states of the clients 6(¢) and
that of the server y(t). Thus, for brevity we will sometimes
write an execution « as an infinite sequence of the form
6(0),7(0),0(1),n(1),.... The prefix of o upto round T' € T
is denoted by ar. We denote the set of possible executions
from 6(0) as Execsy(o).

For a given execution «, the adversary can observe the
subsequence of messages z(t),y(t) and the server’s state
y(t). We denote this subsequence by « | (z,y). Hence,
two executions o and o' are indistinguishable to an ad-
versary if a | (x,y) = o’ | (x,y). For a set of observa-
tion sequnces Obs, the set of all possible executions from
6(0) which correspond to some observation in Obs is the set

Execsg(0),00s 2 {a € Execsgy| v | (z,y) € Obs}. We restate
the definition of differential privacy in this context.

Definition 5 (Differential Privacy). A randomized mech-
anism preserves e-differential privacy if for any set of ob-
servation sequnces Obs, and any pairs of d-adjacent initial
global states 6(0),6'(0) € ©F

Pr[Execsg(0),00s) < €€6PT’[EX€CSQ/(0) ,Obs)- (2)

Lemma 1 (Privacy). For ¢ € (1 — 0,1), the mechanism

guarantees e-differential privacy with e = ﬁ.

PROOF. Let 6(0) and 6’(0) be arbitrary §-adjacent initial
global states. Without loss of generality, we assume that
for some k € [N], 0,(0) = 05,(0) + §. Fix any subset of
observation sequences Obs. We will show that Equation (2)
holds by establishing a bijective correspondence between the
executions in Execsg(g),0ps and Execsg:(o),05s. For brevity,
we denote these sets by A and A’.

First, we define a bijection f : A — A’. For a € A
defined by the sequence 6(0),7(0), (1), . . ., we define f(a) £
0'(0), (' (0),2'(0),4'(0)), 0’ (1), (n' (1), 2"(1),5/'(1)), 0'(2), ...,
where for each t € T,

¢ .
0t = { mgg +0(1 —0)" fori=k,
(

;i otherwise.

() =0'"(t) + 7' (1), ¥y (t) = %Ziew] z'(t), and for ¢t > 0
0'(t) = (1 —0)0'(t — 1) + oy/(t). Clearly, f(a) is a valid
execution of the mechanism staring from 6'(0).

The following proposition relates the states and the ob-
servable vectors of two corresponding executions.

Proposition 2. For allt € T, i € [N],

(i) 0u(t) — 04() = 6(1 — ',

(ii) 0;(t) = 0i(t),Vi # k
(iii) i(t) = za(t),
(iv) y'(t) = y(t).

PRrROOF. The proof is by induction on ¢. For the base
case t = 0, observe that for i = k, z;(0) = 6;(0) + 7;(0) =
0:;(0)—+n:(0)+6 = x;(0), otherwise, z;(0) = 0;(0)+n;(0) =
0:(0) + 7:(0) = x:(0);

For the inductive step, assume that the proposition holds
for all t < T. From Equation 1, we have 0;,(T + 1) = (1 —
0)0:(T)+oy'(T) and 05 (T+1) = (1—0)0k(T)+0oy(T). The
difference of these two equation gives 65, (T + 1) — 0, (T + 1)

= (1 - 0)(64(T) — 6x(T)) + oy (T) — y(T)
= (1= o) (B4(T) — 6(T)) = 5(1 — o)1,

For any other client i # k, immediately from that y'(T) =
y(T) and 0;(T) = 0;(T), we have 0;(T + 1) = 0,(T + 1).

Now we consider the clients’ reports (T + 1). For the
k™ client, 2},(T + 1) = 0,(T + 1) + 0, (T + 1) = 0(T +
=61 -a) T 4T+ 1) +6(1 —0)TH = (T +1).
For the other client i # k, zi(T + 1) = 0;(T + 1) + ni(T +
1) =6;(T+1)+n(T+1) = x;(T +1). So the reports
2'(T 4+ 1) = (T +1). The match up of the server’s internal
state immediately follows.

Parts (i3¢) and (iv) of the above proposition establishes
that o and f(«) are indistinguishable, that is, indeed they
produce the same observation sequence.

Next we will relate the probability of any finite prefix of an
individual execution a € A, and its corresponding execution
f(a) € A’, for a particular observation sequence 3 € Obs:

Prla T—9( ); -+, 0(T)]
PT[(f( Nt = () 79(T}

_ HHme )ea')

L
pr(mi(t)leq’) 5 pr( t )

t=0 {€[N]

- <> @ Tl .
S H ”kt ]kt :He%(lq )t

t=0 t=0

iy Prlar = 6(0),...,0(T)]du
72059 P(F(6))r
< I [ Pt =60, ¢ D

where dy and dp’ are probability measures over A and A’ de-
fined by the randomized mechanism. If ¢ € (1—0, 1), then as
T — 0o, the product converges to e, where € = ﬁ,
and we obtain the required inequality for e-differential pri-
vacy.

Pr[Execsg(oy,00s] < e€6Pr[Exec59/ (0),0bs]-

Lemma 3 (Convergence). The mechanism described above
achieves convergence.

ProOOF. We define a global potential function P : N —
Rxo as P(t) = 3 > iz 0:(2) — 0,(t)]?. Using the matrix no-
tation P(t) = 0(t)T L 6(t), where L € RV *¥ with elements:

. [ N-1, i=}j
1i.5) = { -1, otherwise. (3)

The transition rule for the internal state of the i client can
be written as:

Oit+1) = (1—0)0i(t) + % 3,1, (6:(t) +m:(t)
= (4% —0)0i(t) + F 22, 05(t) + Fw(t),

(4)
where w(t) = >, n:(t). The update rule for all the agents
can be written as 0(t + 1) = 0(t) — LO(t) + Fw(t)ln.



(t) — 2LO(t) + Zw(t)In]"L
(t) — X LO(t) + Fw(t)Ln]
= P(t) — 220()TLLO(t) + 22 0(t)" LLLO(t)

+22w()0(t)" L1y — 2 w(t)0(t)" LL1y
+ o w(t)? 15 L1y
= P(t) — 2%0()"LLO(t) + 22 0(t)" LLLO(1).

(5)
By Equation 3 we have L = NIy — 1yn. So in this particu-
lar case, we have LL = (NIy — ]lNN)2 = N?Iny —2N1nn +
1%y = N?Iy — Nlyy = NL. Similarly LLL = N?L.
Substitute the previous equation into Equation (5) we get,

P(t+1)=(1—-20+0%)P(t) = aP(),

where a = (1—0)?. Forallo € (0,1), a € (0,1) is a constant.
Thus we have as t — oo, P(t) converges exponentially to 0,
which implies convergence.

From Equation (4), each agent adds an identical random
variable f-w(t) to its local state in round ¢. Although the
average value drifts with this random variable, the relative
distance between local states will not be affected. As a re-

sult, the mechanism converges deterministically.

Lemma 4 (Accuracy). For any b € (0,1), the randomized
\V2co
VBN (1—¢2)

Proor. This is a special case of a more general proof we
show later. Please see the proof of Lemma 8 with d set to

mechanism achieves (b, ))-accuracy.

2 .
% for this case.

In this section we proposed a solution to the synchronous
private consensus problem (SPC) with a server and formally
established its privacy, convergence and accuracy properties.
We will discuss the trade-offs between privacy and accuracy
in Section 4.2.

4. A DISTRIBUTED MECHANISM

In this section, we present a second synchronous random-
ized mechanism for solving the private consensus problem
which does not use a server but instead relies on the clients
exchanging information with their neighbors in a truly dis-
tributed fashion. Let G = ([N], €) be a undirected connected
graph, where [N] is the set of vertices and & C [N] x [N]
is the set of edges. Let N(i) = {j € [N]|(4,j) € £} be the
set of neighbors of node ¢ with whom it communicates. Let
|N(i)| be the degree of node i in G.

As in the previous setting, an intruder has access to all the
communication channels as well as the internal states of a set
C of compromised clients (but cannot overwrite them). Our
mechanism will protect the privacy of clients who are not
compromised. Thus, in this context, Definition 5 is modified
by restricting the notion of d-adjacency to uncompromised
agents.

Now we state a mechanism to solve the distributed SPC
problem. Besides the state variable 6; which holds the con-
sensus value, client ¢ holds another auxiliary state y;. The
mechanism has parameters o € (0,1)", c and g € (0,1). In-
stead of sharing an identical linear combination factor, client
i has an independent o; € (0,1) which is the i** element of
vector o. At each round ¢t € T:

(i) Client 4 sends a message x;(t) = 0;(t) + n:(t) to every
j € N(i), where n;(¢) is a random noise generated from
the distribution Lap(cq").

(ii) Client ¢ updates y; as the average of z;(t) and the
messages it receives:

yi<t>=W O )

L=,
JEN(H)u{i}

(iii) Client ¢ updates 6; by linearly interpolating between
0;(t) and y;(t) with coefficient o;, that is,

4.1 Analysis

The analysis of the distributed mechanism parallels the
analysis presented in Section 3. An execution « is defined
similar to the centralized setting except that y(¢) in this
case is a vector rather than a scaler. The privacy of those
corrupted nodes makes no sense. Let C' C [N] be the set of
corrupted nodes.

Lemma 5 (Privacy). For q € (1 — om, 1), where o., is the
minimum element of vector o, the distributed mechanism
guarantees e-differential privacy with respect to the uncor-
rupted nodes with € = m.

We omit the proof of Lemma 5 as it is a straight forward
generalization of the proof of Lemma 1.

In contrast to Lemma 3, the convergence of the distributed
mechanism depends on the structure of graph G. Before
stating the convergence result, we introduce Laplacian ma-
trix L of graph G with elements:

(NG =y
1(17]): -1 (Za])€€7 (8)
0 otherwise.

The Laplacian matrix L for any graph is known to have
several nice properties. It is by definition symmetric with
real entries, hence it can be diagonalized by an orthogonal
matrix. It is positive semidefinite, hence its real eigenvalues
can be ordered as A1 < A2 < ... < Ay be the eigenvalues of
L. Let {v1,v2,...,un} be a set of orthonormal eigenvectors
of L such that vy corresponds to Ag. In addition, denote
d; = W(Zﬁ We state a sufficient condition of convergence
as following.

Assumption 1. Assume that graph G has the following
properties.

(1) X2 > 0, that is graph G is connected.

2m

(II) AN < 35, wherem = inficn) di and M = sup, ¢y di-

A2 > 0 if and only if the graph is connected. For a fixed A2,
a smaller Ay gives a smaller upper bound on the diameter
of the graph (see [6]).

Lemma 6 (Convergence). The distributed mechanism de-
scribed above achieves convergence if Assumption 1 holds.

PRrROOF. We define a function P : N — R>( as
1

P(t)=5 > [6:(t) = 6; (1)
2

(i,5)€€



Using the matrix notation P(t) = 0(t)7 L 6(t). By Assump-
tion 1, E[P(t)] =0 < X, E[0:(t)—0;(t)]* = 0. According
to Equation (6) and (7), the update equation of client ¢ is:

Oi(t+1) = (1= diN@))Oi(t) + di 3 nay 05 (1) ©)
+diwi(t),
where
wit)= Y wle). (10)
JEN(i)u{s}

We define vector w(t) = [wi (), . ..
RM*N with elements:

(i, j) ={ dis =3, (1)

0, otherwise.

,wn (t)]T and matrix D €

The update rule for all the agents can be written as 6(t+1) =
0(t) — DLO(t) + Dw(t). Then, P(¢t + 1)

o(t+1)TLO(E+ 1)
= (0(t) — DLO(t) + Dw(t))TL(O(t) — DLO(t) + Dw(t))
P(t) —20(t)"LDLO(t) + 0(t)" LDLDLO(t)+

20(t)" (I — DLYLDw(t) +w(t)" DLDw(t).

(12)
Taking expectation of both sides with respect to the coin
flips of the algorithm starting from any state:

E[P(t+1)] = E[P(t)] - E[Q(0(t)] + E[w(t)" DLDw(t)],

(13)
where,

Q) =20"LDLO — 0" LDLDLA.

The term E[20(t)” (I—DL)LDw(t)] vanishes because (i) 6(t)
and w(t) are independent; and (ii) by Equation (10), w(t)
has zero mean.

Now we will prove that there exists a constant a € (0,1)
such that Q(6(t)) > aP(t). Because L is positive semidef-
inite, we have 0 < L < AnyI. From Assumption 1 and
Equation (11), we have mI < D < MI. Then,

Q) >2mbTLLO — A\n0TLDDLO
> 2mOT LLO — A M*0T LLO (14)
> (2m — AnM?)0T LLO.

The following proposition helps obtain a bound on a.

Proposition 7. For any 0 € RY, 0TLLO > X607 L6.

Proor. First, we show that the proposition holds for any
eigenvector v of L For the eigenvector v corresponding to
A1 = 0, we have v{ L = 0 and the inequality holds trivially.
For any other eigenvector vy and the corresponding eigen-
value A\ > 0, we have vi LLvy = Mol Lux > Aovf Lug.
Next, we prove that the proposition holds for any vector
6. Because {vi,v2,...,vn} is an orthonormal basis, for
any i # j, v; LLv; = A\jv] Lv; = Av]v; = 0. For any
6 = ZkE[N] Qakvk, we have:

= (Eke[N] O‘kvk)TLL(Zke[N] Oélc'Uk)
=D ke(N] aivil LLuy
> )\2 EkE[N] aingvk = )\29TL9
From Equation (14), then it follows that

QO(t)) > Xa(2m — ANM?)P(t).

0T LLe

Thus, for any @ < min(\2(2m — Ay M?),1), the inequality
Q(6(t)) > aP(t) holds. Also, by Assumption 1, A2(2m —
ANM?) > 0. Then, for some a € (0,1), Equation (13) is
reduced to

E[P(t+1)] (1 — a)E[P(t)] + E[w(t)T DLDw(t)]

<
< (1 —a)E[P(t)] + ANM?E[w(t)Tw(t)].

As t — oo the contribution of the first term converges
to 0. For the second term, recall that each element of
w(t) is a linear combination of i.i.d 7;(t) ~ Lap(cq"). For
i # J, En(t)n;(t)] = Eni(t)|En;(t)] = 0. For any i,
E[ni(t)?] = Var(n(t)) = 2¢°¢*, which also converges to
0. So E[w(t)Tw(t)] — 0 as t — oo. Combining, we have
E[P(t)] = 0 as t — oo.

In general, the expected consensus value of the distributed
algorithm does not coincide with the initial average. Intu-
itively, a node with higher degree or slower evolution will
have heavier weight on the consensus value. In this context,
Definition 4 is modified by replacing the average 6(0) =
+ 32, 0:(0) with a weighted modification §(0) = Zgl 711( ),

1 — IN@I+1

Ti

where the weight v; =

Lemma 8 (accuracy). The distributed mechanism achieves

SN +1)?
( .

( V2de
) i vi)?2

)-accuracy, where d=
b(1—q?)

PROOF. Let us fix an initial state #(0) and define 8(t) =

% and w(t) = %’ Y We rewrite Equation (9) with

Yibi(t+1) = %0:(t) — INDIO(0) + 3 05(0) + wilh).

JEN ()

Add up all N equations and divided by >, v, we get:

O(t+1)=0(t) +w(t) = 6(0 Z

From the definition of @w(t) and Equation (10), we have

- _ VarQCwi(t)) _ Var(Q, (NG| + Dni(t))
varttt) = e ()2
_ Varm@) SONG D
= EAE = 2dc”q”".
By g € (0,1), the series converges.
Var(z ) < Var Z = 2dcq2.

By Chebyshev’s inequality for any ¢ > 0:

Pr(|6(t)—6(0)| < r) = 1-Pr(] zt:w(s)| >7) > | YarEaouw(s)

s=0 r?
ar(3t_, w(s 1

Pr(|Y>_yw(s)] > r) > 1—b. Let t — oo, by Lemma 6
every execution converges. Then the lemma follows.

The trade-off between accuracy and privacy of this mech-
anism is similar to that of the client-server mechanism of
Section 3 and we discuss them together next.



4.2 Discussion on Results

We proposed two mechanisms that achieve iterative pri-
vate consensus over infinite horizon by adding a stream of
noises to the messages set by the clients (to each other or
to the server). The standard deviation of the Laplace dis-
tribution of the noise added in every round decreases and
ultimately converges to Lap(0) which is the Dirac ¢ distri-
bution at 0. The mechanisms have 3 parameters: linear
combination factor o, initial noise ¢ and noise convergence
rate ¢. The constraint to achieve privacy over infinite hori-
zon is that ¢ > 1 — o, which roughly means that the noise
should converge slower than the system’s inertia so as to
“cover” the trail of dynamics.

From Lemmas 1 and 5 we observe that ¢ decreases with
larger ¢ or gq. This implies that the system has a higher
privacy if the noise values are picked from a Laplace distri-
bution with larger parameters (and hence larger standard
deviation). From Lemmas 4 and 8, however, a more disper-
sive noise results in worse accuracy. The tradeoff between
privacy and accuracy for different noise convergent rate (q)
is illustrated in Figure 1. If we fix the parameter ¢, we
observe that for e-differential privacy for N agents and an
accuracy level of b the accuracy radius r is O(ﬁ) For
specific values on these parameters, the dependence between
€ and r is shown in Figure 1.

The distributed mechanism obviously avoids a single point
of failure and a bottleneck at the server, but it requires an
additional 2(|€| — V) messages in each round over the client-
server mechanism. A comparison of the convergence rates of
the two mechanisms will rely on the actual structure of the
communication graph, and will be undertaken in the future.

Figure 1: Privacy and Accuracy as functions of the
Noise convergent rate in the centralized mechanism.
Parameterized with N = 500, ¢ = 0.8, ¢ = 10 and

B=0.5.
0.6 20 10,
@ 0.3 10 = =~ 5
82 0.6 10 8.1 0.3 0.5

5. RELATED WORK

Our consensus mechanism has similarities with the proto-
cols for computing sum and inner product presented in [1],
in that, all these protocols rely on adding noise to the states
communicated among the participants. Our mechanism dif-
fers in the type of noise (geometrically decaying Laplace)
that is added. Moreover, in our setup, the computed out-
puts are used as feedback for updating the state of the par-
ticipants to achieve convergence.

In [8] a framework for securely computing general types of
aggregates is presented. Every client splits its private data
into pieces and sends them to different servers. If at least
one server is not compromised, then the iterative aggregate

computation is guaranteed to preserve privacy of the indi-
viduals. Our mechanism is quite different and it guarantees
privacy even if the only server is compromised.

In [32], the authors present distributed protocols for com-
puting k£ maximum values among all participants. In this

protocol, the clients communicate a global vector of k-maximum

values over a ring network. In each step, the client process-
ing the global vector either with an exponential decaying
probability honestly replaces the values in global state if it
is smaller than one of the local values, or it replaces the val-
ues in the vector with randomly generated small numbers.
The metric of privacy is Loss of Privacy which characterizes
the additional knowledge to the adversary of gaining inter-
mediate result besides the final results. This work is setup
with a different definition of privacy and does not capture
the key feature of our mechanism, namely feedback update
over infinite horizon.

In the recent paper [18]2, the authors develop a notion
of differential privacy which ensures that an adversary can-
not tell the exact input to a dynamical system by looking
at its output stream. Laplace and Gaussian mechanisms
are presented for converting an ordinary dynamical system
to a differentially private one. Unlike our message-based
and distributed implementation schemes, here the privacy-
preserving implementation consists of a filter and an estima-
tor and the former is designed to minimize the mean-squared
error from the outputs of the ideal system. In the follow-
up work [19], a Kalman filter is designed to estimate the
states of differentially private systems with minimized er-
ror. The sufficient condition of the minimization problem
is established in the form of linear matrix inequalities. The
flavor of results presented in both of these papers are geared
towards privacy of individual subsystems. In contrast, our
mechanisms aim to provide privacy guarantees in dirstibuted
control systems with honest but curious agents, untrusted
servers, and leaking channels.

6. CONCLUSIONS

In this paper, we formalize a Synchronized Private Con-
sensus problem and propose two mechanisms for solving it.
The first one relies on the client-server model of communi-
cation and the latter is purely distributed. The key idea is
to add a random noise to each client’s message to the server
(or other clients) that is drawn from a Laplace distribution
that converges to the Dirac distribution. The messages with
large noise give differential privacy and as the noise level
attenuates, the system converges to the target value with
probability that depends inversely on the security parame-
ter and the number of participants. The feedback y(t) from
the server is the mean of all noisy messages sent. And, the
clients update their states by taking a linear combination of
y(t) and their previous state. We formally prove the privacy
and convergence of this mechanism. The key proof technique
for privacy, relies on constructing a bijective map between
two sets of executions starting from different but adjacent
initial states.

To the best of our knowledge this is the first investigation
of differential privacy in the context of control systems where
the ultimate goal is convergence. Our results suggest several

2At the time of writing, the final version of these paper
and [19] are yet to appear in print. Our comments are based
on the versions available online.



directions for future work. First, we are trying to apply
our method to a larger set of control problems that arise
from iterative closed-loop control. Novel applications of this
arise from differential privacy and more generally security of
distributed cyber-physical systems where the physical state is
updated smoothly according to some differential equations.

Second, we also interested in exploring the tradeoff be-
tween privacy and performance under more general dynam-
ics of the system. In the SPC problem we discussed, the
dynamics of the system is discrete and linear. We expect
to extend the analysis to continuous or non-linear systems.
Also, establishing a lower bound for the problem will be of
significance.

An orthogonal direction is to develop automated verifica-
tion and synthesis algorithms for controllers that preserve
differential privacy. Along these lines, a verification frame-
work for streaming algorithms has been presented in [2, 27].
The challenge will be to extend these ideas to synthesis and
feedback control systems.
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