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Abstract

We design new differentially private algorithms for the Euclidean k-means problem,
both in the centralized model and in the local model of differential privacy. In both
models, our algorithms achieve significantly improved error guarantees than the
previous state-of-the-art. In addition, in the local model, our algorithm significantly
reduces the number of interaction rounds.

Although the problem has been widely studied in the context of differential privacy,
all of the existing constructions achieve only super constant approximation factors.
We present—for the first time—efficient private algorithms for the problem with
constant multiplicative error. Furthermore, we show how to modify our algorithms
so they compute private coresets for k-means clustering in both models.

1 Introduction

Clustering, and in particular center based clustering, are central problems in unsupervised learning.
Several cost objectives have been intensively studied for center based clustering, such as minimizing
the sum or the maximum of the distances of the input points to the centers. Most often the data
is embedded in Euclidean space and the distances that we work with are Euclidean distances. In
particular, probably the most studied center based clustering problem is the Euclidean k-means
problem. In this problem we are given a set of n input points in R

d and our goal is to find k centers
that minimize the sum of squared distances between each input point to its nearest center.2 When
privacy is not a concern one usually solves this problem by running Lloyd’s algorithm [25] initialized
by k-means++ [4]. This produces k-centers of cost that is no worse than O(log k) times the cost of
the optimal centers and typically much lower in practice.

The huge applicability of k-means clustering, together with the increasing awareness and demand
for user privacy, motivated the study of privacy preserving k-means algorithms. It is especially
desirable to achieve differential privacy [12], a privacy notion which has been widely adopted by
the academic community as well as big corporations like Google, Apple, and Microsoft. Indeed,
constructions of differentially private k-means algorithms have received a lot of attention over the last
14 years [8, 28, 14, 18, 27, 33, 31, 32, 17, 6, 29, 21]. In this work we design new differentially private
k-means algorithms, both for the centralized model (where a trusted curator collects the sensitive
information and analyzes it with differential privacy) and for the local model (where each respondent
randomizes her answers to the data curator to protect her privacy). In both models, our algorithms
offer significant improvements over the previous state-of-the-art.

∗Work done while the second author was a postdoctoral researcher at the Weizmann Institute of Science,
supported by a Koshland fellowship, and by the Israel Science Foundation (grants 950/16 and 5219/17).

2The sum of squares is nice to work with since we do not have to compute square roots. Furthermore, for a
given cluster its center of mass is the minimizer of the sum of the squared distances. These properties make
k-means to be the favorite cost objective for center based clustering.
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Reference Multiplicative Error Additive Error

Feldman et al. (2009) [14] O(
√
d) Õ

(

(kd)2d
)

Nock et al. (2016) [31] O(log k) O
(

n/ log2 n
)

Feldman et al. (2017) [17] O(k log n) Õ
(√

d · k1.5
)

Balcan et al. (2017) [6] O(log3 n) Õ
(

d+ k2
)

Nissim and Stemmer (2018) [29] O(k) Õ
(

d0.51 · k1.51
)

This work O(1) Õ
(

k
1.01

· d
0.51 + k

1.5
)

Table 1: Private algorithms for k-means. Here n is the number of input points, k is the number of

centers, and d is the dimension. For simplicity, we assume that input points come from the unit ball,

and omit the dependency in ε, as well as logarithmic factors in k, n, d, β, δ, from the additive error.

Before describing our new results, we define our setting more precisely. Consider an input database
S = (x1, . . . , xn) ∈ (Rd)n containing n points in R

d, where every point xi ∈ S is the (sensitive)

information of one individual. The goal is to identify a set of k centers C = {c1, . . . , ck} in R
d

approximately minimizing the following quantity, referred to as the cost of the centers

costS(C) =
n
∑

i=1

min
j∈[k]

‖xi − cj‖22.

The privacy requirement is that the output of our algorithm (the set of centers) does not reveal
information that is specific to any single individual. Formally,

Definition 1.1 ([12]). A randomized algorithm A : Xn → Y is (ε, δ) differentially private if
for every two databases S, S′ ∈ Xn that differ in one point, and every set T ⊆ Y , we have
Pr[A(S) ∈ T ] ≤ eε · Pr[A(S′) ∈ T ] + δ.

Combining the utility and privacy requirements, we are seeking for a computationally efficient
differentially private algorithm that identifies a set of k centers C such that w.h.p. costS(C) ≤
γ · OPTS +η, where OPTS is the optimal cost. We want γ and η to be as small as possible, as
a function of the number of input points n, the dimension d, the number of centers k, the failure
probability β, and the privacy parameters ε, δ.

We remark that a direct consequence of the definition of differential privacy is that, unlike in the
non-private literature, every private algorithm for this problem must have additive error η > 0. In
fact, if all points reside with the d-dimensional ball, B(0,Λ), of radius Λ around the origin (as we
assume in this paper) then η must be at least Λ2. To see this, consider k + 1 locations p1, . . . , pk+1

at pairwise distances Λ, and consider the following two neighboring datasets. The first dataset S1

contains n − k + 1 copies of p1, and (one copy of) p2, . . . , pk. The second dataset S2 is obtained
from S1 by replacing pk with pk+1. Since in both cases there are only k distinct input points, the
optimal cost for each of these datasets is zero. On the other hand, by the constraint of differential
privacy, the set of centers we compute essentially cannot be affected by this change. Therefore we
must have expected error of Ω(Λ2) on at least one of these inputs. To simplify the presentation we
assume that Λ = 1 in rest of the introduction.

Traditionally, in the non-private literature, the goal is to minimize the multiplicative error γ, with
the current state-of-the-art (non-private) algorithm achieving multiplicative error of γ = 6.357 (with
no additive error) [2]. In contrast, in spite of the long line of works on private k-means [8, 28,
14, 18, 27, 33, 31, 32, 17, 6, 29, 21], all of the existing polynomial time private algorithms for the
problem obtained only a super constant multiplicative error. We present the first polynomial time
differentially private algorithm for the Euclidean k-means problem with constant multiplicative error,
while essentially keeping the additive error the same as in previous state-of-the-art results. See Table 1
for a comparison.

1.1 Locally private k-means

In the local model of differential privacy (LDP), there are n users and an untrusted server. Each user
i is holding a private input item xi (a point in R

d in our case), and the server’s goal is to compute
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some function of the inputs (approximate the k-means in our case). However, in this model, the users
do not send their data as is to the server. Instead, every user randomizes her data locally, and sends
a differentially private report to the server, who aggregates all the reports. Informally, the privacy
requirement is that the input of user i has almost no effect on the distribution of the messages that
user i sends to the server. This is the model used by Apple, Google, and Microsoft in practice to
ensure that private data never reaches their servers in the clear.

With increasing demand from the industry, the local model of differential privacy is now becoming
more and more popular. Nevertheless, the only currently available k-means algorithm in this model
(with provable utility guarantees) is that of Nissim and Stemmer [29], with O(k) multiplicative error.
We present a new LDP algorithm for the k-means achieving constant multiplicative error. In addition,
the protocol of [29] requires O(k log n) rounds of interactions between the server and the users,
whereas our protocol uses only O(1) such rounds.

1.2 Classical algorithms are far from being private

We highlight some of the challenges that arise when trying to construct private variants for existing
(non-private) algorithms. Recall for example the classical (non-private) Lloyd’s algorithm, where in
every iteration the input points are grouped by their proximity to the current centers, and the points in
every group are averaged to obtain the centers for the next round. One barrier for constructing a private
analogue of this algorithm is that, with differential privacy, the privacy parameters deteriorate with
number of (private) computations that we apply to the dataset. So, even if we were able to construct
a private analogue for every single iteration, our approximation guarantees would not necessarily
improve with every iteration. In more details, composition theorems for differential privacy [13]
allow for applying O(n2) private computations before exhausting the privacy budget completely.
Lloyd’s algorithm, however, might perform a much larger number of iterations (exponential in n in
worst case). Even the bounds on its smoothed complexity are much larger than n2 (currently ≈ n32

is known [3]). In addition, classical techniques for reducing the number of iterations often involve
computations which are highly sensitive to a change of a small number of input points. For example,
recall that in k-means++ [4] the initial k centers (with which Lloyd’s algorithm is typically initiated)
are chosen from the data points themselves, an operation which cannot be applied as is when the data
points are private.

These challenges are reflected in the recent work of Nock et al. [31], who constructed a private variant
for the k-means++ algorithm. While their private algorithm achieves a relatively low multiplicative

error of O(log k), their additive error is Õ(n). In this work we are aiming for additive error at most
polylogarithmic in n. Note that having additive error of n is meaningless, since if points come from
the unit ball then every choice of k centers have error at most O(n).

1.3 On the evolution of private k-means algorithms

The starting point of our work is the observation that by combining ideas from three previous
works [18, 6, 29] we can obtain a differentially private k-means algorithm (in the centralized model)
with constant multiplicative error, but with a relatively large additive error which is polynomial in n
(as we will see in Section 1.4). Most of our technical efforts (in the centralized model) are devoted
to reducing the additive error while keeping the multiplicative error constant. We now describe the
results of [18, 6, 29].

Gupta et al. [18] constructed a private variant for the classical local search heuristic [5, 24] for
k-medians and k-means. In this local search heuristic, we start with an arbitrary choice of k centers,
and then proceed in iterations, where in every iteration we replace one of our current centers with
a new one, so as to reduce the k-means cost. Gupta et al. [18] constructed a private variant of the
local search heuristic by using the (generally inefficient) exponential mechanism of McSherry and
Talwar [26] in order to privately choose a replacement center in every step. While the algorithm
of Gupta et al. [18] obtains superb approximation guarantees3, its runtime is exponential in the
representation length of domain elements. Specifically, it is designed for a discrete version of the
problem, in which centers come from a finite set Y , and the runtime of their algorithm is at least linear
in |Y |. In particular, when applying their algorithm to the Euclidean space, one must first discretize
the space of possible centers, and account for the error introduced by this discretization. For example,

3The algorithm of [18] obtains O(1) multiplicative error and Õ(k2d) additive error.
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Gupta et al. mentions that one can take Y to be a discretization net of the unit d-dimensional ball.
However, to ensure small discretization error, such a net would need to be of size |Y | ≈ nd, and
hence, would result in an inefficient algorithm (since the runtime is linear in |Y |).
Balcan et al. [6] suggested the following strategy in order to adopt the techniques of Gupta et al. [18]
to the Euclidean space while maintaining efficiency. Instead of having a fixed (data independent)
discretization of the unit ball, Balcan et al. suggested to first identify (in a differentially private
manner) a small set Y ⊆ R

d of candidate centers such that Y contains a subset of k candidate centers
with low k-means cost. Then, apply the techniques of Gupta et al. in order to choose k centers from
Y . If |Y | = poly(n), then the resulting algorithm would be efficient. As the algorithm of Gupta et al.
has very good approximation guarantees, the bottleneck for the approximation error in the algorithm
of Balcan et al. is in the construction of Y . Namely, the overall error is dominated by the error of the
best choice of k centers out of Y (compared to the cost of the best choice of k centers from R

d). At
first glance, this might seem easy to achieve, since for non-private k-means, one can simply take the
input points themselves as the set of candidate centers (this is of size n and has an error of at most 2
compared to centers from R

d). However, for private k-means clustering, this is not possible – the
centers cannot be a subset of the input points, because otherwise, removing a point may significantly
change the computed centers.

Balcan et al. then constructed a differentially private algorithm for identifying a set of candidate
centers Y based on the Johnson–Lindenstrauss transform [23]. However, their construction gives a
set of candidate centers such that the best choice of k centers from these candidates is only guaranteed

to have a multiplicative error of O(log3 n), leading to a private k-means algorithm with O(log3 n)
multiplicative error.

A different approach to obtain a good k-means clustering privately is via algorithms for the 1-cluster
problem, where given a set of n input points in R

d and a parameter t ≤ n, the goal is to identify a ball
of the smallest radius that encloses at least t of the input points. It was shown by Feldman et al. [17]
that the Euclidean k-means problem can be reduced to the 1-cluster problem, by iterating the 1-cluster
algorithm multiple times to find several balls that cover most of the data points. Feldman et al. then
applied their reduction to the private 1-cluster algorithm of [30], and obtained a private k-means
algorithm with multiplicative error O(k log n). Following that work, Nissim and Stemmer [29]
presented an improved algorithm for the 1-cluster problem which, when combined with the reduction
of Feldman et al., gives a private k-means algorithm with multiplicative error O(k).

1.4 Our techniques

Let S ∈ (Rd)n be an input database and let u∗
1, . . . , u

∗
k ∈ R

d denote an optimal set of centers for S.
We use S∗

j ⊆ S to denote the cluster induced by u∗
j , i.e., S∗

j = {x ∈ S : j = argminℓ‖x− u∗
ℓ‖}.

We observe that the techniques that Nissim and Stemmer [29] applied to the 1-cluster problem can be
extended to privately identify a set of candidate centers Y that “captures” every “big enough” cluster
j. Informally, let j be such that |S∗

j | ≥ na (for some constant a > 0). We will construct a set of
candidate centers Y such that there is a candidate center yj ∈ Y that is “close enough” to the optimal
center u∗

j , in the sense that the cost of yj w.r.t. S∗
j is at most a constant times bigger than the cost of

u∗
j . That is, costS∗

j
({yj}) = O

(

costS∗

j
({u∗

j})
)

. By simply ignoring clusters of smaller sizes, this

means that Y contains a subset D of k candidate centers such that costS(D) ≤ O(1) ·OPTS +k ·na.

There are two reasons for the poly(n) additive error incurred here. First, this technique effectively
ignores every cluster of size less than na, and we pay na additive error for every such cluster. Second,
this technique only succeeds with polynomially small probability, and boosting the confidence using
repetitions causes the privacy parameters to degrade.

We show that it is possible to boost the success probability of the above strategy without degrading the
privacy parameters. To that end, we apply the repetitions to disjoint samples of the input points, and
show that the sampling process will not incur a poly(n) error. In order to “capture” smaller clusters,
we apply the above strategy repeatedly, where in every iteration we exclude from the computation the
closest input points to the set of centers that we have already identified. We show that this technique
allows to “capture” much smaller clusters. By combining this with the techniques of Balcan et al.
and Gupta et al. for privately choosing k centers out of Y , we get our new construction for k-means
in the centralized model of differential privacy (see Table 1).
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A construction for the local model. Recall that the algorithm of Gupta et al. (the private variant
of the local search) applies the exponential mechanism of McSherry and Talwar [26] in order to
privately choose a replacement center in every step. This use of the exponential mechanism is tailored
to the centralized model, and it is not clear if the algorithm of Gupta et al. can be implemented in the
local model. In addition, since the local search algorithm is iterative with a relatively large number of
iterations (roughly k log n iterations), a local implementation of it, if exists, may have a large number
of rounds of interactions between the users and the untrusted server.

To overcome these challenges, in our locally private algorithm for k-means we first identify a set of
candidate centers Y (in a similar way to the centralized construction). Afterwards, we estimate the
weight of every candidate center, where the weight of a candidate center y is the number of input
points x ∈ S s.t. y is the nearest candidate center to x. We show that the weighted set of candidate
centers can be post-processed to obtain an approximation to the k-means of the input points. In order
to estimate the weights we define a natural extension of the well-studied heavy-hitters problem under
LDP, which reduces our incurred error.

Private coresets. A coreset [1] of set of input points S is a small (weighted) set of points P that
captures some geometric properties of S. Coresets can be used to speed up computations, since if the
coreset P is much smaller than S, then optimization problems can be solved much faster by running
algorithms on P instead of S. In the context of k-means, the geometric property that we want P
to preserve is the k-means cost of every possible set of centers. That is, for every set of k centers
D ⊆ R

d we want that costP (D) ≈ costS(D) (where in costP (D) we multiply each distance by the
weight of the corresponding point). Coresets for k-means and k-medians have been the subject of
many recent papers, such as [10, 16, 19, 20, 7, 11, 15]. Private coresets for k-means and k-medians
have been considered in [14] and in [17]. We show that our techniques result in new constructions
for private coresets for k-means and k-medians, both for the centralized and for the local model of
differential privacy. In the local model, this results in the first private coreset scheme with provable
utility guarantees. In the centralized model, our new construction achieves significantly improved
error rates over the previous state-of-the-art. We omit our results for private coresets due to space
restrictions. See the full version of this work for more details.

2 Preliminaries from [18, 6]

As we described in the introduction, we use a private variant of the local search algorithm by
Gupta et al. and Balcan et al. We now state its guarantees. Let Y ⊆ R

d be our precomputed
set of candidate centers. Given a set of points S ∈ (Rd)n consider the task of identifying a
subset C ⊆ Y of size k with the lowest possible cost. That is, instead of searching for k centers
in R

d, we are searching for k centers in Y , and our runtime is allowed to depend polynomially
on |Y |. We write OPTS(Y ) to denote the lowest possible cost of k centers from Y . That is,
OPTS(Y ) = minC⊆Y, |C|=k{costS(C)}. Recall that we denote the lowest cost of k centers out of

R
d as OPTS , i.e., OPTS = OPTS(R

d).

Theorem 2.1 ([18, 6]). Let β, ε, δ > 0 and k ∈ N, and let Y ⊆ R
d be a finite set of centers. There

exists an (ε, δ)-differentially private algorithm that takes a database S containing n points from the
d-dimensional ball B(0,Λ), and outputs a subset D ⊆ Y of size |D| = k s.t. with probability at least
(1− β) we have that

costS(D) ≤ O(1) ·OPTS(Y ) +O

(

k1.5Λ2

ε
log

(

n|Y |
β

)

√

log(n) · log
(

1

δ

)

)

.

In light of Theorem 2.1, in order to privately identify an approximation to the k-means of the input
set S, it suffices to privately identify a set of candidate centers Y ⊆ R

d such that |Y | = poly(n), and
in addition, Y contains a subset with low k-means cost (that is OPTS(Y ) is comparable to OPTS).

We remark that Y must be computed using a differentially private algorithm, and that in particular,
taking Y = S will not lead to a differentially private algorithm (even though Y = S is an excellent
set of candidate centers in terms of utility). To see this, let us denote the algorithm from Theorem 2.1
as A. Its inputs are the database S and the set of candidate centers Y , and the differential privacy
guarantee is only with respect to the database S. In other words, for every fixed set Y , the algorithm
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AY (S) = A(S, Y ) is differentially private as a function of S. Known composition theorems for
differential privacy [13] show that for every differentially private algorithm B that takes a database S
and outputs a set of centers Y , we have that the composition A(S,B(S)) satisfies differential privacy.
On the other hand, there is no guarantee that A(S, S) is differentially private, and in general it is not.

3 Private k-means – the centralized setting

In this section we present some of the components of our algorithm for approximating the k-means
in the centralized model of differential privacy. All of the missing details appear in the full version of
this work, as well as our algorithm for the local model, and our construction of a private coreset.

Consider an input database S, and let u∗
1, . . . , u

∗
k ∈ R

d denote an optimal set of k centers for S. Our
starting point is the observation that, extending the techniques of Nissim and Stemmer [29], we can
identify a set of candidate centers that contains a “close enough” candidate center to every optimal
center u∗

j , provided that the optimal cluster induced by u∗
j is “big enough”. We call this algorithm

Pr✐✈❛t❡✲❈❡♥t❡rs and the following lemma specifies its properties precisely.

Lemma 3.1 (Algorithm Pr✐✈❛t❡✲❈❡♥t❡rs). There exists an (ε, δ)-differentially private algorithm
such that the following holds. Assume we apply the algorithm to a database S containing n points in
the d-dimensional ball B(0,Λ), with parameters β, ε, δ. Let P ⊆ S be a fixed subset (unknown to
the algorithm) s.t. for a global constant Γ we have

|P | ≥ Γ

ε
·
√
d · n0.1 · ln

(

1

β

)

√

ln

(

1

δ

)

.

The algorithm outputs a set of at most εn centers, s.t. with probability at least 1− β a ball of radius
O(diam(P ) + Λ

n
) around one of these centers contains all of P .

The idea behind Algorithm Pr✐✈❛t❡✲❈❡♥t❡rs is to use locality sensitive hashing [22] in order to
isolate clustered points, and then to average clustered points with differential privacy. Algorithm
Pr✐✈❛t❡✲❈❡♥t❡rs captures all large clusters whereas the algorithm of [29] only captures one large
cluster. We omit the proof of Lemma 3.1 due to space restrictions. In the next section we use this
lemma iteratively in order to capture much smaller clusters.

3.1 Capturing smaller and smaller clusters

We are now ready to present the main component of our construction for the centralized model –
Algorithm Pr✐✈❛t❡✲k✲▼❡❛♥s. The algorithm privately identifies set of polynomially many candidate
centers that contains a subset of k candidate centers with low k-means cost. For readability, we have
added inline comments throughout the description of Pr✐✈❛t❡✲k✲▼❡❛♥s, which will be helpful for
the analysis. These comments are not part of the algorithm. Recall that u∗

1, . . . , u
∗
k denote an optimal

set of centers w.r.t. the set of input points S, and let S∗
1 , . . . , S

∗
k ⊆ S denote the clusters induced by

these optimal centers. (These optimal centers and clusters are unknown to the algorithm; they are
only used in the inline comments and in the analysis.)

Throughout the execution, we use the inline comments in order to prescribe a feasible (but not
necessarily optimal) assignment of the data points to (a subset of k of) the current candidate centers.
Specifically, we maintain an array ❆❙❙■●◆, where we write ❆❙❙■●◆[j] = u (for some center u in our
current set of candidate centers) to denote that all of the points in the optimal cluster S∗

j are assigned

to the candidate center u. We write ❆❙❙■●◆[j] = ⊥ to denote that points in S∗
j have not been assigned

to a center yet. For every j we have that ❆❙❙■●◆[j] = ⊥ at the beginning of the execution, and that
❆❙❙■●◆[j] is changed exactly once during the execution, at which point the jth cluster is assigned to
a center. In the analysis we argue that at the end of the execution the resulting assignment has low
k-means cost.

Notation. For a point x ∈ S, we write ❆❙❙■●◆(x) to denote the candidate center to which x is
assigned at a given moment of the execution. That is, ❆❙❙■●◆(x) = ❆❙❙■●◆[j], where j is s.t. x ∈ S∗

j .

Consider the execution of the Algorithm Pr✐✈❛t❡✲k✲▼❡❛♥s. For readability, we have summarized
some of the notations that are specified in the algorithm in Table 2. We first show that the number of
unassigned points reduces quickly in every iteration.
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Algorithm Pr✐✈❛t❡✲k✲▼❡❛♥s

Input: Database S containing n points in the d-dimensional ball B(0,Λ), failure probability β,
privacy parameters ε, δ.

% Let u∗
1, . . . , u

∗
k denote an optimal set of centers for S, and let S∗

j be the cluster induced by u∗
j , i.e.,

S∗
j = {x ∈ S : j = argminℓ‖x − u∗

ℓ‖}. For j ∈ [k] let r∗j =
√

2

|S∗

j
|

∑

x∈S∗

j
‖x− u∗

j‖
2, and let

P ∗
j = B(u∗

j , r
∗
j ) ∩ S∗

j .

1. Initiate C = ∅, and denote S1 = S and n1 = n.

% Initiate ❆❙❙■●◆[j] = ⊥ for every j ∈ [k].

2. For i = 1 to log log n do

(a) Run algorithm Pr✐✈❛t❡✲❈❡♥t❡rs on the database Si with parameters
ε

log logn
, δ
log logn

, β
k

, and add the returned set of centers to C.

% For every j ∈ [k]: if ❆❙❙■●◆[j] = ⊥ and if ∃uj ∈ C s.t. ‖uj − u∗
j‖ ≤ O(r∗j + Λ

n
), then set

❆❙❙■●◆[j] = uj .

(b) Let Si+1 ⊆ Si be a subset of Si containing ni+1 = 2(T + 1)wk · n0.1
i points with the

largest distance to the centers in C, where w = w(n, d, k, β, ε, δ) and T = T (n) will be
specified in the analysis.

% For every j ∈ [k]: if ❆❙❙■●◆[j] = ⊥ and if P ∗
j 6⊆ Si+1, then let pj ∈ P ∗

j \ Si+1, let uj =
argminu∈C‖pj − u‖, and set ❆❙❙■●◆[j] = uj .

3. Output C.

% For every j ∈ [k]: if ❆❙❙■●◆[j] = ⊥, then arbitrarily choose uj ∈ C and set ❆❙❙■●◆[j] = uj .

S The input database.

u∗
1, . . . , u

∗
k ∈ R

d An optimal set of centers for S.
S∗
1 , . . . , S

∗
k ⊆ S The clusters induced by u∗

1, . . . , u
∗
k.

r∗1 , . . . , r
∗
k ∈ R

≥0 r∗j =
√

2
|S∗

j
|
∑

x∈S∗

j
‖x− u∗

j‖2.

P ∗
1 , . . . , P

∗
k P ∗

j = B(u∗
j , r

∗
j ) ∩ S∗

j .

Si ⊆ S, i ∈ [log log n] The set of remaining input points during the ith iteration.
ni = |Si|, i ∈ [log log n] The number of remaining input points during the ith iteration.
C The current set of candidate centers.
❆❙❙■●◆[j], j ∈ [k] The assignment constructed in the inline comments.

Table 2: Notations for the analysis of algorithm Pr✐✈❛t❡✲k✲▼❡❛♥s

Claim 3.2. Denote w = Γ·
√
d

ε
· log log(n) · log

(

k
β

)

√

log
(

log logn
δ

)

, where Γ is the constant from

Lemma 3.1. With probability at least 1−β, for every i ∈ [log log n], before Step 2b of the ith iteration
there are at most 2kw · n0.1

i unassigned points in S, i.e., |{x ∈ S : ❆❙❙■●◆(x) = ⊥}| ≤ 2kw · n0.1
i .

The intuition behind Claim 3.2 is as follows. Let S∗
j ⊆ S be an optimal cluster, and let P ∗

j ⊆ S∗
j be

defined as in the first comment in the algorithm (we can think of P ∗
j as the subset of the |S∗

j |/2 points
in S∗

j with smallest distances to u∗
j ). If during some iteration i we have that all of P ∗

j is contained in

our current set of input points, Si, and if |P ∗
j | ≥ w · n0.1

i , then a center for S∗
j is discovered in the ith

iteration by the properties of Pr✐✈❛t❡✲❈❡♥t❡rs. Moreover, by construction, if even a single point
from P ∗

j is missing, then S∗
j must have already been assigned to a center before the ith iteration. See

the full version of this work for more details.

Notation. For i ∈ [log log n] we denote by Ai ⊆ S and Bi ⊆ S the subset of input points whose
cluster is assigned to a center during the ith iteration in the comments after Step 2a and after Step 2b,
respectively. Observe that A1, B1, . . . , Alog logn, Blog logn are mutually disjoint.

Let r∗1 , . . . , r
∗
k be the radii of the centers u∗

1, . . . , u
∗
k as defined in the first comment in algorithm

Pr✐✈❛t❡✲k✲▼❡❛♥s. For a point x ∈ R
d, let u∗(x) denote x’s nearest optimal center, and r∗(x) its

corresponding radius. The next observation is immediate from the construction.
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Observation 3.3. For every i ∈ [log log n] and for every x ∈ Ai, at the end of the execution we have

‖x− ❆❙❙■●◆(x)‖2 ≤ O

(

‖x− u∗(x)‖2 + (r∗(x))2 +
Λ2

n2

)

.

We charge the cost of points x ∈ Bi to points that were already assigned to centers in some iteration
j ≤ i in the sense specified by the following lemma.

Lemma 3.4. With probability at least 1− β, for every iteration i ∈ [log log n] and for every x ∈ Bi

there exists a set of input points Q(x) ⊆ S such that

1. For every i ∈ [log log n] and for every x ∈ Bi it holds that |Q(x)| = T , where T = O(log log n).

2. For every i ∈ [log log n] and for every x, y ∈ Bi, if x 6= y then Q(x) ∩Q(y) = ∅.

3. For every i ∈ [log log n] and for every x ∈ Bi, at the end of the execution it holds that

‖x− ❆❙❙■●◆(x)‖2 ≤ O



‖x− u∗(x)‖2 + (r∗(x))2 +
1

T

∑

q∈Q(x)

‖q − ❆❙❙■●◆(q)‖2


 .

Intuitively, Lemma 3.4 follows from the fact in every iteration i, for every unassigned point in S
there are at least T assigned points in Si. We omit the proof due to space restrictions.

Lemma 3.5. If Algorithm Pr✐✈❛t❡✲k✲▼❡❛♥s is applied to a database S containing n points in the
d-dimensional ball B(0,Λ), then it outputs a set C of at most εn log( k

β
) centers, s.t. with probability

at least 1− β

OPTS(C) = min
D⊆C
|D|=k

{costS(D)} ≤ O(1) ·OPTS +O
(

(Twk)1.12
)

· Λ2,

where w is defined in Claim 3.2, and T = Θ(log log n). The exponent 1.12 is arbitrary and can be
reduced to any constant a > 1.

Proof. We show that the stated bound holds for the assignment described in the inline comments
throughout the algorithm (the array ❆❙❙■●◆) at the end of the execution. First observe that by
Claim 3.2 and by the fact that there are log log n iterations, at the end of the execution there could
be at most O

(

(2(T + 1)wk)1.12
)

unassigned input points. Let us denote the set of unassigned
points as H . The distance from each unassigned point to an arbitrary center is trivially at most Λ.
For every assigned point x, by Observation 3.3 and by Lemma 3.4, either ‖x − ❆❙❙■●◆(x)‖2 =

O(‖x− u∗(x)‖2 + (r∗(x))2 + Λ2

n2 ), or

‖x− ❆❙❙■●◆(x)‖2 ≤ O



‖x− u∗(x)‖2 + (r∗(x))2 +
1

T

∑

q∈Q(x)

‖q − ❆❙❙■●◆(q)‖2


 .

Hence,

costS ({❆❙❙■●◆❬❥❪ : j ∈ [k]}) =
∑

x∈S

‖x− ❆❙❙■●◆(x)‖2

=
∑

x∈H

‖x− ❆❙❙■●◆(x)‖2 +
∑

i∈[log logn]
x∈Ai

‖x− ❆❙❙■●◆(x)‖2 +
∑

i∈[log logn]
x∈Bi

‖x− ❆❙❙■●◆(x)‖2
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≤ O
(

(2(T + 1)wk)1.12
)

· Λ2 +
∑

i∈[log logn]
x∈Ai

O

(

‖x− u∗(x)‖2 + (r∗(x))2 +
Λ2

n2

)

+
∑

i∈[log logn]
x∈Bi

O



‖x− u∗(x)‖2 + (r∗(x))2 +
1

T

∑

q∈Q(x)

‖q − ❆❙❙■●◆(q)‖2




≤ O
(

(2(T + 1)wk)1.12
)

· Λ2 +
∑

x∈S

O
(

‖x− u∗(x)‖2 + (r∗(x))2
)

+
1

T

∑

i∈[log logn]
x∈Bi

q∈Q(x)

O
(

‖q − ❆❙❙■●◆(q)‖2
)

≤ O
(

(2(T + 1)wk)1.12
)

· Λ2 +O(1) ·OPTS +
1

T

∑

i∈[log logn]
x∈Bi

q∈Q(x)

O
(

‖q − ❆❙❙■●◆(q)‖2
)

(1)

Now recall that for every i ∈ [log log n] and for every x 6= y ∈ Bi it holds that Q(x) ∩Q(y) = ∅.
Hence, every point q ∈ S contributes at most log log n times to the last summation above. So,

(1) ≤ O
(

(2(T + 1)wk)1.12
)

· Λ2 +O(1) ·OPTS +
log log n

T

∑

q∈S

O
(

‖q − ❆❙❙■●◆(q)‖2
)

For T = Θ(log log n) (large enough) we get that the last term above is at most half of the left hand
side of the inequality, and hence,

costS ({❆❙❙■●◆❬❥❪ : j ∈ [k]}) ≤ O
(

(2(T + 1)wk)1.12
)

· Λ2 +O(1) ·OPTS

Lemma 3.6. Algorithm Pr✐✈❛t❡✲k✲▼❡❛♥s is (ε, δ)-differentially private.

The privacy analysis of Algorithm Pr✐✈❛t❡✲k✲▼❡❛♥s is standard, and is omitted due to space
restrictions. Intuitively, in every iteration, Step 2a satisfies differential privacy by the properties of
Algorithm Pr✐✈❛t❡✲❈❡♥t❡rs, and we use the following technique for arguing about Step 2b: Let X
be an ordered data domain and let A be a differentially private algorithm that operates on a multiset
of m elements from X . Then for any n ≥ m, the algorithm that takes a multiset S of n elements
from X and runs A on the smallest (or largest) m elements in S is differentially private. The intuition
is that changing at most one element in S can change at most one element of the multiset that we
give to A, and this change is “hidden” by the privacy properties of A. See [9] for more details and
applications of this technique.

Combining Lemmas 3.5 and 3.6 with Theorem 2.1 yields the following theorem.

Theorem 3.7. There is an (ε, δ)-differentially private algorithm that, given a database S containing
n points in the d-dimensional ball B(0,Λ), identifies with probability 1− β a (γ, η)-approximation

for the k-means of S, where γ = O(1) and η = poly
(

log(n), log( 1
β
), log( 1

δ
), d, 1

ε
, k
)

· Λ2.
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