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Abstract

Differentially private learning tackles tasks where the data are
private and the learning process is subject to differential pri-
vacy requirements. In real applications, however, some public
data are generally available in addition to private data, and it
is interesting to consider how to exploit them. In this paper,
we study a common situation where a small amount of pub-
lic data can be used when solving the Empirical Risk Min-
imization problem over a private database. Specifically, we
propose Private-Public Stochastic Gradient Descent, which
utilizes such public information to adjust parameters in dif-
ferentially private stochastic gradient descent and fine-tunes
the final result with model reuse. Our method keeps differ-
ential privacy for the private database, and empirical study
validates its superiority compared with existing approaches.

Introduction

With the gradual popularization of artificial intelligence and
machine learning, privacy is becoming a control concern
when mining sensitive data. To gain statistical knowledge
while avoiding leakage of personal information, Dwork et
al. (2006) presented differential privacy, which gives a math-
ematically rigorous definition of privacy protection and be-
comes a standard guarantee nowadays. Many classic learn-
ing algorithms have been modified to satisfy its require-
ments, such as least squares (Wang 2018), SVM (Rubinstein
et al. 2009), LASSO (Talwar, Thakurta, and Zhang 2015)
and neural networks (Abadi et al. 2016).

Among these algorithms, Empirical Risk Minimization
(ERM) is a general framework that minimizes a given
loss function over a training set. Combining with different
types of regularizers, it covers a lot of specific learning ap-
proaches. Many algorithms for the ERM task with a differ-
ential privacy guarantee have been developed (Chaudhuri,
Monteleoni, and Sarwate 2011; Kifer, Smith, and Thakurta
2012; Bassily, Smith, and Thakurta 2014; Wang, Ye, and Xu
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2017; Zhang et al. 2017; Lee and Kifer 2018). However, un-
like the usual result about O (1/

√
m) excess risk bounds

for non-private ERM where m is the size of the training
set (Zinkevich 2003), differentially private ERM approaches
usually have additional polynomial dependences on dimen-
sion p and privacy parameter ǫ (Bassily, Smith, and Thakurta
2014). These extra costs of privacy sometimes make the pri-
vate ERM become a formidable job for high dimensional
datasets or strict privacy requirements.

In many real-world applications, when we perform learn-
ing jobs on a private database, we can also get access to a
public database about the task. For example, if a headmaster
wants to evaluate teaching quality according to private ques-
tionnaires from students, some reports from his teaching su-
pervision group which are publicity could be used as well.
Besides, a doctor can study typical cases published by the
centers for disease control when he analyses the epidemic
trend from private medical records in his hospital, a lawyer
can search non-private judgments from case information dis-
closure online when he looks for the patterns of judgments
from his customers’ information. Thus, a natural problem
is, how can we utilize these public data to help differentially
private learning.

Some straightforward solutions may immediately come to
mind, such as:

• Train a model on the public database at first, and replace
it with the model of private data if it is incompetent.

• Train two models on the public and private database re-
spectively, and use their ensemble as the final result.

• Add those public data into the private database and train
a model together.

However, in practice, utilizing public data is non-trivial. Be-
cause on one hand, the public data usually is not sufficient to
train a well-performing model solely; actually, if some do-
main has a sufficient amount of public data, then private data
in such domain would not be highly-valued. This makes the
first two solutions impractical. On the other hand, merging
public data into the private database may be illegal in cases,
and will cause nonnegligible communication costs; needless
to say, such a process cannot handle cases where the public
data is in accumulating. Thus, the third straightforward way
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Figure 1: The flowchart of PPSGD. PPSGD is a two-stage
algorithm to utilize a small amount of public data when solv-
ing differentially private ERM. In its first stage, the private
database is input to a differentially private SGD, while the
public database is used to adjust parameters iteratively to
control the noise scale. In its second stage, the final result of
the first stage is taken as a pre-trained model, and the public
database is used again to fine-tune it.

is not ideal either.

In this paper, we propose Private-Public Stochastic Gradi-
ent Descent (PPSGD), which is a general approach to solve
differentially private ERM with additional public data. As
shown in figure 1, PPSGD consists of two stages: differen-
tially private stochastic gradient descent and model reuse.
To take full advantage of the public database while avoiding
overfitting, we use it in the first stage to help allocate the
privacy budget which controls the rigidness of privacy en-
forcement, and adjust the gradient clipping to enable adap-
tive gradient rescaling, whereas in the second stage to fine-
tune the final result. Since public data does not participate
in gradient estimations directly and model reuse ensures its
output will not deviate far away from the pre-trained model,
we control their influence while improving the overall per-
formance, as well as preserve differential privacy over the
private database.

Our contributions can be summarized as follows:

1. We formalize the problem of learning by Empirical Risk
Minimization over a private database together with a
small public database, which is a common situation and
promising field of differentially private approaches.

2. We propose PPSGD, which starts with stochastic gra-
dient descent for truncated concentrated differential pri-
vacy, and we dynamically adjust privacy budget and gra-
dient clipping to control noise intensity and individual
contribution actively.

3. Experiments over both synthesis datasets and real-world
datasets validate the superiority of our method and also
manifest a new application of model reuse.

The rest of this paper is organized as follows. We discuss
related works and introduce backgrounds in sections 2 and
3 respectively. In section 4, we present our main method.
Finally, Section 5 reports the results of empirical study and
Section 6 concludes.

Related Work

Differentially private ERM has been studied a lot. Chaud-
huri, Monteleoni, and Sarwate (2011) gave two approaches
to solve this issue: output perturbation and objective pertur-
bation. Kifer, Smith, and Thakurta (2012) generalized ob-
jective perturbation to approximately differential privacy.
Zhang et al. (2017) improved output perturbation according
to the new stability result of gradient descent. Song, Chaud-
huri, and Sarwate (2013) introduced stochastic gradient de-
scent (SGD) to differentially private ERM. Bassily, Smith,
and Thakurta (2014) gave an SGD based private algorithm
and proved its optimality. Then, many gradient based meth-
ods have been proposed, such as Wang, Ye, and Xu (2017)
proposed differentially private stochastic variance reduced
descent, Lee and Kifer (2018) used adaptive privacy budgets
in gradient descent for concentrated differential privacy.

Model reuse focuses on the problem that how can we
reuse pre-trained models to help the learning process which
typically lacks enough data to train a model directly. It is
a key component in Learnware (Zhou 2016). Many meth-
ods of model reuse have been proposed, such as Li, Tsang,
and Zhou (2012) tried to optimize a performance mea-
sure by reusing models trained for other performance mea-
sures. Tommasi, Orabona, and Caputo (2013) designed a
biased regularizer based on the pre-trained models. Segev
et al. (2016), Yang et al. (2017), and Wu, Liu, and Zhou
(2019) reused forest models, deep models, and multiclass
models respectively. Moreover, some theoretical analyses
about model reuse have been established in recent years
(Kuzborskij and Orabona 2017; Du et al. 2017), which show
that model reuse enjoys a fast rate of generalization bound
when the pre-trained models are good enough.

To the best of our knowledge, there are a few works that
take into account public data in differentially private learn-
ing. Papernot et al. (2016) used the private database to train
teacher models at first, then learned a student model with
generative adversarial networks by noisy voting among all
of the teachers over a public but unlabeled database. Avent
et al. (2017) proposed a hybrid model of local differential
privacy 1 and classic differential privacy. Their approach op-
erates with the hybrid differential privacy model for com-
puting heavy hitters. Feldman et al. (2018) introduced am-
plification by iteration, where the privacy guarantees of ele-
ments used in early iterations of an iterative private process
are stronger than elements used in subsequent iterations if
intermediate results are hidden. Thus, the noise needed to
add to an SGD algorithm could be shrunken to protect pri-
vacy if the public elements are arranged in the last few iter-
ations. Moreover, their method requires the loss function to
be smoothness and indeed ensures local differential privacy.

Preliminaries

Differential privacy, which formulates as definition 1, is
based on neighboring databases. Let D = {d1, d2, ..., dm}
be a private database of m elements drawn from universe D.

1Local differential privacy (Kasiviswanathan et al. 2008) allows
database participants to perturb their data by themselves. It is more
strict than differential privacy.
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A database D′ is a neighbor of D (denote as D′ ∼ D) if
|D′| = m and D′ has exactly one different element from D.

Definition 1. (Dwork, Roth, and others 2014) For ǫ > 0
and δ ≥ 0, a ramdomized algorithm A that maps Dm into
some range S is said to be (ǫ, δ)-differential privacy, if for
all neighboring databases D,D′ ∈ Dm and for any subset
S ⊂ S , we have

Pr(A(D) ∈ S) ≤ eǫ Pr(A(D′) ∈ S) + δ.

To give a meaningful privacy guarantee, one usually sets
ǫ < 1 and δ ≪ 1/m. When δ = 0, A is said to be pure ǫ-
differential privacy. In this paper, we only consider approx-
imately differential privacy case, i.e., we suppose δ > 0.

Truncated concentrated differential privacy (tCDP) (Bun
et al. 2018) is a variation of differential privacy. We use it in
our algorithm to perform composition easily. The definition
of tCDP is given in the following, where privacy guarantee
is stronger when ρ is smaller or ω is larger.

Definition 2. (Bun et al. 2018) For ρ > 0 and ω > 1, a
ramdomized algorithm A that maps Dm into some range
S satisfies (ρ, ω)-tCDP, if for all neighboring databases
D,D′ ∈ Dm we have

∀α ∈ (1, ω) Dα(A(D)‖A(D′)) ≤ ρα,

where Dα(·‖·) is the Rényi divergence of order α (Rényi and
others 1961).

In this paper, we mainly use the following properties.

Theorem 1. (Bun et al. 2018) Given an arbitrary al-
gorithm A, the Gaussian mechanism which adds i.i.d.
N (0, σ2) noise to each coordinates of A’s output en-
sures (ρ,∞)-tCDP, where σ ≥ ∆2(A)/

√
2ρ, ∆2(A) =

supD∼D′‖A(D)−A(D′)‖2. Among them, ∆2(A) is known
as L2 sensitivity, it measures the maximal difference of A’s
outputs while changing a single element. 2

Theorem 2. (Bun et al. 2018) If an algorithm A satisties
(ρ, ω)-tCDP, for δ ≥ 1/ exp((ω − 1)2ρ), A satisfies (ǫ, δ)-

differential privacy with ǫ = ρ+ 2
√

ρ log(1/δ).

Theorem 3. (Bun et al. 2018) Let A1 : Dm → S1 sat-
isfy (ρ1, ω1)-tCDP and A2 : Dm × S1 → S2 be such that
A2(·, s1) satisfies (ρ2, ω2)-tCDP for all s1 ∈ S1. Define
A3 : Dm → S2 by A3(D) = A2(D,A1(D)). Then A3

satisfies (ρ1 + ρ2,min(ω1, ω2))-tCDP.

Theorem 4. (Bun et al. 2018) Let A1 : Dm → S satisfy
(ρ, ω)-tCDP and A2 : DM → S be such that A2(D) =
A1(DS) where DS ∈ Dm is sampled uniformly randomly
from D. Let s = m/M , if ρ, s ∈ (0, 0.1], log(1/s) ≥
3ρ(2 + log2(1/ρ)) and ω ≥ log(1/s)/(2ρ), then A2 sat-
isfies (13s2ρ, log(1/s)/(4ρ))-tCDP.

PPSGD
In this section, we first provide our settings formally,
then propose Private-Public Stochastic Gradient Descent
(PPSGD).

2Bun et al. proposed a more ingenious Sinh-normal mechanism
for tCDP, but here we use the Gaussian mechanism to maintain a
fair competition with comparative methods in experiments though
our work can be easily generalized to the Sinh-normal mechanism.

Settings and Notations

Let the data universe D = X × Y where X ⊂ R
p is the

instance space and Y ⊂ R is the label set. Given a loss func-
tion l, to minimize the expected loss of an unknown distri-
bution DX ×DY over X ×Y , Empirical Risk Minimization
solves w such that

min
w∈W

f(w, D) =
1

m

m
∑

i=1

l(w,xi, yi), (1)

where D = {(x1, y1), (x2, y2), ..., (xm, ym)} is a database
drawn from DX ×DY . We assume W is a closed convex set,
l(w,xi, yi) is convex and L-Lipschitz for all x ∈ X , y ∈ Y .

As a private algorithm, we require w differentially
private for D. Besides, we assume a public database

D̂ = {(x̂1, ŷ1), (x̂2, ŷ2), ..., (x̂n, ŷn)} is available, which is
drawn from the same distribution of D. The public database
can be used without the concern of privacy, but may be in-
sufficient to solve the objective w directly.

General Framework

We start by discussing how to utilize public data in dif-
ferentially private ERM. Specifically, we focus on gradi-
ent based iterative algorithms (Bassily, Smith, and Thakurta
2014) which usually performs

wt+1 = wt − η(∇f(wt, ·) + nt) (2)

for t = 1, 2, ...T , where ∇f(wt, ·) stands for the gradient
and nt is a noise vector added to protect privacy. Generally,
three aspects of (2) can be improved with public data: getting
a more accurate estimator of ∇f(wt, ·), minishing the scale
of nt, and increasing T .

Note that public elements are drawn from the same dis-
tribution as private elements, adding them into mini-batches
could improve the accuracy of gradient estimators definitely.
However, since the public database is relatively small, we
have to either utilize public information in only a few iter-
ations or use each public element repeatedly. In the former
case, public data has little influence on the overall perfor-
mance. In the latter case, there will be serious overfitting.

Differential privacy is immune to post-processing. That is,
we cannot make a differential privacy algorithm’s output less
differentially private without additional knowledge about the
private database. Thus, the public database seems unable to
minish the total scale of nt dramatically—although we can
reduce the sensitivity by adding public elements into mini-
batches or shrink the noise by reweighting methods, similar
to what happened before, serious overfitting still destroys
the overall performance when emphasizing too much on the
public database.

However, since noise vectors nt are spread in every itera-
tion, as shown in (Lee and Kifer 2018), the performance of
iterative private algorithms can be improved significantly by
minishing the noise scale in key iterations. Inspired by their
approach, we use the public database to control the noise
dynamicly by adjusting the following parameters:

• Privacy budget: The gradients usually shrink with the pro-
cess of learning. Thus, it is reasonable that minishing the
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Algorithm 1 PPSGD

Input: Private database {xi, yi}mi=1, public database
{x̂i, ŷi}ni=1, loss function l, privacy parameters (ǫ, δ),
learning rate η, batch size s, parameters φ, α, ϕ, β, λ

Output: Model w
1: Calculate (ρtotal, ωtotal) according to (3)
2: Initialize w0, ρ0 and C0

3: t = 0
4: while (ρtotal ≥ ρt) do
5: Uniformly randomize St ⊂ [m] with |St| = s
6: gt =

1
s

∑

i∈St

Π|·|≤Ct
∇l(wt,xi, yi)

7: Calculate ρst , ω
s
t according to (4)

8: gt = gt +N
(

0,
2C2

t

s2ρs

t

)

e

9: wt+1 = wt − ηgt

10: ρtotal = ρtotal − ρt
11: g

public
t = 1

n

∑

i∈[n] ∇l(wt+1, x̂i, ŷi)

12: mset =
2pC2

t

s2ρs

t

13: if (φ · norm(gpublic
t ) <

√
mset) then

14: ρt+1 = (1 + α)ρt
15: else
16: ρt+1 = ρt
17: end if
18: if (ϕ · norm(gpublic

t ) < Ct) then
19: Ct+1 = (1− β)Ct

20: else
21: Ct+1 = Ct

22: end if
23: t = t+ 1
24: end while
25: w

∗ = argmin
w

1
n

∑

i∈[n] l(w, x̂i, ŷi) + λ‖w −wt‖2
26: return w

∗

noise scale, i.e., increasing the privacy budget, along with
the decreasing of the gradient scale can help the algorithm
to converge to a better result.

• Gradient clipping: In existing works, the sensitivity of
each iteration of an iterative private algorithm always is
regarded as a priori (such as the Lipschitz constant L)
or remains unchanged in the learning process. However,
since the privacy guarantee must apply to the worst case,
outliers that usually do not contribute to the performance
could increase the sensitivity enormously. Besides, the
gradients of most data elements are decreasing for many
loss functions. So, adjusting the gradient clipping thresh-
old, i.e., controlling the sensitivity actively may minish
the noise intensity and outliers’ influence.

Finally, to increase the number of iterations T , we can
utilize public data to fine-tune the result in the end. Since
we need not add noise when using public data only, a larger
learning rate or number of iterations may be preferred. We
use the model reuse formulation where we only need to in-
troduce a single parameter λ.

Algorithm 1 shows detailed steps of PPSGD. In the fol-
lowing, we will focus respectively on three aspects: private
SGD, parameter adaptation and model reuse.

Gradient Estimation and Privacy Guarantee

The while loop in line 4 is the first stage of figure 1, i.e.,
the differentially private SGD. As mentioned before, we
use tCDP in our algorithm since its composition property
is more straightforward for our dynamic privacy budget al-
location. Theorem 2 points out that tCDP is a stronger model
than approximately differential privacy. Thus, for given pa-
rameters (ǫ, δ), we can solve (ρtotal, ωtotal) with

ρtotal = ǫ+ 2 log(1/δ)− 2
√

log(1/δ)(ǫ+ log(1/δ))

ωtotal =
√

log(1/δ)/ρtotal + 1
(3)

in line 1 and ensure that each (ρtotal, ωtotal)-tCDP algo-
rithm satisfies (ǫ, δ)-differential privacy.

In each iteration, according to (2), our primary tasks are
estimating ∇f(wt, ·) and sampling nt. For the former task,
we randomly select a subset St of size s and calculate its
average gradient in line 6, where

Π|·|≤Ct
x = min(1, Ct/‖x‖) · x

is a project operator, it ensures the norm of each gradient not
greater than the gradient clipping threshold Ct.

Theorem 1, i.e., the Gaussian mechanism of tCDP, states
that noise vector nt can be sampled from a Gaussian dis-
tribution based on its L2 sensitivity and the privacy bud-
get. After the gradient clipping, it’s clear that the average
gradient has an L2 sensitivity of 2Ct/s. For another, we
allocate ρt privacy budget for the t-th iteration, i.e., the t-
th update of (2) should satisfies (ρt, ωtotal)-tCDP. Note the
subtle difference that the privacy guarantee of PPSGD acts
on the whole private database while we estimate ∇f(wt, ·)
on a small subset St only. Fortunately, Theorem 4 pro-
poses amplification of sampling. That is, in order to ensure
(ρt, ωtotal)-tCDP before random sampling, we only need to
satisfy (ρst , ω

s
t )-tCDP for St where3

ρst =
ρt

13(s/m)2
, ωs

t =
log(m/s)

2ρst
. (4)

Thus, we can sample nt in line 8 according to Theorem 1.
For the composition between iterations, the following the-

orem states that PPSGD satisfies the privacy requirement.

Theorem 5. Given any public database and parameters re-
quired in algorithm 1, PPSGD is (ǫ, δ)-differential privacy
for the private database.

Proof. As mentioned before, after adding noise in line 8,
the t-th execution of lines 5 to 8 satisfies (ρt, ωtotal)-tCDP
for the private database. Since line 10 and the condition of
the while loop guarantee that

∑

t ρt ≤ ρtotal, according to
theorem 3, the composition of all executions of lines 5 to 8
satisfies (ρtotal, ωtotal)-tCDP.

At the meanwhile, only lines 5 to 8 access the private
database in algorithm 1. So, according to the post-processing
property of differential privacy (theorem 3), we have PPSGD
also satisfies (ρtotal, ωtotal)-tCDP.

3Several conditions are required for amplification of sampling,
details are specified in Theorem 4.
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Finally, review (3) and theorem 2, PPSGD is (ǫ, δ)-
differential privacy for the private database since it satisfies
the stronger (ρtotal, ωtotal)-tCDP.

Privacy Budget and Gradient Clipping

As mentioned before, we adjust the privacy budget ρt and
gradient clipping threshold Ct to control the noise scale.
While performing this job, the central role of the public
database is to estimate the norm of ∇f(wt, ·), which is in
line 11. Then, we calculate the mean square error caused
by the noise, i.e., the dimension p times the variance of the
noise in each coordinate. We adjust the privacy budget based
on the ratio of gradient’s norm and the square root of the
mean square error in line 13. Our intuition is: when the scale
of the noise is much larger than the scale of the gradient, the
gradient descent is more likely to be a random walk, and we
need to increase the privacy budget to make the optimization
process continue meaningful.

We adjust the gradient clipping analogously in line 18,
where the ratio of gradient’s norm and gradient clipping
threshold is calculated. Note that the gradient clipping is
not performed when we calculate the average gradient in the
public database, to avoid the chain reaction that decreases
the gradient clipping threshold too fast. Moreover, if we trust
that elements in the public database are well-chosen, i.e.,
there is no outlier in the public database, using the maximum
norm of gradients instead of the norm of average gradient in
line 18 is more reasonable since the norm of a certain ele-
ment’s gradient not necessarily decreases with the learning
process. Here we choose the norm of average gradient since
we randomly select elements in the dataset to form the pub-
lic database in our experiments.

Model Reuse

To fine-tune the overall result, we perform a simple form of
model reuse in line 25, corresponding to the second stage in
figure 1. We mainly use the idea of biased regularization in
our algorithm, whose typical formulation is given by

argmin
w

1

n

n
∑

i=1

l(w,xi, yi) + λ‖w −w0‖2,

where w0 is a pre-trained model and reused as a biased reg-
ularizer to ensure w will not deviate far away from it.

During model reuse, only the final result of the differen-
tially private SGD and the public database are used. Since
we need no additional knowledge about the private database,
we can use an arbitrary optimization method without any
noise at this stage. What’s more, the empirical error in the
public database is also a good estimator of the general-
ization error, due to several fast rate convergence bounds
(Kuzborskij and Orabona 2017).

Experiments

In this section, we empirically evaluate the performance of
PPSGD and compare it to the following baselines:

1. Differentially private algorithms which merge the public
database into private database and train a model together.
Specifically, we consider following algorithms:

(a) SgdAdv (Bassily, Smith, and Thakurta 2014) adds
equivalent noise in each iteration of an SGD algorithm
and applies advanced composition theorem.

(b) Agd (Lee and Kifer 2018) is a gradient descent al-
gorithm for concentrated differential privacy with dy-
namic adaption of the privacy budget.

(c) OutPert (Zhang et al. 2017) adds Gaussian noise after
a non-private gradient descent.

(d) ObjPert (Kifer, Smith, and Thakurta 2012) adds a noise
term to its optimization objective, then solves the new
objective non-privately.

2. PNSGD (Feldman et al. 2018, Corollary 30) arranges
public data at the end of the training set and uses am-
plification by iteration to shrunk noise.

3. OnlyPub runs non-private SGD on the public database.

4. AgdAvg is the ensemble method takes average over Agd
and OnlyPub.

Also, we denote NonPriv to represent the non-private SGD,
which does not consider privacy preserving.

We use two loss functions in our experiments: hinge loss
and square loss. Hinge loss is formulated as

lhinge(w,x, y) = max(0, 1− ywT
x),

square loss is formulated as

lsquare(w,x, y) = (y −w
T
x)2.

As in most cases, we add an L2 regularizer ‖w‖22 to both
of the loss functions. Since the regularizer is independent of
private data, adding its gradient after added noise is no harm
for the privacy guarantee.

For data preprocessing, we normalize each feature into
the interval [−1, 1], including the label of regression tasks.
To control the sensitivity, we also normalize each sample
to a unit norm. Since our experiments are not for parame-
ter selection, we use a non-private SGD to select the coef-
ficient of the regularizer for each dataset. SgdAdv and Out-
Pert are quite sensitive to their parameters, we run these al-
gorithms in different parameter settings and report the best
result. When using the square loss, we estimate the norm of
w non-privately and thus give an upper bound of the gradi-
ent for ObjPert and OutPert. For Agd and SgdAdv, we set
their gradient clipping threshold as a priori. ObjPert, Out-
Pert, and PNSGD have additional requirements on the loss
function such as continuous Hessian or smoothness, which
are violated by the hinge loss. For simplicity, we ignore
these conditions directly. It might overestimate the perfor-
mance of these algorithms, but without influencing on other
approaches including PPSGD.

For both synthesis datasets and real-world datasets, our
experiments are repeated for 20 times, and average accuracy
or mean square error is presented.4

4Detailed experimental setups, results, and Matlab codes
for PPSGD can be found at http://www.lamda.nju.edu.cn/code
PPSGD.ashx.
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Figure 2: Accuracy comparisons of various parameter settings. Synthesis datasets with 9950 private samples, 50 public samples
and 50 dimensions is used.

Synthesis Datasets and Effects of Parameters

There are 5 prime internal parameters in PPSGD. Among
them, φ and α control the allocation of privacy budget, ϕ
and β control the decreasing of gradient clipping threshold,
λ is the weight of the biased regularizer in model reuse. In
this subsection, we evaluate the effects of parameters on a
toy problem where samples are generated with 100 dimen-
sional Gaussian distribution, each training set has 9950 pri-
vate samples and only 50 public samples.

Part (a) of figure 2 shows how accuracy changes with var-
ious values of φ. It’s can be found that an extremely small
φ will increase the privacy budget too fast and degrade the
performance. For a relatively large ǫ, the performance is sta-
ble with the increasing of φ. But a extremely large φ hurts
performance since the noise conceals the gradient.

The impact of parameter ϕ is shown in part (b) of figure 2.
For hinge loss, we find that ϕ hardly affect the performance
since its gradient is

∇wlhinge(w,x, y) =

{ − yx 1 > ywT
x

0 otherwise
,

which means that the gradients of misclassificated samples
remain unchanged during the learning process. For square
loss, a moderate ϕ ≈ 5 could enhance the performance be-
cause its gradient is

∇wlsquare(w,x, y) = 2(wT
x− y)x,

which usually decreases for majority samples.
As shown in part (c) of figure 2, λ has more delicate ef-

fects on the performance. An excessively small λ could lose
the performance due to overfitting, while an overlarge λ in-
validate model reuse. Different λ is preferred according to
the privacy parameter ǫ.

Parts (d) and (e) of figure 2 show that parameters α and
β have almost no impact on the performance. Unlike Agd
(Lee and Kifer 2018), PPSGD adjusts the privacy budget and
gradient clipping without privacy cost. Thus, it can adjust
parameters successively even meets a small α or β.

When using PPSGD in more situations (such as the real-
world datasets in the next subsection), we can find the effects
of parameters are relatively robustness for PPSGD. That is,
their best settings are similar in various dimensions, train-
ing set sizes, and privacy requirements. To sum up, we set

Figure 3: Accuracy comparisons on synthesis dataset.

φ = 10, α = β = 0.3, ϕ = 100 for hinge loss, ϕ = 5
for square loss, and λ ∈ {0.01, 0.1, 1}. Figure 3 shows the
comparisons between PPSGD and baselines. As we can see,
the performance of PPSGD is superior to other compared
methods with various ǫ.

Real World Datasets

In this subsection, we evaluate the performance of PPSGD
on 8 real-world datasets. The specific information of each
dataset are represented in table 1. We maintain the parame-
ter settings of last subsection for PPSGD, except set ϕ = 10
for square loss when ǫ ≥ 0.3. In each experiment, 80 per-
cent of samples are randomly selected to the training set and
other samples compose the testing set. Within each (private)
training set, we randomly select 0.1 percent (0.01 percent for

Table 1: Characteristics of real-world datasets.
Classification dataset # Sample # Feature % Positive

adult-a 32561 123 24.1
ipums-br 38000 52 50.6
ipums-us 39928 57 51.3
magic04 19020 10 64.8

mini-boo-ne 130064 50 28.1
skin 245057 3 20.8

Regression dataset # Sample # Feature Variance

cadata 20640 8 0.23
stability 10000 12 0.15
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Table 2: Performance comparisons on real-world datasets, where the upper part shows results of classification tasks (evaluated
by accuracy) and the lower part shows results of regression tasks (evaluated by mean square error). The best private result on
each dataset, loss function and ǫ is bolded.

Dataset Loss funcion ǫ PPSGD SgdAdv Agd OutPert ObjPert PNSGD AgdAvg OnlyPub NonPriv

adult-a
hinge

0.1 0.7882 0.7597 0.7863 0.7645 0.7643 0.7597 0.7872
0.7441 0.8401

0.5 0.8241 0.7864 0.8225 0.8130 0.8288 0.7597 0.8029

square
0.1 0.7941 0.6842 0.7689 0.6600 0.5332 0.7557 0.7729

0.7706 0.8412
0.5 0.8231 0.7816 0.8229 0.7683 0.6106 0.7598 0.7899

ipums-br
hinge

0.1 0.7170 0.6083 0.7078 0.7056 0.7000 0.5121 0.6862
0.6411 0.7638

0.5 0.7588 0.7137 0.7472 0.7392 0.7559 0.6714 0.6966

square
0.1 0.7112 0.5784 0.6914 0.5459 0.5293 0.5205 0.6683

0.6363 0.7623
0.5 0.7463 0.7032 0.7443 0.6781 0.6047 0.6367 0.6787

ipums-us
hinge

0.1 0.7137 0.5956 0.7022 0.7119 0.6994 0.5546 0.7036
0.5958 0.7775

0.5 0.7701 0.7167 0.7556 0.7491 0.7668 0.6002 0.7180

square
0.1 0.7192 0.5828 0.6831 0.5430 0.5363 0.5332 0.6750

0.6254 0.7766
0.5 0.7639 0.7016 0.7517 0.6864 0.6314 0.6330 0.6868

magic04
hinge

0.1 0.7549 0.6999 0.7622 0.7480 0.7577 0.6831 0.7497
0.6981 0.7837

0.5 0.7842 0.7655 0.7771 0.7665 0.7810 0.7331 0.7456

square
0.1 0.7576 0.6366 0.7563 0.6841 0.6162 0.6425 0.7408

0.7150 0.7762
0.5 0.7712 0.7555 0.7724 0.7506 0.7388 0.7224 0.7499

mini-boo-ne
hinge

0.1 0.7685 0.7371 0.7151 0.7184 0.7551 0.7151 0.7370
0.6950 0.8252

0.5 0.8045 0.7662 0.7151 0.7584 0.8049 0.7151 0.7366

square
0.1 0.7829 0.7253 0.7255 0.5904 0.5854 0.7153 0.7443

0.7198 0.8248
0.5 0.8134 0.7746 0.7424 0.7199 0.6534 0.7153 0.7589

skin
hinge

0.1 0.9069 0.9079 0.9065 0.9078 0.9061 0.8933 0.9068
0.8697 0.9077

0.5 0.9072 0.9078 0.9069 0.9077 0.9064 0.9071 0.9065

square
0.1 0.9079 0.9079 0.9072 0.9066 0.9071 0.8606 0.9074

0.8529 0.9079
0.5 0.9077 0.9079 0.9074 0.9078 0.9069 0.9048 0.9074

↑ Accuracy (the larger the better) | Mean Square Error (the smaller the better) ↓

cadata square
0.3 0.1027 0.2280 0.1461 0.3058 1.1162 0.2913 0.1253

0.3327 0.0948
0.7 0.0996 0.2079 0.1294 0.2326 0.4943 0.2446 0.1221

stability square
0.3 0.0604 0.2716 0.0973 0.1007 0.1255 0.4618 0.0912

0.1147 0.0529
0.7 0.0558 0.1008 0.0682 0.0751 0.0656 0.2435 0.0804

datasets skin and mini-boo-ne) of samples to form the public
dataset. That is, the size of each public dataset always is less
than 50.

Tables 2 summarizes the results on real-world datasets.
Generally, the performance of PPSGD is superior or highly
competitive to other compared private approaches. The pub-
lic data is insufficient, which makes AgdAvg and OnlyPub
behave badly. Compare to simply merge public data into the
private database, our framework achieves significant perfor-
mance gains in most cases.

Note that the performance of OutPert and ObjPert de-
creases dramatically when using the square loss, this may
because the gradient of square loss is much more difficult
to be bounded compared to hinge loss. For Agd and Sg-
dAdv, we use a gradient clipping threshold much smaller
than the Lipschitz constant as a priori, which retains their
performance benefits. This illustrates the power of our dy-
namic gradient clipping, which could minish the noise in-
tensity adaptively. PNSGD doesn’t perform well in our ex-
periments, although it can utilize public samples directly.
This might be due to it only uses each sample in one round,
which is necessary to derive its theoretical bounds. Also, we
emphasize that PNSGD ensures a kind of local differential
privacy, which makes its performance difficult to compete
directly with other methods.

Conclusion and Future Works

In this paper, we consider differential privacy learning
by Empirical Risk Minimization where a public database
could be helpful. We propose a simple yet effective ap-
proach named Private-Public Stochastic Gradient Descent
(PPSGD). PPSGD includes two main stages, where the pub-
lic database is used to adjust optimization parameters dy-
namically in the differentially private SGD and treated as
the training set in model reuse. Empirical studies validate
that our method can utilize small public data and perform
better than existing approaches.

There are several future directions for our setting. Firstly,
it is interesting to explore other approaches to utilize pub-
lic data to improve the performance of differentially private
learning. Secondly, the public database may play a greater
role in local differential privacy, such as recognizing and re-
sisting outliers caused by the huge noise. Thirdly, some more
ingenious model reuse approaches have been proposed re-
cently, which may be helpful to differentially private learn-
ing with a wider range of public data.
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