
Differentially Private Location Privacy in Practice

Vincent Primault∗, Sonia Ben Mokhtar∗, Cédric Lauradoux† and Lionel Brunie∗

∗Université de Lyon, CNRS

INSA-Lyon, LIRIS, UMR5205, F-69621, France

{vincent.primault,sonia.ben-mokhtar,lionel.brunie}@liris.cnrs.fr
†INRIA

cedric.lauradoux@inria.fr

Abstract—With the wide adoption of handheld devices (e.g.,
smartphones, tablets), a large number of location-based services
(also called LBSs) have flourished providing mobile users with
real-time and contextual information on the move. Accounting for
the amount of location information they are given by users, these
services are able to track users wherever they go and to learn
sensitive information about them (e.g., their points of interest in-
cluding home, work, religious or political places regularly visited).
A number of solutions have been proposed in the past few years
to protect users location information while still allowing them
to enjoy geo-located services. Among the most robust solutions
are those that apply the popular notion of differential privacy to
location privacy (e.g., Geo-Indistinguishability), promising strong
theoretical privacy guarantees with a bounded accuracy loss.
While these theoretical guarantees are attracting, it might be
difficult for end users or practitioners to assess their effectiveness
in the wild. In this paper, we carry on a practical study using
real mobility traces coming from two different datasets, to assess
the ability of Geo-Indistinguishability to protect users’ points of
interest (POIs). We show that a curious LBS collecting obfuscated
location information sent by mobile users is still able to infer most
of the users POIs with a reasonable both geographic and semantic
precision. This precision depends on the degree of obfuscation
applied by Geo-Indistinguishability. Nevertheless, the latter also
has an impact on the overhead incurred on mobile devices
resulting in a privacy versus overhead trade-off. Finally, we show
in our study that POIs constitute a quasi-identifier for mobile
users and that obfuscating them using Geo-Indistinguishability
is not sufficient as an attacker is able to re-identify at least 63 %
of them despite a high degree of obfuscation.

I. INTRODUCTION

More and more people carry handheld devices every day
(e.g., smartphones, tablets) equipped with localisation capa-
bilities (e.g., embedded GPS chips, localisation using Wi-
Fi/3G/4G hotspots/cells), allowing them to access a wide
variety of online services on the move. These services, often
called location-based services (or LBSs for short) provide users
with a variety of functionalities such as the access to contextual
information (weather forecast, road traffic), the ability to find
friends or points of interests in the neighbourhood (e.g.,
Foursquare, Google Maps) and even to play social games (e.g.,
Map of the Dead1). However, to obtain the desired service,
the user must communicate to the LBS her current location.
As shown in [1], [2], this raises severe privacy concerns due
to the knowledge LBSs are able to infer about users. For
instance, data mining techniques may allow a curious LBS to
find home and work places of an individual, model its mobility
patterns with Markov chains, predict its next movement, learn

1http://www.mapofthedead.com

about its political or religious preferences or to infer the users
social network by simply using geolocated mobility traces at
its disposal. If this information falls between the hands of
malicious adversaries, the users can even be exposed to serious
threats (e.g., robbers can obtain a list of users that are currently
away from home2).

Consequently, a number of solutions have been investigated
in the literature to protect a user’s location privacy while
still allowing her to query LBSs for information [3]–[6].
However, most of these solutions either suffer from inaccurate
results (e.g., by obfuscating real locations [3]), generate a
large amount of traffic in the network (e.g., by generating
dummy requests [4]) or poorly integrate with the LBS (see [5]).
Recent work proposed in [6], relies on the differential pri-
vacy principle [7] adapted to the protection of location data.
In this solution, called Geo-Indistinguishability (Geo-I for
short), location information is protected by adding a controlled
amount of noise according to the desired level of privacy, while
allowing to get useful information from a LBS with a bounded
loss of results. Another key feature of Geo-I is that it does not
require changes on the LBS as noise is added on the mobile
device. This makes Geo-I a promising solution towards the
protection of users location information.

While differential privacy in general and Geo-I in particular
provide attracting theoretical guarantees, it might be difficult
for practitioners or end users to get a feeling of the practical
guarantees it offers. The objective of this paper is to study
the effectiveness of Geo-I, in practice. Specifically, we study
the ability of Geo-I to protect users points of interests (POIs).
Towards this purpose, we use two real mobility traces, i.e., a
trace of 536 cabs collected in the city of San Francisco [8]
and a trace of 60 users collected in the city of Beijing [9].
For each user in these traces we start by identifying their POIs
using a spatio-temporal clustering algorithm inspired from [2],
[10], [11]. We refer to these POIs as the real POIs. We
then obfuscate the mobility traces w.r.t. Geo-I and consider
this information as the one collected by the adversary. We
assume the latter applies the same clustering algorithm on the
obfuscated trace in order to infer the obfuscated POIs. Follows
our study of the amount and the accuracy of information
obtained by the adversary using a set of metrics. These metrics
include: the number of real POIs the adversary was able to
infer (i.e., recall), the physical distance between real POIs and
obfuscated ones (e.g., geographic distance) and the similarity
between neighbourhood surrounding real POIs and obfuscated
ones (i.e., semantic distance). Our results demonstrate that

2http://pleaserobme.com/



whatever the level of obfuscation applied by the Geo-I, a
curious LBS is able to associate at least 60 % of the obfuscated
POIs with real ones in both datasets. Nevertheless, the accuracy
of these POIs in terms of geographic and semantic distance
depends on the level of obfuscation applied by Geo-I, i.e.,
the higher the noise the lower the precision of the inferred
information. Yet, by studying the overhead generated by Geo-
I, we demonstrate that with a high level of obfuscation, mobile
users have to filter up to 90 % of inaccurate replies sent
from the LBS. Finally, we carried out a re-identification attack
where a curious LBS that gathered a set of anonymised POIs
using Geo-I for each user, tries to re-identify known users
characterised by their set of real POIs. Results show that such
curious LBS is able to re-identify from 63 % to 89 % of
users according to the degree of obfuscation applied by Geo-I.
This result shows that POIs constitute a quasi-identifier and
obfuscating them using Geo-I is not sufficient to protect users
from re-identification.

The remaining of the paper is structured as follows: we
start by presenting an overview of our study in Section II.
We then describe the algorithm used for extracting the POIs
in Section III and the obfuscation algorithm in Section IV.
Further, we present our evaluation metrics in Section V and
the results of our study in Section VI. We finally expose some
related work in Section VII before to conclude the paper and
present our future research directions in Section VIII.

II. OVERVIEW OF THE STUDY

The goal of this paper is to study the behaviour of dif-
ferentially private mechanisms for the protection of location
information with a specific focus on the Geo-I system as a
representative protection. Note that we do not aim at analysing
the theoretical guarantees of Geo-I as the latter have already
been formally proven by the authors in [6]. Instead, we aim
at practically evaluating the degree of protection offered by
Geo-I if used by users to obfuscate the location information
they send to a curious LBS.

To achieve this objective, we consider users equipped with
GPS-enabled devices and who query LBSs on the move to
locate remarkable places around them, i.e., features, such as
point of views, restaurants or subway stations. We suppose
LBSs are honest-but-curious, i.e. they answer accurately but
want to collect knowledge about users by analysing places they
visit. As demonstrated in [12], most of mobile applications
have the permission to locate a user and to access the network
at any time. This allows curious LBSs to collect and send
users’ positions periodically and not only when the user queries
the LBS. This position is timestamped and linked with a unique
user identifier, allowing the LBS to build a mobility trace
of each single user. We focus in this paper on the ability
of Geo-I to protect users points of interest (POIs for short).
Indeed, it has been shown that the inference of POIs constitutes
a severe privacy breach [1], [2]. For instance, inferring a
user POI may allow a curious LBS to find a user’s home
and work place or even to infer her religious and political
preferences if she regularly visits a religious site or a party
head-quarter. It can ultimately lead to user de-anonymisation
by using reverse geocoding to put a name on visited places and
using uniqueness of mobility patterns. It is also the first step
of other privacy attacks like next movement prediction [13].

In this paper, we define a POI as the centroid of an area where
a user frequently spends a given amount of time. The size of
the area, expected frequency and duration of stay in a given
place that are required to characterise a POI are parameters
of our study. Considering this definition of POIs, our study
decomposes into the following four steps:

1) the extraction of POIs from the real mobility traces.
We consider these POIs as the ground truth of our
study and call these POIs the real POIs. We describe
our POIs’ extraction algorithm in Section III;

2) the obfuscation of the mobility trace using Geo-I.
This step is described in Section IV;

3) the extraction of POIs from the obfuscated trace using
the same algorithm used to extract the real POIs. We
call these POIs the obfuscated POIs; and finally

4) an analysis of the accuracy of the obfuscated POIs
compared to the real ones. At the heart of this
analysis resides the definition of a set of metrics
enabling to quantify the level of privacy users get
and the loss of precision incurred by running the
corresponding obfuscation algorithm. Our metrics are
defined in Section V while the results of the analysis
are described in Section VI.

An example illustrating the objectives of our study is
depicted in Figure 1. In this Figure, a mobility trace as it
may be collected by a LBS tracking a user moving in Paris is
represented by a set of dots (each dot represents an individual
timestamped location). Note that timestamps are not shown for
the sake of readability. The POIs that can be extracted from
this trace are represented in the same figure as the centroids
of the circles surrounding groups of dots. If the user applies
Geo-I to obfuscate her individual locations when sending her
queries to the LBS, the latter gets the obfuscated trace depicted
on the same Figure and represented by a set of diamond
shapes. As a result, the LBS would infer a set of obfuscated
POIs represented by the dotted circles surrounding groups of
diamond shapes. Our objective throughout the paper is to study
the accuracy of the obfuscated POIs compared to the real ones.

III. EXTRACTING POINTS OF INTEREST

To extract users’ POIs from a mobility trace, our algorithm,
which is depicted in Algorithm 1, decomposes in two main
parts. The first part (lines 1-20) allows the extraction of places
in which the user spent a certain amount of time, i.e., stays as
defined in [11]. Identifying stays requires to fix the following
two parameters:

1) a time threshold minTime, which represents the
minimum time that has to be spent in every stay;

2) a distance threshold maxDistance representing the
maximal diameter of the stay area.

The threshold minTime depends on the purpose of the
extraction algorithm. Indeed, one can consider short stays (e.g.,
to identify visits to shopping malls) or long stays (e.g., to
identify holiday periods). In its first part, our algorithm groups
points composing a mobility trace (stored in list points ordered
by time) into a set of stay areas. To do so, it builds successive
candidate stays; the current one is stored as an ordered list of
points in candidate. Our algorithm iterates over each point



Figure 1. Example of a mobility trace and its obfuscated version.

(line 4) and tests if by adding this new point to candidate stay,
the diameter of the latter remains under the maxDistance
threshold (line 5-6). By convention, if candidate is empty, the
latter test succeeds. If not satisfied (line 9), we check if elapsed
time inside candidate stay is above the minTime threshold. If
so, candidate stay is valid and added to stays (line 11); a new
candidate stay is created (line 12). If not, we are not able to
create a valid stay. Therefore, we remove the first element of
our candidate stay (line 14) and try again to add current point
at the next step.

In order to merge frequent and nearby stay areas, we use
in the second part of our algorithm the DJ-clustering algorithm
introduced in [10] (lines 21-33). This algorithm creates clusters
with a minimal number of points and at a maximal distance
to other clusters. In its original version, this algorithm uses a
preprocessing step to filter out static points (i.e., points where
the speed of the user is zero). In our case we do not consider
this step because we are already working on stays.

We run this algorithm on the centroids of stay areas instead
of the areas themselves to have something easier to manipulate.
This algorithm relies on two parameters:

1) a merge threshold which defines the distance before
two distinct clusters are merged in a single one. It is
defined as a function of maxDistance threshold in
our algorithm;

2) a minimum number of points minPts necessary
to form a cluster. This is the number of different
stays we have inside a cluster (modulo the distance
threshold) to maintain the latter. It gives us the notion
of frequency of apparition of a stay and helps to
eliminate "accidental" stays that occur only once.

We set the merge distance threshold as a function of the
stay distance threshold used in the first step, i.e., 75 % of the
latter in order to merge nearby clusters while limiting the risk
of creating artificial clusters not representing any ground truth.

As said before, POIs extracted from the original mobility
trace using the algorithm we have just presented are considered
as ground truth.

Algorithm 1 Algorithm used to extract POIs.

Require: minTime > 0,maxDistance > 0,minPts ≥
1, |points| > 0

1: stays← ∅
2: candidate← ∅ {ordered list of points}
3: i← 0
4: while i < |points| do
5: diameter ← max(dist(points[i], p) ∀p ∈ candidate)
6: if diameter ≤ maxDistance then
7: add points[i] to candidate
8: i← i+ 1
9: else

10: if elapsed time in candidate ≥ minTime then
11: add centroid of candidate to stays
12: candidate← ∅
13: else
14: remove first element of candidate
15: end if
16: end if
17: end while
18: if elapsed time in candidate ≥ minTime then
19: add centroid of candidate to stays
20: end if
21: clusters = ∅
22: for stay in stays do
23: neighborhood ← {s ∈ stays s.t. dist(s, stay) ≤

maxDistance× 0.75}
24: if |neighborhood| ≥ minPts then
25: for cluster in clusters do
26: if neighborhood ∩ cluster 6= ∅ then
27: neighborhood← neighborhood ∪ cluster
28: remove cluster from clusters
29: end if
30: end for
31: add neighborhood to clusters
32: end if
33: end for
34: return centroids of clusters

IV. LOCATION-PRIVACY PROTECTION MECHANISM

Literature contains many solutions aiming to protect loca-
tion information of mobile users. We focus on propositions
based on location perturbation, i.e., adding calibrated noise to
each location before sending it to a LBS in order to hide the
user’s real location. These mechanisms seem to be the most
promising because they can be applied locally without the need
of a trusted third-party and can be integrated with any existing
LBS. We focus in this paper more specifically on approaches
that rely on differential privacy, although a similar study can
be conducted on other noise-based protection mechanisms.



A. Differential privacy

Differential privacy is a concept introduced by Dwork
in [7]. It defines formal privacy guarantees applied to statistical
databases. The idea is that an aggregate result over a database
should be the same whether or not a single element is present
inside the database or not. In other words, the addition or
removal of one single element does not change significantly
the probability of any outcome of aggregate functions.

Definition 1: A randomized mechanism K gives ǫ-
differential privacy if for every databases D1 and D2 differing
on at most one element and for every S ⊆ Range(K), we
have:

Pr[K(D1) ∈ S] ≤ eǫ × Pr[K(D2) ∈ S].

ǫ is called the privacy budget. One way to guarantee ǫ-
differential privacy is by adding Laplacian noise to each com-
ponent of query results. This noise depends on the sensitivity
of the mechanism K, i.e. the largest impact the addition or
removal of one single element could have on the result.

In the general case, when applying a mechanism satis-
fying ǫ-differential privacy many times, we obtain weaker
privacy guarantees. Distinct data are often correlated inside the
database. For example applying the same mechanism twice on
the same integer results in two different noised values and can
therefore imply a data leakage. This is known as sequential
composition.

Theorem 1: The composition of mechanisms Ki satisfying
ǫi-differential privacy over a database D results in a new

mechanism K satisfying

(

∑

i

ǫi

)

-differential privacy.

However in the rare case where we have disjoints
databases, there is no more threat of information leakage when
applying mechanisms on them. The final privacy guarantee
only depends on the worst guarantee offered by these mecha-
nisms. This is known as parallel composition.

Theorem 2: The composition of mechanisms Ki satisfying
ǫi-differential privacy over a set of disjoints databases Di

results in a new mechanism K satisfying (max
i

ǫi)-differential

privacy.

B. Differential privacy for location privacy

Differential privacy can be directly applied to protect
location privacy. Authors of [14] have used it to protect
trajectories of ships. However, due to the particular nature
of geographic locations, there are many ways to add noise
to a trajectory. The goal here is to protect the presence or
not of a point inside a trace. They introduce three methods
to protect these trajectories: adding global noise to the whole
trace (by generating a global noise vector), adding noise to
each point independently (by generating 2-dimensional noise
vectors) or adding noise to each coordinate independently (by
applying Laplacian noise to each coordinate). They show that
the latter provides the strongest protection but at the cost of a
very degraded practical utility.

Another approach to apply differential privacy to location
privacy is differentially private data mining inside the traces as

proposed in [15]. Authors introduce a way to build a quad-tree
and use it to perform a DBSCAN clustering whose result is
differentially private. Like in classical differential privacy, the
goal here is to protect the result of an aggregate function and
not to access directly to the whole data set.

C. Geo-Indistinguishability

Andrés et al. introduced Geo-Indistinguishability in [6]
(Geo-I for short), which is a generalisation of the concept
of differential privacy for the protection of location data,
represented as a set of secrets X . Instead of revealing its real
location, a user report to be in a location inside a set Z with
P(Z) being the set of probabilities over reported locations Z .

Definition 2: A randomized mechanism K : X −→ P(Z)
gives ǫ-geo-indistinguishability w.r.t euclidian distance metric
d2 if for every x, x′ ∈ X and Z ⊆ Z , we have:

K(x)(Z) ≤ eǫd2(x,x
′)K(x′)(Z).

Note that ǫ coming from Geo-I cannot be compared with ǫ
from differential privacy, whereas they convey the same idea of
representing a privacy budget. Authors propose a mechanism
to provide Geo-I by adding noise drawn from a 2-dimensional
Laplace distribution.

They finally introduce two use cases demonstrating the
applicability of Geo-I. The first use case shows how to retrieve
features around a user from a LBS. The algorithm they propose
guarantees accurate results while preserving the privacy of the
user. The idea is to send an obfuscated location satisfying Geo-
I to the LBS while extending the retrieval area in order to
retrieve all features standing in the original search area around
the real user’s location with a high probability. As such, the
LBS returns a set of candidate results, without learning the
effective location of the user. Finally, the mobile client has to
filter these candidates to only include those that belong to the
original search area, as intended by the user.

The second use case aims at sanitising a static data set
containing sensitive location data and studying the impact the
sanitisation on the results of statistical queries. In this use
case, locations contained in the data set are supposed to be
uncorrelated, i.e. they can be sanitised independently without
weakening the ǫ-Geo-I privacy guarantee.

As in classic differential privacy, it is known that protecting
multiple correlated values with independent noise decreases
dramatically the privacy guarantees. We are aware of this fact,
yet, as Geo-I is intended to protecting mobile users from
curious LBSs (as expressed by the first use case) our objective
is to study the effectiveness of the protection provided by Geo-
I in practice.

V. EVALUATION METRICS

We present in this section a set of evaluation metrics that
we will use in our study to evaluate the practicability of Geo-I.
Specifically, as described in Section II, we aim at evaluating the
effectiveness of Geo-I in protecting users POIs. To do so, we
first introduce in this section the metrics used to compare the
user’s real POIs with the obfuscated POIs inferred by the LBS
in terms of recall, geographic precision and semantic precision



Figure 2. Remapping obfuscated POIs to real ones.

in part V-A. In this part, we further describe the metric used
to evaluate the re-identification attack performed by the LBS.
Finally, we introduce the metric to evaluate the precision of
the results sent by the LBS when receiving requests obfuscated
by Geo-I in part V-B.

A. Measuring privacy

To measure the degree of privacy that is practically pro-
vided by Geo-I to users, we consider the point of view of a
curious LBS, which tries to infer knowledge about them from
obfuscated locations they send along with their queries. We
assume that the LBS collects obfuscated locations and runs the
algorithm described in Section III to infer a set of (obfuscated)
POIs associated with the user. The metrics described in this
section allows the assessment of the accuracy of obfuscated
POIs inferred by the LBS compared to the user’s real POIs.
Towards this purpose, we use the notations introduced in
Table I.

Table I. NOTATIONS REGARDING PRIVACY EVALUATION.

U Set of all users

C Set of all spatial locations

Lu ⊂ C Set of real POIs of user u
L∗

u
⊂ C Set of obfuscated POIs of user u

F ⊂ C Set of all existing features

L∗ = (L∗

u
∀u ∈ U) List of all sets of obfuscated POIs

dist : C2 −→ R
+ Distance between two locations

The first operation we perform to assess the accuracy of
the obfuscated POIs is to remap each of them to the nearest
real POI of the same user.

Definition 3: The remapping function is defined as follow:

remap : L∗
u −→ Lu,
l 7−→ l′ s.t. dist(l, l′) = min

p∈Lu

dist(l, p).

Figure 2 shows an example of the application of the remap
function in the example of Figure 1 in which extracted POIs
have been reduced to their centroids. We show the remapping
operation with arrows between obfuscated POIs and real POIs.
We can already see that a real POI can have zero, one or many
obfuscated POIs remapped to it.

Number of real POIs inferred by the LBS
Our first metric, i.e., the recall, is inspired from classical
metrics in information retrieval. It gives the number of real
POIs guessed by the LBS from the obfuscated locations sent
by the user. The recall is computed as the ratio of the number
of real POIs to which obfuscated POIs have been remapped
to and the number of real POIs.

Definition 4: The recall is defined for each user as follows:

recall : U −→ [0, 1],

u 7−→
|{remap(l) ∀l∈L∗

u
}|

|Lu|
.

In the example of Figure 2, the recall is equal to 2/3
because one of the real POIs has no obfuscated POI remapped
to it.

The recall gives us a hint about the proportion of POIs that
have been retrieved by the LBS and that can be remapped to
real POIs, but with no indication about the accuracy of these
POIs. Indeed, an obfuscated POI is always remapped to a real
POI, but in practice the former could be far from the latter
and represent a totally different information about the user.
To measure the quality of knowledge inferred by the LBS we
define the following two metrics.

Geographic distance between POIs
This metric represents the physical distance as given by the
dist function between an obfuscated POI and the real one to
which it has been remapped.

Definition 5: The geographic distance is defined for each
obfuscated POI as follows:

geographic : L∗
u −→ R+,
l 7−→ dist(l, remap(l)).

In the example of Figure 2, the geographic distance corre-
sponds to the length of black arrows.

Semantic distance between POIs
This metrics assesses the similarity between the neighbourhood
of a POI before and after remapping. Neighbourhood is defined
as the top-15 nearest features (e.g., restaurants, doctors, shops)
around a given point. To obtain these features we can use the
nearest-neighbours search provided by most of LBSs.

Definition 6: The function retrieving the k nearest neigh-
bours of a location is defined as follows:

topk : C −→ Fk,
c 7−→ F s.t. |F | = k ∧ ∄f ′ /∈ F,

s.t. dist(f ′, c) < max
f∈F

dist(c, f).



Using this function, we compute the semantic similarity
between a real POI and obfuscated one, as the size of the inter-
section between the topk features present in the neighbourhood
of each of the two POIs out of k. To be consistent with the
previous metric (which is geographic distance), we prefer to
define a semantic distance. As the semantic similarity has a
value comprised between 0 and 1, we subtract this similarity
to 1 to obtain a distance.

Definition 7: The semantic distance is defined for each
obfuscated POI as follows:

semantic : L∗
u −→ [0, 1],

l 7−→ 1− |top15(l) ∩ top15(remap(l))|
|top15(remap(l))| .

Number of anonymous users re-identified by the LBS
Using this metric, we aim at evaluating the number of users
the LBS is able to re-identify. We consider that a user has
been re-identified by the LBS if the latter can unambiguously
re-associate its real POIs with its obfuscated ones (or the
opposite). To illustrate this attack, we consider the following
two scenarios: (1) let us consider an LBS that has collected
non-obfuscated location information about a set of users. As
such, the LBS can compute their set of real POIs. If some users
start using Geo-I obfuscated locations anonymously, we want
to measure whether the LBS is able to re-identify them by
re-associating their obfuscated POIs with their real ones; (2)
let us consider that the LBS has collected obfuscated locations
from a set of users. If unluckily the LBS gets anonymous non-
obfuscated locations about some users, we want to measure
whether the LBS is able to re-identify them by re-associating
their real POIs with their obfuscated ones.

To do so we compare two matrices: a matrix of real POIs
R where each line is a list of POIs associated with a given
user whose identity is known and a matrix of obfuscated POIs
O where each line is a list of POIs belonging to the same
but unknown user. Then, we compute a distance measurement
between each line in R and each line in O and associate each
line in the first matrix with the one in the second that has the
smallest distance with it.

Definition 8: The distance between a set of obfuscated
POIs and real POIs of a given user is defined as follows:

udist : L∗ × U −→ R+,
L∗, u 7−→ median({min

l∈Lu

dist(l, l′) ∀l′ ∈ L∗}

∪ {min
l′∈L∗

dist(l, l′) ∀l ∈ Lu}).

Definition 9: The re-identification function which asso-
ciates to a list of obfuscated POIs the most probable user it
comes from is defined as follows:

uassoc : L∗ −→ U ,
L∗ 7−→ u s.t. udist(L∗, u) = min

u′∈U
udist(L∗, u′).

The amount of users re-identified by the LBS is thus the
percentage of lines in R that have been assigned with the right
line in O.

Definition 10: The re-identification rate is defined as fol-
lows:

reident =

∑

u∈U

{

1 if uassoc(L∗
u) = u,

0 otherwise

|U|
.

B. Measuring precision of LBS results

Maintaining a high accuracy has a cost. We use the mecha-
nism presented in [6] where results are retrieved within a larger
area than originally intended by the user. Then, the application
running on the user’s device filters back results coming from
the LBS and only presents to the user those that really matches
its original query. The modified query is such that accurate
results should be retrieved with a given probability, specified
by the user. Obviously, increasing this probability or the level
of privacy guaranteed by Geo-I increases the amount of useless
results the user has to filter. We thus measure the precision
of results returned by the LBS when receiving an obfuscated
location from the user by comparing the number of useless
results with the total number of retrieved results. Towards this
purpose, we use the notations introduced in Table II.

Table II. NOTATIONS REGARDING PRIVACY EVALUATION.

C Set of all spatial locations

F ⊂ C Set of all existing features

resq : C −→ Fn Results for a query q around a given location

obfǫ : C −→ C Function obfuscating a location w.r.t. ǫ-Geo-I

Definition 11: The precision for a given privacy level ǫ and
query q is defined for each location as follows:

precisionǫ,q : C −→ [0, 1],

c 7−→ 1−
|resq(obfǫ(c))−resq(c)|

|resq(obfǫ(c))|
.

The precision we compute has a direct consequence on the
cost incurred to mobile devices as each useless retrieved result
impacts the performance of the latter (e.g., in terms of battery).
In this paper, we do not measure the impact of using Geo-I
in terms of battery consumption but we plan to carry out this
study in our future works.

VI. EXPERIMENTAL RESULTS

A. Data sets

We use two real-life data sets to conduct our experiments.
The first one is the well-known mobility traces from the San
Francisco cabs [8]. These traces have been collected over a
month by 536 taxis in the San Francisco Bay Area. Each
taxi was equipped with a GPS tracker and locations were all
collected to a central server. The resulting data set is composed
of 11 219 955 locations, with on average 21 000 locations per
taxi.

The second one is the Geolife data set [9], [16], [17]. It
was collected by Microsoft Research Asia over four years by
182 users. It is not restricted to people working hours but
instead follows people during the whole day. This data set
includes 25 050 848 locations, but the variance of the number
of locations per user is very high: some people have been
tracked during the whole period of the experiment whereas
others have only contributed for a few days. We have filtered
the data set to keep only days with more than 480 locations
and users with at least 30 days. After processing, the final data
set contains 5 476 442 locations for 61 users.

B. Initial extraction of POIs

The POIs extraction algorithm presented in Section III
requires to define the minTime and maxDistance. We



choose minTime = 1 hour and maxDistance = 250 meters
in order to capture typical activities occurring in areas of the
size of a small neighbourhood in an urban environment. A
place was considered as a POI if at least two points in the
data set satisfies minTime = 1 and maxDistance = 250
during the length of the data set. The same parameters have
been used with the two data sets. Sum-up of this section is in
Table III.

Table III. SUMMARY OF POIS EXTRACTION SETTINGS.

minTime 1 hour

maxDistance 250 meters

minPts 2

#POIs on SF cabs 1111

#POIs on Geolife 258

With the San Francisco data set, we identify 1111 POIs
which gives an average of two POIs per driver. For the Geolife
data set, we obtain 258 POIs which corresponds to an average
of four POIs per user. We can check the correctness of the
POIs by attaching semantic information to them using reverse
geocoding, like it has been done by authors of [1], [2] to
validate their results. With the San Francisco data set we can
identify some well-known hotspots such as the taxi company’s
parking or the San Francisco international airport. With the
Geolife data set, we can again find out semantic information
associated with those POIs like university and residential areas.

C. Protection mechanism parametrization

Geo-I described in Section IV is defined for a privacy level
ǫ. We have ran our experiments for three values of ǫ. We used
values similar to the ones used in the paper introducing Geo-
I [6] where ǫ = ℓ/r, ℓ being the level of privacy we want
within a radius r (and then decreasing proportionally outside
this radius). The three different levels of privacy are given in
Table IV.

Table IV. VALUES OF ǫ.

ǫ = ℓ/r ℓ r (meters) Characterisation

0.00139 ln(2) 500 Strong privacy

0.00358 ln(6) 500 Medium privacy

0.00693 ln(4) 200 Weak privacy

D. Extracting POIs from obfuscated data set

Geo-I uses a randomized mechanism: the results obtained
are not deterministic. Therefore, each test has been ran 10
times against 10 independently obfuscated data sets. Through-
out this section and Section VI-E, the results we present are the
average values obtained over these 10 runs. 10 different runs
seems a reasonable and practicable value to obtain accurate
results while keeping a bounded execution time.

The attacker knows the protection mechanism and its cor-
responding privacy parameter ǫ. He is therefore able to set up
his attack with optimal parameters to retrieve the "best" POIs
w.r.t. our metrics. The location is the only data affected by the
perturbation, there is no reason to modify the time threshold
minTime or the minimum number of points minPts in our
clustering algorithm. We only modify the distance threshold
maxDistance when working with the obfuscated data set.

Figure 3 shows how the recall varies with the distance
threshold. Beware of the scale of the horizontal axis which

is not the same on each graph, because we have zoomed on
the most interesting part. As expected we observe the recall
is increasing with the distance threshold. At a fixed threshold,
recall is better when the guaranteed privacy is weaker. Geo-I
tends to create locations outside a given cluster. By increasing
the distance threshold we limit this effect and hence include
again obfuscated locations that were lost ouside a cluster. The
drawback is than if we choose a threshold too high, results
will be imprecise resulting in high geographic and semantic
distances.

We can now choose an optimal threshold which is a
threshold for which we want a high recall and low geographic
and semantic distances. We choose the minimum threshold for
which the recall is higher than 70 % when it was possible. Be-
cause the experiment was ran for discrete values of thresholds
sampled every 100 meters, we give them with a 100 meters
precision. We present in Table V the distance thresholds for
which we have a recall of more than 70 %. Note that this goal
was not reachable when working with Geolife at the highest
privacy level.

Table V. "OPTIMAL" DISTANCE THRESHOLDS.

SF cabs Geolife

ǫ = 0.00139 2000 meters 2500 meters

ǫ = 0.00358 1000 meters 1200 meters

ǫ = 0.00693 700 meters 600 meters

E. Privacy guarantees

In all this section, all extractions of POIs on the obfuscated
data set use final distance thresholds presented in Table V.

Recall rate
We chose our parameters to guarantee a certain recall as shown
in previous section. Hence there will be no surprise with recall
rates across all users we present in Table VI.

Table VI. RECALLS FOR DIFFERENT VALUES OF ǫ.

SF cabs Geolife

ǫ = 0.00139 71.01 % 60.57 %

ǫ = 0.00358 71.54 % 70.56 %

ǫ = 0.00693 73.31 % 71.94 %

Geographic distance
Cumulative distribution of geographic distance across all users
for different values of ǫ is shown in Figure 4. The lowest level
of privacy offers weak privacy guarantees: 80 % of the POIs
are within a 200 meters range of a real POI with both data
sets. For the strongest level of privacy, we have only 25 %
(San Francisco data set) and 20 % (Geolife data set) of the
POIs within the 200 meters range. Please note that due to the
exponential distribution used to draw noised locations, there
is a long tail of obfuscated POIs having a high geographic
distance that is not shown in the graph to keep it readable.

Semantic distance
Cumulative distribution of semantic distance across all users
is shown in Figure 5. At the lowest level of privacy, 70 %
(San Francisco data set) and 80 % (Geolife data set) of POIs
have a semantic distance of less than 10 %, whereas with the
strongest privacy level only 15 % (San Francisco data set) and
45 % (Geolife data set) are in that case.

Re-identification of users
We finally have conducted the re-identification attack and
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Figure 3. Evolution of recall rate for different values of ǫ.
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Figure 4. Cumulative distribution of geographic distance.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
o

f
P

O
Is

Semantic distance (%)

ǫ = 0.00139
ǫ = 0.00358
ǫ = 0.00693

(a) San Francisco cabs

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

%
o

f
P

O
Is

Semantic distance (%)

ǫ = 0.00139
ǫ = 0.00358
ǫ = 0.00693

(b) Geolife

Figure 5. Cumulative distribution of semantic distance



present results in Table VII. Re-identification rates are bad
with the SF cabs data set while they are good with the
Geolife data set. It is due to the fact that the Geolife data set
contains data from people that have regular mobility patterns
(think to your daily home-work-home journey) and hence more
subject to re-identification than taxi drivers that all share the
same POIs because of their professional duties (e.g., they all
often go the San Francisco airport, park their car in the same
company parking, etc.). Accordingly with a set of studies about
uniqueness of human mobility like [18] we are hence able to
re-identify a large proportion of individuals.

Table VII. RE-IDENTIFICATION RATES FOR DIFFERENT VALUES OF ǫ.

SF cabs Geolife

ǫ = 0.00139 5.79 % 63.04 %

ǫ = 0.00358 8.12 % 82.90 %

ǫ = 0.00693 9.66 % 89.63 %

F. Precision with the obfuscated data set

Instead of querying an LBS online each time it was needed,
we used a local database containing a set of features coming
from the OpenStreetMap project3 around the San Francisco
Bay Area. We can query aggressively our LBS without wor-
rying about fees or network latency. Our experimental setting
uses a typical query: "find all restaurants 500 meters around
me". Measures have been done over 100 points sampled from
the San Francisco cabs mobility trace and while guaranteeing
an accuracy of 85 %, i.e., at least 85 % of the real results
should be retrieved, among with useless results. Results pre-
sented in Figure 6 are average values. Figure 6 describes the
evolution of the precision when ǫ varies. Precision logically
increases with ǫ but always stays relatively low. For the
strongest level of privacy, we have only a precision of 8 %,
which means 92 % of retrieved results are useless. Even at the
weakest level of privacy we only have a precision of 43 %.
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Figure 6. Precision as a function of ǫ.

VII. RELATED WORK

Shokri et al. in [19] developed a framework to quantify
location privacy based, like us, on the success of inference
attacks. They have implemented their framework as a C++
tool and tested it against the San Francisco cabs data set.

3http://www.openstreetmap.org

However they do not propose a way to evaluate the precision
or performance of a protection mechanism when used in a
practical use case.

Micinski et al. in [20] conducted a practical experimenta-
tion on the effects of truncating the location (i.e., remapping
it to the nearest location on a fixed-size grid) on the utility
of results when using some Android applications. They have
shown that the utility remains stable for a truncation under 5
km. However, maximum truncation that can be applied without
losing too much utility depends on the population density of
the surrounding region.

Gambs et al. in [21] and [2] have made a large number of
attacks against location privacy by using mobility traces. They
made it clear that it was possible to deanonymise the San
Francisco cabs mobility trace and ultimately deanonymize the
whole trace. They used similar clustering techniques to ours,
although they do not perform an extensive study of protection
mechanism as we did in this paper.

Krumm studied threats and protection mechanisms for
location privacy in [1]. He tried to find homes from mobility
traces using different heuristics. The median error was of 60.7
meters with its best algorithm and it ultimately succeed in
associating the correct name to 5 % of mobility traces. The
author then analysed the impact of protection mechanisms like
spatial cloaking, Gaussian noise and inaccuracy (where data
is mapped on a grid with fixed precision). In particular, he
was able to determine how much noise is necessary to hide
successfully most of homes from a data set.

A set of works tries to characterise the uniqueness of
human mobility. Authors of [18] show than only four points
are sufficient to uniquely identify a trace among other traces.
Authors of [22] extensively studied the uniqueness of the
home/work couple with different granularity levels. At the
scale of a census block, there is basically no privacy because
this pair is likely to be unique. At the scale of a census tract, it
becomes unique for 5 % of people but still offers little privacy
for the others.

VIII. CONCLUSION

We have evaluated a differentially-private mechanism for
location privacy. Results show that it is possible to improve
privacy by using a location-privacy protection mechanism.
However it is still possible to infer a large part of a user’s
POIs with a reasonable precision. In our experiments only
the strong and medium levels of privacy really achieve the
goal of hiding one’s POIs, the weakest level leading to a very
precise re-identification of POIs. But we also show it has a
non negligible cost: precision of retrieved results is very low
with the highest privacy level and is likely to lead to degraded
performance on a mobile device with limited computational
power. It seems a trade-off between privacy and precision is
hard to obtain with state-of-the-art techniques.

While analysing results, it appears to us that privacy would
be better guaranteed if a user only moved in a not too large
area. If all his frequent mobility patterns are done within a
small area, obfuscated POIs from an obfuscated trace become
hard to distinguish because added noise will tend to merge all
these POIs into a unique POI. It still allows us to determine a



neighbourhood where this user evolves, but we will not be able
to identify his home and his work place and then re-identify
him.

Differentially private mechanisms usually noise only one
information: the location. Two other pieces of information are
attached to each element of a mobility trace: a timestamp and
a link with a unique user. This gives us an advantage and we
use it when extracting POIs. We want in particular to study
the impact of the time when extracting POIs and how it is
possible to hide it. In the same time we are interested in the
feasibility of unlinkability between user queries and how this
affects threats studied in this paper.

The efficiency of our attack is related to the fact the attacker
knows the exact privacy level that is used to protect a mobility
trace. Knowing that, he is able to adapt the parameters of his
attack to have better results. We are interested in studying in
which measure it is possible for an attacker to find out the level
of privacy ǫ that has been applied on a trace by analysing the
entropy of a trace. Thereafter a counter-measure can be for a
user to vary the amount of noise dynamically depending on
the environment (urban/countryside place, users’ density).
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