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°°°°°°°°°°° = Why Privacy-aware
( Network Data Release ???

« Increasing Demands on Network Data for
Exploratory Data Analysis

Boiy . Linked ) %, T

facebook Advertisements

"
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— Government
Surveillance
+ Privacy Concerns

+ Social Contacts
= Personal opinions
+ Private communication records




( Network Data Release ???

« Emerging Privacy Standard :
= Differential Privacy[Dwork06é]

= Resilient to attacks with arbitrary side information
= Worst case guarantee
= Rigorous mathematical formulation

+ Prevalent Randomization Techniques to

y Privacy-aware =

generate noisy results while satisfying DP:

= Laplacian noise(for counting queries)

= Exponential mechanism(for selecting discrete
query outcomes)



« Given an original simple graph ¢ = (V,E),
find a random sanitized graph G to release

+ The goal is to

= Approximate G's statistical properties of in
G as much as possible to preserve essential
structural information

= Satisfy edge Differential Privacy(e-DP) to hide
each user’'s connections to others



| ( Problem Statement

+ DP requires:

A randomized algorithm A is e-differential privacy if for
any two neighboring graphs G and G', and for any output
O € Range(A),

Pr[A(G) € 0] < e€ X Pr[A(G)) € O]

/ N\

Outcome with my connectionin G~ Outcome without my connection in G

v Output distribution shall not change much if any
o single edge is missing, that is, the sensitivity of A
shall be limited.



and data utility, we need to limit the query
sensitivity (the dependence of noise required
by DP on network size n)

Data
Utility
A




© == &
% e
N e S

( State-of-the-art Approaches

« To satisfy e-DP:
= dK-2 series:
Global sensitivity is 0(n) [Salall, Wang13]

= Spectral graph analysis:
Global sensitivity is 0(+/n) [Wangl3]
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¥ Transform edges to connection probabilities via
Hierarchical Random Graph(HRG)

+ Our approach'’s sensitivity is O(logn)

Edges » Connection Probabilities
‘0 W\
Highly sensi’rivev Not that sensitive
= 0 in a graph of

~~ Prohibitive noise moderate or large size
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# Hierarchical Random Graph(HRG)

¥ Structural inference under DP
with MCMC

¥ Sensitivity Analysis
# Experimental evaluation
% Conclusion
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( Hierarchical Random Graph

Connection
M probability p,
L =17
POO OO

best-fitting HRG T,
£(T,)=0.0433...

Likelihood of an HRG T:
L(T, {pr}) = nprer(l — pr)nLTnRr_er

reT

An HRG example in [Clauset07,08]
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best-fitting HRG T,
L(T)=0.0433..
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T, is not the best
179 — any more !

% Q)Oi&)

£(T;)=0.0108..

] 1/8
1

Best-fitting
HRG T,

One edge missing

2
— O
- 1 1
. Sbeved
different best- ‘ @ o

fitting HRG £(T,)=0.0491..
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One edge missing
only affects one
probability

o2
ololeJolole

£(T,) =0.0108...

Likelihood of an HRG T

£, (o)) = [ [prerca = pymrmmer

TEeT

An HRG example in [Clauset07,08]
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( HRG space T

L(T,)=0.00165...

good-fitting

£(T3)=0.00014,

£(T,)=0.00206...
17



L(T;)=0.00165...

good-fitting

IT| is HRG T, 0

’ (2n-3)1!25+f2 (2n)"'e™

00000 oo

£(T3)=0.00014,

Super-exponential, prohibitivel
expensive to apply Exponential
Mechanism directly

l

0]

£L(T,)=0.00206...
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== What to do with HRG ?
( MCMC process - 1

L£(T,)=0.0433..

x Randomly pick an arbitrary
HRG as the initial state T,

(T,)=0.00206... L(T;)=0.00014...

20
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°°°°°°°°°°° = What to do with HRG ? -
( MCMC process - 2

m&w \ @
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/
7 Update at ith step with the rule:

T = { T' with probability a
T;_4 with probability 1 — «a
where the accep‘rance ratio
L(T,)=0.00165... exp( -log L(T' )) >

@it "exp (55 - 10g £(Ti-1) )

£(T,)=0.00165...

=200%® oo, —
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== \WWhat to do with HRG ?
MCMC process - 3
( process

vk
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Vel |
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« * Randomly sample a good-fitting T
£(T,)=0.00165.. after MCMC converges

A good-fitting

£(T,)=0.00206.. £L(T3)=0.00014...
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0
=== Stpructure Inference =

v MCMC does the job of
o Exponential Mechanism.

} {_j" 1, Tt safisfies DP. [Shen13]
ﬂ\gaoeec

Step 1. Use MCMC to sample a good-
fitting HRG T with privacy budget ¢,

H o
H
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NUS
e D STFUC.‘-ur‘e Inference
( under DP with MCMC

° ° Step 2. Perturb connection
probabilities with privacy budget ¢,

- vAdd Laplacian noise

"N b
S gl

Step 1. Use MCMC to sample a good-
fl‘r‘rmg HRG T with privacy budget ¢,
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=2 Stpucture Inference -
( under DP with MCMC

Step 2. Perturb connection
probabilities with privacy budget ¢,

0.6

PN
@ D 105

D@ ®

(\ Step 1. Use MCMC to sample a good-

Step 3. Re-generate
fl‘r‘rmg HRG T with privacy budget ¢, a random graph (s
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( under DP with MCMC

° ° Step 2. Perturb connection
probabilities with privacy budgeft ¢,

0.6

G \ /V\A

(0

[s/] With composition theorem
Lour approach achieve e-DP °
where e = ¢; + €,
(D@ ®

Step 3. Re-generate

Step 1. Use MCMC to sample a good-
fl‘r‘rmg HRG T with privacy budget ¢, a random graph G
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( Sensn‘lvn“y Analysis

¥ Global sensitivity:

Au = Tgll[‘%‘XG llog L(T,G") — log L(T, G)|

¥ Auis O(logn) | K/

0 25000 50000 75000 100000
n
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Datasets

Network dataset statistics

Dataset #Nodes | #Edges | Max Degree Pair

polblogs 1,224 16,715 (351, 277)
wiki- Vote 7118 100,762 (1065, 773)
ca-Hep Ph 12,008 | 118,489 (491, 486)
ca-AstroPh | 18,772 | 198,050 (504, 420)

¥ All are real-life data
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Convergence Study on log £
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MCMC Convergence Study on log L
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Trace of log £ as a function of the number of MCMC steps,
normalized by n
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Degree distribution
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@ origin
£ hrg—0.1-e—0.9
4- hrg-0.5-e-0.5

1e+03 -
¢ hrg-0.9-e-0.1
[= £< spec-9-0.2-0.8 | Wiki-Vote
=
3 ~f dk2-500-0.01
1e+01 =

o

X
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~ Mean absolute error of top-k vertices
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Conclusion

# We propose to infer connection probabilities with
HRG for data sanitization under DP

# Our approach'’s sensitivity is O(logn)
# Direct applying exponential mechanism on the huge
space of HRG is prohibitively expensive. We

overcome this challenge via doing sampling HRG space
via MCMC

% Empirical experiments show our approach can
effectively preserve many statistical properties in
the network data
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