

Differentially Private Network Data Release via Structural Inference

Qian Xiao, NUS Rui Chen, HKBU Kian-Lee Tan, NUS

KDD 2014

Idea Spotlight

Perfect Queries -----> Perfect Answers

Idea Spotlight

Perfect Queries - Perfect Answers

Not always true if under Differential Privacy

Idea Spotlight

Perfect Queries - Perfect Answers

Not always true if under Differential Privacy

Queries not that Perfect

Good Answers + Privacy + Social Good

Why Privacy-aware Network Data Release ???

Increasing Demands on Network Data for Exploratory Data Analysis

- # Privacy Concerns
 - Social Contacts
 - Personal opinions
 - Private communication records

Why Privacy-aware Network Data Release ???

- * Emerging Privacy Standard :
 - Differential Privacy[Dwork06]
 - Resilient to attacks with arbitrary side information
 - Worst case guarantee
 - Rigorous mathematical formulation
- # Prevalent Randomization Techniques to generate noisy results while satisfying DP:
 - Laplacian noise(for counting queries)
 - Exponential mechanism(for selecting discrete query outcomes)

Problem Statement

- * Given an original simple graph G = (V, E), find a random sanitized graph \tilde{G} to release
- # The goal is to
 - Approximate G's statistical properties of in \widetilde{G} as much as possible to preserve essential structural information
 - Satisfy edge Differential Privacy(e-DP) to hide each user's connections to others

Problem Statement

DP requires:

A randomized algorithm \mathcal{A} is ϵ -differential privacy if for any two neighboring graphs G and G', and for any output $O \in Range(\mathcal{A}),$ $\Pr[\mathcal{A}(G) \in O] \leq e^{\epsilon} \times \Pr[\mathcal{A}(G') \in O]$

Outcome with my connection in G

Outcome without my connection in G'

Output distribution shall not change much if any

single edge is missing, that is, the sensitivity of \mathcal{A} shall be limited.

Problem Statement

 To find a reasonable balance between privacy and data utility, we need to limit the query sensitivity (the dependence of noise required by DP on network size n)

State-of-the-art Approaches

★ To satisfy *e*-DP:
★ dK-2 series:
Global sensitivity is O(n) [Sala11, Wang13]

• Spectral graph analysis: Global sensitivity is $O(\sqrt{n})$ [Wang13]

Our Approach: Differentially Private Network Data Release via Structural Inference

- Transform edges to connection probabilities via Hierarchical Random Graph(HRG)
- * Our approach's sensitivity is $O(\log n)$

Outline

- # Motivation
- # Hierarchical Random Graph(HRG)
- # Structural inference under DP
 with MCMC
- # Sensitivity Analysis
- #Experimental evaluation
- # Conclusion

Hierarchical Random Graph

Why HRG?

 $\mathcal{L}(T_1) = 0.0433...$

14

Why HRG?

Likelihood of an HRG T:

$$\mathcal{L}(T, \{p_r\}) = \prod_{r \in T} p_r^{e_r} (1 - p_r)^{n_{Lr} n_{Rr} - e_r}$$

An HRG example in [Clauset07,08]

HRG space $\mathbb T$

HRG space $\mathbb T$

Outline

Motivation

- # Hierarchical Random Graph(HRG)
- # Structural inference under DP
 with MCMC
- # Sensitivity Analysis
- #Experimental evaluation

Conclusion

What to do with HRG? MCMC process - 1 1/9

#

Randomly pick an arbitrary HRG as the initial state T_0

c

 $\mathcal{L}(T_1)=0.0433...$

d

b

 $\mathcal{L}(T_0) = 0.00165...$

1

d

C $\mathcal{L}(T_2)=0.00165...$

What to do with HRG? MCMC process - 2

What to do with HRG? MCMC process - 3

Outline

Motivation

- # Hierarchical Random Graph(HRG)
- # Structural inference under DP with MCMC
- # Sensitivity Analysis
- #Experimental evaluation
- # Conclusion

Sensitivity Analysis

Global sensitivity: $\Delta u = \max_{T \in \mathbb{T}, G, G'} |\log \mathcal{L}(T, G') - \log \mathcal{L}(T, G)|$

 $#\Delta u$ is $O(\log n)$

Outline

Motivation

- # Hierarchical Random Graph(HRG)
- # Structural inference under DP with MCMC
- # Sensitivity Analysis
- # Experimental evaluation
- # Conclusion

Datasets

Network dataset statistics

Dataset	#Nodes	#Edges	Max Degree Pair
polblogs	1,224	16,715	(351, 277)
wiki-Vote	7,115	100,762	(1065, 773)
ca- $HepPh$	12,008	118,489	(491, 486)
ca- $AstroPh$	18,772	198,050	(504, 420)

All are real-life data

MCMC Convergence Study on $\log \mathcal{L}$

Trace of $\log \mathcal{L}$ as a function of the number of MCMC steps, normalized by n

MCMC Convergence Study on $\log \mathcal{L}$

Degree distribution

Shortest path length distribution

Overlap of top-k vertices

Mean absolute error of top-k vertices

Outline

Motivation

- # Hierarchical Random Graph(HRG)
- # Structural inference under DP
 with MCMC
- # Sensitivity Analysis
- #Experimental evaluation
- # Conclusion

Conclusion

- We propose to infer connection probabilities with HRG for data sanitization under DP
- # Our approach's sensitivity is $O(\log n)$
- Direct applying exponential mechanism on the huge space of HRG is prohibitively expensive. We overcome this challenge via doing sampling HRG space via MCMC
- # Empirical experiments show our approach can effectively preserve many statistical properties in the network data

References

- C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, 2006.
- # A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao. Sharing graphs using differentially private graph models. In IMC, 2011.
- Y. Wang, X. Wu, and L. Wu. Differential privacy preserving spectral graph analysis. In PAKDD, 2013.
- Y. Wang and X. Wu. Preserving differential privacy in degree-correlation based graph generation. TDP, 6(2), 2013.
- E. Shen and T. Yu. Mining frequent graph patterns with differential privacy. In SIGKDD, 2013.
- A. Clauset, C. Moore, and M. E. J. Newman. Structural inference of hierarchies in networks. In ICML on Statistical Network Analysis, 2007.
- * A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the prediction of missing links in networks. Nature, 453:98-101, 2008.

Thank you !

