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Abstract. The energy industry has recently begun using smart meters to take
fine-grained readings of energy usage. These smart meters enable flexible time-
of-use billing, forecasting, and demand response, but they also raise serious user
privacy concerns. We propose a novel technique for provably hiding sensitive
power consumption information in the overall power consumption stream. Our
technique relies on a rechargeable battery that is connected to the household’s
power supply. This battery is used to modify the household’s power consumption
by adding or subtracting noise (i.e., increasing or decreasing power consump-
tion), in order to establish strong privacy guarantees in the sense of differential
privacy. To achieve these privacy guarantees in realistic settings, we first investi-
gate the influence of, and the interplay between, capacity and throughput bounds
that batteries face in reality. We then propose an integrated method based on noise
cascading that allows for recharging the battery on-the-fly so that differential pri-
vacy is retained, while adhering to capacity and throughput constraints, and while
keeping the additional consumption of energy induced by our technique to a min-
imum.

1 Introduction

The energy industry has recently begun using smart meters to take fine-grained read-
ings of energy usage, enabling flexible time-of-use billing, forecasting, and demand
response [8]. The underlying incentive for energy providers is the ability to accurately
match energy consumption with its generation in a fine-grained manner, thereby sav-
ing electricity and enabling dynamic tariffs with higher rates during peak consumption
times. Moreover, the fine-grained metering of energy consumption enables more accu-
rate forecasts, which is expected to lead to an overall saving of energy. Smart metering
is currently being widely promoted in the United States, European Union, and Asia as
part of the modernization of the electronic grid [1,2]; to this end, $4.3 billion dollars has
been allocated by the U.S government for the smart grids [21], with similar programs
in progress in the EU and Asia.

In addition to all these undisputed advantages, smart meters also raise serious user
privacy concerns [5]: Smart meters provide highly accurate consumption data to the cor-
responding electricity provider. These data naturally include personal, privacy-sensitive
data, e.g., information about when certain devices were active.

If metering is performed sufficiently long in small time intervals, personal infor-
mation can be disaggregated from the overall consumption stream. For instance, non-
intrusive appliance load monitoring techniques [15,18,19] already allow for identifying



common electronic devices such as personal computers, laser printers, or light bulbs in
the overall consumption stream [7], and even to tell apart different TV programs [14].

To address these privacy concerns, privacy-aware solutions for smart metering are
currently receiving increasing attention both in the research community and in ongoing
standardization processes, e.g., [23]. In fact, the current absence of accepted solutions
to tackle these privacy concerns caused a deadlock in the mandatory deployment of
smart meters in the Netherlands [9], because of the common belief that smart metering
is necessarily privacy-invasive. In this paper, we join the line of research that is working
on changing this belief: we present a privacy-aware technique for smart metering that
achieves strong privacy guarantees while simultaneously preserving the promises of
smart metering.

1.1 Our Contributions

We propose a novel technique for provably hiding sensitive power consumption infor-
mation in the overall power consumption stream. Our technique relies on a rechargeable
battery that is connected to the household’s power supply, and that appropriately modi-
fies the overall consumption stream by suitably adding or subtracting noise, in order to
establish strong privacy guarantees in the sense of differential privacy.

In addition to economic considerations, any solution must respect the fact that a
battery adheres to hard resource constraints, such as its capacity (bounding the overall
amount of energy that can be stored) and its throughput (bounding the amount of energy
that can be charged/retrieved within a given time interval). Moreover, a battery will
naturally get depleted over time if it constantly provides energy that is used as noise; a
depleted battery will eventually put all privacy guarantees at stake. These limitations in
particular render existing general-purpose approaches infeasible, because they typically
require higher capacity and throughput than what a real-life battery can offer; moreover
privacy-aware battery recharging is not considered in these approaches.

To achieve strong privacy guarantees in such realistic settings, we propose a novel
technique for provably hiding sensitive power consumption information in the overall
power consumption stream, using a rechargeable battery as a buffer and applying Lapla-
cian noise to the consumption itself by either providing (discharging) or consuming
(charging) energy by the battery. We first investigate the influence of, and the interplay
between, capacity and throughput bounds of the battery to the overall approach (while
still ignoring battery recharging issues), and develop a technique that achieves privacy
guarantees in such resource-bounded settings. Since battery depletion is not prevented,
the privacy guarantees are naturally strongest if only metering over a short time interval
is considered, and they become weaker for longer time intervals.

We subsequently explore the more involved case of recharging the battery. The
complication which arises here is that recharging corresponds to additional energy
consumption, which is observable to the adversary by assumption. Thus simply fully
recharging the battery enables an observer to determine the amount by which we are
recharging the battery, causing our differential privacy guarantees to degenerate over
time, similar to the case without battery recharging. To counter this effect, we propose
an integrated method that allows for recharging the battery on-the-fly so that differen-
tial privacy is retained, while adhering to capacity and throughput constraints, and while
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keeping the additional consumption of energy induced by our technique to a minimum.
The central idea is to follow a novel cascading approach for generating differentially
private noise: we consider the added noise for recharging the battery as a function that
one makes differentially private by appropriately adding (a much smaller amount of)
noise. To avoid that this small amount of noise is observable, we impose the assump-
tion that this small additional energy consumption can be hidden in the overall con-
sumption stream. Among other options, this can be achieved by continuously drawing
a small, constant amount of energy that is sufficient for the recharging process, and by
discarding all energy that exceeds the actual noise demand for recharging the battery in
a differentially private manner.1

We show that meaningful differential privacy guarantees in such resource-bounded
settings can be achieved, in particular using privacy-aware battery recharging. More
precisely we focus on a simplistic model that captures all aspects necessary for ana-
lyzing the benefits of privacy-aware battery-recharging in smart metering. The privacy
guarantee is based on hiding individual device activations in a stream of smart meter
data. A more comprehensive model that additionally captures activation patterns of de-
vices over several timeslots or the privacy of consumer behavior patterns is considered
future work. Moreover, we provide a correspondence between the parameters of the
battery such as capacity and throughput with the obtained privacy guarantees, and we
evaluate the applicability of our techniques by means of examples.

1.2 Further Related Work

Privacy concerns in smart metering have been studied in several existing works in the
recent past. Anderson and Fuloria [5, 6] analyze the security economics of electricity
metering, in particular the conflicting interests among stakeholders. Quinn [24] and
Cavoukian et al. [8] investigate legal aspects of smart meters. The privacy of billing is
investigated by Danezis et al. [17,26] and Molina-Markham et al. [22]. They in particu-
lar identify the private information that current meters might leak, and propose protocol
adaptations for anonymizing individual measurements. In contrast to our work, these
works require a trusted third party for anonymization, as well as changes in the exist-
ing communication protocols; moreover, in contrast to differential privacy guarantees,
the resulting privacy assurances and the overall consequences are less clear. Similarly,
Garcia and Jacobs [13] propose to use homomorphic encryption to achieve privacy for
individual measurements, but the lack of a proper perturbation of the aggregate does not
make the result differentially private, and the resulting privacy interpretations are again
unclear.

Prior work on differential privacy in smart metering or on the smart use of batteries
to achieve privacy guarantees comprises [3, 4, 10, 12, 17, 20, 25, 27, 28].

The paper that we consider most closely related to ours is the promising contribution
of Acs et al. [4]. They were first to propose the smart use of a battery in order to achieve
and rigorously show differential privacy guarantees. In contrast to our work, they do
not consider battery recharging, and hence only obtain meaningful privacy guarantees

1 We stress that we wish to avoid wasting any energy in general. Our solution discards only the
small amount of energy that arises for generating the noise of the battery recharging process.
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if battery exhaustion is not an issue, and hence if metering is performed over a short
period of time. Moreover, the magnitude of noise that they apply in their Laplacian
technique depends on which appliances will be activated in the stream in the future,
which only works in settings in which future activations can be accurately predicted, or
at least reasonably estimated.

Papers that strive for differential privacy guarantees, yet without considering a bat-
tery (and hence in particular without the corresponding benefits gained from privacy-
friendly recharging) include [3, 10, 25, 27]. Acs and Castelluccia [3] use aggregation
over a large number of smart meters, add noise to the smart meter output, and encrypt
the result before delivery to the energy provider. Danezis et al. [10] propose to add noise
to customer bills to hide the user consumption behavior. Rastogi and Nath [25] pursue a
similar approach but add noise in a distributed manner to improve performance. These
approaches require the currently deployed smart meters to be replaced by new, prov-
ably trustworthy ones. Shi et al. [27] investigate untrusted aggregators of data. Their
approach induces a separation between billing and the actual consumption of electric-
ity; this allows for cheating behaviors, e.g., by applying noise with a slightly positive
attitude, corresponding to seemingly increased energy consumption.

The use of a battery for privacy-preserving smart metering is discussed in [20, 28].
Varodayan and Khisti [28] consider a simplistic model where both the battery and the
load of the appliances have Boolean state; differential privacy is not considered there.
McLaughlin et al. [20] propose to radically smooth the consumption level to counter
some common techniques for non-intrusive appliance load monitoring techniques. We
consider this a promising approach; however, it currently still lacks any formalized
privacy guarantees.

1.3 Outline of the Paper

In Section 2, we review the concept and the definition of differential privacy. Section 3
presents our model of privacy-aware smart metering in the presence of a resource-
bounded battery. Section 4 investigates differential privacy guarantees in such resource-
bounded settings, yet without taking battery recharging into account. Section 5 proposes
our technique for privacy-aware battery recharging, and establishes corresponding dif-
ferential privacy guarantees. Section 6 highlights the relationship between the individ-
ual parameters (such as the battery’s resource constraints and measurement times) and
the obtained privacy guarantees, and explores two concrete use cases. Section 7 dis-
cusses our guarantees and the practical feasibility of our approach. Section 8 concludes.

2 Preliminaries

In this paper we use a variant of differential privacy, as introduced in [11], as a mea-
surement for the amount of private information leaked by a smart meter. Differential
privacy was originally invented as a measurement for the amount of information leaked
by answering a statistical query to a database. The notion of differential privacy that we
use is approximate differential privacy, as introduced in [12]. In contrast to differential
privacy, approximate differential privacy allows for an additional error δ.
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Definitions:
∆t Time interval between measurements.
ti Point in time defined by ti = t0 + i · ∆t.
D Set of all possible devices.
Di Set of all active devices in i’th timeslot.
Φ Stream of active devicesD1,D2, . . .

f (Di) Consumption of all devices inDi.

F(Di) Noisy version of f ; no resource bounds.
Fb(Di) F with throughput bounds, and ≥ 0.
F(Di) F with capacity/throughput bounds.

= load measured by the smart meter.
bl(i) Battery level at time ti.
∆bl(i) Battery charging/discharging in step i.
∆ f Sensitivity of the function f .

Fig. 1. Notation overview, not including notation for privacy-aware battery recharging (Section 5).

In the original setting of statistical databases, (approximate) differential privacy in-
tuitively ensures that adding a single entry to the database (or deleting one from it) does
not significantly change the answer given to differentially private statistical queries.
Usually this is achieved by adding noise to the output. From observing the (noisy)
answer to the query, a passive observer cannot determine whether a specific entry is in-
cluded in the data set or not, no matter which additional information an observer might
possess about other entries.

The main difference between the data base setting and the smart meter setting is
that we are not interested in single readings of a smart meter, or, more formally, single
applications of a function to a specific data set. Instead, we wish to apply a function
to a stream of data. We hence extend the basic definition of (approximate) differential
privacy to streams in a standard way, similar to [16].

Definition 1 ((ε, δ)-Differential Privacy on Streams). A probabilistic algorithm F :
P(D)→ R for a setD provides (ε, δ)-differential privacy on streams if for all (possibly
countably infinite) streams Φ,Φ′ of sets Dk,D

′
k ⊆ D, differing in at most one element

d ∈ D at one point i and all sets S of finite and countably infinite streams over R,

Pr[F(Φ) ∈ S ] ≤ eε · Pr[F(Φ′) ∈ S ] + δ,

where with F(Φ) we denote the stream we get when applying F to each element of the
stream Φ individually. The probability is taken over the randomness of F.

The smart meter measures the energy load sum in every time interval, soD corresponds
directly to the set of all devices, whileDk andD′k correspond to the devices active in a
particular time slot.

3 Privacy-Aware Smart Metering

In this section we present our model of privacy-aware smart metering by means of a bat-
tery. We introduce further notation used in the paper, specify the notion of a household,
and define the information gained by the smart meter. We finally define two constraints
that we focus on in this paper: the battery’s resources throughput and capacity.
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3.1 Notation

A household, together with its appliances, is represented by a set of possibly active
devices D. We assume this set to be finite, fixed and known to adversaries, i.e., we are
able to provide strong privacy guarantees even ifD is known to the adversary. A smart
meter measures the energy load on a regular basis. We denote the time interval between
two measurements of the smart meter with ∆t. Thus, for our model it suffices to consider
a starting time t0 and times ti = t0 + i · ∆t for all natural numbers i ∈ N.

We assume for simplicity that devices can only be activated/deactivated at times
ti. Thus, a device can be either active (consuming energy) or inactive (not consuming
energy) throughout the whole interval. We denote the devices that are active in between
ti−1 and ti as Di ⊆ D. We write Φ = [D1,D2, . . .] for the list/stream of active devices
over time. This assumption does not weaken our guarantees: if a device is only partially
active in between two time slots, its consumption will be lower (and deviate from the
expected consumption), which makes it harder to link the information to the device.

The consumption function f : D → R assigns to each device d ∈ D the amount
of energy load it consumes during one time slot (of length ∆t). We assume that the
consumption of devices d does not vary over time, so f (d) is independent of the time
slot i in which the device is active. Although this simplification is in contrast to tome
attacks that rely on specific patterns of devices, we can model devices with varying
consumption for different time slots by adding one device for each consumption level.
The net consumption of all devices in a set X ⊆ D is expressed by leveraging the
function f to the powerset ofD, i.e., f : P(D)→ R, with f (X) =

∑
d∈X

f (d).

This quantity is the final output the smart meter can read if no noise is added. To
achieve differential privacy, we add noise to the output of f . Without considering the
limitations of our battery at this stage, we define a probabilistic function F : P(D)→ R
with F(X) = f (X) + r with r ← Lap

(
∆ f
ε

)
, i.e., where r is the noise we add to f (X).

In our model this noise is drawn from a battery. We denote the battery level at the
end of a time slot i (i.e., at time ti) with bl(i). Thus, the change during a time slot is
denoted ∆bl(i) = bl(i) − bl(i − 1).

3.2 Modeling Throughput Restrictions

A battery’s throughput denotes the amount of energy we can draw out of the battery
or recharge into it during one time slot. Since we use the battery only for generating
the Laplacian noise that we add to the net consumption, this means that the throughput
constitutes an inherent limit for the amount of noise that can be added in one step.
For simplicity reasons the battery behavior is considered linear, i.e., the throughput is
independent of its current energy level. In practice this can be achieved, e.g., by using
a slightly larger battery and ensuring that it is does not reach the non-linear zones.

The Laplacian noise added by F can, although with small probability, reach values
of arbitrary magnitude, which cannot be achieved in deployed solutions. We thus define
a throughput-respecting function Fb based on F that takes into account the throughput
bound b of our battery. Moreover, we extend Fb to its 0-bounded variant Fb by cap-
ping the load function for the smart meter at 0; this models that we do not permit to
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sell, discard or waste energy for economical reasons, which in particular excludes triv-
ial approaches that consume enormous amounts of energy to boost the application of
noise.2

Definition 2 (Throughput-respecting and 0-bounded variant of F). Given a func-
tion F with F(x) = f (x) + R for a deterministic function f and a random variable R.
Given a bound for the throughput b, we define the throughput-respecting variant Fb of
F as follows:

Fb(x) =


F(x) if |R| ≤ b

f (x) + b if R > b

f (x) − b if − R > b.

We define the 0-bounded variant Fb of Fb as Fb(x) = max(0, Fb(x)).

3.3 Adding Capacity Restrictions

A battery not only limits the energy output during a specific time interval ∆t, but also
the total amount of stored energy: its capacity. For the sake of simplicity we consider
the capacity to be a fixed value c that does not change over time and that also does not
depend on the load drained out of the battery.3

The actual output we provide and that is being transmitted by the smart meter de-
pends on the battery’s capacity: If the battery is exhausted or fully charged, we natu-
rally cannot add noise in the respective direction to the net load of our devices anymore.
Building upon Fb as in Definition 2, we define an overall, bounded mechanism F that,
starting with an initial battery level bl(0), adds noise only as long as the capacity is not
exceeded in either direction. As soon as the capacity is exceeded, F stops adding noise
and output the net demand f of our devices instead. The output of F constitutes the
output that is transmitted to the energy provider by the smart meter.

Definition 3 (Bounded Mechanism). Given a function F with F(x) = f (x) + R for a
deterministic function f and a random variable R, a capacity bound c and a throughput
bound b, we define the corresponding bounded mechanism F as follows, where bl(i− 1)

is the battery level before step i, Ri the noise added by Fb during step i and sk =
k∑

j=1
R j

the sum of all noise added until step k:

F(Di) =

 f (Di) if ∃k ≤ i. sk > c − bl(0) ∨ −sk > bl(0)
Fb(Di) otherwise.

The new battery level is bl(i) := bl(i − 1) + (F(Di) − f (Di)).

2 Selling electricity would be an alternative. However, an accurate treatment would additionally
require a detailed cost model; moreover selling electricity after drawing it from the provider is
typically not economical. We thus do not further consider this case.

3 In practice, the amount of energy that a battery can provide usually is slightly smaller when
under heavy load; we ignore this here.
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As soon as the capacity is exceeded, we are facing a situation where our privacy guar-
antees are at stake. We can, however, give an upper bound for the probability that this
happens and integrate it into the overall privacy result that we derive in the upcoming
section.

4 Privacy-Aware Smart Metering (Without Battery Recharging)

In this section we investigate the privacy guarantees of our bounded mechanism F,
i.e., the privacy guarantees that we obtain in a resource-bounded scenario. To this end,
we investigate which probabilities influence the statistical distances between F and Fb
(the influence of throughput constraints) as well as between Fb and F (the influence of
capacity constraints), and develop concrete bounds for these probabilities, depending
only on the throughput and capacity values of the battery as well as the magnitude of
the noise (specified by ∆ f and ε1). Finally, we combine these results in order to show
that F is (ε1, δ1)-differentially private for an arbitrary ε1 and for concrete bounds for δ1,
which depend on the constraints of our battery and the chosen value for ε1. We stress
that aside from the fact that the battery can be charged when positive noise is added,
battery ”recharging”, i.e., restoring the battery status to a secure value, is not considered
in this section. Thus, we can reach situations in which the battery gets depleted (then
yielding trivial privacy guarantees with ε1 or δ1 greater than 1). Battery recharging, and
the benefits that can be drawn from it, are addressed in Section 5.

4.1 Differential Privacy and Statistical Distance

We start by exploring the relation between the statistical distance of two functions and
differential privacy. First, recall that if our battery was unbounded, we could simply
realize the function F by computing F(Di) = f (Di) + Lap

(
∆ f
ε1

)
for sets of devicesDi ⊆

D, where the Laplacian noise is drawn from the (unbounded) battery and where ∆ f =

max
d∈D

f (d) is the sensitivity of the function f to which we add the noise. Adding noise

in this manner corresponds to the common approach4 to guarantee (ε, δ)-differential
privacy with δ = 0. For λ = ε

∆ f , the noise added by the standard technique is Lap( 1
λ
),

the scaled symmetric exponential distribution with standard deviation of
√

2 1
λ

with a

variance of 2
(
∆ f
ε

)2
. The probability density function is p(x) = λ

2 · e
−|x|·λ.

We now relate this case to our setting with a resource-bounded battery. To this end,
we first show that differential privacy can be transferred between two functions (for
increasing values of δ), provided that their statistical distance is sufficiently small.

Definition 4 (Statistical Distance). The statistical distance between two distributions
X and Y over a set U is defined as

d(X,Y) = max
S⊆U

(|Pr[X ∈ S ] − Pr[Y ∈ S ]|).

4 For this work we only consider Laplacian noise. Applying other, e.g., already bounded noise
distributions or other masking techniques is considered future work.
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The following lemma relates differential privacy and the statistical distance.

Lemma 1. Given two probabilistic functions F and G with the same input domain,
where F is (ε, δ1)-differentially private. If for all possible inputs x we have that the
statistical distance on the output distributions of F and G is: d(F(x),G(x)) ≤ δ2, then
G is (ε, δ1 + (eε + 1)δ2)-differentially private.

The proofs of all lemmas and theorems are postponed to Appendix D. We note that this
lemma is not tailored to our setting of streams, but applies to arbitrary types of inputs.

4.2 Privacy Guarantees for Throughput Restrictions

For relating the case with unbounded throughput and the throughput-bounded case,
we first determine the statistical distance between F and Fb, and subsequently exploit
Lemma 1 in a suitable manner. We first observe that if one does not consider streams
but only individual timeslots, Fb differs from F if and only if the randomness added by
F is of a larger magnitude than the throughput bound b. Consequently, the statistical
distance between F and Fb can be bounded as follows:

Lemma 2. Given an (ε, δ)-differentially private function F with F(x) = f (x) + R for a
deterministic function f and a random variable R. Then for all x, the statistical distance
between F and Fb is at most d(F(x), Fb(x)) ≤ Pr [|R| > b] .

This lemma reasons about single elements, or more precisely, about streams of length 1.
However, the probability to exceed the throughput (and thus leak information about the
current input set) at one step is independent from all previous and future steps in time.
For our results on differential privacy, it is thus sufficient to concentrate on the proba-
bility that the throughput is exceeded in exactly that point in time in which the streams
might differ. Exceeding the throughput in any other step does not reveal additional infor-
mation that helps to identify the input string from the perspective of differential privacy.
We now derive a concrete bound for this probability, depending on ε, the sensitivity ∆ f
of f , and the throughput bound b.

Lemma 3. Given a function F with F(x) = f (x) + Lap (∆ f /ε) for a deterministic
function f , and a throughput bound b ∈ R+, the probability that the Laplacian noise

Lap (∆ f /ε) applied to f is larger than b is bounded by Pr
[∣∣∣∣Lap

(
∆ f
ε

)∣∣∣∣ > b
]

= e−
b·ε
∆ f .

Moreover, if Fb is (ε, δ)-differentially private, then also its 0-bounded variant Fb is
(ε, δ)-differentially private, because one can, without further knowledge, compute Fb(x)
from Fb(x) for every x.

4.3 Privacy Guarantees for Capacity Restrictions

Including bounds for the capacity requires an approach beyond considering single steps
only, since the probability to exceed the capacity in step i also depends on the noise
added in previous steps. In fact, if one considered an arbitrarily long time interval dur-
ing which random Laplacian noise is added, any finite capacity would naturally be ex-
ceeded (if there is no recharging). We exclude this case, similar to existing prior works,
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by restricting us to consumption streams of a certain length n. We exploit how to over-
come this restriction by tackling the problem of privacy-aware battery recharging during
runtime in Section 5.

Similar to how we deal with throughput restrictions, we exploit the statistical dis-
tance (now on streams of length n) and subsequently apply Lemma 1. To combine this
result with our result on throughput, we immediately bound the distance between Fb
and F: These functions differ on consumption streams of length n if and only if the ca-
pacity is exceeded at least once. Recall that the battery is only used to generate noise
added to the net consumption f . We first assume that the battery level is optimally
placed at bl(0) = c

2 at the beginning of our time interval. Consequently, the probability
to exceed the capacity is bounded by the probability that the sum of the noise added in
all steps exceeds c

2 .

Lemma 4. Given an (ε1, 0)-differentially private function F with F(x) = f (x) +

Lap
(
∆ f
ε1

)
. If the corresponding bounded mechanism F has capacity bound c and

throughput bound b, then for all consumption streams Φ of length n, the statistical
distance between F and Fb when starting with battery level bl(0) = c

2 is at most

d(F(Φ), Fb(Φ)) ≤ Pr

∃k ≤ n

∣∣∣∣∣∣∣∣
k∑

j=1

Fb(D j) − f (D j)

∣∣∣∣∣∣∣∣ > c
2

 .
Before we can derive an estimate for exceeding the capacity, we have to deal with
the following additional complication. By definition of F, no additional noise is added
as soon as the capacity is exceeded. If this happens before the point where the two
streams might differ, all privacy guarantees are lost by definition. If it happens at or
after the point where the two streams might differ, the guarantees also break down
because exceeding the capacity means leaking the total amount of noise generated by
the battery; this information is enough for an adversary to determine which stream
he has observed. Consequently, it does not suffice to give a bound for the probability
to exceed the capacity in one of the steps, but we have to consider all steps at once.
Further, recall that we might cap the noise not only at the throughput bound b, but also
if the load measured by the smart meter would be negative. In this case, the expected
value of the noise would be different than zero. We hence derive an estimate for the
probability to exceed the capacity at least once, which we can successfully bound in
the following lemma:

Lemma 5. Given an (ε1, 0)-differentially private function F with F(x) = f (x) +

Lap
(
∆ f
ε1

)
. For all t > 0, the probability that the Laplacian noise exceeds the capac-

ity for c ≥ 2(n + t) · ∆ f
ε1

in at least one of the n steps is bounded by

Pr

∃k ≤ n

∣∣∣∣∣∣∣∣
k∑

j=1

Fb(D j) − f (D j)

∣∣∣∣∣∣∣∣ > c
2

 ≤ 2n
t2 .

This estimate constitutes a bound for the statistical distance between Fb and F.
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4.4 Obtaining an Overall Privacy Guarantee

We now combine our results on throughput and capacity constraints to obtain an overall
result on differential privacy for F. We consider streams of length n and also impose the
assumption that the battery level is set to bl(0) = c

2 at the beginning. The following
theorem follows directly from the results we have shown in this section.

Theorem 1. Given an (ε1, 0)-differentially private function F. If the corresponding
bounded mechanism F has capacity bound c and throughput bound b, and bl(0) set
to c

2 , then F is (ε1, δ1)-differentially private on all consumption streams of length n with
δ1 = (eε1 + 1) · (Pb + Pc) where Pb is the statistical distance between F and Fb and Pc

is the statistical distance between Fb and F.

Obtaining concrete bounds for differential privacy can be achieved by plugging in val-
ues for Pb (Lemmas 2 and 3) and Pc (Lemma 4 and 5).

5 Privacy-Aware Smart Metering with Battery Recharging

In the last section, we have established privacy guarantees for settings in which bat-
tery recharging is not considered. In this section, we propose an integrated method that
allows for recharging the battery on-the-fly, so that meaningful privacy guarantees for
more comprehensive use cases can be achieved.

We start with a general explanation what makes privacy-aware battery recharging in
the context of smart metering a sophisticated task. After that, we describe our solution
to overcome the underlying problems, and which additional assumptions we have to
impose.

The General Problem of Privacy-aware Battery Recharging We develop a privacy-
preserving technique for recharging the battery at runtime, i.e., while using the battery
for generating noise. Ideally we would simply recharge the battery level to the target
level of c

2 again every n steps. This would mean to increase or decrease the overall
energy consumption accordingly, i.e., by the difference of the current and the target bat-
tery level. However, recall that this additional energy consumption is part of the overall
energy consumption, which is measured by the smart meter, and hence observable by
the adversary. Consequently, an adversary is able to determine the amount by which we
are recharging the battery (provided that he knows the sets of activated devices for the
recharging step). Thus, an adversary that has sufficient knowledge about the observed
consumption stream can exploit this information to compute the noise added in step
i as follows: In every step, it computes the difference between the observed load and
the expected load. Except for step i, where the streams differ, this is exactly equal to
the added noise, and hence allows for keeping track of the battery level. As soon as
the difference between this forecast of the battery level and the actual battery level is
leaked, it is possible to compute the amount of noise added in step i with probability 1.
This information is sufficient to distinguish the streams, and hence to break differential
privacy.
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Our Solution: Differentially-private Noise Generation via Cascading We pursue the
following idea for countering this effect, which constitutes a novel cascading approach
for generating differentially private noise: we consider the amount of recharged en-
ergy as a function, and make this function differentially private by appropriately adding
noise. We show that the additional noise is much smaller than the noise we add directly
to the consumption, essentially since the new noise is only used every n steps instead
of every step. If desired, this process can be continued, by making this smaller noise
differentially private again, and so on. In this paper, we do not formalize this further,
i.e., we work with a cascade of depth one.

In a nutshell, this cascading approach transforms the problem of generating a large
amount of noise that must be unobservable for an adversary into generating a much
smaller, unobservable amount of noise. However, this smaller amount of noise still cor-
responds to energy consumption that is measured by the smart meter and thus observ-
able by the adversary; hence if we use the battery itself to generate this additional noise,
we still leak the amount of noise added by F in the long run: Assume we restore the bat-
tery level to a state c

2 + r for a noisy value r. The randomness r hides all but a small part
of the information about noise added to the net load in the critical time step i. When we
recharge the battery again after n additional steps, information about r is leaked. After
recharging the battery sufficiently often, the value of r can be estimated precisely with
a high probability, and differential privacy breaks down.

In order to circumvent this inherent problem, we impose the assumption that the
amount of additional noise can be hidden in the overall consumption using appropriate
techniques. We outline two possible techniques for achieving this in practice. First, one
can assume the existence of a distinct, small secondary energy source, e.g., home-owned
solar panels, that is unobservable by the adversary and solely used for the recharging
process. Second, if we drop the assumption that we do not discard any energy at all,
we can simply continuously draw a small, constant amount of energy from the primary
source that is sufficient for the recharging process, and discard all energy that exceeds
the actual battery recharging demand. For simplicity of notation in the following, we
assume that this additional energy is stored in a distinct, small second battery, and then
used to recharge the primary battery as described below. (In practice, both batteries
would typically coincide.) We stress that the amount of energy that is wasted for the
recharging process only depends on the amount of secondary noise, but not on the
amount by which the (primary) battery is recharged.

5.1 The Battery Recharging Mechanism

We define the battery recharging mechanism Fc as follows: it builds on the definition
of F, but instead restores its energy every n steps. We additionally reserve an amount
binc = b of throughput. The total amount of throughput for the battery is thus increased
to btotal = b + binc = 2b, i.e., the total amount of throughput is twice as high as in the
restricted setting for n steps without battery recharging. When n steps have passed, we
compare the current battery level bl(i) with the target level c

2 . We do not try to hide the
approximate amount of energy that we need in order to restore the battery. The precise
value, however, is hidden by Laplacian noise. We postpone the precise definition of Fc

to the Appendix.
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5.2 Differential Privacy of the Battery Recharging Mechanism

To obtain a privacy guarantee for Fc, we employ a conservative approach: We first show
that when ignoring the leakage due to recharging, Fc does not leak more information
than F, for which we already gave a privacy guarantee. Then, we calculate the leakage
due to recharging and combine both results. An outline of the proof, together with the
Lemmas that lead to our final result, can be found in the Appendix

Finally we present the main theorem of this paper. It states that the battery-
recharging mechanism Fc constructed in Definition 5 is indeed (ε1 + ε2, δ1 + δ2)-
differentially private on infinite consumption streams for arbitrary values ε1 and ε2,
and we give upper bounds for the values of δ1 and δ2, depending on the sensitivity of
f (∆ f ), the privacy guarantee itself (ε1, ε2) and the resource limits of our primary (b, c)
and secondary battery (c2nd).

Theorem 2. Given an (ε1, 0)-differentially private function F with F(x) = f (x) +

Lap
(
∆ f
ε1

)
for a deterministic function f and functions G and G as in Definition 6. If the

corresponding capacity-regulating mechanism Fc, when using recharging noise with
distribution Lap

(
∆ f
ε2

)
has throughput bound btotal = 2 · b = 2 · binc and capacity bound

ctotal = c + c2nd, and given a secondary battery that provides at least an amount of
c2nd energy every n steps, then for every initial battery level bl(0), Fc is (ε1 + ε2, δ)-
differentially private on (possibly infinite) consumption streams with

δ = (eε1 + 1) · (Pb + Pc) + (eε2 + 1) · Pc2nd , where

– Pb is the statistical distance between F and Fb.
– Pc is the statistical distance between Fb and F.
– Pc2nd is the statistical distance between G and G.

We can formulate several instantiations of this theorem, e.g., by combining the theorem
with the concrete bounds for the statistical distances proven in this paper. A corollary
for Theorem 2 can be found in the Appendix.

5.3 Interpretation

We stress that the bounds derived in these results are not necessarily tight, but they al-
low for a flexible adjustment to different situations. For instance, we can freely decide
the amount of noise to be added to the consumption, or to exclude certain devices from
the set of devices we wish to hide, e.g., devices with a very high consumption (in this
case we just compute the sensitivity ∆ f over the subset D∗ as ∆ f = max

d∈D∗
f (d)). This

enables us to derive strong privacy guarantees for those devices that one considers par-
ticularly privacy-critical, such as TV, Laptop or other electronic media. Concentrating
on particular devices does not require any changes to the physical installation of the
battery, but solely a different treatment of the required noise.

If one increases the secondary battery’s capacity c2nd, we can further reduce the
amount of energy that needs to be drawn unobservably, e.g., by means of a secondary
energy source: We can compute the probability that the secondary battery is exceeded
over m iterations and get the same privacy guarantee for a smaller share of capacity
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Fig. 2. Amount of capacity and throughput required, depending on the parameters ε, δ and n.

per iteration. Using this technique and the bounds presented in this paper, the costs for
restoring the battery status can (asymptotically) be reduced to 2∆ f

ε2
for each restoring

process.

6 Evaluation and Concrete Use Cases

In this section, we further highlight the relationship between the individual parameters
(such as the battery’s resource constraints and measurement time) and the obtained pri-
vacy guarantees. For the sake of illustration, we moreover explore a concrete, realistic
use case and analyze which privacy guarantees can be achieved under which resource
assumptions.

6.1 Evaluation

Figure 2(a) displays the relationship between the required battery capacity and the pri-
vacy parameter δ that can be guaranteed by applying Lemma 5. Similarly, Figure 2(b)
shows the relationship between this capacity and the number of steps n for which the
capacity has to be provided. In Figure 2(c) we depict the relationship between battery
throughput and the obtained privacy guarantees. The values δ in the graphs denote the
amount of privacy loss we face for the considered parameters (see Theorem 2). For the
graphs, we divided the values for capacity and throughput by the sensitivity ∆ f of our
consumption sum function. This allows to reason about the relation of the different pa-
rameters independent from the appliances themselves. If, e.g., a TV with a consumption
of 130W is to be hidden and we aim at ε1 = 0.33 and δ = 0.1, the battery has to have a
throughput of at least about 9 · 130W per step (time in between two readings).

6.2 A Concrete Use Case: Hiding TV Activation and Content

For the sake of illustration, we finally investigate the concrete use case of hiding a TV
device in the overall consumption stream. We consider three different TV devices with
different power consumptions, and we strive for two different security guarantees for
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each of these three devices: a) hiding TV activation, and b) hiding which TV program
is being watched (while potentially still disclosing that the TV was turned on).

We assume a standard American household with an average consumption of about
30 kWh per day, according to the U.S. Energy Information Administration. Within this
household, we consider the following three TV devices: (1) a 42” plasma TV with
335W, (2) a 29” CRT TV with 130W, and (3) a 19” LCD TV with 36W. In the fol-
lowing we write ∆1 f to denote the sensitivity we have when to hide the plasma TV, and
similarly ∆2 f for the CRT TV and ∆2 f for the LCD TV. We will work with the following
parameters: The smart meter sends the current load sum every ∆t = 5 minutes, which
corresponds to one of the most commonly used time intervals in smart meterings [20].
We consider an off-the-shelf rechargeable battery, and we assume that the throughput
of the battery is sufficiently high so that the battery can be fully discharged within one
hour. We consider an additional resource consumption of 3 kWh per day to recharge the
secondary battery.

Hiding TV Activation In this setting, we wish to hide if the TV was activated or not.
This means that we calibrate the sensitivity ∆ f to the net load of the TV. Naturally, this
also hides which TV program is being watched. We show results for the case where only
the TV program is hidden in the following example. As a by-product, this approach also
hides all appliances that use at most as much energy as the TV.

For our computation we hence obtain the following parameters: ∆1 f = 335W · ∆t ≈
28Wh, ∆2 f = 130W · ∆t ≈ 11Wh, and ∆3 f = 36W · ∆t = 3Wh. The values for δ heavily
depend on the selection of ε. Note that the optimal choice of n and the optimal relation
of ε1 to ε2 also depend on ε; additionally the choice of n can influence the guarantees.
We aim to achieve a privacy guarantee of (0.33, 0.1)-differential privacy in this example;
hence we can choose ε1 ≥ 0 and ε2 ≥ 0 freely as long as ε1 + ε2 ≤ 0.33. We can even
choose n freely, which denotes the number of steps between consecutive rechargings.

We exemplarily show several sample calculations (the parameters ε1, ε2, and n have
been determined experimentally to obtain improved results for the individual scenar-
ios):

(1) For the 42” plasma TV with 335W, we set ε1 ≈ 0.13 and ε2 ≈ 0.20 and n to 60 (i.e.,
we restore the battery status every 5 hours). We then obtain (0.33, 0.1)-differential
privacy if one uses a battery with 11kWh or more.

(2) For the 29” CRT TV with 130W, we set ε1 ≈ 0.15 and ε2 ≈ 0.18 and n to 50 (i.e., we
restore the battery status every 4.17 hours). We then obtain (0.33, 0.1)-differential
privacy if one uses a battery with 3.7kWh or more.

(3) For the 19” LCD TV with 36W, we set ε1 ≈ 0.21 and ε2 ≈ 0.12 and n to 10 (i.e., we
restore the battery status every 50 minutes). We then obtain (0.33, 0.1)-differential
privacy if one uses a battery with 0.82kWh or more.

Hiding which TV Program is Watched In this setting, we wish to hide the actual TV
program that is being watched (but we do not intend to hide the activation of the TV
per se). The program displayed on a TV influences the energy consumption because
brighter scenes require a larger consumption of energy. We thus calibrate the sensitivity
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to the maximum difference between two TV programs, which is the difference between
displaying a white and a dark screen. Note that for our LCD screen we assume that
there is at least one non-black pixel, as otherwise the light bulb is turned off completely,
resulting in a significantly larger difference in terms of consumption. (If we wanted to
cover this case, we would have to use a larger value for the sensitivity.) Consequently,
the sensitivity now has to only account for the maximal difference in power consump-
tion of the individual TVs:

(1) For the 42” plasma TV with 335W, the maximal difference in power consumption
based on the program is at most 130W (obtained from a power consumption fact
sheet for the respective TV); thus ∆1 f ≈ 11Wh. We set ε1 ≈ 0.15 and ε2 ≈ 0.18
and n to 50 (i.e., we restore the battery status every 4.17 hours). We then obtain
(0.33, 0.1)-differential privacy if one uses a battery with 3.7kWh or more.

(2) For the 29” CRT TV with 130W, the maximal difference in power consumption
based on the program is at most 46W (fact sheet); thus ∆2 f ≈ 2.3Wh. We set
ε1 ≈ 0.19 and ε2 ≈ 0.14 and n to 10 (i.e., we restore the battery status every 50
minutes). We then obtain (0.33, 0.1)-differential privacy if one uses a battery with
1.2kWh or more.

(3) For the 19” LCD TV with 36W, the maximal difference in power consumption
based on the program is at most 2W (fact sheet); thus ∆3 f = 0.167Wh. We set
ε1 ≈ 0.26 and ε2 ≈ 0.07 and n to 10 (i.e., we restore the battery status every 50
minutes). We then obtain (0.33, 0.1)-differential privacy if one uses a battery with
0.04kWh or more.

7 Discussion

Adversary model In our model, in contrast to other solutions, the smart meter is not
trusted. We consider a smart-meter adversary that has access to the power consumption
of a household and that can make regular readings of this consumption. This adversary
is, in a sense, honest-but-curious. The battery can be bought and installed by the con-
sumer itself, without the need of any cooperation from the smart meter or the electricity
company.

Privacy guarantees With our solution we can give (mathematically) strong privacy
guarantees. However, the interpretation of these results is not trivial.

Formally we can only guarantee to hide a single activation of a single device. In
practice, a realistic adversary can not keep track of all other device activations, which
means that the uncertainty of an adversary covers more than one activation. However,
we can only expect to hide which device (from a set of not-too-greedy devices) was
activated and when. If the consumer in question follows a daily routine with almost no
variation, our adversary can find out this routine. Moreover our solution does not hide
the large bulk of device activations. The adversary might still be able to infer whether
or not the consumer is at home (large consumption) or not (small consumption). Our
solution does, however, counter many practical attacks, as the addition of random noise
makes it hard to analyze the data. The parameters (∆ f , ε) should be modified whenever
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the privacy policy of a consumer changes, which might be, e.g., after buying a new TV,
if this TV consumes more energy.

Hiding the total consumption sum for several (say k) points in time, e.g., by setting
∆ f ≈ k· total consumption, naturally is much more expensive. We consider this out of
scope for our solution.

Usefulness Since our solution adds the noise not to a numerical value, but to the actual
consumption of the consumer, the readings of the smart meter are not influenced. In
contrast to other works on smart meters, in our case there is no difference between the
actual consumption and the smart meter readings (and outputs, if the smart meter is
honest).

Thus, in our case the common measure of ”usefulness” that is often used when
analyzing the practical value of differential privacy should be defined differently. We
suggest discussing the practical feasibility of our solution.

Practical feasibility The Laplacian noise generation can be done efficiently by ap-
plying a relatively simple function to a (normal, uniform) random or pseudorandom
variable. The generation of large quantities of noise is stressful for a battery and will in
practical use most likely result in a reduced life-time of the battery. We could envision
a solution that uses capacitors instead of (or additionally to) a battery to improve the
life-cycle of the battery.

In contrast to works that rely on modifying the smart meter, our solution does not
come without cost, as installing a sufficiently large battery might be expensive. How-
ever, since our solution does not require cooperation, the decision about applying this
solution can be made by each individual consumer.

8 Conclusions

We have proposed a novel technique for provably hiding sensitive power consump-
tion information in the overall power consumption stream. Our technique relies on
a rechargeable battery that is used to modify the household’s power consumption by
adding or subtracting noise (i.e., increasing or decreasing power consumption), in order
to establish strong privacy guarantees in the sense of differential privacy. To achieve
these privacy guarantees in realistic settings, we have investigated the influence of, and
the interplay between, capacity and throughput bounds that batteries face in reality.
Based on these observations, we have proposed an integrated method based on noise
cascading that allows for recharging the battery on-the-fly so that differential privacy is
retained, while adhering to capacity and throughput constraints, and while keeping the
additional consumption of energy induced by our technique to a minimum.
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A Postponed details

We formalize the overall mechanism Fc as follows:

Definition 5 (Battery-recharging Mechanism). The battery-recharging mechanism
Fc on stream Φ = [D1,D2, . . .] behaves as follows:

1. Determine the target level for recharging: xgoal = c
2 − bl(i) + R∗, where bl(i) is

the current battery level and R∗ is the additional noise for battery recharging. The
energy for R∗ is either thrown away (if positive) or taken from the secondary battery
(if negative). If xgoal > 0 we are charging, if xgoal < 0 we are discharging the battery.

2. Initialize xa = 0, a counter evaluating the progress we made for reaching our target
level.

3. Now simulate F on Φ for n steps, internally using a simulated battery level bl′

starting with bl(i)′ = c
2 , but with the following additional computations:

– The amount xinc we want to restore in each step is binc, but at most as much as
we need to reach xgoal with xa + xinc = xgoal. If the target level has already been
reached, xinc = 0.

– We output Fc(Di) = max(0,F(Di) − xinc). We cap the output at 0 to avoid
discarding energy.

– The amount of energy by which the battery is restored is added to xa.5

– As soon as either the real battery level bl or the simulated battery level bl′

would exceed the capacity in either direction, we stop adding noise.
4. Go to 1), reinitialize the variables and repeat the process.

B Towards Differentially Private Smart Metering with Battery
Recharging

To bound the information leakage in the recharging process, the overall proof proceeds
as follows. We first define the so-called summing function g that sums up the consump-
tion of all devices in a given stream, without taking noise into account. We then show

5 This can be different from xinc, when, e.g., F(Di) − xinc is negative.
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that f and its summing function have the same sensitivity. After that, we define a differ-
entially private version G of this summing function by adding Laplacian noise; finally,
we derive a capacity-bounded version G from G that leaks as much information as our
recharging process and that respects the capacity constraints of the second battery.

To establish the differential privacy for Fc, we show that the output of Fc can be com-
puted from the outputs of F and G. The overall proof structure to show Fc differentially
private is depicted in Figure 3.

To bound the leakage in the recharging process, our proof proceeds as follows. We
define a recharging leakage function g on streams Φ, that sums over the consumption
of all devices in the steps in the n preceeding the recharging process.6 For the k’th
recharging process, we thus have

gk(Φ) =

k·n∑
j=(k−1)n+1

f (D j).

Adding noise to g yields a differentially private, so-called n-sumning function with
noise G; we draw the required noise rk from the secondary battery. This battery, analo-
gously to our primary battery, has a finite capacity c2nd. As for the main consumption,
we define the bounded variant G of G that respects the capacity bound. We show that
the information leakage in the recharging process is equal to the information leaked by
G.

In contrast to F, we do not impose any explicit throughput bound, but only require
that the throughput is large enough such that the secondary battery can provide the full
amount of c2nd over a period of n steps (the time in between two recharging processes).
Another difference is that in contrast to the noise added at every step in time, it suffices
here to only add noise once every n steps. We assume the battery to be recharged in at
most n steps.

Definition 6 (Recharging Leakage Functions). For a deterministic function f with
sensitivity ∆ f , a privacy parameter ε2 and a capacity limit c2nd, we define the corre-
sponding n-summing function with noise G and its bounded variant G on streams Φ
with infinite length, or a length that is a multiple of n, as follows: We have G(Φ) =

[G1,G2,G3, . . .] and G(Φ) = [G1,G2,G3, . . .], respectively, where

Gk =

 k·n∑
j=(k−1)·n+1

f (D j)

 + rk with rk ← Lap
(
∆ f
ε2

)
,

Gk =

 k·n∑
j=(k−1)·n+1

f (D j)

 +


c2nd if rk > c2nd

− c2nd if rk < −c2nd

rk otherwise.

Since the noise is drawn according to the Laplacian distribution and of the necessary
magnitude, G is (ε2, 0)-differentially private. For G we use the statistical distance again.

6 We have ∆g = ∆ f since two neighboring streams may differ in only one point in time by only
one device; thus only one summand may differ by at most max

d∈D
( f (d)) = ∆ f

20



Similar to Fb, the statistical distance between G and G can be estimated with the
probability that the Laplacian noise exceeds c2nd. We do not repeat this result (Lemma
2) but instead directly give a concrete bound for the statistical distance:

Lemma 6. For all streams Φ of length n, the statistical distance between G and G as
defined in Definition 6 is bounded by

d(G(Φ),G(Φ)) = e−
c2nd ·ε2
∆ f .

Note that by using Lemma 1 we can directly prove differential privacy for G. Since one
can easily compute Fc from F and G, we can combine the individual results for F and G
to achieve an overall result for Fc:

F (ε1, δ1)-DP
(Theorem 1)

G (ε2, δ2)-DP
(Lemmas 1, 2, 3)

H (ε1 + ε2, δ1 + δ2)-
DP

H (ε1 + ε2, δ1 + δ2)-
DP

Fc (ε1 + ε2, δ1 +δ2)-DP
(Theorem 2)

Lemma 7

Lemma 9

Fig. 3. Simplified overview of our proof. Here (ε, δ)-DP stands for (ε, δ)-differentially private.

B.1 Obtaining Differential Privacy for the Overall Process

For arguing that Fc is differentially private, we have investigated the information leaked
by both the measured consumption F (without considering battery recharging) and by
the battery recharging mechanism G separately in Section 5. We now combine them in
the standard manner by the combining mechanism H as follows:

Definition 7 (Combining Mechanism). Given a mechanism F as in Definition 3 and
a mechanism G as in Definition 6, we define the corresponding combining mechanism
H as

H(Φ) = (F(Φ),G(Φ)) ,

where the battery level for F is assumed to be reset to c
2 every n steps.

Following the reasoning of the combination result in [12] (Theorem 1), we obtain that
H satisfies (ε1 + ε2, δ1 + δ2)-differential privacy.

Until now we have only stated that H is useful for computing Fc. We now show how
to generate a closely related function H out of H to which our privacy guarantees can
be transferred without loss. To define H, we subtract the sum of the corresponding n
outputs F(Di) from G, which is easily computable out of H. This yields the difference
between the sum of all outputs and the sum of the net consumption (plus one additional
share of noise). This exactly corresponds to the amount xgoal in Definition 5 by which
we want to restore the battery level.
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Definition 8. Let H be defined as

H(Φ) = (F(Φ),G∗(Φ))

where in G∗ each G∗k is defined as Gk−
k·n∑

j=(k−1)·n+1
F(D j) and where for F the battery level

is assumed to be reset to c
2 every n steps.

Since this computation can be done by every observer as well, we obtain the fol-
lowing lemma.

Lemma 7. Given a function H = (F,G) with F as in Definition 3 and G as in Definition
6. If H satisfies (ε1 + ε2, δ1 + δ2)-differential privacy, then H, as defined in Definition 8,
satisfies (ε1 + ε2, δ1 + δ2)-differential privacy.

We now combine the results established in this section and show that the output Fc

can indeed be computed from the output of H without further knowledge. This allows
us to imply an (ε1 + ε2, δ1 + δ2)-differential privacy guarantee for Fc.

In order to compute Fc from H, we first have to make sure that the mechanism F,
when used internally by Fc (see Definition 5) entails the same output distribution as F
itself, when using the same consumption stream as input and using an initial battery
level of bl(0) = c

2 , as in Theorem 1.

Lemma 8. When starting with an arbitrary battery level r0, the part F of Fc behaves as
F would behave when initialized with bl(0) = c

2 .

This also implies that the output distribution of the part F of Fc is independent of the
initial battery level. Among other results, this allows us to generalize the privacy guar-
antees for Fc to infinite streams.

Lemma 9. If H is (ε1 + ε2, δ1 + δ2)-differentially private on (potentially infinitely long)
consumption streams, then Fc is also (ε1 + ε2, δ1 + δ2)-differentially private on these
streams.

C Corollary (real numbers)

Corollary 1. Given an (ε1, 0)-differentially private function F with F(x) = f (x) +

Lap
(
∆ f
ε1

)
for a deterministic function f . If the corresponding capacity regulating mech-

anism Fc, when using recharging noise with distribution Lap
(
∆ f
ε2

)
has throughput bound

btotal = 2 · b = 2 · binc and capacity bound ctotal = c + c2nd with c ≥ 2(n + t) · ∆ f
ε

for
an arbitrary number t and given a secondary battery that provides at least an amount
of c2nd energy every n steps, then for every initial battery level bl(0), Fc is (ε1 + ε2, δ)-
differentially private on (possibly infinite) consumption streams with

δ = (eε1 + 1) ·
(
e−

b·ε1
∆ f +

2n
t2

)
+ (eε2 + 1) · e−

c2nd ·ε1
∆ f
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D Postponed Proofs

Proof (Proof for Lemma 1). Given a set S and a two neighboring elements x and x′.

Pr[G(x) ∈ S ]
≤ Pr[F(x) ∈ S ] + |Pr[F(x) ∈ S ] − Pr[G(x) ∈ S ]|
≤ eε · Pr[F(x′) ∈ S ] + δ1 + |Pr[F(x) ∈ S ] − Pr[G(x) ∈ S ]|
≤ eε · Pr[F(x′) ∈ S ] + δ1 + δ2

≤ eε · (Pr[G(x′) ∈ S ]+ |Pr[F(x) ∈ S ]−Pr[G(x) ∈ S ]|)+δ1 +δ2

≤ eε · Pr[G(x′) ∈ S ]) + δ1 + (eε + 1) · δ2

The second inequality follows from the fact that F is (ε, δ)-differentially private. The
calculation shows that G is (ε, δ1 + (eε + 1)δ2)-differentially private.

Proof (Proof for Lemma 2). We have to prove the following two statements:

i) ∀x, S . Pr[Fb(x) ∈ S ] ≤ Pr[F(x) ∈ S ] + Pr [|R| > b] ,
ii) ∀x, S . Pr[F(x) ∈ S ] ≤ Pr[Fb(x) ∈ S ] + Pr [|R| > b] ,

For this proof we use the following notation:

– PF denotes Pr[F(x) ∈ S ]; PFb denotes Pr[Fb(x) ∈ S ].
– P= denotes Pr[F(x) = Fb(x)], analogously for P,.
– PA|= denotes Pr[A|F(x) = Fb(x)], analogously for PA|,.
– We assume for the proof and for these probabilities in particular, that Fb(x) is com-

puted out of f (x) and F(x). Thus F and Fb use the same randomness.

First note that P, is exactly equal to the probability Pr [|R| > b]. If R is larger than b,
the noise is cut down by Fb, but not by F. This is the only possibility for F and Fb to
differ. We first show i), given x and S :

PFb = PFb |= · P= + PFb |, · P,
= PF|= · P= + PFb |, · P,
= PF|= · P= + PFb |, · P, + PF|, · P, − PF|, · P,
= PF + PFb |, · P, − PF|, · P,
= PF + P, · (PFb |, − PF|,)
≤ PF + P,

Analogously we show ii):

PF = PF|= · P= + PF|, · P,
= PFb |= · P= + PF|, · P,
= PFb |= · P= + PF|, · P, + PFb |, · P, − PFb |, · P,
= PFb + PF|, · P, − PFb |, · P,
= PFb + P, · (PF|, − PFb |,)
≤ PFb + P,
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Thus, the statistical distance as defined by Definition 4 is at most

d(F(x), Fb(x)) ≤ Pr [|R| > b] .

Proof (Proof for Lemma 3). When regarding the noise as a random variable Lap
(
∆ f
ε

)
,

which has variance 2·(∆ f )2

ε2 we can apply the following variant of the Chebyshev-
inequality to directly yield this result: Given a random variable X with variance σ2.
For any k ∈ R+/{0} we have that:

Pr
[
|X − E[X]| ≥ k2

]
≤
σ2

k2 ,

where E[X] denotes the expected value of X.

Proof (Proof for Lemma 4). The difference between F and Fb is solely in the fact that
F keeps track of the battery level bl and reduces the noise whenever it would exceed the
capacity bound. Given a consumption stream φ of length n and a set S ,∣∣∣Pr[F(Φ) ∈ S ] − Pr[Fb(Φ) ∈ S ]

∣∣∣
≤ Pr[∃k ∈ {1, . . . , n}.F(Dk) , Fb(Dk)]

≤ Pr

∃k ∈ {1, . . . , n}.

∣∣∣∣∣∣∣∣
k∑

j=1

(
Fb(D j) − f (D j)

)∣∣∣∣∣∣∣∣ > c
2


The claim of the lemma follows.

Proof (Proof for Lemma 5). Recall that Lap( 1
λ
) has the following probability density

function:

Lap(s, x) =
λ

2

{
exp (xλ) i f x < 0
exp (−xλ) i f x ≥ 0

Taking the absolute value leads to the exponentially distributed probability density func-
tion:

|Lap(s, x)| = λ · e−xλ

which for λ = ε1
∆ f has the expected value ∆ f

ε1
. Thus, the expected value of the sum is

E
 n∑∣∣∣∣∣∣Lap

(
∆ f
ε1

)∣∣∣∣∣∣
 = n ·

∆ f
ε1
.

The variance of
∣∣∣∣Lap

(
∆ f
ε1

)∣∣∣∣ is 2 ·
(
∆ f
ε1

)2
, but since the individual random variables are

uncorrelated we have for the sum:

var
 n∑∣∣∣∣∣∣Lap

(
∆ f
ε1

)∣∣∣∣∣∣
 = 2n ·

(
∆ f
ε1

)2

.
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For the following computation, we abbreviate
n∑ ∣∣∣∣Lap

(
∆ f
ε1

)∣∣∣∣ by Xn for reasons of read-
ability.

Pr
[
Xn ≥ 2 · n ·

∆ f
ε1

]
≤ Pr

[∣∣∣∣∣Xn − n ·
∆ f
ε1

∣∣∣∣∣ ≥ n ·
∆ f
ε1

]
= Pr

[
|Xn − E[Xn]| ≥ n ·

∆ f
ε1

]
≤

var(Xn)(
n · ∆ f

ε1

)2

≤
2n ·

(
∆ f
ε1

)2(
n · ∆ f

ε1

)2 =
2
n

Proof (Proof for Theorem 1). By assumption, F is (ε1, 0)-differentially private. By
Lemma 1, Fb is (ε1, (eε1 + 1) · Pb)-differentially private, where Pb is the statisti-
cal distance between F and Fb. By applying Lemma 1 again we obtain that F is
(ε1, (eε1 +1) ·(Pb +Pc))-differentially private, where Pc is the statistical distance between
Fb and F.

Proof (Proof for Lemma 6).
The only difference between G andG is thatG cuts the noise if it exceeds an amount

of ±ccap. We can apply Lemma 2 and directly obtain that for all streams Φ of length n,
the statistical distance is bounded by

d(G(Φ),G(Φ)) ≤ Pr
[∣∣∣∣∣∣Lap

(
∆ f
ε2

)∣∣∣∣∣∣ > ccap

]
.

By Lemma 3 we know that the probability for the Laplacian noise to exceed a bound
ccap is bounded by

Pr
[∣∣∣∣∣∣Lap

(
∆ f
ε2

)∣∣∣∣∣∣ > ccap

]
≤

2 · (∆ f )2(
ccap

)2
· ε2

2
.

This concludes the proof.

Proof (Proof for Lemma 7).
Let ε = ε1 + ε2 and δ = δ1 + δ2. Now assume for contradiction that: ∃Φ,Φ′,∃S ⊆

Rn+1,∃i ∈ N s.t.

Pr[H(Φ) ∈ S ] > eεPr[H(Φ′) ∈ S ] + δ.
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We show that this leads to a contradiction.

Pr[H(Φ) ∈ S ] > eεPr[H(Φ′) ∈ S ] + δ

De f
⇔Pr


F(Φ),G(Φ) −

n∑
j=1

F(D j)

 ∈ S

 >
eεPr


F(Φ′),G(Φ′) −

n∑
j=1

F(D′j)

 ∈ S ∗
 + δ

Note that F(Φ) ∈ Rn actually denotes a n-tuple. We define a new set S ∗ ⊆ Rn+1 as
follows:

S ∗ :=


(a1, . . . , an), b −

n∑
j=1

a j


∣∣∣∣∣∣∣∣ ((a1, . . . , an), b) ∈ S


so that by definition we have:

(F(Φ),G(Φ)) ∈ S ∗ ⇔

F(Φ),G(Φ) −
n∑

j=1

Fc(D j)

 ∈ S . (I)

We combine this with the above and obtain:

Pr[H(Φ) ∈ S ] > eεPr[H(Φ′) ∈ S ] + δ

De f
⇔Pr


F(Φ),G(Φ) −

n∑
j=1

F(D j)

 ∈ S

 >
eεPr


F(Φ′),G(Φ′) −

n∑
j=1

F(D′j)

 ∈ S

 + δ

(I)
⇔Pr

[
(F(Φ),G(Φ)) ∈ S ∗

]
> eεPr

[(
F(Φ′),G(Φ′)

)
∈ S ∗

]
+ δ

De f
⇔Pr[H(Φ) ∈ S ∗] > eεPr[H(Φ′) ∈ S ∗] + δ

which contradicts the fact that H satisfies (ε, δ)-differential privacy.

Proof (Proof for Lemma 8).
Assume for contradiction that this is not the case. The only possibility for F in Fc to

behave differently than F is by exceeding the capacity at a different point in time. There
are two possibilities:

– F in Fc exceeds the capacity earlier than F:
Assume that F in Fc exceeds the capacity (in either direction) in a step i, but inter-
nally |si| <

c
2 . We distinguish the following cases, where ri is the noise added in the

current step i:
• The recharging process was finished in step i or before.

This means that bl(0) + xa = c
2 . But since bl(i) = bl(0) + xa + si = c

2 + si, the
capacity cannot be exceeded as long as |si| <

c
2 .
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• The recharging process is ongoing in step i with |xinc| = binc and sign(si) ,
sign(xinc).
If sign(R) , sign(si), then the magnitude of the noise added has been reduced,
i.e., a problem occurred in the recharging mechanism: we restore the battery in
the wrong direction, i.e., we started at the opposite side of c

2 .
Then one of the following cases must hold:
∗ bl(i − 1) ≥ 0 and bl(i) < 0: Since |ri| ≤ b = binc = |xinc| we cannot have

exceeded the capacity in this step:

bl(i) = bl(i − 1) + ri + xinc ≥ bl(i − 1) ≥ 0

∗ bl(i − 1) ≤ c and bl(i) > c: Since |ri| ≤ b = binc = |xinc| we cannot have
exceeded the capacity in this step:

bl(i) = bl(i − 1) + ri + xinc ≤ bl(i − 1) ≤ c

∗ We restore the battery in the wrong direction, i.e., we started at the opposite
side of c

2 . But then |si| >
c
2 .

• The recharging process is ongoing in step i with |xinc| = binc and sign(si) =

sign(xinc).
We know that bl(i) = bl(0) + xa + si and that bl(i) = bl(i − 1) + ri + xinc. We
distinguish the following cases:
∗ xinc < 0. Then bl(0) + xa >

c
2 . Still we assume that bl(i) < 0. Thus,

bl(0) + xa + si < 0⇒ c
2 + si < 0⇒ |si| >

c
2

∗ xinc > 0. Then bl(0) + xa <
c
2 . Still we assume that bl(i) > c. Thus,

bl(0) + xa + si > c⇒ c
2 + si > c⇒ |si| >

c
2 .

– F in Fc exceeds the capacity later than F:
This contradicts our definition of Fc, since it simulates a capacity of c

2 for F.

Proof (Proof for Lemma 9).
Fc can be computed from H as follows, where we call this new mechanism FHH:

1. Set k = 0, set xgoal = r∗, where r∗ is drawn as the additional noise for recharging.
2. Initialize xa = 0
3. Now for the next n steps proceed as follows:

– The amount xinc restored by Fc in each step is binc, but at most as much as is
needed to reach xgoal with xa + xinc = xgoal. If the the goal has already been
reached, xinc = 0.

– Output max(0,F(Di) − xinc)
– The difference between the output and F(Di) is added to xa.

4. Increase k by 1 and set xgoal = G∗(Φk) + xgoal − xa.
5. Go to 2. to reinitialize xa and repeat the process.

We show that the computations of Fc and FH are equal, via induction over k.
For k = 0, both Fc and FH start by setting xgoal. In Fc we have xgoal = c

2 −
c
2 + r∗,

where FH sets xgoal = r∗. In both computations r∗ is a random number, drawn from the
same distribution. xa is set to 0.
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Now n steps follow, where in Fc the underlying mechanism F is simulated, while
for FH the real mechanism F is used. By Lemma 8 we know that F behaves the same,
independent whether it is simulated by Fc or used directly by FH.

Given all computations were equal for all values k we have seen so far. For k + 1 we
again compute xgoal in both Fc and FH. In Fc we have

xgoal :=
c
2
− bl((k + 1) · n) + r∗

=
c
2
− bl(0) −

(k+1)·n∑
j=1

∆bl( j) + r∗

=
c
2
− bl(k · n) −

((k+1)·n)∑
j=k·n+1

∆bl( j) + r∗

=
c
2
− bl(k · n) −

((k+1)·n)∑
j=k·n+1

(
f (D j) − F(D j)

)
+ r∗

=
c
2
− bl(k · n) −

((k+1)·n)∑
j=k·n+1

f (D j) −
((k+1)·n)∑
j=k·n+1

F(D j) + r∗

=
c
2
− bl(k · n) + G∗(Φk+1)

IH
= x′goal − xa + G∗(Φk+1),

,

which exactly corresponds to how xgoal is computed by FH. Here x′goal is the previous
value of xgoal. The last equation holds by induction hypothesis: Since the computations
have been equal up to iteration k, the battery level bl(k · n) is c

2 − x′goal + xa.
For the next n steps again for Fc the underlying mechanism F is simulated, while for

FH the real mechanism F is used with a reset battery level of c
2 . By Lemma 8 we know

that F behaves in the same way, if it is simulated by Fc or used directly by FH.
Since H is (ε, δ)-differentially private and this transformation from H to Fc consti-

tutes a deterministic function, Fc is (ε, δ)-differentially private.

Proof (Proof for Theorem 2). By Theorem 1 we know that F is (ε1, δ1)-differentially
private. By Lemma 1 G is (ε2, δ2)-differentially private. Thus, H is (ε1 + ε2, δ1 + δ2)-
differentially private. By Lemma 7,H is (ε1 +ε2, δ1 +δ2)-differentially private. Applying
Lemma 9 concludes the proof.
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