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Abstract— Differential privacy has recently emerged as the de
facto standard for private data release. This makes it possible to
provide strong theoretical guarantees on the privacy and utility
of released data. While it is well-understood how to release data
based on counts and simple functions under this guarantee, it
remains to provide general purpose techniques that are useful
for a wider variety of queries. In this paper, we focus on spatial
data, i.e., any multi-dimensional data that can be indexed by
a tree structure. Directly applying existing differential privacy
methods to this type of data simply generates noise.

We propose instead the class of “private spatial decompo-
sitions”: these adapt standard spatial indexing methods such
as quadtrees and kd-trees to provide a private description of
the data distribution. Equipping such structures with differen-
tial privacy requires several steps to ensure that they provide
meaningful privacy guarantees. Various basic steps, such as
choosing splitting points and describing the distribution of points
within a region, must be done privately, and the guarantees
of the different building blocks must be composed into an
overall guarantee. Consequently, we expose the design space for
private spatial decompositions, and analyze some key examples.
A major contribution of our work is to provide new techniques
for parameter setting and post-processing of the output to
improve the accuracy of query answers. Our experimental study
demonstrates that it is possible to build such decompositions
efficiently, and use them to answer a variety of queries privately
and with high accuracy.

I. INTRODUCTION

Releasing representative data sets which do not compromise
the privacy of data subjects has occupied serious effort in the
database community in recent years. The paradigm of differ-
ential privacy has recently emerged as the favored definition:
it ensures that what can be learned from the released data does
not substantially differ whether or not any given individual’s
data is included. This is intended to reassure data subjects
that their participation in the process does not directly lead
to information about them being revealed. The question that
the data management community must now address is how to
provide differential privacy guarantees, while ensuring that the
result is not just private, but also useful.

Consider a dataset containing locations of individuals at
a particular time, e.g., GPS locations or home addresses.
Such data could be used for many applications: transportation
planning, facility location, political boundary drawing etc.
More generally, any data set where attributes are ordered and
have moderate to high cardinality (e.g., numerical attributes
such as salary) can be considered spatial data: whenever data
can be indexed by a tree structure (such as a B-tree, R-
tree, kd-tree etc.), it is implicitly being treated as spatial. In

spatial applications, a basic primitive is to know how many
individuals fall within a given region (a multi-dimensional
range query). Our aim is to release information which allows
such queries to be answered accurately, while giving a strong
guarantee of privacy on people’s locations.

Although this is a natural and important problem, there has
been limited prior work that can be applied directly to this
setting. The most straightforward method is to lay down a fine
grid over the data, and add noise from a suitable distribution
to the count of individuals within each cell [1]. For example,
suppose we represent a set of 107 GPS locations in a grid
of 10 meter × 10 meter squares over the USA territory: this
yields a total of approximately 1011 entries, most of which
are either 0 or 1. Because the purpose of the noise is to mask
whether there is an individual there, the output is simply a
large mass of noisy counts, with little information remaining
to accurately answer queries. Any query which touches, e.g., a
1% fraction of the area includes over 109 noisy counts, which
translates into a huge error.

In this paper, we aim to balance the requirements of
practicality and utility, while achieving a desired privacy guar-
antee. In particular, we design a class of differentially private
spatial decompositions (PSDs). These partition the space into
smaller regions, and report statistics on the points within
each region. Queries can then be answered by intersecting
the query region with the decomposition. By performing a
spatial decomposition which results in compact regions with
sufficiently many points and a more uniform distribution, we
expect query answers to be more accurate.

There are many existing (non-private) approaches to spatial
decompositions. Some are data-independent, such as quadtrees
which recursively divide the data space into equal quadrants.
Other methods, such as the popular kd-trees, aim to better
capture the data distribution and so are data-dependent. In
this case, there are additional challenges: the description
of the regions must also be differentially private. In other
words, simply building a tree-structure over the exact data
and populating it with noisy counts is not sufficient to meet
the differential privacy definition: the choice of splits is based
on the true data, and potentially reveals information.

A second issue is how to answer queries given a PSD.
In the non-private case, it is fairly straightforward to take
a query region and intersect it with the data structure to
obtain a count of contained nodes. In the private case, it is
more complicated: because we have count estimates for large
regions and subregions, there are multiple ways to decompose



a query region, and the answers may vary due to differing
noise. To achieve optimal query accuracy, we develop two
new techniques that may be of independent interest:

• First, we show that using non-uniform noise parameters
can significantly improve accuracy, while maintaining the
same privacy guarantee. Specifically, we propose setting
the parameters in a geometric progression, increasing
from root to leaves. To the best of our knowledge, this
is the first result that analyzes the impact of non-uniform
noise parameters.

• Second, we design a new method to compute opti-
mal (minimum variance) answers to queries by post-
processing the noisy counts. Our method works over a
large class of non-uniform noise parameters. It general-
izes the method of [3], which applied only to uniform
noise parameters.

Putting these pieces together, we show how to build private
versions of well-known data structures, such as kd-trees, R-
trees, and quadtrees, in multiple dimensions. This gives a
full framework for privately representing spatial data. Our
experimental study ranges over this framework, and allows
us to see the impact of different choices on the accuracy of
query answering over a mixture of real and synthetic data. We
show that our two novel techniques can reduce the absolute
error of queries by up to an order of magnitude.

Outline. In Section II we describe related work, while Sec-
tion III surveys concepts from differential privacy and spatial
decompositions. We build our framework as follows: In Sec-
tion IV, we show how to set non-uniform noise parameters in a
hierarchical structure. Section V describes the post-processing
method. In Section VI, we describe how to effectively find
private median points under differential privacy, with fur-
ther extensions in Section VII. Our experimental study in
Section VIII considers different optimizations for different
families of PSDs, and then compares these all together to find
the best choices for working privately with spatial data. We
also compare to two prior approaches [2], [4] and show that
our methods outperform them.

II. RELATED WORK

In this section, we present a brief summary of the most
related topics in anonymization and privacy. For more details,
there are several recent surveys and tutorials [5], [6], [7], [8].

Initial efforts to ensure privacy of released data were
based on syntactic definitions such as k-anonymity [9] and
`-diversity [10]. Subsequent efforts tried to provide a more
semantic guarantee, ensuring that no matter what knowledge
or power an adversary had, their ability to draw conclusions
about an individual in the data was limited. This culminated
in the definition of differential privacy [1] which ensures
that the probability of any property holding on the output
is approximately the same, whether or not an individual is
present in the source data.

Although often introduced in the context of an interaction
between a data owner and a data user, differential privacy

naturally adapts to a non-interactive setting where the data
owner wishes to release private information derived from their
data. Conceptually, this is quite straightforward: the data owner
determines what collection of statistics should be released,
then computes these under some mechanism which provides
an overall privacy guarantee. Initial work showed how to
release contingency tables (equivalent to count cubes) in this
‘publishing’ model [11]. Subsequent work in the database
community also adopted the model of releasing tables of
counts (histograms) and studied how to ensure these are
accurate for different query workloads [12], [13].

There has been much work in producing mechanisms which
offer differential privacy, such as the general purpose expo-
nential mechanism [14], and the geometric mechanism [15].
Approaches such as smoothed sensitivity have attempted to
adapt the amount of noise needed to the instance of the
data [16]. These mechanisms have been applied to various
problems, such as releasing contingency tables [11], time
series [17], and recommender systems [18]. Recently, efforts
have been made to improve the accuracy of (count) queries,
by allowing ranges to be expressed via a smaller number of
noisy wavelet or range coefficients [12], [13], and via post-
processing with overlapping information [3].

However, there has been limited work that applies to spatial
data. The idea of differentially private data-partitioning index
structures was previously suggested in the context of private
record matching [4]. The approach there is based on using an
approximate mean as a surrogate for median (on numerical
data) to build kd-trees. This becomes a special case in our
general framework. In Section VIII-B, we show that there are
much better methods to choose medians privately. We also
compare to this case as part of our overall experimental study,
and also for a record matching application in Section VIII-C.

The only prior work directly addressing spatial data follows
the approach suggested above, and imposes a fixed resolution
grid over the base data [2]. It then builds a kd-tree based
on noisy counts in the grid, splitting nodes which are not
considered “uniform”, and then populates the final leaves with
“fresh” noisy estimated counts. In our experimental study
(Section VIII), we observe that this approach is inferior to
other points in the framework.

III. PRELIMINARIES

A. Differential Privacy

We now formally introduce the concepts behind differential
privacy. Let D1,D2 be two neighboring datasets, i.e., D1 and
D2 differ in only one tuple t, written as ‖D1 −D2‖ = 1. In
some cases, this is taken to mean that t has different values in
the two datasets; in other cases, it is interpreted as meaning
that t is present in only one of the two datasets. Either version
leads to privacy guarantees which differ by at most a constant
factor. For concreteness, in this paper we consistently use the
second definition.

Definition 1: Let D1,D2 be two neighboring datasets. Let
A denote a randomized algorithm over datasets, and S be an
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Fig. 1. Example of private quadtree: noisy counts (inside boxes) are released;
actual counts, although depicted, are not released. Query Q (dotted red
rectangle) could be answered by adding noisy counts of marked nodes.

arbitrary set of possible outputs of A. Algorithm A is said to
be ε-differentially private if

Pr[A(D1) ∈ S]≤ eε Pr[A(D2) ∈ S].

Intuitively, differential privacy guarantees that no individual
tuple can significantly affect the released information: the
output distribution generated by A is nearly the same, whether
or not that tuple is present in the dataset. The most common
technique for designing differentially-private algorithms was
proposed in [19]. It is a noise adding mechanism, as follows.

Definition 2: (Laplace mechanism) Let f (D) denote a
numeric function over dataset D. An ε-differentially private
mechanism for releasing f is to publish L(D) = f (D) + X ,
where X is a random variable drawn from the Laplace distri-
bution Lap(σ( f )/ε).

The value σ( f ), called the sensitivity of f , is the maximum
change in f when any single tuple of D changes. Formally:

σ( f ) = max
D1,D2:‖D1−D2‖=1

| f (D1)− f (D2)|.

For example, if f = count, then σ( f ) = 1 : for any two
neighboring datasets D1 and D2, the cardinalities of D1 and
D2 differ by 1.

B. Spatial Decompositions

Spatial indexes are routinely used in database management,
with a long history stretching over decades [20], [21]. Their
main purpose is to allow queries to determine quickly whether
or not a particular point is present in the data set. Clearly, we
cannot extend this functionality to a privacy-preserving setting.
However, spatial indexes also allow efficient computation for
a rich set of aggregate queries, particularly range queries. We
focus on these queries when studying the utility of PSDs.

Formally, a spatial decomposition is a hierarchical (tree)
decomposition of a geometric space into smaller areas, with
data points partitioned among the leaves. Indexes are usually
computed down to a level where the leaves either contain a
small number of points, or have a small enough area, or a
combination of the two. Unless otherwise specified, we assume
that the tree is complete, i.e., all leaf-to-root paths have the
same length, and all internal nodes have the same fanout.

The following classification of spatial decompositions is
widely used. We will describe our private spatial decompo-
sitions following the same taxonomy.

Data-independent decompositions. The best known example
in this category is the quadtree in two dimensions, and its gen-
eralizations to higher dimensions (octree, etc.) Their defining
feature is that their structure is pre-defined, and depends only
on the domain of the attributes. E.g., in the quadtree, nodes
are recursively divided into four equal regions via horizontal
and vertical lines through the midpoint of each range [21].

Data-dependent decompositions. Here, the hierarchical par-
tition of nodes is based on the input. Examples include:
– Kd-trees: Nodes in a kd-tree are recursively split via lines
passing through the median data value along some coordinate
axis. The splitting axis changes at each level, in a cyclic order.
– Hilbert R-trees: The R-tree is a spatial decomposition formed
by nested (hyper)rectangles which may overlap. A Hilbert R-
tree is computed as follows: Map all points to a Hilbert space-
filling curve of sufficiently large order (see [22] for details).
Build a binary tree on the Hilbert values, then map it back
into the original space. The bounding boxes of data points
corresponding to nodes in the tree form the Hilbert R-tree.

Hybrid trees. Although less studied in the classical setting, a
hybrid approach can be particularly useful in a privacy-aware
model. In particular, we consider using data-dependent splits
for the first ` levels of the tree (for some ` decided in advance),
then switch to data-independent splitting (e.g., quadtree) for
the remainder. We observe in Section VIII-B that queries over
private hybrid trees are generally more accurate than with
many other indexes.

C. Building Private Spatial Decompositions

We are now ready to describe how to build PSDs. The
simplest PSD is formed by instantiating a data-independent
tree such as a full quadtree, but computing counts for each
node via the Laplace mechanism. See Figure 1 for an example.

Recall that the concept of sensitivity (Definition 2) captures
the maximum change in the output caused by the presence or
absence of a single tuple. For data-independent trees, releasing
the structure of the index (i.e., the node rectangles) does
not endanger the privacy of any individual. The only data-
dependent features are the node counts: each node stores the
number of data points that lie in the spatial cell associated
with it. Note that adding or deleting a single tuple changes
the counts of all the nodes on the path from the root to
the leaf containing that tuple. Therefore, to obtain a tree that
satisfies ε-differential privacy as a whole, we need to combine
the privacy guarantees of individual node counts. We use the
following well-known composition lemma:

Lemma 1: [18] Let A1, . . . ,At be t algorithms such that Ai
satisfies εi-differential privacy, 1≤ i≤ t. Then their sequential
composition 〈A1, . . . ,At〉 satisfies ε-differential privacy, for
ε = ∑

t
i=1 εi.

In any partition tree, we only need to consider sequential
compositions of private counts along a path: if nodes u and
v are not on the same root-to-leaf path, their node counts are
independent of each other, so knowing the output of Au does
not affect the privacy guarantee of Av.



This outline provides a simple PSD. However, we have
developed several optimization techniques which can signif-
icantly improve the utility of PSDs, which is the technical
focus of this paper. Section IV shows how to choose the
values εi, while Section V shows how to process the noisy
counts to maximize query accuracy. These results apply to all
spatial decompositions. For data-dependent and hybrid trees,
to guarantee differential privacy, the structure of the tree itself
must also be perturbed by noise. We study this issue in
Section VI for kd-trees. We also consider building private
Hilbert R-trees, which are binary trees (i.e., one-dimensional
kd-trees) in the Hilbert space. When mapping back to the
original space, we use the bounding boxes of Hilbert values
corresponding to tree nodes to define the node rectangles
(thus preserving privacy). For brevity, we do not explicitly
discuss Hilbert R-trees further, although we include them in
our experimental evaluation in Section VIII.

IV. ALLOCATING NOISE PARAMETERS

In this section, we focus on how to choose noise parameters
εi such that the composition rule is satisfied for all tree paths
(see Section III-C). Let h denote the height of the tree; leaves
have level 0 and the root has level h. We assume that all
nodes at level i have the same Laplace parameter εi (other
choices are discussed at the end of this section). Hence, given
a total privacy “budget” of ε , we need to specify εi, 0≤ i≤ h,
such that ∑

h
i=0 εi = ε . We refer to a choice of εi’s as a budget

strategy. The goal is to minimize the resulting query errors.

Error measure. For any query Q, let Q̃ denote the answer to
Q computed over the private tree. Then Q̃ is a random variable
which is an unbiased estimator of the true answer (since noise
has mean 0). Its variance Var(Q̃) is a strong indicator of query
accuracy. As in prior work [13], [12], we define the error
measure to be Err(Q) = Var(Q̃). The error of a query workload
Q1, . . . ,Qs is ∑

s
i=1 Err(Qi)/s.

A. Query Processing

Unlike a tree over the original (unperturbed) counts, a PSD
may return many different results to a query Q.

Query processing example. Figure 1 shows a possible pro-
cessing for query Q, which sums the noisy counts in nodes
b, u5, u7, u9, u10 and u13. The answer is 2. However, if we
replace b’s count by the sum of its children’s counts, and the
sum of u5 and u7 by the difference between c’s count and the
sum of u6, u8, the answer becomes 8. This is because the noise
is independent, and there are multiple ways of representing Q
as a union or difference of node rectangles. Adding/subtracting
corresponding noisy counts yields different results.

Consequently, to analyze Err(Q), we must first describe a
standard method for computing Q̃. Let Y be the set of noisy
counts, and let U be the set of nodes used to answer Q.
Then Err(Q) = ∑u∈U Var(Yu), i.e., the total variance is the
sum of the node variances. Thus the error grows, to a first
approximation, with the number of noisy counts included.

We adopt the canonical range query processing method [21],
which minimizes the number of added counts.

The method is as follows: Starting from the root, visit all
nodes u whose corresponding rectangle intersects Q. If u is
fully contained in Q, add the noisy count Yu to the answer Q̃;
otherwise, recurse on the children of u, until the leaves are
reached. If a leaf a intersects Q but is not contained in Q, use
a uniformity assumption to estimate what fraction of Ya should
be added to Q̃.

Let n(Q) be the number of nodes that contribute their counts
to Q̃. For each 0≤ i≤ h, let ni be the number of nodes at level i
that are maximally contained in Q (i.e. contributed their counts
to Q̃ according to the method above), so n(Q) = ∑

h
i=0 ni. The

following result bounds each ni and will guide us in choosing
noise parameters εi.

Lemma 2: Let Q be an arbitrary range query, and T be a
spatial decomposition of height h in two dimensions. Then

(i) If T is a quadtree, ni ≤ 8 ·2h−i and

n(Q)≤ 8(2h+1−1) = O(4h/2).

(ii) If T is a kd-tree, ni ≤ 8 ·2b(h−i+1)/2c and

n(Q)≤ 8(2b(h+1)/2c+1−1) = O(2h/2).
Proof: Let f denote the fanout of T : f = 4 for the

quadtree and f = 2 for the kd-tree. Consider the left vertical
extent of Q. If T is a quadtree, then for each rectangle at
level i intersected by this vertical line, there are 2 rectangles
at level i−1 intersected by it. If T is a kd-tree, then for each
rectangle that the vertical extent intersects at level i (assume
wlog that level i corresponds to a vertical split), it intersects
1 at level i−1 and 2 at level i−2. In either case, the number
of rectangles intersected by the left extent of Q grows by at
most a factor f every two levels.

We repeat this argument for the other three extents of
Q. Additionally, the number of nodes that are maximally
contained in Q can be bounded by the number of nodes that
are intersected by Q, and the recurrence for ni follows.

We remark that a similar result extends to d dimensional
decompositions, where the behavior is n(Q) = O( f h(1−1/d))
for a tree of height h and fanout f .

B. Budget Strategies

The variance of the Laplace mechanism with parameter
εi is Var(Lap(εi)) = 2/ε2

i . Since the noise is independently
generated in each node, we deduce that

Err(Q) = ∑
h
i=0 2ni/ε2

i . (1)

For simplicity, we analyze strategies only for quadtrees; hence,
ni ≤ 8 ·2h−i by Lemma 2(i). The analysis for kd-trees is similar.

Uniform Budget: A natural strategy is to set εi = ε/(h+1).
Prior work that finds counts in trees (e.g. [3]) has used this
model. Then Err(Q) = 2(h+1)2

ε2 ∑
h
i=0 ni ≤ 16

ε2 (h+1)2(2h+1−1).

Geometric Budget: We can significantly improve the query
accuracy by considering a non-uniform budgeting strategy.
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Substituting the bound for ni into (1) we obtain the following
optimization problem to minimize the upper bound.

Minimize ∑
h
i=0 2h−i/ε2

i
Subject to: ∑

h
i=0 εi = ε.

Lemma 3: An upper bound for Err(Q) is

16(2(h+1)/3−1)3

ε2( 3√2−1)3
≤ 2h+7

ε2

which is attained for εi = 2(h−i)/3ε
3√2−1

2(h+1)/3−1
.

Proof: By the Cauchy-Schwarz inequality, we have

(
h

∑
i=0

εi)(
h

∑
i=0

2h−i/ε
2
i )≥ (

h

∑
i=0

√
εi2h−i/ε2

i )2,

with equality attained if and only if εi = C2h−i/ε2
i ,∀i, where

C is a constant. Hence, εi = 3
√

C2(h−i)/3. Plugging this into

∑
h
i=0 εi = ε, we obtain 3

√
C = ε( 3√2−1)

2(h+1)/3−1
. Then Err(Q) is at most

16
h

∑
i=0

2h−i/(C2/322(h−i)/3) = 16C−2/3
h

∑
i=0

2(h−i)/3 = 16ε/C,

and the result follows.
Lemma 3 shows that query accuracy is improved with a

geometric budgeting scheme: starting from the root, the budget
increases geometrically (by a factor of 21/3), so the leaf counts
are reported with highest accuracy.

Studying the bound in the lemma, it seems that we should
reduce h to reduce the noise. But this variance only bounds
the error from noisy counts. We also have to account for the
error due to queries which partly intersect some leaves, i.e.,
errors arising from the uniformity assumption. In the worst
case, this error is proportional to the number of points in each
leaf intersected by the query. We intersect nh ≈ 2h leaves. On
the average for an input of n points, we could have O(n/4h)
points per leaf (assuming balanced leaf counts). Hence, the
uniformity assumption error behaves as O(2hn/4h) = O(n/2h).
Then the overall error grows as O(n/2h +2h/3), suggesting we
benefit more overall as h increases.

Comparing strategies. Let Q be a query that includes the
maximum number of counts at each level, i.e., ni = 8 ·2h−i.1

1More rigorously, ni = min{8 · 2h−i,4h−i}, but this does not alter the
analysis significantly.

Figure 2 shows that worst case error for a uniform budget,
Errunif(h) = (h + 1)2(2h+1 − 1) grows much faster than the
geometric budget error, Errgeom(h) = (2(h+1)/3−1)3

( 3√2−1)3 . This com-
parison assumes that Q touches a maximal number of nodes at
each level. While in practice queries may touch fewer nodes,
our experiments show that uniform noise is still significantly
less accurate for a large number of different queries.

Other budget strategies. There is a large class of strategies
for dividing ε along a path. For example, we could build a
quadtree down to depth h and set εh = ε, i.e., allocate the
entire budget to leaves (this approach is used in [4]). In this
case, queries are computed over the grid defined by the leaf
regions and the hierarchical structure of the tree is irrelevant.
Or we could conserve the budget by setting εi = 0 for some
levels i, and releasing no counts for those levels. Queries then
use counts from descendant nodes instead. Conceptually, this
is equivalent to increasing the fanout of nodes in the tree.

Finally, we note that we do not have to use the same εi for all
nodes on level i. For a generic query workload, this approach
makes sense, as each node on level i is equally likely to be
touched by the workload. However, if the workload is known a
priori, one should analyze it to determine how frequently each
node in the tree contributes to the answers. Then εu could be
larger for the nodes u that contribute more frequently, subject
to the sum along each path remaining ε.

V. OPTIMIZING QUERY ACCURACY

In the previous section we discussed how using geometric
noise in a hierarchical decomposition can significantly improve
the accuracy of queries. We now show that it is possible to
further improve query accuracy via a post-processing of the
noisy counts. The goal is to compute a new set of counts
for which query errors are minimized. Note that this does not
affect the privacy guarantee, as our method takes as input the
output of the differentially private mechanism.

Post-processing example. Consider a simple tree with one
root a and four children, b, c, d and e. Let Yv denote the noisy
count of node v ∈ {a,b,c,d,e}, and assume first that we used
uniform noise of ε/2 on each count. There are two natural
estimates of the true count of the root: Ya itself, and the sum of
counts of leaves, Yb +Yc +Yd +Ye. A first attempt is to estimate
βa = Ya/2+(Yb +Yc +Yd +Ye)/2, i.e., the average of the two
estimates. In this case, Var(βa) = Var(Ya)/4 + 4Var(Yb)/4 =
(5/4)Var(Ya), worse than directly using Ya. But it turns out
we can do better: setting βa = 4Ya/5 +(Yb +Yc +Yd +Ye)/5
yields Var(βa) = (4/5)Var(Ya).

For any non-uniform budgeting scheme, if the budget for a
is ε1 and the budget of its children is ε0, then βa = 4ε2

1
4ε2

1 +ε2
0
Ya +

ε2
0

4ε2
1 +ε2

0
(Yb +Yc +Yd +Ye) improves accuracy: one can derive

Var(βa) = 8
4ε2

1 +ε2
0

< 2
ε2

1
= Var(Ya).

As this example illustrates, there are many possible ways of
obtaining new counts as linear combinations of the published
noisy counts. The choices increase exponentially with the tree



size, as we can combine counts of ancestors, descendants,
siblings etc. in various ways. Luckily, we do not need to
explore them in order to compute the best solution. From
linear statistical inference, we know that the best set of new
counts is obtained via the ordinary least-squares estimate
(OLS) [23]. In general, computing the OLS for n unknowns
requires solving a linear system with n× n matrices. Rather
than explicitly inverting such (large) matrices, we present a
linear time algorithm that achieves the same result, by taking
advantage of the inherent symmetries of the matrices defined
for the tree structure. Prior work considered the simpler case of
uniform noise parameters [3]. We give a solution to the more
general case when all nodes at level i have the same Laplace
parameter εi (this encompasses both uniform and geometric
budgeting). The generalization requires significant technical
effort to prove, but yields a simple algorithm.

Notation: As before, let f denote the fanout of the spatial
index and let h denote its height. We use h(v) to denote the
height of node v: h(v) = 0 if v is a leaf, and h(root) = h. We
assume that the tree is complete, i.e., all paths have length h
and all internal nodes have fanout f . Let u≺ v denote that u is
a leaf in the subtree of v. Let anc(u) be the set of all ancestors
of u, including node u. We use par(u) and child(u) to denote
the parent, resp. the set of children, of node u.

For linear inference over a tree structure, the definition of
an OLS is as follows.

Definition 3: Let Y denote the vector of original noisy
counts, i.e., Yv is the noisy count of node v. Let εv denote
the noise parameter for node v. We denote by β the vec-
tor of counts after post-processing. Then β is the ordinary
least squares estimator (OLS) if it is consistent, i.e., βv =
∑u∈child(v) βu for all nodes v, and it minimizes ∑v ε2

v (Yv−βv)2.

The OLS β has two powerful properties: It is unbiased
for any query Q (recall that Y is also unbiased, since noise
has mean 0). Most importantly, among all unbiased linear
estimators derived from Y , it achieves minimum error for all
range queries. In particular, it achieves smaller error than Y .

The computation of β is based on the following result,
proven in the Appendix.

Lemma 4: For any node v in the spatial index, the following
recurrence holds (with Y and β as in Definition 3):( h(v)

∑
j=0

f j
ε

2
j

)
βv + f h(v)

∑
w∈anc(v)\{v}

βwε
2
h(w) = ∑

u≺v
∑

w∈anc(u)
ε

2
h(w)Yw (2)

Lemma 4 provides an efficient way to compute β . First, pre-
compute the following array E of h+1 entries: El = ∑

l
j=0 f jε2

j .

Since El = El−1 + f lε2
l , this takes time O(h). For any node

v, define Zv = ∑u≺v ∑w∈anc(u) ε2
h(w)Yw. We compute Zv for all

nodes v in two linear traversals of the tree, as follows:

Phase I: Top-down traversal
We compute Zv for all leaves v. Note that in that case, Zv =
∑w∈anc(v) ε2

h(w)Yw. Let αroot = ε2
hYroot . In a top-down traversal

of the tree, compute for each node u: αu = αpar(u) + ε2
h(u)Yu.

When we reach a leaf v, we set Zv = αv.

Phase II: Bottom-up traversal
We compute Zv for all internal nodes v as Zv = ∑u∈child(v) Zu;
this requires a single bottom-up traversal.
Phase III: Top-down traversal
We now compute βv for all nodes v. While doing so,
we also compute an auxiliary value Fv, defined as Fv =
∑w∈anc(v)\{v}βwε2

h(w). Note that Equation (2) for v = root is:( h

∑
j=0

f j
ε

2
j

)
βroot(= Ehβroot) = Zroot

So we compute βroot = Zroot/Eh. In addition, let Froot = 0.
For any node v 6= root, assume we have already computed
βw and Fw for all w ∈ anc(v) \ {v}. Then we compute Fv =
Fpar(v) +βpar(v)ε

2
h(v)+1. From Equation (2), we find

βv =
Zv− f h(v)

∑w∈anc(v)\{v}βwε2
h(w)

Eh(v)
=

Zv− f h(v)Fv

Eh(v)
.

From Lemma 4 and the above description we conclude:
Theorem 5: The algorithm consisting of Phases (I)–(III)

described above computes the OLS estimator in time linear
in the size of the tree.

In Section VIII-B we conduct an experimental evaluation
which supports our theoretical result, and shows significant
improvement in query accuracy using the OLS.

VI. DATA-DEPENDENT AND HYBRID TREES

As noted in Section III-B, publishing data-dependent or
hybrid trees with privacy guarantees must overcome an ad-
ditional challenge: the tree structure itself could reveal private
information. In most cases, the current node is split via a line
through the current median value along some axis. For privacy
reasons, we cannot reveal the exact median. In Section VI-A
we discuss methods for computing a private median for a set
of points.

Extending the computation of private medians to a hier-
archical structure requires some subtlety. Note that, unlike
private counts, it is no longer the case that only root-to-leaf
compositions matter. If a tuple is deleted from the dataset,
it affects the (true) medians not only on its respective path,
but also for nodes in different parts of the tree. To show
the privacy of our approach, we appeal to the fact that the
composition of differentially private outputs is well-understood
in an interactive model, where a user asks a series of queries.
We can imagine the following interaction: At the root level,
our private algorithm A outputs a noisy median value m1.
A user subsequently asks for the median of the points lying
on one side of m1, and for the median of the points lying
on the other side of m1 (hence, m1 becomes part of the user
query). Algorithm A returns two noisy values, m2 and m3, each
computed with respect to the user-specified subset. Hence, the
computation can continue recursively, and it is again sufficient
to consider sequential compositions only along root-to-leaf
paths. Now observe that it is straightforward for the data
owner to play both roles, and output the final result (without
interaction) as the PSD.



A. Private Medians

We now outline several methods for computing a private
median for a given set of points. These approaches are either
implicitly or explicitly developed in prior work, but we are not
aware of any previous comparison. Here, we bring together
the different approaches, and give some new analysis on their
behavior. We compare them empirically in Section VIII.

Let C = {x1, . . . , xn} be a (multi)set of n values in non-
decreasing order in some domain range [lo,hi] of size hi− lo =
M, and let xm be its median value. We wish to compute a
private median for C. We could apply the Laplace mechanism
(Definition 2), i.e., return L(C) = xm +X , where X is Laplace
noise. However, the sensitivity of the median is of the same
order of magnitude as the range M (see [16], [4]), and the
noise value X usually dwarfs xm. A consequence of this is
that the noisy median is frequently outside the range [lo,hi].
When used in a kd-tree construction, such a noisy median does
not help to divide the data. Instead, we study the following
four methods.
Smooth Sensitivity [16] tailors the noise to be more specific
to the set C. However, smooth sensitivity has slightly weaker
privacy guarantees than the Laplace mechanism: it only satis-
fies so-called (ε,δ )-differential privacy; see [16] for details.

Definition 4: (from Claim 3.3 of [16]) Let 0 < ε,δ < 1,
and let ξ = ε

4(1+ln(2/δ )) . The smooth sensitivity of the median
is defined as

σs(median) = max
0≤k≤n

(e−kξ max
0≤t≤k+1

(xm+t − xm+t−k−1)).

(where we define xi := lo if i < 0 and xi := hi if i > n).
The smooth sensitivity mechanism for median is defined as

SS(C) = xm + 2σs
ε
· X where X is a random variable drawn

from the Laplace distribution with parameter 1 and σs =
σs(median).
Exponential Mechanism is a general method proposed in [14]
as an alternative to the Laplace mechanism: instead of adding
random noise to the true value, the output value is drawn from
a probability distribution over all possible outputs, so that the
differential privacy condition is satisfied. Applied to median,
we obtain the following algorithm: 2

Definition 5: For any x∈ [lo,hi], let rank(x) denote the rank
of x in C. The exponential mechanism EM returns x with
Pr[EM(C) = x] ∝ e−

ε
2 | rank(x)−rank(xm)|.

Since all values x between two consecutive values in C have
the same rank, they are equally likely to be chosen. Thus, EM
can be implemented efficiently by observing that it chooses
an output from the interval Ik = [xk,xk+1) with probability
proportional to |Ik|e−

ε
2 |k−m|. Conditional on Ik being chosen

in the first step, algorithm EM then returns a uniform random
value in Ik.
Cell-based Method is a heuristic proposed in [2]. It imposes
a fixed resolution grid over C then computes the median based
on the noisy counts in the grid cells. When applied to a
hierarchical decomposition, a fixed grid is computed over the

2This computation is implicit in McSherry’s PINQ system [24].

entire data, then medians are computed from the subset of grid
cells in each node. Cell counts have sensitivity 1. The accuracy
of this method depends on the coarseness of the grid relative
to the data distribution.

Noisy Mean is a heuristic from [4], which replaces median
with mean. A private mean can be computed privately by
computing a noisy sum (with sensitivity M) and a noisy count
(with sensitivity 1), and outputting their ratio. If the count
is reasonably large, this is a fair approximation to the mean,
though there is no guarantee that this is close to the median.

Provided the data is not too skewed, smooth sensitivity and
exponential mechanism have constant probability of choosing
a good split; i.e., the noisy median has a constant fraction of
the data points on each side. We say that the data is not too
skewed if it obeys the “80/20 rule”: the central 80% portion of
the data covers at least 20% of the entire data range M (hence,
it’s not too concentrated). Formally, (x4n/5−xn/5)≥M/5. For
smooth sensitivity, we also require n to be large enough that
ξ n is at least a small constant (where ξ is as in Definition 4).
The proof of the following lemma is provided in the appendix.

Lemma 6: Let C be such that x4n/5− xn/5 ≥ M/5.
(i) Pr[SS(C) ∈ [xn/5,x4n/5]|nξ ≥ 4.03] > 0.5(1− e−ε/4);
(ii) Pr[EM(C) ∈ [xn/5,x4n/5]]≥ 1

6 .

B. Balancing Privacy Budgets

As discussed before, the privacy guarantee of a data-
dependent tree is obtained by composing the individual privacy
guarantees for medians and counts along each root-to-leaf
path, as in Lemma 1.

Let h be the height of the tree and let Am
i , 1≤ i≤ h, be the

noisy median algorithms corresponding to the internal nodes
on a path, such that Am

i is εm
i -differentially private. Let Ac

i , 0≤
i≤ h, be the noisy count algorithms corresponding to the same
nodes, plus the leaf, such that Ac

i is εc
i -differentially private.

Then the PSD released is ε-differentially private, where

ε =
h

∑
i=1

ε
m
i +

h

∑
i=0

ε
c
i

(assuming that sums are equal along each path. Else, ε is the
maximum sum along any path.)

Median vs. count noise. In our experiments, we consider sep-
arate allocations of the ε budget for the median computation,
and for the count computation. An important consideration is
that larger values of εi yield smaller noise (in a probabilistic
sense). However, the noise magnitude has different conse-
quences on the overall accuracy of the tree, for median vs.
count. Large count noise gives more uncertainty on the count
of each region in the tree which Q touches. By contrast, large
median noise may result in a skewed split in some internal
node u. Hence, the children of u are unbalanced in terms of
number of points in their leaves, as well as the size of regions
they represent. However, queries that touch the descendants of
u may still perform well, provided the respective noisy counts
are accurate enough. Still, we cannot neglect median finding



entirely. If the median does not divide the current point set
so that there are at least a constant fraction of points on each
side, then we are essentially wasting a level of the tree. This
becomes more of a challenge deeper in the tree, as the point
set sizes shrink.

Let εmedian = ∑
h
i=1 εm

i and εcount = ∑
h
i=0 εc

i . We study dif-
ferent strategies for choosing these values such that εmedian +
εcount = ε, by analyzing their impact on various query loads.

Budgeting median noise. Once εmedian is fixed, we must
distribute it among internal nodes. A simple strategy is uniform
budgeting, i.e., εm

i = εmedian/h. The hybrid tree approach,
which switches to quadtree splitting after ` levels implies
setting εm

i = εmedian/` for h − ` < i ≤ h and εm
i = 0 for

0 ≤ i ≤ h− `.

Flattening the kd-tree. From Lemma 2 and the computation
of query errors from Section IV, it seems that a (2D) kd-
tree built over the same number of leaves as a quadtree has
significantly worse accuracy. The reason is that the kd-tree has
twice the height of the quadtree, so the noise budget is divided
into twice as many pieces. To better compare quadtrees and
kd-trees, we can ensure that both have the same fanout of 4.
We propose “flattening” the kd-tree: connect the root to its
four grandchildren, and recurse down the tree, skipping every
other level. (This is akin to setting εi = 0 for every other level).
The bound on n(Q) over a flattened kd-tree is now the same as
for a quadtree of the same height, following from Lemma 2.
From now on, we assume all trees have fanout f = 4.

VII. FURTHER ENHANCEMENTS

In this section we discuss how to apply two popular
strategies—sampling and pruning—in the context of differ-
ential privacy. Sampling can be used to significantly improve
the running time for computing data-dependent trees. Pruning
can improve the query accuracy for both data-independent and
data-dependent trees.

Sampling to reduce computation time. When data is large,
computing differentially private functions can be very time
consuming, even when the functions take near-linear time.
A natural technique is to compute the function on only a
small sample of the full data to speed up the computation.
Intuitively, sampling is very compatible with differential pri-
vacy: the influence of any individual is reduced, since they
may not be included in the sample. The next result extends
Kasiviswanathan et al. [25]3:

Theorem 7: Given an algorithm A which provides ε-
differential privacy, and 0 < p < 1, including each element
of the input into a sample S with probability p and outputting
A(S) is 2peε -differentially private.

Treating 2eε as a constant (it is between 2 and 5.5 for
0 < ε < 1), it is sufficient to sample at a rate of ≈ ε ′/10 to
achieve ε ′-differential privacy. For large enough data, sampling
at a rate of, say, 1% and applying Laplace noise with parameter

3Via the exposition at http://adamdsmith.wordpress.com/
2009/09/02/sample-secrecy/

0.9 achieves 0.1-differential privacy—but it processes a data
set two orders of magnitude smaller. We use this result to
compute noisy medians for data-dependent and hybrid trees,
via the SS and EM methods from Section VI-A. We conclude
that sampling makes both methods an order of magnitude
faster. It only marginally deteriorates the accuracy of the
exponential mechanism, and it improves the accuracy of the
smooth sensitivity-based noise. See Section VIII-B.

Sampling is not useful for noisy counts: computing a
sample (independently per node) and computing the exact
count both require linear time. However, sampling introduces
more inaccuracy in the noisy count. For the same reason,
the cell-based method for noisy medians (Section VI-A) is
implemented without sampling.

Pruning. Due to the uneven nature of the splitting process,
it is possible that both data dependent and data independent
trees contain some nodes with few or no points. Dividing such
sets can be counter-productive: the noise added to the counts
of their descendants may add up for queries which intersect
their region. Instead, it is preferable to cut off the tree at this
point. This requires some care: the choice to stop cannot be
based on the “true” count of the points, as this does not meet
the differential privacy requirement. Instead, we can choose
to stop if the noisy count estimated for a node in the tree is
less than threshold m. In our setting, we choose to apply this
pruning after the postprocessing procedure of Section V, which
operates on a complete tree. We observed that this improves
empirically over retaining all nodes.

VIII. EXPERIMENTAL STUDY

We begin by studying design choices for each class of
methods: the choice of medians for data-dependent PSDs,
different strategies for budgeting and post-processing for data-
independent PSDs. We then study the effectiveness of query
answering for the different approaches. Finally, we apply our
findings to a particular application [4].

A. Experimental Environment

To evaluate the accuracy of query answering of various
PSDs, we experimented on a mixture of real and synthetic
data. Real data was drawn from the 2006 TIGER/Line dataset4.
Here, we present results using GPS coordinates of road
intersections in the states of Washington and New Mexico.
This data represents a rather skewed distribution corresponding
roughly to human activity, so we treat it as the locations
of individuals which should be kept private. The dataset has
1.63 million coordinates in the range [−124.82,−103.00]×
[31.33,49.00]. We conducted experiments on other data sets
as well, including synthetic 2D data with various distributions
and TIGER/Line data of different regions, and obtained similar
results.

We show results for rectangular queries where query sizes
are expressed in terms of the original data. For example,
since 1 degree is approximately 70 miles, (15, 0.2) indicates a

4http://www.census.gov/geo/www/tiger/
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Fig. 3. Query accuracy of quadtree optimizations

“skinny” query of 1050 × 14 miles. We consider several query
shapes; for each shape we generate 600 queries that have a
non-zero answer, and record the median relative error.

All experiments were conducted on a 2.80GHz CPU with
8GB RAM, so the data fits easily in memory. We implemented
our PSDs in Python 2.6 with scientific package Numpy.

B. Experimental Results

Budget and post-processing. In Sections IV and V we
proposed two techniques to improve query accuracy for PSDs:
geometric noise allocation, and the post-processing method.
We compare quadtrees with geometric budgeting (quad-geo),
post-processing (quad-post) and both combined (quad-opt)
to the baseline approach of uniform budget with no post-
processing (quad-baseline). Figure 3 shows the relative errors
when all trees are grown to the same height, h = 10. Clearly,
each optimization significantly improves the query accuracy,
and in combination they perform even better: the relative error
is reduced by up to an order of magnitude, especially when
the privacy budget is limited (ε = 0.1). We observe the same
improvement on other PSDs, so all subsequent results are
presented with both optimizations.

Quality of private medians. In Section VI-A we described
several approaches to private medians: smooth sensitivity (SS),
exponential mechanism (EM), noisy mean (NM) and the cell-
based approach (cell). To show their relative behavior, we
compare them on a synthetic one-dimensional dataset with
220 data points distributed uniformly within a domain of
[0,226] (the same relative performance was seen on other
distributions). We build a binary tree structure with splits found
by each mechanism, and measure the average (normalized)
rank error of the private medians for each level. In the worst
case the noisy median may fall out of the data range [x1,xn]
and have 100% relative error.

Figure 4 shows the accuracy and time for median finding
with privacy budget ε = 0.01 at each level (counting from the
root down). For SS, which is (ε,δ )-differentially private, we
set δ = 10−4. We also show the result of combining sampling
with probability p = 1% with SS and EM, obtaining methods
SSs and EMs respectively.
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Fig. 4. Private medians accuracy and efficiency

We argued that efficiency could be improved by combining
either method with sampling. The exponential mechanism
(EM) is always the most accurate, providing almost true
medians for large data sizes (220 points at depth 0) and
medians with moderate error for smaller data sizes (around
211 points at depth 9) without sampling. For smooth sensitivity,
the sampling (SSs) approach improves the accuracy, since the
increase in privacy budget outweighs the effect of fewer data
points. The reverse is true for EMs: although the privacy
budget becomes about 50 times larger, the ranks are about
100 times smaller, so the probability associated with elements
far from the median is correspondingly larger. Nevertheless,
as Figure 4(b) shows, there is a commensurate performance
improvement: the sampling versions are about an order of
magnitude faster across all data sizes. Although fast, the noisy
mean approximation (NM) gives poor quality medians for
smaller data sizes. The cell-based approach (cell length 210)
has larger error for large data sizes while being much slower
than others. Based on these results, we use the exponential
mechanism as the default method for noisy medians in all
other experiments, and advocate the use of sampling when
the data under consideration is large.

Other parameter settings. We summarize our findings on
parameter settings. Detailed plots are omitted for brevity.

Hybrid trees. A hybrid tree switches from data dependent
splitting to data independent splitting at a “switch level” `.
We found that switching about half-way down the tree (height
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Fig. 5. Query accuracy for kd-trees
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Fig. 6. Query accuracy comparison

3 or 4) gives the best result over this data set.

Median vs. count noise. As we increase εmedian and decrease
εcount, we obtain more accurate divisions of the data, but less
accurate counts. Although it may vary for different queries
and PSDs, in most cases the best results were seen when
budget was biased towards the node counts, allocated roughly
as εcount = 0.7ε and εmedian = 0.3ε , so we adopt this division.

Hilbert curve resolution. Recall that we can treat Hilbert R-
trees as one-dimensional kd-trees, and so obtain PSDs. First
we set the order of the Hilbert curve. Given the large domain
and skewed data distribution, a Hilbert curve of order 23 is
needed to differentiate each individual point in the dataset.
However, since the leaves of our PSDs should contain several
points, we found similar accuracy for all resolutions in the
range 16 to 24, and use curves of order 18 in our experiments.

Comparison of kd-trees. We compare the accuracy of queries
among the kd-tree with EM medians (kd-standard), the hybrid
kd-tree (kd-hybrid), the cell-based kd-tree proposed in [2] (kd-
cell) with cell length 0.01 and the noisy mean based kd-tree
from [4] (kd-noisymean). To see “the cost of privacy”, we also
include some results on non-private structures: the exact kd-
tree (kd-pure) and the kd-tree which uses exact medians but
noisy counts (kd-true). In all experiments, the kd-trees have
the same (pre-determined) maximum number of levels h = 8
(with fanout 4). We also use a pruning condition based on
frequency: we remove descendants of any node whose noisy
count is below a threshold m = 32.

Figure 5 shows the result of comparing kd-tree variants
across a range of privacy budgets (ε = 0.1,0.5,1.0). We first
observe that even a pure kd-tree without noise of any kind
introduces some error because of the uniformity assumption
for leaves that intersect, but are not contained in the query.
Comparing kd-true and kd-pure, we see that adding noise
to counts does not dramatically degrade query accuracy: it
remains below 1% relative error. Rather, it is the noise in the
choice of medians which seems to have the greater impact
on query accuracy, as is evident from the results for the
PSDs. Since the splitting points do not evenly divide the data,
particularly at greater depths in the tree, there are some leaves
with a much larger number of points than in the exact trees.
This explains the weak performance of kd-noisymean, whose
choice of splitting points was seen to be poor in Figure 4(a).

The kd-cell approach has good performance on queries
which are small and square. However, as the query area grows,
the method looses its edge, and is dominated by kd-hybrid.
Overall, the accuracy of query answering from all cases is
good, with small relative errors of less than 10% even for
high privacy (ε = 0.1). Of the kd-tree variations, the kd-hybrid
seems the most reliably accurate.

Comparison of PSDs. Figure 6 shows the query accuracy for
the best performing instances of the representative methods:
optimized quadtree, cell-based kd-tree, hybrid kd-tree and
Hilbert R-tree on three queries of different shapes. In this
set of experiments we varied the depth of the trees (h =6
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Fig. 7. Time efficiency and results on private record matching

to 11) while keeping the privacy budget fixed at ε = 0.5. At
depth 10 the optimized quadtree is able to provide the best
accuracy of all. It seems that the ability to devote all of the
privacy budget to noisy counts for quadtrees outweighs the
ability of kd-trees to more evenly split the data via private
medians. However, the hybrid kd-tree at height h = 8 obtains
about the same accuracy as the quadtree at height h = 10 for
the larger queries. The cell-based kd-tree, which first imposes
a uniform grid over the domain, provides good accuracy on
small square queries since the node shape matches the query
shape. However, kd-cell performs worst on the larger queries,
which require probing more nodes. We also note that the
private Hilbert R-tree has comparably good performance on
some queries, but much higher errors on others.

Scalability. Figure 7(a) illustrates the time taken to build each
spatial decomposition using our prototype code. For the data
sets considered, PSD construction time was not a bottleneck,
since we typically consider this to be a one-time cost. In
general, the structures which only divide the domain take much
less time than the data dependent approach, while hybrid kd-
tree lies in-between, at around a minute. The cell-based kd-
tree also takes a long time, due to first materializing noisy
counts of many cells, then building a tree on top of them.
The Hilbert R-tree takes even more time, due to the higher
cost of encoding and decoding coordinates in Hilbert space.
The count post-processing step adds only a few seconds to the
overall cost.

C. Application to Private Record Matching.

The kd-noisymean tree was originally introduced to solve a
private record matching problem—see the full details in [4].
Here, a differentially private data structure is used to focus
in on areas of potential overlap between datasets before an
expensive secure multiparty computation (SMC) procedure
is invoked. The metric of interest is the reduction ratio,
which measures how much SMC work is saved relative to the
baseline of no elimination, so bigger is better. We obtained the
code from the authors of [4] and ran the same experiments on
the same data. Figure 7(b) shows reduction ratio for quad-
baseline, kd-noisymean and kd-standard (in this application,
all count budget is allocated to leaves and thus post-processing
does not apply). We observe that the new kd-tree approach we
have proposed can improve appreciably over the two methods

tried in [4]. Note that improving reduction ratio from 0.93 to
0.95 represents 28% less SMC work.

IX. CONCLUDING REMARKS

We have presented a comprehensive framework for differ-
entially private spatial decompositions, and shown how to
produce private versions of many popular methods, such as
quadtrees, kd-trees and Hilbert R-trees. We have proposed
novel techniques for setting hierarchical noise parameters in a
non-uniform manner that minimizes query error. Further, we
have developed a post-processing technique that re-computes
node counts based on the initial noisy counts to optimize query
accuracy. This new technique applies to a large class of other
settings in privacy.

In the process of computing private data-dependent decom-
positions, we have provided the first survey of techniques
for computing private medians and derived theoretical results
that give insight into the expected behavior of the two most
accurate methods. We have shown how to combine all these
results (plus other techniques such as sampling) into a single
whole that achieves the desired privacy guarantee. In our
ongoing work, we study other settings: sparse categorical
data [26], and higher dimensional data.

Our experimental study is consistent with our theoretical
insights, and shows that each of our techniques leads to
significant improvements in query accuracy, running time or
both. For most PSDs, we achieve relative query errors in
single-digit percentages, while guaranteeing strong differential
privacy. We conclude that PSDs represent an efficient and
accurate way to release spatial data privately.
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APPENDIX

Proof of Lemma 4.
We use the notation defined in Section V. In addition, we
define for each node u the set desc(u) to be the descendants
of u, including node u. We also use the shorthand anc(u,v) =
anc(u)∩ anc(v). Let Cu denote the true count of node u. We
want to show that if β is the OLS for C, then it satisfies the
recurrence in the statement of the lemma. For any v

Yv = ∑
u≺v

Cv +Xv (3)

where Xv is the random variable drawn from the Laplace
distribution with parameter εh(v). Therefore Var(Yv) = 2/ε2

h(v).
The set of equations (3) for all v can be written in matrix
form as follows. Let n = f h be the number of leaves, and let
m be the number of nodes in the tree. The binary matrix Hm×n
representing the tree hierarchy is defined as Hu,v = 1 if v ≺ u
and 0 otherwise. Assume wlog that the nodes u are in breadth-
first order, and the leaves are ordered from left to right. Then
(3) can be written as Y = H ·C+X , and the covariance matrix
of Y is cov(Y ) = 2diag(1/ε2

h(u)).
We apply the standard transformations

Z = (cov(Y )/2)−
1
2 Y = diag(εh(u))Y and U = (cov(Y )/2)−

1
2 H

to obtain the equation Z = U ·C + diag(εh(u)) · X . Now
cov(Z) = 2I, where I the unit matrix, and the new equation
fits the classical model.

Since the OLS is consistent, i.e., βv := ∑u≺v βu, it suffices
to estimate the leaf counts, and the other estimates follow.
A vector β is the OLS for the true count C if it minimizes
(Z−Uβ )T (Z−Uβ ) (equivalent to Definition 3). After differ-
entiating, we have that β satisfies

UTUβ = UT Z (4)

By simple calculations, (UTU)u,w = ∑v∈anc(u,w) ε2
h(v) and

(UT Z)u = ∑v∈anc(u) εh(v)Zv = ∑v∈anc(u) ε2
h(v)Yv. For any node

v, we sum the corresponding rows on the left side of (4) to
obtain ∑u≺v(UTU)uβ =

∑
z∈[n]

∑
u≺v

∑
w∈anc(u,z)\anc(v)

ε
2
h(w)βz + ∑

z∈[n]
∑
u≺v

∑
w∈anc(u,z)∩anc(v)

ε
2
h(w)βz

= ∑
z≺v

∑
u≺v

∑
w∈anc(u,z)\anc(v)

ε
2
h(w)βz + ∑

w∈anc(v)
∑
u≺v

∑
z≺w

ε
2
h(w)βz

= ∑
u≺v

∑
w∈anc(u)\anc(v)

∑
z≺w

ε
2
h(w)βz + ∑

w∈anc(v)
ε

2
h(w) ∑

u≺v

(
∑
z≺w

βz

)
= ∑

u≺v
∑

w∈anc(u)\anc(v)
ε

2
h(w)βw + ∑

w∈anc(v)
f h(v)

ε
2
h(w)βw

=
h(v)−1

∑
j=0

ε
2
j ∑

u≺v
∑

w∈anc(u):h(w)= j
βw + f h(v)

∑
w∈anc(v)

ε
2
h(w)βw

=
h(v)−1

∑
j=0

ε
2
j ∑

w∈desc(v):h(w)= j
f j

βw + f h(v)
∑

w∈anc(v)
ε

2
h(w)βw

=
h(v)−1

∑
j=0

ε
2
j f j

βv + f h(v)
ε

2
h(v)βv + f h(v)

∑
w∈anc(v)\{v}

ε
2
h(w)βw

=
h(v)

∑
j=0

ε
2
j f j

βv + f h(v)
∑

w∈anc(v)\{v}
ε

2
h(w)βw

We now sum the corresponding rows on the right hand side
of (4), i.e., we sum (UT Z)u over u ≺ v. Equating the left and
right hand side, we obtain (2).

Proof of Lemma 6. (i)

Observe that σs ≤ max( max
0≤k<2n/5

e−kξ (xm+k+1− xm−k−1),

max
2n/5≤k≤n

e−kξ (xm+k+1− xm−k−1))

≤ max((x4n/5− xn/5),e
−2ξ n/5M)

Using our assumptions, e−2ξ n/5M < M/5 ≤ (x4n/5 − xn/5), so
σs ≤ (x4n/5 − xn/5). Consider the case when the median is
closer to xn/5 than to x4n/5. Then the output of SS is within
the desired range if 0 ≤ (2σs/ε)X ≤ σs/2, i.e., X ≤ ε/4.
Symmetrically, if the median is closer to x4n/5, the noisy
median is in the desired range if 0≥ (2σs/ε)X ≥−σs/2, i.e.,
X ≥ −ε/4. Since X is drawn from a symmetric distribution,
we conclude that

Pr[SS(C)∈ [xn/5,x4n/5]|ξ n≥ 4.03]> Pr[0≤X ≤ ε/4] = 1−e−
ε
4

2 .

(ii) Let α be the proportionality constant implicit in Defi-
nition 5. Let E be the event that EM(C) ∈ [xn/5,x4n/5]. Then

Pr[E] ≥ αe−0.15εn(x4n/5− xn/5)
and 1−Pr[E] = Pr[¬E] ≤ αe−0.15εnM.

Using our assumption, we have 1− Pr[E] ≤ 5Pr[E]. Hence
Pr[E]≥ 1/6.


