
Differentiated Caching Services; A Control-Theoretical Approach
Ying Lu, Avneesh Saxena and Tarek E Abdelzaher

Department of Computer Science
University of Virginia

Charlottesville, VA 22903 *

Abstract
The increasing diversity of Internet appliances calls for
an architecture f o r performance differentiation on infor-
niatiori access. The World Wide Web is the dominant in-
terface f o r inforniation access toduy. Web proxy caching
is the key performance accelerator in the web infras-
tructure. While many research efforts addressed pegor-
niance differentiation in the network and on web servers,
providing multiple levels of service in p r o v caches has
received much less attention.

This paper has two main contributions. First, we de-
scribe, implement, and evaluate an architecture for dif-
ferentiated content caching services as a key element
of the Internet infrastructure. Second, we describe a
control-theoretical approach that lays well-understood
theoretical foundations for resource nianagenient to
achieve performance differentiation in proxy caches. We
describe our experiences with iniplenientirig the differ-
entiated caching services scheme in Squid, a popular
proxy cache used by many ISPs today. Experimental
study and analyses prove that differentiated caching ser-
vices provide significantly betterperformance to the pre-
mium content classes.

1 Introduction
The phenomenal growth of the Internet as an informa-
tion source makes world-wide information access one of
its most important applications today. The increasing di-
versity of Internet information appliances from high end
workstations to wireless devices calls for customization
of information access performance. The Web today is
the primary interface for information access. The key
performance acceleration mechanism in the web infras-
tructure is web caching. To meet the increasingly diver-
sified performance demands of appliance-heterogeneity,
in this paper we investigate an architecture for perfor-
mance differentiation in web proxy caches. The archi-

‘The work reported in this paper was supported in part by the Na-
tional Science Foundation under grant No. CCR-0093 144.

tecture allows different classes of content to receive dif-
ferent performance (i.e., QoS) levels.

The most widely-used performance metric in the con-
text of web caching is the cache hit ratio, H . It is re-
lated directly to performance measures of interest to the
clients such as average response time. For example, if
the average cache hit takes Thit time units and the av-
erage cache miss takes Tmiss time units, the average
response time on information access is approximately
Taccess = H*Thit+(l-H)T,i,,. Assuming that Tmiss

is roughly Thit + Tbackboner where Tbackbone is the av-
erage roundtrip delay from the cache to an origin server,

Tmiss - HTbackbone. If is the ratio Thit/Tbackbone, i t
follows that Tu,,,,, = (1 +a - H)Tba&bone. From this
last expression note that if the performance bottleneck is
in the backbone, a << 1 , and hence caching has an im-
portant effect on reducing average service time as H in-
creases. Conversely, if the performance bottleneck is on
the side of the client, a >> 1, and hence, performance
is not affected significantly even if H is reduced. The
above approximate argument demonstrates that in an en-
vironment with heterogeneous clients, different clients
perceive caching performance speedup differently. An
cache resource allocation policy that maximizes aggre-
gate client-perceived performance should provide a dif-
ferent H to different client classes. Hit-ratio differenti-
ation among different classes implies both partitioning
of content and displacement of more popular content of
less favored classes by less popular content of more fa-
vored classes. While the favored classes receive a bet-
ter hit ratio, the overall cache hit ratio is reduced. This
reduction is consistent with optimizing client-perceived
performance, since the favored classes are presumably
more sensitive to changes in hit ratio. It is precisely the
difference in client sensitivity to changes in the cache hit
ratio that motivates differential treatment of content.

We adopt a proportional differentiated services model
for cache hit ratio differentiation. For example, one
can specify that the hit ratio of the “premium” class

then simple algebraic manipulation yields Tu,,,,, - -

1063-6927/01$10.00 0 2001 IEEE
615

should be twice that of the “basic” class. By avoiding
absolute specification of the hit ratio, the specified per-
formance differentiation can be enforced regardless of
client access patterns. There are several immediate ap-
plications of caches with a performance differentiation
mechanism. One such application is the differentiation
between standard web content and the emerging wire-
less content. Wireless appliances require new content
types for which a new language, the Wireless Markup
Language (WML) was designed. Since these appliances
are slow, proxies that support performance differentia-
tion can get away with lower hit rates on WML traffic to
give more resources to faster clients (that are more sen-
sitive to network delays upon cache misses) thus opti-
mizing aggregate resource usage. This is especially true
of caches higher in the caching hierarchy where multiple
content types are likely to be intermixed.

Alternatively, a web cache may choose to classify
content by the identity of the requested URL. For in-
stance, an ISP (such as AOL) can have agreements with
preferred content providers to give their sites better ser-
vice for a negotiated price. Our architecture would en-
able such differentiation to take place.

One significantly novel aspect of this paper is that we
use a control-theoretical approach for resource alloca-
tion to achieve the desired performance differentiation.
Digital Feedback Control Theory offers techniques for
developing controllers that utilize feedback from mea-
surements to adjust the controlled performance variable
such that it reaches a given set point. By casting cache
resource allocation as a controller design problem, we
are able to arrive at an allocation algorithm that con-
verges to the desired performance differentiation in the
shortest time in the presence of very bursty self-similar
cache load.

The rest of this paper is organized as follows. Sec-
tion 2 describes related work. Section 3 describes the
architecture of a cache that supports service differen-
tiation. A control-theoretical approach is described to
achieve the desired distance between performance lev-
els of different classes. Section 4 describes the imple-
mentation of this architecture on Squid, a very popu-
lar proxy cache in today’s web infrastructure. Section 5
gives experimental evaluation results of our architecture,
obtained from performance measurements on our modi-
fied Squid prototype. Section 6 concludes the paper and
discusses avenues for future work.

2 Related Work
Early research in the web community has tradition-
ally been on performance optimization rather than ser-

vice differentiation and QoS management. Protocol is-
sues such as performance interactions between TCP and
HTTP have been investigated at length [9,7, 17, 15, IS].
Load balancing [12, 5, 231 and admission control [191
have often been used to improve scalability and pre-
dictability of web services.

More recently, architectures were proposed for differ-
entiated services and QoS control. The authors of [14]
proposed and evaluated an architecture in which restric-
tions are imposed on the amount of server resources
(such as threads) available to low priority clients. In [4,
11 adm.ission control and scheduling algorithms are used
to provide premium clients with better service. In [IO]
a server architecture is proposed, maintaining separate
service queues for premium and basic clients and thus,
facilitating their differential treatment. In [2, 31 an ar-
chitecture was proposed for content adaptation that sup-
ports tiered services and performance isolation among
co-hosted sites.

The above efforts addressed performance differentia-
tion at the origin server. Caches introduce a crucial ad-
ditional degree of complexity to performance differenti-
ation, namely, the ability to import and replace items on
demand. On an origin server all requests are served lo-
cally. Thus, the perceived performance of the server de-
pends primarily on the order in which clients are served.
The performance speedup due to a cache, a n the other
hand, depends primarily on whether or not the requested
content is cached. Thus, hit ratio, rather than service
order, is a significant performance factor. Performance
differentiation in caches, therefore, requires a new ap-
proach.

Web caching research has traditionally focused on
replacement policies for optimal disk storage alloca-
tion [l I, 13, 61. Biased replacement policies were pro-
posed to favor important users [20]. While biased re-
placement policies come close in spirit to our goals,
prior work does not guarantee a specifiable difference
between the performance levels of different classes.

3 Differentiated Caching Services
In this section we present our architecture for service
differentiation among multiple classes of content cached
on a web proxy. Intuitively, if we assign more storage
space to a traffic class, its hit rate will increase, and the
average response time of client accesses to this content
will decrease.’ If we knew future access patterns, we
could tell the amount of disk space that needs to be allo-

‘This presumes that the request traffic on the cache is not enough
to overload its CPU and YO bandwidth.

616

cated to each traffic class ahead of time to achieve their
performance objectives. In the absence of such knowl-
edge we need a feedback mechanism to adjust space al-
location based on the difference between actual system
performance and desired performance. This feedback
mechanism is depicted in Figure 1 which illustrates a
feedback loop that controls performance of a single traf-
fic class. One such loop is needed for each class.

RsqvesCr

Figure 1. The Hit Rate Control loop

In Figure 1, a service differentiation policy dynam-
ically determines the desired performance level for the
traffic class under consideration. While we believe that
our general feedback techniques can work with any per-
formance metric that can be affected by cache resource
allocation, in this paper we consider hit ratio as our met-
ric of choice. Let there be n content (i.e., traffic) classes
in the system. Let the measured average hit ratio of con-
tent class i be Hi. The differentiation policy specifies
that the hit ratio of different classes should be related by
the expression: H1 : H2 : _.. : H , = C1 : C2 : ... : C,,
where Ci is a proportionality constant or weight of class
i. We define the relative hit ratio, Ri, of content class
i to be Ri = Hi/(H1 + H2 + ... + Hn) . It de-
termines how the class is performing relative to other
classes. The desired performance of class i should be
RidesiFed = Ci/ (Cl + C2 + ... + C,). We call the
difference Ridesired - Ri the performance error ei of
class i. An appealing property of this model is that
the aggregate performance error of the system is always
zero,because - ei = C l < i < n (R i d e s i r r d - _ -Ri) =

CI<i<,C* - C,<i<, Hi
CI+C?+ ...+ C, Hl+Hz+ ...+ Hn = - = O’ As we
show in the next section, this property allows us to de-
velop resource allocation algorithms in which resources
of each class are heuristically adjusted independently of
adjustments of other classes, yet the total amount of al-
located resources remains constant equal to the total size
of the cache.

3.1 Performance Differentiation Problem

We cast the performance differentiation problem as a
closed-loop control problem. Each class of content i is
assigned a different amount of cache storage s i , such

that ci si is the total size of the cache. Our objective
is to achieve the desired hit ratio differentiation, i.e., to
reduce the performance error ei to zero for each content
class. A zero error entails that the hit ratio of differ-
ent classes is proportionally related by the specification
C1 : C, : ... : C,. We reduce the error ei to zero
by adapting the storage allocation. We need to show
that (i) our resource allocation heuristic converges to the
desired relative hit-ratio specification, and that (ii) the
convergence is bounded by a finite constant that is a de-
sign parameter. To provide these guarantees, we rely on
feedback control theory in designing the resource allo-
cation heuristic. The heuristic is invoked at fixed time
intervals at which it corrects resource allocation based
on the measured performance error. Let the measured
performance error at the kth invocation of the heuristic
be e i[k] . To compute the correction bsi[k] in resource al-
location, we use a linear function f (e i) where f (0) = 0
(no correction unless there is an error). At the kth invo-
cation, the heuristic computes:

(1) Vi : Gsi[k] = f (e i [k])

Vi : S i [k] = Si[k - 11 + GSi[k]

The space allocation is then adjusted:

(2)

If the computed correction Gsi[k] is positive the space al-
located to class i is increased by Ibsi[lc]l. Otherwise it is
decreased by that amount. Since the function f is linear,
E, f(e , [k] j = f(C, ez[k]) . In Section 3 we showed
that x , e , [k] = 0. Thus, E , f (e , [k]) = f(0) = 0.
It follows that the sum of corrections across all classes
is zero. This property is desirable since it ensures that
while the resource adjustment can be computed indepen-
dently for each class based on its own error ei , the ag-
gregate amount of allocated resources does not change
after the adjustment. This amount is always equal to the
total size of the cache. Next we show how to design the
function f in a way that guarantees convergence of the
cache to the specified performance differentiation within
a single sanipling period.

3.2 Control Loop Design

To design the function f, a mathematical model of the
control loop is needed. Consider some arbitrary content
class i. Every sampling instant, an error ei[k] is mea-
sured and an adjustment 6si[k] is carried out by the re-
placement policy. The adjustment affects the hit ratio. A
monotonically increasing relation is observed between
cache space and hit probability. The parameter K, is
a linearization of that relation. The expected hit ratio at
the end of a sampling interval (where expectation is used

617

in a mathematical sense) is determined by the space al-
location and the resulting hit probability that took place
at the beginning of the interval. Hence:

E(6H,[k]) = K,bSi[k - 11 (3)

and E (H i [k]) = H i [k - l] + E (6 H i [k]) . Rememberthat
the relative hit ratio (the controlled performance vari-
able) is defined as Ri = H i / (H l + H2 + ... + Ifn).
Unfortunately, the measured Hi[k] might have a large
standard deviation around the expected value unless the
sampling period is sufficiently large. Thus, using Hi[k]
for feedback to the controller will introduce a signifi-
cant random noise component into the feedback loop.
Instead, the measured Hi[k] is smoothed first using a
low pass filter. Let the smoothed Hi[k] be called M i [k] .
It is computed as a moving average as follows:

M i [k] = aMi[k - 11 + (1 - a)Hi[lc] (4)

In this computation, older values of hit ratio are expo-
nentially attenuated with a factor a, where 0 < a < 1.
Values of a closer to 1 will increase the horizon over
which Hi is averaged and vice versa. The correspond-
ing smoothed relative hit ratio is Mi[k] / Xi M i [k] . This
value is compared to the set point for this class and the
error is used for space allocation adjustment in the next
sampling interval, thereby closing the loop.

Next we take the z-transform of Equations (I) , (2) ,
(3), and (4) and draw a block diagram that describes
the flow of signals in the hit ratio control loop. The
z-transform is a widely used technique in digital con-
trol literature that transforms difference equations into
equivalent algebraic equations that are easier to manipu-
late. Figure 2 depicts the control loop showing the flow
of signals and their mathematical relationships in the z-
transform. The z-transform of the heuristic resource re-
allocation function f is denoted by F (z) .

Cache
Cache

Conmller
- /

R i

Oulput Sensor

Figure 2. z-Transform of the Control loop

We can now derive the relation between Ri and
Ridesired. From Figure 2 , Ri = e i F (z) G (z) , where:

z-l K ,
G(z) =

(1 - 2-1) E2 Hi

Substituting for ei, we get: R; = -
If.'-" 2 1 - z - l a) F (z) G (z) . Note that since Mi is a

smoothed Hi, the ratio Hi/& that appears in the

preceding equation is approximately equal to the relative
hit ratio Ri. Hence, approximately, Ri = (Ridesired -
R i $, 5) F (z) G (z) . Using, simple algebraic manipu-
lation:

To design the allocation heuristic, F (z) , we specify the
desired behavior of the closed loop, namely that R, fol-
lows R,d,,,,,d within one sampling time, or R,[k] =
R, ,ea ,ped[k - 11. The requirement translates to R, =

= z-l, from

Substituting for G (z) from

F z)G(z
Z - l R Z d e s i r e d . l+-F(j)G(z) 1- -

z-l(l- ~ l - z , - l ~ G ~ ~ ~ . -1 which F (z) =
Equation (5) we arrive at the z-transform of the desired
heuristic function, namely:

(1 - 2-1.) xi Hi
F (z) =

K,:
(7)

The corresponding difference equation is:

The above equation gives the adjustment in the disk
space allocated to class i given the performance error of
that class, ei and the aggregate of all measured hit ratios.

tute the smoothed aggregate, xi Mi, for xi Hi to avoid
noise-related problems. The resulting closed loop is sta-
ble, because the closed loop transfer function, z-', is
stable and because the open loop transfer function does
not contain unstable poles or zeros [22]. A method for
estimating the parameter K, which describes the rela-
tion between cache size and hit probability is described
in a technical report [21].

4 Implementation
We modify Squid, a widely used proxy-cache to vali-
date and evaluate our QoS-based resource allocation ar-
chitecture. Squid is an open-source Internet cache [131
designed for high performance caching strategies imple-
mentation. This section addresses issues involved in the
design and implementation of our control-loop based
algorithm. The implementation closely corresponds to
the control loop design. There are five modules in the
QoS cache: timer, output sensor, cache space controller,

In the actual implementation of the heuristic we substi-

618

classijier and actuator. The timer sends signals to out-
put sensor and cache space controller to let them update
their output periodically. The classifier is responsible
for request classification and the actuator is in charge
of cache space release and allocation. The cache con-
troller simply implements Equation (8). The output sen-
sor measures hit ratio of each class and smoothes it using
Equation (4). Hence, below we focus on the other three
modules.
Timer: In order to make the control loops work at fixed
time interval, we added a module in Squid that regulates
the control loop execution frequency. Using the module,
we could configure a parameter to let the loops execute
periodically, for example, once every 30 seconds.
Classifier: This module is used to identity the requests
for various classes. On getting a request this module is
invoked and obtains the class of this request. The classi-
fication policy is application specific and should be eas-
ily configurable. For the sake of developing a proof of
concept we are doing classification based on the IP ad-
dress of the clients sending the request. In general, ar-
bitrary classification policies based on different criteria,
such as the requested site, or content type (e.g. HTML
vs. CIF) are possible.
Actuator: As described in Section 3, at each sampling
time the cache space controller performs the computa-
tion s i [k] = s i [k - 11 + Ssi[k] and outputs the new
value of total space s i [k] for each class. In Squid, the
cache space deallocation and allocation are two separate
processes. The actuator use the output of the controller
to guide the cache space release and allocation. Let
realSpacei be a running counter of the actual amount
of cache space used by class i . The cache scans the
entries from the bottom of each class’s LRU list. If
the cache space assigned is less than the desired cache
space for the class (realSpace, < si[lc]), entries will
not be removed from that class. Whenever a page is
fetched from some server, the cache will choose to save
it in the disk or not based on which class requests the
page and the current cache space of the class. Ide-
ally, as a result of the above enforcement of the de-
sired cache allocation, the cache space realSpacei oc-
cupied by each class i by the end of the k th sampling
time should be exactly the same as the desired value
si[lE] set at the beginning of the interval. In reality,
a discrepancy may arise. For exmaple, it is possible
that we want to give one class more cache space while
there aren’t enough requests to fi l l in that much space
with requested pages. In order to remedy this prob-
lem, we include the difference si[lc] - realSpacei at

the end of the lcth sampling interval in our coniputa-
tion of desired cache space for the k + l th sampling
period. That is, si[lc + 13 = si[lc] + 6si[k + 11 =
realSpacei + (s i [k] - realSpacei) + bsi[k + 11.
5 Evaluation
We test the performance of the feedback control archi-
tecture using synthetic traces. We use synthetic work-
load to show that our design makes the cache converge
most efficiently to the specified performance differenti-
ation under representative cache load conditions. The
experiments are conducted on a testbed of nine AMD-
based Linux PCs interconnected by a 100-MHz Ethernet
switch. Collectively, these machines were used to run a
set of web servers, web clients, and a single cache. Up
to 4 of the machines ran web servers. Up to 4 gener-
ated requests, emulating the community of clients. The
last machine was used to run the proxy cache. Because
Apache [I61 is very widely deployed in practice, we
used it for our web servers. To emulate a large number
of real clients accessing servers, we use Surge 2.2 (Scal-
able URL Reference Generator) [8], a tool that gener-
ates web references matching empirical measurements
of six matrices, such as server file size distribution and
request size distribution. An instance of Surge runs on
each of the client workstations. By sending requests to
the different apache severs, these instances collectively
emulate the community of clients. There are three client
classes. Our differentiation policy specifies that the hit
ratio of different classes be related by the expression
H I : Hz : H3 = 1 : 2 : 3. In order to test the perfor-
mance of the cache under saturation, we configure the
ratio of cache size to files population to be roughly 1 to
30 in all the experiments.

To develop a reference point against which our
control-thcoretical heuristic could be compared, we first
use a simple linear function f (e i) =Kei in the control
loop and determine the best cache performance over all
values of K . In this case, the system reacts to perfor-
mance errors simply by adjusting space allocation by an
amount proportional to the error, where K is the pro-
portionality constant. Secondly, we implement the func-
tion designed using the theoretic analysis in Section 3.
By comparison, we will see that the theoretically de-
signed function produces better performance than that
of the best empirically found K , thus guaranteeing the
best convergence of the cache. In this context, by per-
formance we mean the efficiency of convergence of the
hit ratio to the desired differentiation. This convergence
is expressed as the normalized aggregate of the squared
errors between the desired and actual relative hit ratio

619

achieved for each class over the duration of the exper-
iment. The smaller the aggregate error, the better the
convergence.

Figure 3 compares the aggregate error for the cache
for different controller settings when the specified per-
formance differentiation is H I : Hz : H3 = 1 : 2 : 3.
The horizontal axis indicates the base I O logs of the K
value. The vertical axis is the sum of the square of er-
rors (Rides,red - Ri, where Ri is the relative hit ratio)
over all classes collected in 20 sampling periods (each
sampling period is 30 seconds long). The smaller the
sum, the better is the convergence of the cache. We can
see from the aggregate error plot in the figure, that us-
ing different values of K for the linear function f (e i)
=Kei, results in different convergence performance. In
particular, smaller values of K are too sluggish in ad-
justing space allocation resulting in slower convergence
and larger aggregate error. Similarly, large values of
K tend to overcompensate the space adjustment caus-
ing space allocation (and the resulting relative hit ratio)
to oscillate in a permanent fashion also increasing the
aggregate error. In between the two extremes there is a
value of K that results in a global minimum of aggregate
error. This K corresponds to the best convergence we
can achieve. We compare the performance of the sim-
ple heuristic f (e i) =Kei for the best K with that of the
function described by Equation 8 designed using digital
feedback control theory. The aggregate error computed
for the latter heuristic is depicted by the straight line at
the bottom of Figure 3 . It can be seen that the aggre-
gate error using the designed function is even smaller
than the smallest error achieved using the simple linear
heuristic above, which means that the designed function
produces very good performance and successfully con-
verges the cache.

08 -
0 7 -

E 0 6 -
0 5 -

~ 0 4 -
$ 0 3 -

02.

0 1 -

09

0 ‘
0 1 2 3 4 5 6 7

Log10 (K)

Figure 3. The Aggregate Error versus Con-
troller Gain K
To appreciate the quality of convergence for differ-

ent controller settings, Figure 4 shows plots of the rel-

ative hit ratio of different classes versus time in repre-
sentative experiments. The controller is given by the
simple function f (e i) =Kei. Every point in those plots
shows the data collected in one sampling period. In
the figure, curve go& is the desired performance of
class i (Riderired = Ci/(C, + C2 + C3)) and curve
classi is the corresponding relative hit ratio Ri (Ri
= Hi/ (H1 + H2 + ... + Ifn)). Since the difference
Rideaired - Ri reflects the performance error ei of class
i, we will know how well the control loop performs by
comparing the two curves classi and goali. The closer
the two curves, the better the control loop performs and
the better is the convergence of the cache.

Figure 4-a depicts the relative hit ratio using a small
value of K for the controller. From the figure, we can
see that curve classi approaches the curve goali. How-
ever, the convergence is too slow. The controller is too
conservative in reacting to the performance error. Fig-
ure 4-1.) depicts the relative hit ratio for the best pos-
sible Er’. The figure shows that the cache is converg-
ing quickly to the specified performance differentiation.
Figure 4-c depicts the relative hit ratio for a big value K .
We can see if we use the big K , the cache space adap-
tation is so large that the relative hit ratio overshoots the
desired value. This overcompensation causes the rela-
tive hit ratio to continue changing in an oscillatory fash-
ion, making the system unstable.

Figure 5 plots the allocated space for each class ver-
sus time in each of the preceding experiments. It can be
seen that when K is small (Figure 5-a) space allocation
converges very slowly. Similarly, whcn K is large, space
allocation oscillates permanently due to overcompensa-
tion. Space oscillation is not desired since it means that
documents are repeatedly evicted then re-fetched into
the cache. Such cyclic eviction and re-fetching will in-
crease the backbone traffic generated by the cache which
is an undesirable effect. The optimal value of K results
in a more stable space allocation that is successful in
maintaining the specified relative performance differen-
tiation.

The above experiments show that controller tuning
has a dramatic effect on the convergence rate and subse-
quently on the success of performance differentiation. In
Section 3 we presented a design technique for controller
tuning that computed the structure and parameters of the
best heuristic function. The converge of the cache when
this function is used with the analytically computed pa-
rameters is depicted in Figure 6. It can be seen that the
perforrnance is favorably comparable to the best perfor-
mance we achieved by experimental tuning. Hence, our

620

m m sm 8m

a) The Relative Hit Ratio for%??OOO

O " s m K O l m ,

b) The Relative Hit Ratio f o ~ i ~ 8 0 0 0

0 6 1

n l

-x-cla*sO
-.--class1

-.-class2
+ goaa - goall
9- goal2

o i m m m m s m s m 7 m

c) The Relative Hit Ratio for%?~b00000
Figure 4. Relative Hit Ratio with Different
Control Gains

approach is successful in finding a good solution to the
performance differentiation problem in a real-life web
cache subjected to a realistic web load.

6 Conclusions and Future Work
In this paper, we argued for the need for differenti-
ated caching services in future caches in order to cope
with the increasing heterogeneity in Internet clients and
content classes. We proposed a relative differentiated
caching services model that achieves differentiation of
cache hit ratio between different classes. The specified
differentiation is carried out via a feedback-based cache
resource allocation heuristic that adjusts the amount of
cache space allocated to each class based on the dif-
ference between its specified performance and actual
performance. We described a control theoretical ap-
proach for designing the resource allocation heuristic.

-class€
-.-Cla*El

+class2

0 200 AW Em Bm
lime sec)

a) Space Allocation for K=!!000

- c l a * d
-+-class1
+class2

0 m 4 m s m m 1 m

lime (sec)

b) Space Allocation for K=8000

1

0 100 200 300 400 500 600

time (sec)
c) Space Allocation for K=1000000

Figure 5. Space Allocation with Different
Control Gains

It addresses the problem as one of controller design and
leverages principles of digital control theory to achieve
an efficient solution. We implemented our results in a
real-life cache and performed some preliminary perfor-
mance tests. Initial evaluation suggests that the control
theoretical approach results in a very good controller de-
sign compared to manual parameter tuning approaches.
The resulting space controller has superior convergence
properties and is successful in maintaining the desired
performance differentiation for a realistic cache load.

References

[I] T. Abdelzaher and K. C. Shin. Qos provisioning with
qcontracts in web and multimedia servers. In IEEE Real-
Time Systems Symposium, Phoenix, Arizona, December
1999.

621

SIGMETRICS '99, pages 188-197, Atlanta, GA, May

[IO] El. Bhatti and R. Friedrich. Web server support for tiered
services. IEEE Network, 13(5):64-71, September 1999.

[I I] P. Cao and S. Irani. Cost-aware www proxy caching
algorithms. In Proceedings of the I997 USENIX Sym-
posium on Internet Technology and Systems, pages 193-
206, December 1997.

0 XU 400 6W Bm 1WI [121 M. Colajanni, P. S. Yu, V. Cardellini, M. P. Papazoglou,
h4. Takizawa, B. Kramer, and S. Chanson. Dynamic load
balancing in geographically distributed heterogeneous
web servers. In Proceedings of 18th International Con-
firence on Distributed Computing Systems, pages 295-
302, Amsterdam, Netherlands, May 1998.

[I31 J. Dilley, M. Arlitt, and S. Perret. Enhancement and val-
4 m -o-c1asro idation of the squid cache replacement policy. In 4th

International Web Caching Workshop, San Diego, CA,
h4arch 1999.

[141 L.. Eggert and J. Heidemann. Application-level differen-
tiated services for web servers. World Wide Web Journal,

[I51 T. Faber, J. Touch, and W. Yue. 'the time-wait state in
tcp and its effect on busy servers. In Infocomm, pages

[161 R. T. Fielding and G. Kaiser. The apache http server

06

,.I .=.z , Q , p : p - n - o ~ Q . Q ~ Q , Q ~ ~ ' ~ ~ ..,,* 1999.
- . - c l a d

-+-cCla~$l 0 4

+gQaa

Of-

% d ~ n i o i n . n 6 9 . 6 : 6 . n . n 6 . n ~ n ~ : * ~ ~ ~ ~ ~ n ~ ~ ~ -x-clasP2

0.1

time (sec)
a) Relative Hit Ratio

-.--Cla*El
-A-cla952

0 ~ 4 m 6 m B w 1 W o 3(2): 133-142, March 1999.
lime (sec)

b) Space Allocation
Figure 6. Analytically Designed Controller 1573-1583, 1999.

T. Abdehher and N. Bhatti. Web content adaPta-
tion to improve server overload behavior. In Interna-
tional World Wide Web Conference, Toronto, Canada,
May 1999.
T. F. Abdelzaher and N. Bhatti. Web server QoS man-
agement by adaptive content delivery. In International
Workshop on Quali~y of Service, London, UK, June
1999.
J. Almedia, M. Dabu, A. Manikntty, and P. C. ao. Provid-
ing differentiated levels of service in web content host
ing. In First Workshop on Internet Server Performance,
Madison, Wisconsin, June 1998.
D. Andersen and T. McCune. Towards a hierarchical
scheduling system for distributed www server clusters.
In Proceedings The Seventh International Symposium on
High Perjbrmance Distributed Computing, Chicago, IL,
July 1998.
M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and
T. Jin. Evaluating content management techniques for
web proxy caches. In Second Workshop on Internet
Server Performance, Atlanta, GA, May 1999.
H. Balakrishnan, V. Padmanabhan, S. Seshan,
M. Stemm, and R. H. Katz. Tcp behavior of a busy
internet server: Analysis and improvements. In IEEE
Infocom, San Francisco, CA, March 1998.
P. Barford and M. E. Crovella. Generating representa-
tive web workloads for network and server performance
evaluation. In Proceedings of Performance '98/ACM
SIGMETRICS '98, pages 151-160, Madison, WI, 1998.
P. Barford and M. E. Crovella. A performance evaluation
of hyper text transfer protocols. In Proceedings of ACM

project. IEEE-Internet-Computing, 'I (4):88-90, July
1997.

[171 J. Heidemann. Performance interactions between p-http
and tcp implementations. ACM Computer Communica-
tion Review, 27(2), April 1997.

[181 J. Heidemann, K. Obraczka, and J. Touch. Modeling
the performance of http over several transport protocols.
ACWIEEE Transactions on Networking, 5(5) , October
1997.

[I91 A. lyengar, E. MacNair, and T. Nguyen. An analysis
of web server performance. In GLOBECOM, volume 3,
pages 1943-1947, Phoenix, AZ, Nov 1997.

[20] T. P. Kelly, Y. M. Chan, S. Jamin, and J. K. MacKie-
Mason. Biased replacement policies for web caches:
Differential quality-of-service and aggregate user value.
I n 4th International Web Caching Workshop, San Diego,
CA, March 1999.

[21] k'. Lu, A. Saxena, and T. Abdelzaher. Differentiated
caching services; a control-theoretical approach. Techni-
cal Report CS-2001-03, University of Virginia, Depart-
ment of Computer Science, January 2001.

[22] S. G. Tzafestas. Applied Digital Control. North-Holland
Systems and Control Series, 1986.

1231 A. Vahadat, T. Anderson, M. Dahlin, E. Belani,
D. Culler, P. Eastham, and C. Yoshikawa. Webos: oper-
ating system services for wide area applications. In Pro-
ceedings The Seventh International Symposium on High
Pe~ormance Distributed Computing, Chicago, IL, July
1998.

622

