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Abstract 
The increasing diversity of Internet appliances calls for  
an architecture f o r  performance differentiation on infor- 
niatiori access. The World Wide Web is the dominant in- 
terface f o r  inforniation access toduy. Web proxy caching 
is the key performance accelerator in the web infras- 
tructure. While many research efforts addressed pegor- 
niance differentiation in the network and on web servers, 
providing multiple levels of service in p r o v  caches has 
received much less attention. 

This paper has two main contributions. First, we de- 
scribe, implement, and evaluate an architecture for  dif- 
ferentiated content caching services as a key element 
of the Internet infrastructure. Second, we describe a 
control-theoretical approach that lays well-understood 
theoretical foundations for  resource nianagenient to 
achieve performance differentiation in proxy caches. We 
describe our experiences with iniplenientirig the differ- 
entiated caching services scheme in Squid, a popular 
proxy cache used by many ISPs today. Experimental 
study and analyses prove that differentiated caching ser- 
vices provide significantly betterperformance to the pre- 
mium content classes. 

1 Introduction 
The phenomenal growth of the Internet as an informa- 
tion source makes world-wide information access one of 
its most important applications today. The increasing di- 
versity of Internet information appliances from high end 
workstations to wireless devices calls for customization 
of information access performance. The Web today is 
the primary interface for information access. The key 
performance acceleration mechanism in the web infras- 
tructure is web caching. To meet the increasingly diver- 
sified performance demands of appliance-heterogeneity, 
in  this paper we investigate an architecture for perfor- 
mance differentiation in web proxy caches. The archi- 
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tecture allows different classes of content to receive dif- 
ferent performance (i.e., QoS) levels. 

The most widely-used performance metric in the con- 
text of web caching is the cache hit ratio, H .  It is re- 
lated directly to performance measures of interest to the 
clients such as average response time. For example, if 
the average cache hit takes Thit time units and the av- 
erage cache miss takes Tmiss time units, the average 
response time on information access is approximately 
Taccess = H*Thit+(l-H)T,i,,. Assuming that Tmiss 

is roughly Thit + Tbackboner  where Tbackbone is the av- 
erage roundtrip delay from the cache to an origin server, 

Tmiss - HTbackbone. If is the ratio Thit/Tbackbone, i t  
follows that Tu,,,,, = (1 +a - H)Tba&bone. From this 
last expression note that if the performance bottleneck is 
in the backbone, a << 1 ,  and hence caching has an im- 
portant effect on reducing average service time as H in- 
creases. Conversely, if the performance bottleneck is on 
the side of the client, a >> 1, and hence, performance 
is not affected significantly even if H is reduced. The 
above approximate argument demonstrates that in an en- 
vironment with heterogeneous clients, different clients 
perceive caching performance speedup differently. An 
cache resource allocation policy that maximizes aggre- 
gate client-perceived performance should provide a dif- 
ferent H to different client classes. Hit-ratio differenti- 
ation among different classes implies both partitioning 
of content and displacement of more popular content of 
less favored classes by less popular content of more fa- 
vored classes. While the favored classes receive a bet- 
ter hit ratio, the overall cache hit ratio is reduced. This 
reduction is consistent with optimizing client-perceived 
performance, since the favored classes are presumably 
more sensitive to changes in hit ratio. It is precisely the 
difference in client sensitivity to changes in the cache hit 
ratio that motivates differential treatment of content. 

We adopt a proportional differentiated services model 
for cache hit ratio differentiation. For example, one 
can specify that the hit ratio of the “premium” class 

then simple algebraic manipulation yields Tu,,,,, - - 
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should be twice that of the “basic” class. By avoiding 
absolute specification of the hit ratio, the specified per- 
formance differentiation can be enforced regardless of 
client access patterns. There are several immediate ap- 
plications of caches with a performance differentiation 
mechanism. One such application is the differentiation 
between standard web content and the emerging wire- 
less content. Wireless appliances require new content 
types for which a new language, the Wireless Markup 
Language (WML) was designed. Since these appliances 
are slow, proxies that support performance differentia- 
tion can get away with lower hit rates on WML traffic to 
give more resources to faster clients (that are more sen- 
sitive to network delays upon cache misses) thus opti- 
mizing aggregate resource usage. This is especially true 
of caches higher in the caching hierarchy where multiple 
content types are likely to be intermixed. 

Alternatively, a web cache may choose to classify 
content by the identity of the requested URL. For in- 
stance, an ISP (such as AOL) can have agreements with 
preferred content providers to give their sites better ser- 
vice for a negotiated price. Our architecture would en- 
able such differentiation to take place. 

One significantly novel aspect of this paper is that we 
use a control-theoretical approach for resource alloca- 
tion to achieve the desired performance differentiation. 
Digital Feedback Control Theory offers techniques for 
developing controllers that utilize feedback from mea- 
surements to adjust the controlled performance variable 
such that it reaches a given set point. By casting cache 
resource allocation as a controller design problem, we 
are able to arrive at an allocation algorithm that con- 
verges to the desired performance differentiation in the 
shortest time in the presence of very bursty self-similar 
cache load. 

The rest of this paper is organized as follows. Sec- 
tion 2 describes related work. Section 3 describes the 
architecture of a cache that supports service differen- 
tiation. A control-theoretical approach is described to 
achieve the desired distance between performance lev- 
els of different classes. Section 4 describes the imple- 
mentation of this architecture on Squid, a very popu- 
lar proxy cache in today’s web infrastructure. Section 5 
gives experimental evaluation results of our architecture, 
obtained from performance measurements on our modi- 
fied Squid prototype. Section 6 concludes the paper and 
discusses avenues for future work. 

2 Related Work 
Early research in the web community has tradition- 
ally been on performance optimization rather than ser- 

vice differentiation and QoS management. Protocol is- 
sues such as performance interactions between TCP and 
HTTP have been investigated at length [9,7,  17, 15, IS]. 
Load balancing [ 12, 5, 231 and admission control [ 191 
have often been used to improve scalability and pre- 
dictability of web services. 

More recently, architectures were proposed for differ- 
entiated services and QoS control. The authors of [14] 
proposed and evaluated an architecture in which restric- 
tions are imposed on the amount of server resources 
(such as threads) available to low priority clients. In [4, 
11 adm.ission control and scheduling algorithms are used 
to provide premium clients with better service. In [IO] 
a server architecture is proposed, maintaining separate 
service queues for premium and basic clients and thus, 
facilitating their differential treatment. In [2, 31 an ar- 
chitecture was proposed for content adaptation that sup- 
ports tiered services and performance isolation among 
co-hosted sites. 

The above efforts addressed performance differentia- 
tion at the origin server. Caches introduce a crucial ad- 
ditional degree of complexity to performance differenti- 
ation, namely, the ability to import and replace items on 
demand. On an origin server all requests are served lo- 
cally. Thus, the perceived performance of the server de- 
pends primarily on the order in which clients are served. 
The performance speedup due to a cache, a n  the other 
hand, depends primarily on whether or not the requested 
content is cached. Thus, hit ratio, rather than service 
order, is a significant performance factor. Performance 
differentiation in caches, therefore, requires a new ap- 
proach. 

Web caching research has traditionally focused on 
replacement policies for optimal disk storage alloca- 
tion [ l  I, 13, 61. Biased replacement policies were pro- 
posed to favor important users [20]. While biased re- 
placement policies come close in spirit to our goals, 
prior work does not guarantee a specifiable difference 
between the performance levels of different classes. 

3 Differentiated Caching Services 
In this section we present our architecture for service 
differentiation among multiple classes of content cached 
on a web proxy. Intuitively, if we assign more storage 
space to a traffic class, its hit rate will increase, and the 
average response time of client accesses to this content 
will decrease.’ If we knew future access patterns, we 
could tell the amount of disk space that needs to be allo- 

‘This presumes that the request traffic on the cache is not enough 
to overload its CPU and YO bandwidth. 
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cated to each traffic class ahead of time to achieve their 
performance objectives. In the absence of such knowl- 
edge we need a feedback mechanism to adjust space al- 
location based on the difference between actual system 
performance and desired performance. This feedback 
mechanism is depicted in Figure 1 which illustrates a 
feedback loop that controls performance of a single traf- 
fic class. One such loop is needed for each class. 

RsqvesCr 

Figure 1. The Hit Rate Control loop 

In Figure 1, a service differentiation policy dynam- 
ically determines the desired performance level for the 
traffic class under consideration. While we believe that 
our general feedback techniques can work with any per- 
formance metric that can be affected by cache resource 
allocation, in this paper we consider hit ratio as our met- 
ric of choice. Let there be n content (i.e., traffic) classes 
in the system. Let the measured average hit ratio of con- 
tent class i be Hi. The differentiation policy specifies 
that the hit ratio of different classes should be related by 
the expression: H1 : H2 : _.. : H ,  = C1 : C2 : ... : C,, 
where Ci is a proportionality constant or weight of class 
i. We define the relative hit ratio, Ri, of content class 
i to be Ri = Hi/(H1 + H2 + ... + Hn) .  It de- 
termines how the class is performing relative to other 
classes. The desired performance of class i should be 
RidesiFed = Ci/ (Cl  + C2 + ... + C,). We call the 
difference Ridesired - Ri the performance error ei of 
class i. An appealing property of this model is that 
the aggregate performance error of the system is always 
zero,because - ei = C l < i < n ( R i d e s i r r d  - _  -Ri) = 

CI<i<,C* - C,<i<, Hi 
CI+C?+ ...+ C, Hl+Hz+ ...+ Hn = - = O’ As we 
show in the next section, this property allows us to de- 
velop resource allocation algorithms in which resources 
of each class are heuristically adjusted independently of 
adjustments of other classes, yet the total amount of al- 
located resources remains constant equal to the total size 
of the cache. 

3.1 Performance Differentiation Problem 

We cast the performance differentiation problem as a 
closed-loop control problem. Each class of content i is 
assigned a different amount of cache storage s i ,  such 

that ci si is the total size of the cache. Our objective 
is to achieve the desired hit ratio differentiation, i.e., to 
reduce the performance error ei to zero for each content 
class. A zero error entails that the hit ratio of differ- 
ent classes is proportionally related by the specification 
C1 : C, : ... : C,. We reduce the error ei to zero 
by adapting the storage allocation. We need to show 
that (i) our resource allocation heuristic converges to the 
desired relative hit-ratio specification, and that (ii) the 
convergence is bounded by a finite constant that is a de- 
sign parameter. To provide these guarantees, we rely on 
feedback control theory in designing the resource allo- 
cation heuristic. The heuristic is invoked at fixed time 
intervals at which it corrects resource allocation based 
on the measured performance error. Let the measured 
performance error at the kth invocation of the heuristic 
be e i[k] .  To compute the correction bsi[k] in resource al- 
location, we use a linear function f ( e i )  where f (0)  = 0 
(no correction unless there is an error). At the kth invo- 
cation, the heuristic computes: 

( 1 )  Vi : Gsi[k] = f ( e i [ k ] )  

Vi : S i [ k ]  = Si[k - 11 + GSi[k] 

The space allocation is then adjusted: 

( 2 )  

If the computed correction Gsi[k] is positive the space al- 
located to class i is increased by Ibsi[lc]l. Otherwise it is 
decreased by that amount. Since the function f is linear, 
E, f(e , [k] j  = f(C, ez[k]) .  In Section 3 we showed 
that x , e , [ k ]  = 0. Thus, E , f (e , [k] )  = f(0) = 0. 
It follows that the sum of corrections across all classes 
is zero. This property is desirable since it ensures that 
while the resource adjustment can be computed indepen- 
dently for each class based on its own error ei ,  the ag- 
gregate amount of allocated resources does not change 
after the adjustment. This amount is always equal to the 
total size of the cache. Next we show how to design the 
function f in  a way that guarantees convergence of the 
cache to the specified performance differentiation within 
a single sanipling period. 

3.2 Control Loop Design 

To design the function f, a mathematical model of the 
control loop is needed. Consider some arbitrary content 
class i. Every sampling instant, an error ei[k]  is mea- 
sured and an adjustment 6si[k]  is carried out by the re- 
placement policy. The adjustment affects the hit ratio. A 
monotonically increasing relation is observed between 
cache space and hit probability. The parameter K,  is 
a linearization of that relation. The expected hit ratio at 
the end of a sampling interval (where expectation is used 
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in a mathematical sense) is determined by the space al- 
location and the resulting hit probability that took place 
at the beginning of the interval. Hence: 

E(6H,[k] )  = K,bSi[k - 11 (3) 

and E ( H i [ k ] )  = H i [ k - l ] + E ( 6 H i [ k ] ) .  Rememberthat 
the relative hit ratio (the controlled performance vari- 
able) is defined as Ri = H i / ( H l  + H2 + ... + Ifn). 
Unfortunately, the measured Hi[k]  might have a large 
standard deviation around the expected value unless the 
sampling period is sufficiently large. Thus, using Hi[k]  
for feedback to the controller will introduce a signifi- 
cant random noise component into the feedback loop. 
Instead, the measured Hi[k] is smoothed first using a 
low pass filter. Let the smoothed Hi[k]  be called M i [ k ] .  
It is computed as a moving average as follows: 

M i [ k ]  = aMi[k - 11 + ( 1  - a)Hi[lc] (4) 

In this computation, older values of hit ratio are expo- 
nentially attenuated with a factor a, where 0 < a < 1. 
Values of a closer to 1 will increase the horizon over 
which Hi is averaged and vice versa. The correspond- 
ing smoothed relative hit ratio is Mi[k] /  Xi M i [ k ] .  This 
value is compared to the set point for this class and the 
error is used for space allocation adjustment in  the next 
sampling interval, thereby closing the loop. 

Next we take the z-transform of Equations ( I ) ,  ( 2 ) ,  
(3), and (4) and draw a block diagram that describes 
the flow of signals in the hit ratio control loop. The 
z-transform is a widely used technique in digital con- 
trol literature that transforms difference equations into 
equivalent algebraic equations that are easier to manipu- 
late. Figure 2 depicts the control loop showing the flow 
of signals and their mathematical relationships in the z-  
transform. The z-transform of the heuristic resource re- 
allocation function f is denoted by F ( z ) .  

Cache 
Cache 

Conmller 
- /  

R i  

Oulput Sensor 

Figure 2. z-Transform of the Control loop 

We can now derive the relation between Ri and 
Ridesired. From Figure 2 ,  Ri = e i F ( z ) G ( z ) ,  where: 

z-l K ,  
G(z )  = 

(1 - 2-1) E2 Hi 

Substituting for ei, we get: R; = - 
If.'-" 2 1 - z - l a  ) F ( z ) G ( z ) .  Note that since Mi is a 

smoothed Hi, the ratio Hi/& that appears in the 

preceding equation is approximately equal to the relative 
hit ratio Ri. Hence, approximately, Ri = (Ridesired - 
R i $ , 5 ) F ( z ) G ( z ) .  Using, simple algebraic manipu- 
lation: 

To design the allocation heuristic, F ( z ) ,  we specify the 
desired behavior of the closed loop, namely that R, fol- 
lows R,d,,,,,d within one sampling time, or R,[k] = 
R, ,ea ,ped[k  - 11. The requirement translates to R, = 

= z-l, from 

Substituting for G ( z )  from 

F z)G(z 
Z - l R Z d e s i r e d .  l+-F(j)G(z) 1- - 

z-l(l- ~ l - z , - l ~ G ~ ~ ~ .  -1 which F ( z )  = 
Equation (5 )  we arrive at the z-transform of the desired 
heuristic function, namely: 

(1 - 2-1.) xi Hi 
F ( z )  = 

K,: 
(7) 

The corresponding difference equation is: 

The above equation gives the adjustment in the disk 
space allocated to class i given the performance error of 
that class, ei and the aggregate of all measured hit ratios. 

tute the smoothed aggregate, xi Mi, for xi Hi to avoid 
noise-related problems. The resulting closed loop is sta- 
ble, because the closed loop transfer function, z-', is 
stable and because the open loop transfer function does 
not contain unstable poles or zeros [22]. A method for 
estimating the parameter K,  which describes the rela- 
tion between cache size and hit probability is described 
in a technical report [21]. 

4 Implementation 
We modify Squid, a widely used proxy-cache to vali- 
date and evaluate our QoS-based resource allocation ar- 
chitecture. Squid is an open-source Internet cache [ 131 
designed for high performance caching strategies imple- 
mentation. This section addresses issues involved in the 
design and implementation of our control-loop based 
algorithm. The implementation closely corresponds to 
the control loop design. There are five modules in the 
QoS cache: timer, output sensor,  cache space controller, 

In the actual implementation of the heuristic we substi- 
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classijier and actuator. The timer sends signals to out- 
put sensor and cache space controller to let them update 
their output periodically. The classifier is responsible 
for request classification and the actuator is in charge 
of cache space release and allocation. The cache con- 
troller simply implements Equation (8). The output sen- 
sor measures hit ratio of each class and smoothes it using 
Equation (4). Hence, below we focus on the other three 
modules. 
Timer: In order to make the control loops work at fixed 
time interval, we added a module in Squid that regulates 
the control loop execution frequency. Using the module, 
we could configure a parameter to let the loops execute 
periodically, for example, once every 30 seconds. 
Classifier: This module is used to identity the requests 
for various classes. On getting a request this module is 
invoked and obtains the class of this request. The classi- 
fication policy is application specific and should be eas- 
ily configurable. For the sake of developing a proof of 
concept we are doing classification based on the IP ad- 
dress of the clients sending the request. In general, ar- 
bitrary classification policies based on different criteria, 
such as the requested site, or content type (e.g. HTML 
vs. CIF) are possible. 
Actuator: As described in Section 3, at each sampling 
time the cache space controller performs the computa- 
tion s i [k ]  = s i [k  - 11 + Ssi[k] and outputs the new 
value of total space s i [k ]  for each class. In Squid, the 
cache space deallocation and allocation are two separate 
processes. The actuator use the output of the controller 
to guide the cache space release and allocation. Let 
realSpacei be a running counter of the actual amount 
of cache space used by class i .  The cache scans the 
entries from the bottom of each class’s LRU list. If 
the cache space assigned is less than the desired cache 
space for the class (realSpace, < si[lc]), entries will 
not be removed from that class. Whenever a page is 
fetched from some server, the cache will choose to save 
it  in the disk or not based on which class requests the 
page and the current cache space of the class. Ide- 
ally, as a result of the above enforcement of the de- 
sired cache allocation, the cache space realSpacei oc- 
cupied by each class i by the end of the k th  sampling 
time should be exactly the same as the desired value 
si[lE] set at the beginning of the interval. In reality, 
a discrepancy may arise. For exmaple, it is possible 
that we want to give one class more cache space while 
there aren’t enough requests to fi l l  in  that much space 
with requested pages. In order to remedy this prob- 
lem, we include the difference si[lc] - realSpacei at 

the end of the lcth sampling interval in our coniputa- 
tion of desired cache space for the k + l th  sampling 
period. That is, si[lc + 13 = si[lc] + 6si[k + 11 = 
realSpacei + ( s i [k]  - realSpacei) + bsi[k + 11. 
5 Evaluation 
We test the performance of the feedback control archi- 
tecture using synthetic traces. We use synthetic work- 
load to show that our design makes the cache converge 
most efficiently to the specified performance differenti- 
ation under representative cache load conditions. The 
experiments are conducted on a testbed of nine AMD- 
based Linux PCs interconnected by a 100-MHz Ethernet 
switch. Collectively, these machines were used to run a 
set of web servers, web clients, and a single cache. Up 
to 4 of the machines ran web servers. Up to 4 gener- 
ated requests, emulating the community of clients. The 
last machine was used to run the proxy cache. Because 
Apache [I61 is very widely deployed in practice, we 
used it  for our web servers. To emulate a large number 
of real clients accessing servers, we use Surge 2.2 (Scal- 
able URL Reference Generator) [8], a tool that gener- 
ates web references matching empirical measurements 
of six matrices, such as server file size distribution and 
request size distribution. An instance of Surge runs on 
each of the client workstations. By sending requests to 
the different apache severs, these instances collectively 
emulate the community of clients. There are three client 
classes. Our differentiation policy specifies that the hit 
ratio of different classes be related by the expression 
H I  : Hz : H3 = 1 : 2 : 3. In order to test the perfor- 
mance of the cache under saturation, we configure the 
ratio of cache size to files population to be roughly 1 to 
30 in all the experiments. 

To develop a reference point against which our 
control-thcoretical heuristic could be compared, we first 
use a simple linear function f ( e i )  =Kei in the control 
loop and determine the best cache performance over all 
values of K .  In this case, the system reacts to perfor- 
mance errors simply by adjusting space allocation by an 
amount proportional to the error, where K is the pro- 
portionality constant. Secondly, we implement the func- 
tion designed using the theoretic analysis in Section 3. 
By comparison, we will see that the theoretically de- 
signed function produces better performance than that 
of the best empirically found K ,  thus guaranteeing the 
best convergence of the cache. In this context, by per- 
formance we mean the efficiency of convergence of the 
hit ratio to the desired differentiation. This convergence 
is expressed as the normalized aggregate of the squared 
errors between the desired and actual relative hit ratio 
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achieved for each class over the duration of the exper- 
iment. The smaller the aggregate error, the better the 
convergence. 

Figure 3 compares the aggregate error for the cache 
for different controller settings when the specified per- 
formance differentiation is H I  : Hz : H3 = 1 : 2 : 3. 
The horizontal axis indicates the base I O  logs of the K 
value. The vertical axis is the sum of the square of er- 
rors (Rides,red - Ri, where Ri is the relative hit ratio) 
over all classes collected in 20 sampling periods (each 
sampling period is 30 seconds long). The smaller the 
sum, the better is the convergence of the cache. We can 
see from the aggregate error plot in the figure, that us- 
ing different values of K for the linear function f ( e i )  
=Kei, results in different convergence performance. In 
particular, smaller values of K are too sluggish in ad- 
justing space allocation resulting in slower convergence 
and larger aggregate error. Similarly, large values of 
K tend to overcompensate the space adjustment caus- 
ing space allocation (and the resulting relative hit ratio) 
to oscillate in a permanent fashion also increasing the 
aggregate error. In between the two extremes there is a 
value of K that results in a global minimum of aggregate 
error. This K corresponds to the best convergence we 
can achieve. We compare the performance of the sim- 
ple heuristic f ( e i )  =Kei for the best K with that of the 
function described by Equation 8 designed using digital 
feedback control theory. The aggregate error computed 
for the latter heuristic is depicted by the straight line at 
the bottom of Figure 3 .  It can be seen that the aggre- 
gate error using the designed function is even smaller 
than the smallest error achieved using the simple linear 
heuristic above, which means that the designed function 
produces very good performance and successfully con- 
verges the cache. 
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Figure 3. The Aggregate Error versus Con- 
troller Gain K 
To appreciate the quality of convergence for differ- 

ent controller settings, Figure 4 shows plots of the rel- 

ative hit ratio of different classes versus time in repre- 
sentative experiments. The controller is given by the 
simple function f ( e i )  =Kei. Every point in those plots 
shows the data collected in one sampling period. In 
the figure, curve go& is the desired performance of 
class i (Riderired = Ci/(C,  + C2 + C3)) and curve 
classi is the corresponding relative hit ratio Ri (Ri 
= Hi/ (H1 + H2 + ... + Ifn)). Since the difference 
Rideaired - Ri reflects the performance error ei of class 
i, we will know how well the control loop performs by 
comparing the two curves classi and goali. The closer 
the two curves, the better the control loop performs and 
the better is the convergence of the cache. 

Figure 4-a depicts the relative hit ratio using a small 
value of K for the controller. From the figure, we can 
see that curve classi approaches the curve goali. How- 
ever, the convergence is too slow. The controller is too 
conservative in reacting to the performance error. Fig- 
ure 4-1.) depicts the relative hit ratio for the best pos- 
sible Er’. The figure shows that the cache is converg- 
ing quickly to the specified performance differentiation. 
Figure 4-c depicts the relative hit ratio for a big value K .  
We can see if we use the big K ,  the cache space adap- 
tation is so large that the relative hit ratio overshoots the 
desired value. This overcompensation causes the rela- 
tive hit ratio to continue changing in an oscillatory fash- 
ion, making the system unstable. 

Figure 5 plots the allocated space for each class ver- 
sus time in each of the preceding experiments. It can be 
seen that when K is small (Figure 5-a) space allocation 
converges very slowly. Similarly, whcn K is large, space 
allocation oscillates permanently due to overcompensa- 
tion. Space oscillation is not desired since it means that 
documents are repeatedly evicted then re-fetched into 
the cache. Such cyclic eviction and re-fetching will in- 
crease the backbone traffic generated by the cache which 
is an undesirable effect. The optimal value of K results 
in a more stable space allocation that is successful in 
maintaining the specified relative performance differen- 
tiation. 

The above experiments show that controller tuning 
has a dramatic effect on the convergence rate and subse- 
quently on the success of performance differentiation. In 
Section 3 we presented a design technique for controller 
tuning that computed the structure and parameters of the 
best heuristic function. The converge of the cache when 
this function is used with the analytically computed pa- 
rameters is depicted in Figure 6. It can be seen that the 
perforrnance is favorably comparable to the best perfor- 
mance we achieved by experimental tuning. Hence, our 
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approach is successful in finding a good solution to the 
performance differentiation problem in a real-life web 
cache subjected to a realistic web load. 

6 Conclusions and Future Work 
In this paper, we argued for the need for differenti- 
ated caching services in future caches in order to cope 
with the increasing heterogeneity in Internet clients and 
content classes. We proposed a relative differentiated 
caching services model that achieves differentiation of 
cache hit ratio between different classes. The specified 
differentiation is carried out via a feedback-based cache 
resource allocation heuristic that adjusts the amount of 
cache space allocated to each class based on the dif- 
ference between its specified performance and actual 
performance. We described a control theoretical ap- 
proach for designing the resource allocation heuristic. 
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Figure 5. Space Allocation with Different 
Control Gains 

It addresses the problem as one of controller design and 
leverages principles of digital control theory to achieve 
an efficient solution. We implemented our results in a 
real-life cache and performed some preliminary perfor- 
mance tests. Initial evaluation suggests that the control 
theoretical approach results in a very good controller de- 
sign compared to manual parameter tuning approaches. 
The resulting space controller has superior convergence 
properties and is successful in maintaining the desired 
performance differentiation for a realistic cache load. 
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