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Abstract 

Glioblastoma (GBM) is the most lethal primary brain tumor characterized by significant cellular heterogeneity, namely 
tumor cells, including GBM stem-like cells (GSCs) and differentiated GBM cells (DGCs), and non-tumor cells such as 
endothelial cells, vascular pericytes, macrophages, and other types of immune cells. GSCs are essential to drive tumor 
progression, whereas the biological roles of DGCs are largely unknown. In this study, we focused on the roles of 
DGCs in the tumor microenvironment. To this end, we extracted DGC-specific signature genes from transcriptomic 
profiles of matched pairs of in vitro GSC and DGC models. By evaluating the DGC signature using single cell data, 
we confirmed the presence of cell subpopulations emulated by in vitro culture models within a primary tumor. The 
DGC signature was correlated with the mesenchymal subtype and a poor prognosis in large GBM cohorts such as 
The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project. In silico signaling pathway analysis suggested a role of 
DGCs in macrophage infiltration. Consistent with in silico findings, in vitro DGC models promoted macrophage migra-
tion. In vivo, coimplantation of DGCs and GSCs reduced the survival of tumor xenograft-bearing mice and increased 
macrophage infiltration into tumor tissue compared with transplantation of GSCs alone. DGCs exhibited a significant 
increase in YAP/TAZ/TEAD activity compared with GSCs. CCN1, a transcriptional target of YAP/TAZ, was selected from 
the DGC signature as a candidate secreted protein involved in macrophage recruitment. In fact, CCN1 was secreted 
abundantly from DGCs, but not GSCs. DGCs promoted macrophage migration in vitro and macrophage infiltration 
into tumor tissue in vivo through secretion of CCN1. Collectively, these results demonstrate that DGCs contribute to 
GSC-dependent tumor progression by shaping a mesenchymal microenvironment via CCN1-mediated macrophage 
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Introduction
Glioblastoma (GBM) is the most aggressive and lethal 

primary brain tumor [33]. Current standard-of-care, 

including surgery, radiotherapy, and chemotherapy, offers 

minimal clinical benefits for GBM patients with median 

survival of less than 16 months [49]. �e basis of thera-

peutic failure is the significant inter- and intra-tumoral 

heterogeneity of GBM [34, 38, 48, 55, 56]. One aspect of 

heterogeneity is reflected by the transcriptional subtypes. 

GBMs have been stratified by bulk gene expression pro-

files into at least three subtypes, namely proneural, clas-

sical, and mesenchymal subtypes [55, 56]. Among these 

subtypes, the mesenchymal subtype is associated with 

the worst prognosis and the presence of tumor-associ-

ated macrophages/microglia [39, 56].

Another aspect of heterogeneity is reflected by the 

developmental state of GBM cells in the tumor. In this 

context, GBM stem-like cells (GSCs) present at the apex 

of cellular hierarchies and give rise to differentiated GBM 

cells (DGCs) [1, 23]. GSCs possess capacities for self-

renewal, differentiation, and tumor propagation in  vivo 

and exhibit preferential resistance to radiotherapy and 

chemotherapies [1, 13, 23]. GSCs are essential to drive 

tumor progression, but the importance of DGCs had 

been dismissed until a recent study showed that DGCs 

also contribute to tumor progression in collaboration 

with GSCs [57]. �is study highlighted the potential 

importance of DGCs in GBM propagation.

�e GBM microenvironment consists of heterogene-

ous cells, namely tumor cells, including GSCs and DGCs, 

and non-tumor cells including endothelial cells, vascu-

lar pericytes, tumor-associated macrophages, and other 

immune cells [11, 16, 22, 46]. Macrophages are an abun-

dant cellular component of the GBM microenvironment 

and play multiple roles in GBM progression [15, 22, 46]. 

Tumor-associated macrophages release several factors, 

including interleukin (IL)-6 and IL-10, which promote 

tumor cell growth, facilitate angiogenesis, and suppress 

the anti-tumor functions of other immune cells [24, 45]. 

Additionally, GSCs and tumor-associated macrophages 

interact with each other closely [46]. Tumor-associated 

macrophages secrete cytokines, such as pleiotrophin and 

TGF-β1, to maintain the stemness of GSCs and promote 

invasion of GSCs [24, 46, 47]. GSCs recruit monocyte-

derived macrophages from peripheral blood through par-

acrine periostin and osteopontin signaling [46, 58, 63]. 

GSCs also promote the survival of M2 tumor-supportive 

macrophages by secretion of WISP1, which play immune 

suppressive roles in the tumor microenvironment, [52]. 

�e crosstalk between GSCs and macrophages has been 

explored actively, but the biological roles of DGCs in 

GBM progression, especially in the tumor microenviron-

ment, are largely unknown.

Here, using DGC-specific transcriptomic signatures, 

we investigated the biological roles of DGCs in the tumor 

microenvironment, and demonstrate that DGCs accel-

erate GSCs-dependent tumor progression by shaping a 

mesenchymal microenvironment via CCN1-mediated 

macrophage infiltration.

Materials and methods
Public data acquisition

A deposited RNA sequencing dataset from three matched 

pairs (MGG4, 6, and 8) of GSCs and DGCs (GSE54791) 

[51] and single cell RNA-sequencing dataset from four 

GBM tumors (GSE84465) [16] were downloaded from 

the NCBI Gene Expression Omnibus (GEO) database. 

�e deposited single cell RNA-sequencing dataset for 

two-dimensional representation of cellular states are 

available through the Broad Institute Single-Cell Por-

tal (https ://porta ls.broad insti tute.org/singl e_cell/study /

SCP39 3/singl e-cell-rna-seq-of-adult -and-pedia tric-gliob 

lasto ma) and NCBI GEO GSE131928 [34]. �e gene 

expression data and metadata of �e Cancer Genome 

Atlas (TCGA) GBM (HG-UG133A) and Ivy Glioblastoma 

Atlas Project (IVY GAP) were downloaded from GlioVis 

(http://gliov is.bioin fo.cnio.es) [8] or cBioPortal (http://

www.cbiop ortal .org) [10]. �e stromal, immune, and 

tumor purity score of each patient was downloaded from 

ESTIMATE (http://bioin forma tics.mdand erson .org/

estim ate/) [60].

Bioinformatic analysis

Unsupervised hierarchical clustering of TCGA GBMs 

(HG-UG133A) with the DGC signature was performed 

by Morpheus (https ://softw are.broad insti tute.org/

morph eus). Single sample gene-set enrichment analysis 

(ssGSEA) scores were calculated using the single sample 

Gene Set Enrichment Analysis Projection (ssGSEAPro-

jection) module in GenePattern (https ://cloud .genep 

atter n.org) [2]. Gene set enrichment analysis (GSEA) was 

performed using the GSEA desktop application (http://

infiltration. This study provides new insight into the complex GBM microenvironment consisting of heterogeneous 
cells.
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softw are.broad insti tute.org/gsea/downl oads.jsp) [50]. 

To identify specific immune cells linked to DGC sig-

natures or CCN1 in GBM, we examined TCGA GBM 

(HG-UG133A) dataset for 20 types of immune cells 

using validated gene set signatures [7, 20]. Gene ontol-

ogy enrichment analysis (GOEA) was performed through 

the GlioVis portal. To identify DGC-specific enhancer 

regions, deposited H3K27ac ChIP-sequencing data from 

three matched pairs (MGG4, 6, and 8) of GSCs and DGCs 

(GSE54047) [51] were downloaded from the NCBI Gene 

Expression Omnibus (GEO) database. DGC-specific 

enhancer regions were defined by selecting all enhanc-

ers present in DGCs, but absent in GSCs using BEDTools 

[42]. �e H3K27ac signals in a 10 kb region of each site 

were visualized as heatmaps and metaplots using the 

plotHeatmap and plotProfile functions of deepTools 

[43]. For de novo and known motif enrichment analysis 

of DGC-specific enhancers, we used the HOMER soft-

ware package [26]. H3K27ac ChIP-sequencing enrich-

ment plots at the CCN1 locus of three matched GSC and 

DGC pairs (GSE54047) were visualized using Integrative 

Genomics Viewer [44].

Cell culture

�e human GBM cell lines were U87ΔEGFR and 

U251MG provided by Dr. Balveen Kaur (University of 

Texas Health Science Center, Houston, TX). U87MG 

cells were purchased from the American Type Culture 

Collection. A172 and LNZ308 cells were provided by 

Dr. E. Antonio Chiocca (Brigham and Women’s Hospi-

tal, Boston, MA). Patient-derived GBM primary cultures 

MGG4, MGG8, MGG18, and MGG23 were provided by 

Dr. Hiroaki Wakimoto (Massachusetts General Hospital, 

Boston, MA). Normal human astrocytes (NHAs) were 

purchased from Lonza. U937 monocyte-like cells were 

purchased from the Japanese Cancer Research Resources 

Bank. Human embryonic kidney (HEK) 293FT cells were 

purchased from �ermo Fisher Scientific.

All DGCs, and U251MG, U87MG, U87ΔEGFR, A172, 

LNZ308, and HEK 293FT cells were cultured in Dul-

becco’s modified Eagle’s medium (DMEM) supplemented 

with 10% fetal bovine serum (FBS), 100 U/ml penicil-

lin, and 100  µg/ml streptomycin. All GSCs were cul-

tured in neurobasal medium (Gibco) supplemented with 

0.5 × N2 supplement, 1 × B27 supplement minus vitamin 

A (Gibco), 0.5 × penicillin/streptomycin/amphotericin 

B suspension (FUJIFILM Wako), 3  mM L-glutamine 

(Gibco), 2  μg/ml heparin (Sigma-Aldrich), 20  ng/mL 

human EGF (PeproTech), and 20  ng/mL human FGF 

basic (PeproTech). U937 monocyte-like cells were cul-

tured in RPMI 1640 medium supplemented with 10% 

FBS, 100 U/ml penicillin, and 100  µg/ml streptomy-

cin. NHAs were cultured in AGM BulletKit (Lonza) in 

accordance with the manufacturer’s instructions. All cells 

were maintained at 37 °C and 5%  CO2, and confirmed to 

be free of mycoplasma. Cell lines were authenticated by 

Promega using short tandem repeat profiling in Decem-

ber 2016.

Isolation of GSCs and DGCs by �uorescence-activated cell 

sorting

MGG4 and MGG8 cells were washed with PBS, blocked 

with anti-CD16/32 antibodies and normal mouse serum 

in PBS for 30 min at 4 °C, and then labeled with a Brilliant 

Violet 421 anti-human CD133 Antibody (BioLegend, 

#372808). �en, the cells were incubated with propid-

ium iodide, and CD133-positive and -negative cells were 

sorted by a BD FACSAria III Cell Sorter (Becton Dickin-

son). A Brilliant Violet 421 Mouse IgG1, κ Isotype Ctrl 

Antibody (BioLegend, #400158) was used as a negative 

control to determine the amount non-specific back-

ground staining. �e sorted CD133-positive cells were 

cultured in the GSC medium described above. Matched 

CD133-negative cells were maintained in DMEM sup-

plemented with 10% FBS to maintain their differentiation 

status. GSC phenotypes were validated by expression of 

stem cell marker SOX2, their self-renewal capacity (serial 

neurosphere passaging, in  vitro limiting dilution assay), 

serum-induced cell differentiation, and tumor propaga-

tion capacity (in vivo limiting dilution).

DNA constructs and lentiviral transduction

Lentiviral vectors (LVs) expressing GFP (LV-GFP, 

Addgene, #26001) or RFP (LV-RFP, Addgene, #25999) 

were purchased from Addgene. For knockdown experi-

ments, two non-overlapping shRNAs against human 

CCN1 and TAZ were cloned into pLKO.1 puro (Addgene, 

#8453). A non-targeting scramble shRNA (#1864, 

shCONT) and two non-overlapping shRNAs against 

human YAP (#42540 and #42541) were purchased from 

Addgene. �e target sequences of shRNAs used in this 

study were as follows. shCCN1-1: CGA ACC AGT CAG 

GTT TAC TTA; shCCN1-2 [targeting 3ʹ-untranslated 

regions (UTRs)]: GGC AGC TAT CTG CAC TCT AAA; 

shTAZ-1: GCG ATG AAT CAG CCT CTG AAT; shTAZ-

2: GCG TTC TTG TGA CAG ATT ATA, shYAP-1: GCC 

ACC AAG CTA GAT AAA GAA; shYAP-2: CCC AGT TAA 

ATG TTC ACC AAT; shCONT: CCT AAG GTT AAG TCG 

CCC TCG. Lentiviral constructs overexpressing wildtype 

CCN1 (pTomo-CCN1) or TAZ (pTomo-TAZ) were gen-

erated by cloning human CCN1 or TAZ open reading 

frames, respectively, into the pTomo vector (Addgene, 

#26291). Site-directed mutagenesis was performed to 

produce lentiviral constructs expressing D125A, a CCN1 

mutant defective for binding αvβ3/αvβ5 integrins, and 

DM, a CCN1 mutant defective for binding αMβ2/α6β1 

http://software.broadinstitute.org/gsea/downloads.jsp
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integrins [14, 32]. A control lentiviral construct was gen-

erated by cloning multiple cloning sites into the pTomo 

vector. For YAP overexpression, FUW-tetO-wtYAP 

(Addgene, #84009) and FUdeltaGW-rtTA (Addgene, 

#19780) were used. For the negative control, FUW-tetO-

EGFP (Addgene, #84041) and FUdeltaGW-rtTA were 

used. HEK 293FT cells were used to generate lentiviral 

particles by cotransfection of packaging vectors psPAX2 

(Addgene, #12260) and pMD2.G (Addgene, #12259) with 

TransIT-LT1 (Mirus Bio). For lentiviral transduction, 

cells were transduced with lentiviruses for 48 h and then 

processed for analyses.

Mouse intracranial tumor models

All animal experiments were performed with approval 

from the Committee on the Ethics of Animal Experi-

mentation at Okayama University. For intracranial 

tumor xenograft models, female BALB/c-nu/nu mice 

(5–6  weeks old) were purchased from CLEA Japan Inc. 

�e intracranial tumor xenograft models in mice were 

established as we described previously [28]. Briefly, the 

mice were anesthetized and tumor cells were stereotac-

tically injected into the right frontal lobe (3  mm lateral 

and 1  mm anterior from the bregma and 3  mm depth 

from the dura) using a stereotactic frame (Narishige) and 

Hamilton syringe (Hamilton). A mouse de novo GBM 

model was generated by stereotactic injection of lenti-

viruses harboring H-Ras and shP53 [pTomo-HrasV12-

IRES-GFP-shp53, the vector plasmid was a kind gift from 

Dr. Dinorah Friedmann-Morvinski (Tel Aviv Univer-

sity, Tel Aviv, Israel] into the hippocampus of transgenic 

mice expressing GFAP-Cre, FVB-Tg (GFAP-cre) 25Mes/J 

(�e Jackson Laboratory, #004600) [21]. Mice with neu-

rological deficits or a moribund appearance including a 

hunched posture, gait changes, lethargy, and weigh loss 

were sacrificed. Following transcardial perfusion with 4% 

paraformaldehyde (PFA), brains were harvested, fixed 

in 4% PFA, and embedded in paraffin or cryopreserved 

in 30% sucrose for cryosectioning. To observe the effect 

of macrophage infiltration induced by CCN1, we used 

U87ΔEGFR, which has rapid tumorigenesis, in a prelimi-

nary experiment for the experiment using the GSC-DGC 

pair.

Human GBM tissue samples

Fresh GBM tumor tissue for qRT-PCR and immuno-

fluorescence staining were obtained from primary GBM 

patients who underwent surgical resection at Okayama 

University Hospital. �e study was approved by the 

ethical committee of the Okayama University Gradu-

ate School of Medicine, Dentistry and Pharmaceutical 

Sciences, Okayama, Japan (approval no. 1608-026). All 

patients included in the study had provided informed 

written consent.

Immuno�uorescence staining

Tumor samples from GBM patients and mouse intrac-

ranial GBM models were fixed in 4% paraformaldehyde 

overnight at 4  °C, followed by overnight cryoprotec-

tion with 30% sucrose in PBS at 4 °C. Samples were then 

sectioned at a thickness of 7 µm. Sections were washed 

with PBS twice, permeabilized, and then blocked with 

0.3% Triton X-100, 5% BSA in PBS for 1  h. �en, the 

sections were stained with primary antibodies against 

Iba1 (1  µg/mL, FUJIFILM Wako, #019-19741), CD206/

MMR (2 µg/mL, R&D Systems, #AF2535), SOX2 (2 µg/

mL, R&D Systems, #AF2018), and CCN1/Cyr61 (10 µg/

mL, Novus, #NB100-356) overnight at 4 °C, followed by 

the secondary antibodies against rabbit or goat immuno-

globulin G (IgG) labeled with Alexa Fluor dyes (�ermo 

Fisher Scientific) at room temperature for 1  h. After 

immunostaining, the samples were mounted with DAPI 

Fluoromount-G (SouthernBiotech, #0100-20). Images 

were obtained under an LSM780 confocal laser scanning 

microscope (Carl Zeiss).

TEAD luciferase reporter assay

For the TEAD luciferase reporter assay, 1 × 105 DGCs 

or GSCs were seeded in each well of a 24-well plate. 

After 12  h, the cells were transfected with the YAP/

TAZ-responsive TEAD Firefly luciferase reporter vector 

8 × GTIIC-luciferase (Addgene, #34615) (150  ng/cm2) 

and Renilla luciferase control reporter vector pGL4.74 

[hRluc/TK] (Promega) (100  ng/cm2) using TransIT-

LT1 (Mirus Bio) in accordance with the manufacturer’s 

instructions. At 24 h after transfection, Firefly and Renilla 

luciferase activities were quantified using the Dual-Lucif-

erase Reporter Assay System (Promega) in accordance 

with the manufacturer’s instructions.

Enzyme-linked immunosorbent assay

Secreted CCN1 protein levels in conditioned media 

from paired GSCs and DGCs were quantified using an 

enzyme-linked immunosorbent assay (ELISA). DGCs or 

GSCs (1 × 106) were seeded in each well of a 12-well plate 

in DMEM supplemented with 10% FBS or GSC medium, 

respectively. After 12 h, the media were changed to fresh 

DMEM without FBS or fresh GSC medium and the cells 

were cultured for 24  h. At the end point, conditioned 

media were collected and analyzed using a Human 

Cyr61/CCN1 ELISA kit (RayBiotech, #ELH-CYR61) in 

accordance with the manufacturer’s instructions.
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Conditioned medium preparation

Conditioned media (CM) were obtained by culturing 

GSCs or DGCs at 2 × 106 cells/mL in RPMI 1640 medium 

without serum for 24 h. �e cells were removed by cen-

trifugation at 2000  rpm at 4  °C for 10 min and the CM 

was sterile filtered through a 0.22-μm filter.

Migration assay

U937 cells were cultured in RPMI 1640 medium with 

10% FBS for 24 h before priming. U937 cells were primed 

with 5  nM phorbol 12-myristate 13-acetate (Promega, 

#V1171) for 48 h to become monocyte-derived unpolar-

ized macrophages. Migration assays were performed in 

24-well plated with �inCert cell culture inserts (8-μm 

pores, Greiner Bio-One) in accordance with the manu-

facturer’s instructions. Briefly, 5 × 105 primed U937 

unpolarized macrophages suspended in serum-free cul-

ture medium were seeded in the upper chamber. Medium 

with recombinant human CCN1 protein (PeproTech, 

#120-25) or CM was added to the remaining receiver 

wells. Cells were then allowed to migrate for 48 h before 

fixation for staining with 0.05% crystal violet (FUJIFILM 

Wako, #031-04852).

Western blot analysis

Cells were collected and then lysed in cell lysis buffer 

(20 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 

1  mM  Na2EGTA, and 0.5% Triton X-100) containing a 

cOmplete Protease Inhibitor Cocktail (Sigma-Aldrich) 

and PhosSTOP phosphatase inhibitor cocktail (Sigma-

Aldrich). After sonication, lysates were centrifuged at 

15,000 rpm at 4 °C, for 10 min. �e protein concentration 

of the supernatants was measured using a bicinchoninic 

acid protein assay (�ermo Fisher Scientific). �e super-

natants were added to a 1/3 volume of 4 × SDS sample 

buffer (240 mM Tris–HCl, pH 6.8, 8% SDS, 40% glycerol, 

0.1% bromophenol blue, and 20% 2-mercaptoethanol) 

and boiled at 95 °C for 5 min. Equal amounts of protein 

samples were applied to SDS-PAGE and then transferred 

to a PVDF membrane (Immobilon-P, 0.45  μm) (Mil-

liporeSigma). �e membrane was blocked with 0.5% dry 

skim milk in TBST. After blocking, the membranes were 

incubated with primary antibodies overnight at 4 °C and 

then with secondary antibodies for 1 h at room temper-

ature. �e signals were developed with Clarity Western 

ECL Substrate (Bio-Rad Laboratories) and detected with 

a ChemiDoc imaging system (Bio-Rad Laboratories). 

�e primary antibodies were anti-CCN1/CYR61(1:1000, 

Cell Signaling Technology, #14479), anti-YAP (1:1000, 

Santa Cruz Biotechnology, #sc-101199), anti-TAZ/

WWTR1(1:1000, Sigma-Aldrich, #HPA007415), 

anti-SOX2 ((2  µg/mL, R&D Systems, #AF2018), and 

anti-GAPDH (1:1000, Sigma-Aldrich, #MAB374). �e 

secondary antibodies were horseradish peroxidase-con-

jugated anti-mouse IgG (1:4,000, Cell Signaling Tech-

nology, #7076), anti-rabbit IgG (1:4,000, Cell Signaling 

Technology, #7074), and anti-goat IgG (1:4,000, Sigma-

Aldrich, #A5420).

Quantitative RT-PCR

Trizol reagent (Invitrogen) was used to isolate total cel-

lular RNA from cell pellets. After digestion of genomic 

DNA using Recombinant DNase I (Takara Bio Inc.), a 

PrimeScript RT reagent Kit (Takara Bio Inc.) was used 

for reverse transcription into cDNA. Quantitative real-

time PCR was performed with a Rotor-Gene Q (QIA-

GEN) using Luna Universal qPCR Master Mix (New 

England Biolabs). qPCR primers used in this study were 

as follows. human CCN1 forward 5ʹ-CCT TGT GGA CAG 

CCA GTG TA-3ʹ and reverse 5ʹ-ACT TGG GCC GGT ATT 

TCT TC-3ʹ; human YAP forward 5ʹ-TAG CCC TGC GTA 

GCC AGT TA-3ʹ and reverse 5ʹ-TCA TGC TTA GTC CAC 

TGT CTGT-3ʹ; human TAZ forward 5ʹ-TCC CAG CCA 

AAT CTC GTG ATG-3ʹ and reverse 5ʹ-AGC GCA TTG 

GGC ATA CTC AT-3ʹ; 18S RNA forward 5ʹ-GTA ACC 

CGT TGA ACC CCA TT-3ʹ and reverse 5ʹ-CCA TCC AAT 

CGG TAG TAG CG-3ʹ.

Statistical analysis

GraphPad Prism 8 software was used to conduct statisti-

cal analysis of all data. Data are represented as the mean 

and SEM. Kaplan–Meier survival curves were generated 

using GraphPad Prism 8 software and the log-rank test 

was performed to assess statistical significances between 

groups. �e Student’s t-test was used for comparisons 

between two groups. Comparisons between multiple 

groups were performed with one-way ANOVA with 

Tukey’s multiple comparisons test. Pearson’s correla-

tion test was used to measure the strength of the asso-

ciation between two variables. �e chi-squared test was 

performed to examine differences between categorical 

variables. P values were designated as *P < 0.05, **P < 0.01 

***P < 0.001, ****P < 0.0001, and ns non-significant 

(P > 0.05).

Results
Determination of DGC-speci�c transcriptomic signatures

To investigate transcriptomic profiles of DGCs compared 

with GSCs, we analyzed a deposited RNA sequencing 

dataset from three matched pairs of GSCs and DGCs [51] 

and extracted the top 50 genes that were differentially 

expressed between DGCs and GSCs (DGC and GSC sig-

nature genes) on the basis of the ranking metric score 

(signal-to-noise ratio) (Fig. 1a–c, Additional file 1: S1a,b).
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Validation of DGC-speci�c transcriptomic signatures 

in single cell RNA-sequencing data

Next, to confirm the presence of cell subpopulations 

emulated by in  vitro DGC and GSC culture models 

within a primary tumor, we evaluated the DGC and GSC 

signatures in the deposited single cell RNA-sequencing 

dataset from four GBM tumors [16]. GBM cells aligned 

with differentiation and stemness gradients in each 

tumor (Fig. 1d). Negative correlations between DGC and 

GSC signature single sample gene set enrichment analy-

sis (ssGSEA) scores [2] were also confirmed in the single 

cell RNA-sequencing data (Fig. 1e), which was consistent 

with the findings observed in the RNA sequencing data-

set of in  vitro culture models. A recent study has dem-

onstrated that malignant cells in GBM exist in four main 

cellular states that recapitulate neural-progenitor-like 

(NPC-like), oligodendrocyte-progenitor-like (OPC-like), 

astrocyte-like (AC-like), and mesenchymal-like (MES-

like) states [34]. �us, we assessed the expression of DGC 

and GSC signature genes across the four GBM cellular 

states. �e results showed that DGCs were enriched in 

the MES-like state, while GSCs were enriched in OPC-, 

NPC-, and AC-like states (Fig.  1f ). Gene set enrich-

ment analysis (GSEA) [50] of the in vitro culture models 

showed significant enrichment of the mesenchymal gene 

set in DGCs and the proneural gene set in GSCs (Fig. 1g). 

�ese results suggest that GBM tumors contain cell 

subpopulations modeled by the GSC and DGC culture 

models.

Validation of DGC-speci�c transcriptomic signatures 

in larger tumor cohorts

To determine the validity of the DGC and GSC transcrip-

tomic signatures in larger tumor cohorts, we examined 

�e Cancer Genome Atlas (TCGA) GBM dataset (HG-

UG133A), which contains data from 528 GBMs (Fig. 2a), 

and the Ivy Glioblastoma Atlas Project (IVY GAP) 

database, that contains 122 RNA sample data from 10 

patients (Fig. 2b). We performed unsupervised clustering 

of TCGA GBM dataset with the DGC signature to gen-

erate three groups: DGC-high (n = 177), DGC-medium 

(n = 163), and DGC-low (n = 188) (Fig.  2a). To assess 

the robustness of our clustering, we calculated ssGSEA 

scores [2] of the DGC and GSC signatures for individual 

GBM samples. �e ssGSEA scores of the DGC signature 

were highly enriched in the DGC-high group compared 

with the DGC-low group (Fig. 2c). However, the ssGSEA 

scores of the GSC signature were highly enriched in the 

DGC-low group compared with the DGC-high group 

(Fig.  2d). �e negative correlation between DGC and 

GSC signatures was confirmed in TCGA GBM and 

IVY GAP datasets (Fig.  2e). �ese results suggested the 

validity of the application of DGC signatures to clinical 

cohorts and our clustering shown in Fig. 2a.

Transcriptomic DGC signatures correlate 

with the mesenchymal subtype and poor patient 

prognoses

We next investigated the clinical and anatomical rel-

evances of the DGC signature in GBM cohorts. Ana-

tomically, regions of microvascular proliferation and 

pseudopalisading cells expressed the DGC signature 

more in GBM tissues, whereas the leading edge and infil-

trating tumor regions expressed the GSC signature more 

(Fig.  2b, f, Additional file  1: S2a). Consistent with the 

findings shown in Fig. 1g, the DGC signature was associ-

ated with the mesenchymal subtype in TCGA GBM and 

IVY GAP datasets (Fig.  2g, Additional file  1: S2b). Fur-

thermore, patients with higher expression of the DGC 

Fig. 1 Determination of DGC-specific transcriptomic signatures and their validation in single cell RNA-sequencing data. a Dot plot showing the 
ranking metric score (signal-to-noise ratio) of DGCs versus GSCs. Red and blue dots indicate the top 50 significantly altered genes in DGCs and 
GDCs. On the x axis, genes farther to the left have higher expression in DGCs, whereas genes farther to the right have higher expression in GSCs. 
NCBI Gene Expression Omnibus GSE54791. b Volcano plot comparing gene expression between DGCs and GSCs. Each dot represents one gene. 
Red and blue dots indicate the top 50 significantly altered genes in DGCs and GDCs. Genes were considered to be significantly different when the 
adjusted P value was < 0.05 and the difference of the mean fold change was > 2. NCBI Gene Expression Omnibus GSE54791. c Heat map of the top 
50 genes exclusively upregulated in DGCs and GSCs. NCBI Gene Expression Omnibus GSE54791. d Heat map shows expression of DGC and GSC 
signature ssGSEA scores and genes of each signature (rows) in individual GBM cells (columns) of single cell RNA-sequencing data from four GBM 
tumors (BT S1, BT S2, BT S4, and BT S6). Cells were grouped by the tumor and ordered by the DGC signature ssGSEA score. NCBI Gene Expression 
Omnibus GSE84465. e Correlation analysis between DGC and GSC signature ssGSEA scores in single cell RNA-sequencing data from four GBM 
tumors (BT S1, BT S2, BT S4, and BT S6). Pearson’s correlation test. NCBI Gene Expression Omnibus GSE84465. f Expression of DGC signature genes 
(left) and GSC signature genes (right) in a cluster of two-dimensional representation of cellular states. Each quadrant corresponds to one cellular 
state, the exact positions of malignant cells (dots) reflect their relative scores for the meta-modules, and their colors reflect gene expression levels. 
AC, astrocyte, MES, mesenchymal, OPC, oligodendrocyte-progenitor-cell, NPC, neural-progenitor-cell, TPM, transcripts per million. Source data are 
available through the Broad Institute Single-Cell Portal. (https ://porta ls.broad insti tute.org/singl e_cell/study /SCP39 3/singl e-cell-rna-seq-of-adult 
-and-pedia tric-gliob lasto ma) and NCBI Gene Expression Omnibus GSE131928. g GSEA analysis of mesenchymal and proneural subtypes of DGCs 
compared with GSCs. NCBI Gene Expression Omnibus GSE54791. NES: normalized enrichment score. FDR: false discovery rate

(See figure on next page.)

https://portals.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-pediatric-glioblastoma
https://portals.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-pediatric-glioblastoma
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signature exhibited poorer survival when grouped by 

both the clustering shown in Fig.  2a and ssGSEA score 

(Fig. 2h, Additional file 1: S2c). �ese results suggest that 

transcriptomic DGC signatures correlate with the mes-

enchymal subtype and poor patient prognoses.

Transcriptomic DGC signatures are associated 

with immune responses and macrophage signatures

To investigate the biological role of DGCs in GBM, we 

explored signaling pathways correlated with DGCs by 

GSEA using transcriptomic data of the in  vitro models 

(matched pairs of GSCs and DGCs) and TCGA GBM 

cohorts (Fig. 3a, b). GSEA of hallmark gene sets revealed 

prominent representation of immune response gene sets 

in the in vitro DGC models and DGC-high GBM, includ-

ing the interferon α/γ response, TNF α/NF-κB signaling, 

inflammatory response, interleukin-2 (IL-2)/STAT5 sign-

aling, and IL-6/STAT3 signaling (Fig.  3a, b, Additional 

file 1: S3a).

Next, to predict the presence of stromal/immune cell 

populations in tumors and tumor purity, we used the 

ESTIMATE method [60]. Using TCGA GBM dataset, 

we found that the DGC-high GBM group, which was 

enriched in the mesenchymal subtype (Fig.  2g), exhib-

ited high stromal and immune signatures and low tumor 

purity (Fig.  3c, d, Additional file  1: S3b). �ese results 

were consistent with previous findings of an increased 

presence of stromal and immune cells in mesenchymal 

type GBM [56].

To identify specific immune cells linked to DGC sig-

natures, we examined TCGA GBM dataset for various 

types of immune cells using validated gene set signatures 

[7, 20]. Analysis of immune cell signatures demonstrated 

that high DGC-signature expression correlated with 

significant enrichment of macrophages (total, M1, and 

M2-macrophages), microglia, and monocytes (Fig.  3e). 

�erefore, we assessed macrophage-related gene sets 

(macrophage chemoattractant, migration, and activa-

tion) by GSEA and found that the DGC-high GBM 

group exhibited significant enrichment of these gene sets 

(Fig. 3f ). Taken together, these in silico findings suggest a 

role of DGCs in macrophage infiltration into GBM.

DGCs promote macrophage in�ltration and tumor 

progression in cooperation with GSCs

To perform matched GSC and DGC experiments, we 

adopted an established protocol to isolate GSCs and 

DGCs. GBM tumor cells were isolated by fluores-

cence-activated cell sorting on the basis of CD133, a 

stem-cell marker [1, 51, 57]. The CD133-positive cells 

were cultured as GSCs in serum-free stem cell medium 

and CD133-negative cells were cultured as DGCs in 

serum-containing differentiation medium (Fig.  4a). 

GSCs grew as spheres under serum-free conditions 

and DGCs expanded as adherent monolayers under 

serum-containing conditions (Fig. 4b). Consistent with 

the in silico findings in Fig.  3, conditioned medium 

(CM) of DGCs isolated from patient-derived GBM 

cells (MGG4 and MGG8) and human GBM cell line 

U87ΔEGFR exhibited an increase in U937 macrophage 

migration relative to the control medium in transwell 

migration assays (Fig.  4c, Additional file  1: S4a). To 

confirm the contribution of DGCs to tumor progres-

sion, we implanted GSCs alone, matched DGCs alone, 

or their combination derived from MGG8 cells into the 

brains of immunocompromised mice. We determined 

the ratio of DGCs and GSCs by referring to a previous 

study [57]. As reported in previous studies [51, 57], 

coimplantation of DGCs and GSCs reduced the sur-

vival of tumor xenograft-bearing mice compared with 

(See figure on next page.)
Fig. 2 Validation of DGC-specific transcriptomic signatures in larger tumor cohorts and their correlation with the mesenchymal subtype and a poor 
patient prognosis. a Hierarchical clustering of human TCGA GBM samples (HG-UG133A, n = 528) into DGC-high (n = 177), DGC-medium (n = 163), 
and DGC-low (n = 188) groups using DGC signature genes. The corresponding DGC signature groups for each sample determined via hierarchical 
clustering are labeled (top). Heat map showing Z-scores of DGC and GSC signatures determined by single sample gene set enrichment analysis 
(ssGSEA) of individual GBM samples (second and third from top). The corresponding GBM subtype for each sample is labeled (fourth from top). b 
Heat map shows expression the DGC and GSC signature ssGSEA scores (top and second from top) and genes of each signature (rows) for each RNA 
sample in the anatomic structure study dataset (122 RNA sample data from 10 patients) from the IVY GAP database (columns). The corresponding 
GBM subtype and histology for each sample is are (bottom and second from bottom). c ssGSEA scores of DGC signature genes of DGC-high 
(n = 177), DGC-medium (n = 163), and DGC-low (n = 188) patients in TCGA GBM dataset (HG-UG133A, n = 528). Violin plots represent the median 
(thick dotted line) and quartiles (dotted line). ****P < 0.0001, one-way ANOVA with Tukey’s multiple comparisons test. d ssGSEA scores of the GSC 
signature genes of three DGC groups in TCGA GBM dataset (HG-UG133A, n = 528). Violin plots represent the median (thick dotted line) and quartiles 
(dotted line). **P < 0.01, ****P < 0.0001, one-way ANOVA with Tukey’s multiple comparisons test. e Correlation analysis between DGC and GSC 
ssGSEA scores in TCGA GBM dataset (HG-UG133A, n = 528) and IVY GAP dataset (122 RNA sample data from 10 patients). Pearson’s correlation test. f 
ssGSEA scores of the DGC signature genes in multiple regions of the IVY GAP data (122 RNA sample data from 10 patients). Violin plots represent the 
median (thick dotted line) and quartiles (dotted line). **P < 0.01, ****P < 0.0001, one-way ANOVA with Tukey’s multiple comparisons test. g Molecular 
subtype distribution among DGC signature groups in TCGA GBM dataset (HG-UG133A, n = 528). ****P < 0.0001, chi-squared test. h Kaplan–Meier 
analyses between patients in DGC-high and DGC-low groups of TCGA GBM dataset (HG-UG133A). Log-rank P value analyses
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GSCs alone, whereas as many as 1 × 105 DGCs alone 

did not initiate a tumor (Fig.  4d). Hematoxylin and 

eosin (H&E) staining of whole brain sections showed 

increases in the tumor size and cell density with 

coimplantation of GSCs and DGCs (Fig.  4e). Further-

more, coimplantation of DGCs and GSCs increased 

infiltration of CD206-positive tumor-supportive mac-

rophages (M2 macrophages) compared with GSCs 

alone (Fig. 4f–h). Finally, to confirm successful implan-

tation of DGCs into the brains of recipient mice only 

when cotransplanted with GSCs, we adopted trac-

ing strategies with tumor cells stably expressing 
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fluorescent proteins (Additional file  1: Fig. S4b). To 

this end, GSCs and DGCs were infected with lentiviral 

vectors (LVs) expressing GFP or RFP (Additional file 1: 

Fig. S4c). We implanted GSCs labeled with RFP alone, 

DGCs labeled with GFP alone, or their combination 

(Mixed) into the brains of recipient mice. DGCs were 

successfully engrafted in mouse brains when cotrans-

planted (Mixed) with GSCs, but transplantation of 

DGCs alone did not initiate a tumor (Additional file 1: 

Fig. S4d). Collectively, these results demonstrate that 

DGCs promote macrophage infiltration and tumor 

progression in cooperation with GSCs.

Identi�cation of DGC-speci�c transcriptional regulators

To identify DGC-specific enhancers, we compared the 

epigenetic landscape of three matched pairs (MGG4, 6, 

and 8) of GSCs and DGCs by analysis of H3K27ac ChIP-

sequencing data (Fig.  5a, b) [51]. DGC-specific enhanc-

ers displayed enrichment for transcriptional motifs of 

TEA domain family member (TEAD) 1–4 and activator 

protein-1 (AP-1) (Fig.  5c, Additional file  1: S5a). AP-1 

is a dimer of JUN (JUN, JUNB, and JUND) and FOS 

(FOS, FOSB, FOSL1/FRA1, and FOSL2/FRA2) families 

of leucine-zipper proteins [18]. Transcriptional coac-

tivator with PDZ-binding motif (TAZ), also known by 

gene name WW domain-containing transcription regu-

lator 1 (WWTR1), and its paralog, Yes-associated pro-

tein (YAP), also known by gene name YAP1, are the two 

nuclear effectors of the Hippo signaling pathway. YAP/

TAZ/TEAD and AP-1 form a complex that synergisti-

cally activates YAP/TAZ target genes [62]. Indeed, TEAD 

transcriptional activity was regulated by YAP/TAZ 

(Additional file 1: Fig. S5b–e). Furthermore, DGCs exhib-

ited significant enrichment of YAP-related signatures 

(Fig. 5d) and upregulation of TEAD transcriptional activ-

ity (Fig.  5e) compared with GSCs. �ese findings were 

consistent with the results of motif enrichment analy-

sis. Collectively, these results demonstrated that DGCs 

exhibited a significant increase in YAP/TAZ/TEAD 

activity.

CCN1 is a potential protein secreted from DGCs to regulate 

macrophage recruitment

To identify the DGC signature genes that governed 

macrophage recruitment for further study, we selected 

17 genes encoding secreted proteins (�e Human Pro-

tein Atlas [54]: https ://www.prote inatl as.org/human 

prote ome/tissu e/secre tome) from the 50 DGC signature 

genes (Fig.  5f ) because macrophages are recruited by 

secreted factors. Of these 17 genes, cellular communi-

cation network factor 1 (CCN1), also known as cysteine 

rich angiogenic inducer 61 (CYR61), was selected for 

validation and further analyses (Fig.  5f ) because it is 

a target gene of the YAP/TAZ/TEAD complex [40]. 

In fact, protein and mRNA levels of CCN1 were posi-

tively correlated to YAP (YAP1) and TAZ (WWTR1) 

in GBM cells and clinical samples from our institution 

and TCGA (Additional file  1: Fig. S5f–h). Expression 

of CCN1 was regulated by YAP/TAZ (Additional file 1: 

Fig. S5i–l).

To directly validate upregulation of CCN1 in DGCs, 

we examined the active enhancer landscape of CCN1 

across three matched pairs of GSCs and DGCs derived 

from GBM patients [51], which revealed markedly 

active CCN1 enhancers in DGCs as measured by 

H3K27ac peak levels (Fig.  5g). Next, we quantified 

the relative expression levels of CCN1 by qRT-PCR 

between DGCs and GSCs (MGG4 and MGG8), which 

demonstrated the increased expression levels of CCN1 

in DGCs (Fig.  5h). To confirm translation of these 

mRNAs into proteins, we measured CCN1 protein 

by the enzyme-linked immunosorbent assay (ELISA), 

which confirmed that DGCs secreted higher levels of 

CCN1 than GSCs (Fig.  5i). Furthermore, western blot-

ting showed increases in CCN1 and YAP/TAZ pro-

teins in DGCs compared with those in GSCs (Fig.  5j). 

Fig. 3 Transcriptomic DGC signatures are associated with immune responses and macrophage signatures. a Bar graph showing the normalized 
enrichment score (NES) of GSEA analysis of hallmark gene sets upregulated in DGCs compared with GSCs. Twenty-six gene sets were significantly 
enriched at a false discovery rate (FDR) of < 0.25 and nominal P value of < 0.05 in DGCs. NCBI Gene Expression Omnibus GSE54791. Red bars indicate 
signatures related to immune responses. b Bar graph showing the NES of GSEA analysis of hallmark gene sets upregulated in DGC-high GBMs 
(n = 177) compared with DGC-low GBMs (n = 188). Twenty-nine gene sets were significantly enriched at FDR < 0.25 and nominal P value < 0.05 
in DGC-high GBMs. TCGA GBM dataset (HG-UG133A, n = 528). Red bars indicate signatures related to immune responses. c Immune scores of 
DGC-high (n = 177), DGC-medium (n = 163), and DGC-low (n = 188) patients in TCGA GBM dataset (HG-UG133A, n = 528). Violin plots represent 
the median (thick dotted line) and quartiles (dotted line). ****P < 0.0001, one-way ANOVA with Tukey’s multiple comparisons test. d Stromal scores 
of DGC-high, -medium, and -low patients in TCGA GBM dataset (HG-UG133A). Violin plots represent the median (thick dotted line) and quartiles 
(dotted line). ****P < 0.0001, one-way ANOVA with Tukey’s multiple comparisons test. e GSEA analysis of various types of immune cell signatures 
upregulated in DGC-high (n = 177) compared with DGC-low (n = 188) patients in TCGA GBM dataset (HG-UG133A). Red bars indicate FDR < 0.25. 
f GSEA analysis of macrophage-related signatures upregulated in DGC-high (n = 177) compared with DGC-low (n = 188) patients in TCGA GBM 
dataset (HG-UG133A)

(See figure on next page.)

https://www.proteinatlas.org/humanproteome/tissue/secretome
https://www.proteinatlas.org/humanproteome/tissue/secretome
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To exclude the effects of cell culture conditions on the 

higher expression of CCN1 in DGCs, we performed 

dual immunofluorescence staining of GBM surgical 

specimens for CCN1 and GSC marker SOX2. In human 

GBM specimens, DGC-like cells (SOX2 negative and 

CCN1 positive) and GSC-like cells (SOX2 positive and 

CCN1 negative) were observed (Fig. 5k). Expression of 

CCN1 mRNA was negatively correlated to GSC markers 
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SOX2 and OLIG2 in clinical samples of TCGA (Fig. 5l). 

Taken together, these findings support that CCN1 as a 

potential protein secreted from DGCs, which governs 

macrophage recruitment.

DGCs augments macrophage in�ltration into GBM 

through secretion of CCN1

To investigate the biological role of CCN1 in GBM, we 

explored transcriptomic data of TCGA GBM cohorts. 

CCN1-high GBMs exhibited prominent representation 

of immune response gene sets in GSEA, which included 

the interferon α/γ response, TNF-α/NF-κB signaling, 

inflammatory response, interleukin-2 (IL-2)/STAT5 sign-

aling, and IL-6/STAT3 signaling (Fig.  6a). CCN1-high 

GBMs exhibited higher stromal and immune signatures 

and lower tumor purity than CCN1-low GBMs (Fig. 6b, c, 

Additional file 1: S6a). Analysis of immune cell signatures 

demonstrated that high CCN1 expression correlated to 

significant enrichment of macrophages (total M1 and 

M2), microglia, and monocytes (Fig. 6d). Gene ontology 

enrichment analysis (GOEA) of the subontologies of the 

Biological Process in TCGA GBM patients, which dem-

onstrated that leukocyte migration and chemotaxis activ-

ity were CCN1-regulated processes (Additional file 1: Fig. 

S6b). Furthermore, the CCN1-high GBM group exhibited 

significant enrichment of macrophage-related gene sets 

(macrophage chemoattractant, migration, and activation) 

in the GSEA (Fig. 6e). Taken together, these in silico find-

ings suggest a role of CCN1 in macrophage infiltration 

into GBM.

Next, to determine the CCN1 distribution and its 

correlation with macrophage infiltration into GBMs, 

frozen sections of tumor tissue from a mouse de novo 

GBM model were coimmunostained with CCN1 and 

M2 macrophage marker CD206. We found that tumor 

areas with more CD206-positive macrophage infiltra-

tion showed more CCN1 staining (Additional file 1: Fig. 

S6c). To directly validate the capacity of CCN1 to func-

tion as a macrophage chemoattractant, we conducted 

transwell migration assays using U937 macrophages 

and found that recombinant CCN1 protein increased 

U937 macrophage migration (Fig. 6f ). To more strictly 

assess the effect of CCN1 on macrophage migration 

and tumor growth, we conducted conditional small 

hairpin RNA (shRNA)-mediated knockdown of CCN1 

using lentiviral vectors in DGCs from patient-derived 

GBM cells (MGG4 and MGG8 DGCs) and U87ΔEGFR 

cells (Additional file 1: Fig. S6d). Conditioned medium 

(CM) from DGCs (MGG4 and MGG8 DGCs) and 

U87ΔEGFR cells transduced with shRNA that tar-

geted CCN1 (shCCN1) decreased U937 macrophage 

migration relative to a non-targeting control shRNA 

(shCONT) in transwell migration assays (Fig. 6g, Addi-

tional file  1: S6e). Mice bearing xenografts formed by 

U87ΔEGFR cells transduced with shCONT exhibited 

more macrophage infiltration into tumors and shorter 

survival compared with those transduced with shCCN1 

(Additional file  1: Fig. S6f–i). Furthermore, to address 

the significance of CCN1 secreted from DGCs in the 

mouse xenograft model, we coimplanted GSCs and 

DGCs transduced with shCONT or shCCN1 into the 

brains of immunocompromised mice. �e combination 

of GSCs and DGCs transduced with shCCN1 led to 

reductions in macrophage infiltration into tumors and 

the tumor size compared with the combination of GSCs 

and DGCs transduced with shCONT (Fig. 6h–k). Mice 

bearing xenografts formed by GSCs in combination 

with DGCs transduced with shCONT had shorter sur-

vival than those bearing xenografts formed by the com-

bination of GSCs and DGCs transduced with shCCN1 

(See figure on next page.)
Fig. 4 DGCs promote macrophage infiltration and tumor progression in cooperation with GSCs. a Flow cytometric analysis of CD133 in MGG8 cells. 
Sorted CD133 + cells were cultured as GSCs and CD133-cells were cultured as DGCs. b Representative images of paired GSCs and DGCs derived 
from two primary human GBM specimens (MGG4 and MGG8). Scale bar, 300 µm. c Representative image (left panel) and quantification (right panel) 
of transwell analysis of U937 macrophages upon stimulation with control medium or conditioned medium (CM) from DGCs (MGG4 and MGG8). 
Scale bar, 100 μm. n = 4 biological replicates, mean ± SEM, ***P < 0.001, Student’s t-test. d Kaplan–Meier (upper) and log-rank P value (bottom) 
analyses of mice bearing orthotopic xenografts of 1 × 103 glioma stem-like cells (GSCs) alone, 1 × 105 differentiated glioblastoma cells (DGCs) alone, 
or cotransplanted 1 × 104 DGCs with 1 × 103 GSCs derived from MGG8 cells. e Representative H&E stainings of tumor-bearing brains harvested at 
30 days after implantation of 1 × 103 GSCs alone, or 1 × 103 GSCs plus 1 × 104 matched DGCs derived from MGG8. Scale bars indicate 2000, 100 
and 50 µm in gross and detail views, respectively. Middle and right panels are high magnifications of the areas marked by rectangles in left panels. f 
Representative confocal images of tumor-bearing brains harvested at 30 days after implantation of 1 × 103 GSCs alone, or 1 × 103 GSCs plus 1 × 104 
matched DGCs derived from MGG8. Scale bar, 100 µm. Iba1 (red), CD206 (green), and DAPI (blue). g Quantitation of pan-macrophage  (Iba1+) 
and M2 macrophage  (CD206+) densities in xenografts formed by 1 × 103 GSCs alone or 1 × 103 GSCs plus 1 × 104 matched DGCs derived from 
MGG8 cells. The total number of macrophages was counted in five randomly selected fields per sample. n = 5 biological replicates, mean ± SEM, 
***P < 0.001, ****P < 0.0001, Student’s t-test. h Quantitation of the fraction of M2 macrophages  (CD206+). The fraction was determined by M2 
macrophages  (CD206+) among pan-macrophages  (Iba1+) in 1 × 103 GSCs alone or 1 × 103 GSCs plus 1 × 103 matched DGCs xenografts. The total 
number of macrophages was counted in five randomly selected fields per sample. n = 5 biological replicates. Data are represented as means ± SEM. 
**P < 0.01, Student’s t-test
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(Fig.  6l). Collectively, these results suggest that DGCs 

augment macrophage infiltration into tumors and 

tumor progression, at least in part, through secretion of 

CCN1.

CCN1 secreted from DGCs augments macrophage 

in�ltration through integrins

CCN1 functions through binding to at least five differ-

ent integrins (αvβ3, αvβ5, α6β1, αIIbβ3, and αMβ2) [31]. 

�e expression of these CCN1-binding integrins was 

positively correlated to DGC signature genes and CCN1 

in TCGA GBM (HG-U133A) dataset (Fig. 7a, Additional 

file  1: S7a). Furthermore, we calculated ssGSEA scores 

of the ITG signature (expression of CCN1-binding inte-

grins) for individual GBM samples. �e ITG signature 

genes were also positively correlated to DGC signature 

genes and CCN1 (Fig. 7b). In the IVY GAP dataset, ITG 

signature genes were particularly enriched in regions of 

microvascular proliferation, while expression of ITG sig-

nature genes was lower in leading edge regions (Fig. 7c, 

d). Next, we investigated deposited single cell RNA-

sequencing data from GBM tumors and confirmed that 

CCN1 was expressed in neoplastic cells and CCN1-bind-

ing integrins were expressed in myeloid cells (Additional 

file 1: Fig. S7b).

To investigate whether DGC-derived CCN1-medi-

ated macrophage infiltration into GBM may be medi-

ated by integrins, we cloned lentiviral vectors harboring 

wildtype (WT) CCN1 or mutant CCN1 (D125A [14], a 

CCN1 mutant defective for binding αvβ3/αvβ5 integ-

rins, and DM [32], a CCN1 mutant defective for binding 

αMβ2/α6β1 integrins) (Fig. 7e). We found that rescue of 

endogenous CCN1, which was knocked down by shRNA 

that targeted 3ʹ-untranslated regions (UTRs), by exog-

enously transduced lentiviruses that harbored WT CCN1 

restored macrophage infiltration in  vitro and in  vivo, 

increased the tumor size, and reduced animal survival, 

but not the empty vector control or CCN1 mutants 

defective for integrin binding (Fig. 7g–k, Additional file 1: 

S7c–g).

To determine the clinical relevance of the DGC signa-

ture and CCN1-binding integrins in GBM patients, we 

re-examined TCGA GBM (HG-U133A) dataset. High 

expression of CCN1 and the ITG signature (expression 

of CCN1-binding integrins) was associated with a poor 

prognosis (Fig.  7l, m). Furthermore, expression of the 

DGC signature combined with CCN1 or the ITG-signa-

ture were negatively correlated to overall patient survival 

(Fig. 7n, o).

Taken together, our data elucidated the biological roles 

of DGCs, especially in the tumor microenvironment. 

DGCs augment macrophage infiltration through CCN1 

to promote tumor progression of GBM.

Discussion
In this study, we extracted DGC signature genes from 

transcriptomic profiles of matched pairs of in vitro GSCs 

and DGCs models. We evaluated the DGC signature 

genes in single cell RNA-sequencing data, which con-

firming the presence of cell subpopulations emulated 

by in  vitro culture models within a primary tumor. We 

found that the DGC gene signature was correlated to 

macrophage-related genes, the mesenchymal subtype 

signature, and poor survival. DGCs exhibited significant 

enrichment of YAP/TAZ/TEAD activity compared with 

Fig. 5 Identification of DGC-specific transcriptional regulators and a potential protein that governs macrophage recruitment by DGCs. a Heat map 
showing H3K27ac signals of all DGC-specific enhancers in three matched GSCs and DGCs (MGG4, MGG6, and MGG8). H3K27ac chip sequencing 
data were derived from NCBI Gene Expression Omnibus GSE54047. b Metaplot showing average H3K27ac signals of all DGC-specific enhancers 
in three matched GSCs and DGCs (MGG4, MGG6, and MGG8). H3K27ac chip sequencing data were derived from NCBI Gene Expression Omnibus 
GSE54047. c De novo and known motif enrichment analysis of DGC-specific enhancers defined in a, b displayed enrichment for transcriptional 
motifs of the TEAD transcription factor family. d GSEA analysis of YAP-related signatures upregulated in DGCs compared with GSCs. NCBI Gene 
Expression Omnibus GSE54791. NES: normalized enrichment score. FDR: false discovery rate. e Quantification of the TEAD luciferase reporter assay 
of matched pairs of GSCs and DGCs derived from MGG4 and MGG8 cells. Data are presented as the mean ± SEM of four independent experiments. 
*P < 0.05, ***P < 0.001. f Venn diagram showing the intersection between DGC signature genes (n = 50) and genes encoding secreted proteins from 
the human protein atlas (n = 1708). CCN1 was selected because it is a target gene of the YAP/TAZ-TEAD complex. g H3K27ac ChIP-sequencing 
enrichment plot at the CCN1 locus of three matched pairs of GSCs and DGCs (MGG4, MGG6, and MGG8). Matched pairs of GSC and DGC data were 
derived from NCBI Gene Expression Omnibus GSE54047. h qRT-PCR quantification of CCN1 mRNA levels in matched pairs of GSCs and DGCs derived 
from MGG4 and MGG8 cells. Data are presented as the mean ± SEM of two independent experiments. **P < 0.01, ***P < 0.001. i ELISA quantification 
of secreted CCN1 protein levels in conditioned media from paired GSCs and DGCs derived from MGG4 and MGG8 cells. Data are presented as 
the mean ± SEM of three independent experiments. **P < 0.01. j DGCs express elevated CCN1, YAP and TAZ protein levels relative to GSCs. Protein 
levels of CCN1, YAP, TAZ and SOX2 (GSC marker) were assessed by immunoblotting in two pairs of GSCs and DGCs of patient-derived glioma cell 
lines (MGG4 and MGG8). GAPDH was used as a loading control. k Immunofluorescence staining of SOX2 (green) and CCN1 (red) in frozen sections 
of human GBM specimens counterstained with DAPI (blue). Scale bar, 50 μm. Green arrowheads, SOX2-positive GSC-like cells. Red arrowheads, 
SOX2-negative DGC-like cells. Middle and right panels are high magnifications of the rectangle area in the left panel. l Correlation between CCN1, 
SOX2, and OLIG2 in TCGA GBM (HG-U133A) dataset. Red numbers indicate the correlation R-value. Pearson’s correlation test

(See figure on next page.)
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GSCs. We elucidated that DGCs promote macrophage 

recruitment into GBM tissue through secretion of CCN1.

�e significance of GSCs is undeniable considering 

their capacity for self-renewal, differentiation, and tumor 

propagation in  vivo, and their contribution to thera-

peutic resistance, immune escape, and angiogenesis [1, 

23]. �e focus on GSCs has overlooked the importance 

of differentiated progeny such as DGCs. A recent study 

has shown that DGCs also contribute to tumor progres-

sion in concert with GSCs through a paracrine loop [57]. 

However, the roles of DGCs in the tumor microenvi-

ronment of GBM remain obscure. In the present study, 

we focused on the significant correlation between DGC 

and macrophage signature genes, and established that 

DGCs secrete CCN1 to promote macrophage infiltra-

tion into the GBM tumor microenvironment. In addition 

to CCN1, CLCF1, a secreted protein included among 

the DGC signature genes, is implicated in macrophage 

activation [37]. Furthermore, a recent study of medul-

loblastoma models has also shown that tumor-derived 

astrocytes, differentiated progeny from tumor progeni-

tors, induce polarization of resident brain microglia 

towards protumorigenic macrophages by secreting IL-4 

[59]. �ese findings suggest that not only tumor progeni-

tors such as GSCs, but also differentiated progeny such 

as DGCs play an essential role in shaping the complex 

tumor immune microenvironment by promoting mac-

rophage infiltration.

�e mesenchymal signature of GBM can be shaped by 

several factors such as stromal cells, accumulated muta-

tions in tumor cells, the cell of origin, anatomical loca-

tion/tumor microenvironments, and therapy-induced 

mesenchymal transition [4]. �e presence of mac-

rophages/microglia is associated with the mesenchymal 

subtype of GBM [6, 34, 56]. Genetic deficiency of NF1 

attracts macrophages/microglia into tumors and a mac-

rophage/microglia-rich microenvironment also induces a 

mesenchymal tumor cell phenotype [56]. We found that 

DGCs themselves had a mesenchymal gene signature and 

the DGC signature was anatomically enriched in perine-

crotic/hypoxic (pseudopalisading) regions and microvas-

cular proliferative regions. �ese findings are consistent 

with prior reports indicating that the mesenchymal sig-

nature is enriched in perinecrotic/hypoxic regions and 

microvascular proliferative regions [41]. �us, DGCs 

may induce a mesenchymal phenotype by attracting 

macrophages.

DGCs do not form tumors when implanted alone [51, 

57]. �is suggest that retrograde dedifferentiation from 

DGCs to GSCs essentially cannot occur in a tumor [51]. 

DGCs successfully implant in brains of recipient mice 

only when cotransplanted with GSCs, which contrib-

ute to GSC-dependent tumor progression [57]. We also 

(See figure on next page.)
Fig. 6 DGCs augment macrophage infiltration through secretion of CCN1 in GBM. a Bar graph showing the normalized enrichment score (NES) 
of GSEA analysis of hallmark gene sets upregulated in CCN1-high GBMs (n = 264) compared with CCN1-low GBMs (n = 264). Thirty gene sets were 
significantly enriched at a false discovery rate (FDR) of < 0.25 and nominal P value of < 0.05 in CCN1-high GBMs. TCGA GBM dataset (HG-UG133A, 
n = 528). Red bars indicate signatures relate to immune responses. b Immune score of CCN1-high (n = 264) and CCN1-low (n = 264) GBMs in TCGA 
GBM dataset (HG-UG133A, n = 528). Violin plots represent the median (thick dotted line) and quartiles (dotted line). ****P < 0.0001, Student’s t-test. 
c Stromal score of CCN1-high and CCN1-low GBMs in TCGA GBM dataset (HG-UG133A). Violin plots represent the median (thick dotted line) and 
quartiles (dotted line). ****P < 0.0001, Student’s t-test. d GSEA analysis of various types of immune cell signatures upregulated in CCN1-high GBMs 
(n = 264) compared with CCN1-low GBMs (n = 264) in TCGA GBM dataset (HG-UG133A, n = 528). Red bars indicate FDR < 0.25. e GSEA analysis 
of macrophage-related signatures upregulated in CCN1-high GBMs (n = 264) compared with CCN1-low GBMs (n = 264) in TCGA GBM dataset 
(HG-UG133A, n = 528). FDR < 0.25 was defined as significantly enriched. f Representative image (upper panel) and quantification (lower panel) 
of transwell analysis of U937 macrophages upon stimulation with or without recombinant CCN1 (10 ng/ml). Scale bar, 100 μm. n = 4 biological 
replicates, mean ± SEM, ****P < 0.0001, Student’s t-test. CONT: control. g Representative image (upper panel) and quantification (lower panel) of 
transwell analysis of U937 macrophages upon stimulation with conditioned medium (CM) from DGCs (MGG4 and MGG8 DGCs) transduced with 
shCONT or shCCN1. Scale bar, 100 μm. n = 4 biological replicates, mean ± SEM, ****P < 0.0001, one-way ANOVA with Tukey’s multiple comparisons 
test. h Representative confocal images of tumor-bearing brains harvested at 30 days after implantation of 1 × 103 GSCs plus 1 × 104 matched DGCs 
transduced with shCONT or 1 × 103 GSCs plus 1 × 104 DGCs transduced with shCCN1 derived from MGG8. Scale bar, 100 µm. Iba1 (red), CD206 
(green), and DAPI (blue). i Quantitation of pan-macrophages  (Iba1+) and M2 macrophages  (CD206+) densities in xenografts formed by 1 × 103 
GSCs plus 1 × 104 matched DGCs transduced with shCONT or 1 × 103 GSCs plus 1 × 104 DGCs transduced with shCCN1 derived from MGG8 cells. 
The total number of macrophages was counted in five randomly selected fields per sample. n = 5 biological replicates, mean ± SEM, ****P < 0.0001, 
one-way ANOVA with Tukey’s multiple comparisons test. j Quantitation of the fraction of M2 macrophages  (CD206+). The fraction was determined 
by M2 macrophages  (CD206+) among pan-macrophages  (Iba1+) in xenografts formed by 1 × 103 GSCs plus 1 × 104 matched DGCs transduced 
with shCONT or 1 × 103 GSCs plus 1 × 104 DGCs transduced with shCCN1. The total number of macrophages was counted in five randomly selected 
fields per sample. n = 5 biological replicates. Data are represented as means ± SEM. **P < 0.01, ***P < 0.001, one-way ANOVA with Tukey’s multiple 
comparisons test. k Representative H&E stainings of tumor-bearing brains harvested at 30 days after implantation of 1 × 103 GSCs plus 1 × 104 
matched DGCs transduced with shCONT or 1 × 103 GSCs plus 1 × 104 DGCs transduced with shCCN1 derived from MGG8. Scale bars, 2000 µm. 
l Kaplan–Meier (left) and log-rank P value (right) analyses of mice bearing orthotopic xenografts of 1 × 103 GSCs plus 1 × 104 matched DGCs 
transduced with shCONT or 1 × 103 GSCs plus 1 × 104 DGCs transduced with shCCN1 derived from MGG8 cells
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obtained the same result in the present study. Consider-

ing our results that DGCs had a mesenchymal gene sig-

nature and GSCs had a proneural gene signature when 

compared each other, increased intratumoral heteroge-

neity at the earliest time of tumor initiation by cotrans-

plantation of DGCs and GSCs may accelerate tumor 

progression. �is may be consistent with the result of a 

previous study in which proneural GBM patients with 

a high proportion of alternate subtype tumor cells had 

significantly worse outcomes compared with the pure 

proneural subtype [38]. Combination therapies that 

simultaneously target both DGCs and GSCs may be 

needed to overcome this intratumoral heterogeneity of 

GBMs.

In GBMs, TAZ is a transcriptional coactivator that 

drives the gene expression program of mesenchymal 

differentiation in a TEAD-dependent fashion [5]. We 

found that DGCs exhibited significant enrichment of 

YAP/TAZ/TEAD activity compared with GSCs. Previ-

ous studies have reported that serum stimulation in vitro 

activates AP-1, a transcriptional partner of TEADs, and 

YAP/TAZ [61, 62, 64]. Additionally, YAP/TAZ are impli-

cated in mechanotransduction. When cells are cultured 

on a stiff substrate, YAP/TAZ localize in the nucleus 

and become transcriptionally active [17]. Our results 

are reasonable considering the cell culture conditions 

under which GSCs grew as spheres in serum-free con-

ditions and DGCs expanded as adherent monolayers 

under serum-containing conditions. Elevated tissue ten-

sion induces a mesenchymal-like phenotype in GBM [3]. 

�us, elevated stiffness may promote YAP/TAZ/TEAD 

activation of DGCs in GBM tissue.

CCN1, a transcriptional target of YAP/TAZ/TEAD, is 

secreted from various cell type, including, tumor cells, 

endothelial cells, fibroblasts, and smooth muscle cells 

[19, 36, 40]. CCN1 has been implicated in various cellular 

processes including leukocyte infiltration, inflammatory 

process, angiogenesis, and adhesion [19, 25, 30, 36, 53]. 

Moreover, we and others have revealed an elevation of 

CCN1 expression and its correlation with a poor progno-

sis in various tumors including GBM [9, 27, 35, 36]. How-

ever, which subpopulations of heterogeneous GBM cells 

secrete CCN1 and its detailed role in the heterogeneous 

GBM microenvironment has not been fully elucidated. 

We found that CCN1 was secreted abundantly from a 

population of DGCs, but not GSCs, which played criti-

cal roles in shaping the mesenchymal phenotype through 

macrophage infiltration into GBM tissue.

�e gene signature of in  vitro culture models should 

be interpreted with caution because in  vitro DGC and 

Fig. 7 CCN1 secreted from DGCs augments macrophage infiltration through integrins. a Correlation analysis of mRNA expression of CCN1-binding 
integrins (ITGAV, ITGB3, ITGB5, ITGAM, ITGB2, ITGA6, and ITGB1) with DGC ssGSEA scores and mRNA expression of CCN1 in TCGA GBM (HG-U133A) 
dataset. Size and color indicate the correlation R-value. Pearson’s correlation test. b Correlation analysis of ITG (CCN1-binding integrin) ssGSEA 
scores with mRNA expression of CCN1 (left panel) and DGC ssGSEA scores (right panel) in TCGA GBM (HG-U133A) dataset. Red numbers indicate 
the correlation R-value and P value. Pearson’s correlation test. c Heat map shows expression of DGC, GSC, and ITG ssGSEA scores (top, second, and 
third from top) for each RNA sample in the anatomical structure study dataset (122 RNA sample data from 10 patients) from the IVY GAP database 
(columns). The corresponding GBM subtype and histology for each sample are labeled (bottom and second from bottom). d ssGSEA scores of ITG 
(CCN1-binding integrin) signature genes in multiple regions of the IVY GAP dataset (122 RNA sample data from 10 patients). Violin plots represents 
the median (thick dotted line) and quartiles (dotted line). **P < 0.01, ****P < 0.0001, one-way ANOVA with Tukey’s multiple comparisons test. e 
Schematic diagram showing the domain structure of wildtype CCN1 and D125A and DM mutants disrupted in binding sites for αvβ3/αvβ5 and 
αMβ2/α6β1 integrins, respectively. f Representative image (left panel) and quantification (right panel) of transwell analysis of U937 macrophages 
upon stimulation with conditioned medium (CM) from MGG8 DGCs with the indicated modification. Scale bar, 100 μm. n = 4 biological replicates, 
mean ± SEM, ****P < 0.0001, one-way ANOVA with Tukey’s multiple comparisons test. g Representative confocal images of tumor-bearing 
brains harvested at 30 days after implantation of 1 × 103 GSCs plus 1 × 104 matched DGCs from MGG8 cells with the indicated modification by 
a lentivirus. Scale bar, 100 µm. Iba1 (red), CD206 (green), and DAPI (blue). h Quantitation of pan-macrophages  (Iba1+) and M2 macrophages 
 (CD206+) densities in xenografts formed by 1 × 103 GSCs plus 1 × 104 matched DGCs from MGG8 cells with the indicated modification by a 
lentivirus. The total number of macrophages was counted in five randomly selected fields per sample. n = 5, mean ± SEM, ****P < 0.0001, ns: not 
significant, one-way ANOVA with Tukey’s multiple comparisons test. i Quantitation of the fraction of M2 macrophages  (CD206+). The fraction 
was determined by M2 macrophages  (CD206+) among pan-macrophages  (Iba1+) in xenografts formed by 1 × 102 GSCs plus 1 × 104 matched 
DGCs from MGG8 cells with the indicated modification by a lentivirus. The total number of macrophages was counted in five randomly selected 
fields per sample. n = 5 biological replicates. Data are represented as means ± SEM. *P < 0.05, **P < 0.01, ns: not significant, one-way ANOVA with 
Tukey’s multiple comparisons test. j Representative H&E stainings of tumor-bearing brains harvested at 30 days after implantation of 1 × 103 GSCs 
plus 1 × 104 matched DGCs from MGG8 cells with the indicated modification by a lentivirus. Scale bars, 2000 µm. k Kaplan–Meier (upper) and 
log-rank P value (bottom) analyses of mice bearing orthotopic xenografts of 1 × 103 GSCs plus 1 × 104 matched DGCs from MGG8 cells with the 
indicated modification by a lentivirus. l Kaplan–Meier analyses between patients in CCN1-high and CCN1-low groups on the basis of median mRNA 
expression in TCGA GBM dataset (HG-UG133A). Log-rank P value analyses. m Kaplan–Meier analyses of patients in TCGA GBM dataset (HG-UG133A) 
on the basis of ssGSEA scores of ITG (CCN1-binding integrin) signature genes. Log-rank P value analyses. n Negative correlation between expression 
of CCN1 combined with ITG (CCN1-binding integrin) signature genes and overall patient survival in TCGA GBM (HG-U133A) dataset. Log-rank P 
value analyses. o Negative correlation between expression of DGC-signature genes combined with ITG (CCN1-binding integrin) signature genes 
and overall patient survival in TCGA GBM (HG-U133A) dataset. Log-rank P value analyses

(See figure on next page.)
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GSC models do not fully recapitulate the heterogeneity 

of tumor cells within primary GBMs. However, a prior 

study applied a stemness signature of in  vitro culture 

models to GBM single cell transcriptional profiles and 

revealed the existence of cell subpopulations emulated 

by in vitro culture models within a primary tumor [38]. 

Interestingly, each in vitro model represents phenotypic 

extremes of the stemness gradients within GBM tumors 

[38]. Using other deposited GBM single cell RNA-

sequencing data, we also found clear gradients of DGC 

and GSC signatures and negative correlations between 

these signatures in each sample. �ese results reflect the 

validity of our approach using the DGC gene signature of 

in vitro culture models to investigate the biological roles 

of DGCs in GBMs.

Stem cell-like tumor-initiating cells expressing markers 

of proneural and mesenchymal transcriptomic subtypes 

(proneural and mesenchymal GSCs, respectively) have 

been reported in GBM [29]. In the present study, we used 

the proneural subtype of GSC models [51]. �e biologi-

cal phenotype and anatomical distribution of proneural 

and mesenchymal GSCs are different [29]. Accordingly, 

in the future, studies that focus on the differences among 

proneural GSCs, mesenchymal GSCs, and DGCs from 

each subtype of GSCs are needed.

A limitation of the present study is that immune 

responses, including microglia/macrophages, are differ-

ent in immunocompetent and immunodeficient mice. 

BALB/c-nu/nu mice have impaired T-cell functions 

and an active macrophage system [12]. �erefore, in the 

future, we should perform in  vivo experiments using 

immunocompetent syngeneic mouse models.

In conclusion, our results reveal that DGCs contribute 

GSC-dependent tumor progression by shaping a mesen-

chymal microenvironment via macrophage infiltration 

and provide a new insight into the complex GBM micro-

environment consisting of heterogeneous mixtures of 

cells.
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