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ABSTRACT The Multi-access Edge Computing (MEC) and Fog Computing paradigms are enabling

the opportunity to have middleboxes either statically or dynamically deployed at network edges acting

as local proxies with virtualized resources for supporting and enhancing service provisioning in edge

localities. However, migration of edge-enabled services poses significant challenges in the edge computing

environment. In this paper, we propose an edge computing platform architecture that supports service

migration with different options of granularity (either entire service/data migration, or proactive application-

aware data migration) across heterogeneous edge devices (either MEC-based servers or resource-poor Fog

devices) that host virtualized resources (Docker Containers). The most innovative elements of the technical

contribution of our work include i) the possibility to select either an application-agnostic or an application-

aware approach, ii) the possibility to choose the appropriate application-aware approach (e.g., based on

data access frequencies), iii) an automatic edge services placement support with the aim of finding a more

effective placement with low energy consumption, and iv) the in-lab experimentation of the performance

achieved over rapidly deployable environments with resource-limited edges such as Raspberry Pi devices.

INDEX TERMS Container migration, Docker containers, edge computing, service migration.

I. INTRODUCTION

The rapid increase in demand for mobile devices within the

realms of real-time mobile applications, augmented reality,

and mobile gaming, and Industry 4.0 (just to cite a few)

motivate the need for real-time mobile cloud applications.

Necessarily, these real-time applications require low laten-

cies to provide seamless end-user interaction imposing very

strict Quality of Service (QoS) requirements. For instance,

cloud-based multimedia real-time applications require end-

to-end latencies below 60ms and much lower values within

specific contexts such as the industrial one [1], [2]. The only

way to comply with those requirements is moving cloud

computing to the edge of the network, so to lessen these

otherwise unacceptable delays by locally providing needed

resources.

Accordingly, in the last years various models and solu-

tions have been proposed by academia and industry, such

as Cloudlet [3], Follow Me Cloud [4], and Micro Data
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Center (MDC). All these solutions share the idea of interpos-

ing an intermediate layer of middleboxes, either statically or

dynamically deployed at the network edge, between the leaf

device layer and the global cloud. The primary idea is to have

services in proximity of mobile users so that network conges-

tion is reduced, battery life is enhanced, and service experi-

ence is improved in terms of Quality of Experience (QoE) and

QoS. In particular, this intermediate layer provides storage,

computation, and network resources enabling the possibility

of moving and hosting services at the edge of the network

(e.g., offloading), to decrease latency and to increase scala-

bility through local interactions, whenever possible.

More recently, along the same direction,Multi-access Edge

Computing (MEC) [5] and Fog Computing [6] have become

prominent concepts in many recent studies and technolo-

gies [7]. The differences between these models are mainly

in terms of deployment and administrative management.

In MEC, the infrastructure resides at the edge of a telco

operator infrastructure and MEC nodes are typically MDCs.

Instead, the Fog infrastructure and all its derivatives reside

on premises and at the edge of end-system infrastructure,
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typically at home gateway level. Moreover, Fog nodes can be

resource-constrained devices such as general-purpose routers

and/or single-board computers including Raspberry Pi. In the

reminder of this work, we use Edge Computing as a general

term to refer to all above emerging models and, especially to

MEC and Fog Computing.

Edge Computing has helped to significantly reduce the

delays between mobile nodes and cloud, and it is considered

one of the enabler technologies for the 5G vision. At the

same time, it has introduced new problems such as the man-

agement of users’ mobility [8]. Generally, edge nodes have

small network coverage and it is very common that a mobile

node changes its connection during its path. Due to limited

coverage of a single edge node, user mobility could affect the

degradation of network performance reducing the QoS or in

some cases causing the interruption of the edge service. Thus,

in order to guarantee service continuity, it is necessary to

support efficient service/data migration between edge nodes.

However, at the current stage there are several heterogeneous

virtualization technologies and migration strategies and some

of them might not be practical when used with resource-

poor edge devices (e.g. Raspberry Pi). Moreover, future 5G

networks will be composed of heterogeneous devices, such as

home gateways and MEC micro-servers that do not host the

same resources. That makes service migration management a

very complex task; for instance, heavy-computation services

should bemigrated to high powerful micro-servers rather than

to poor Fog gateway nodes. Energy consumption should also

be considered, especially for battery-power edge nodes.

Focusing on existing solutions, most seminal efforts have

been focused on the concept of Live Migration of Virtual

Machines (VMs) [9] to guarantee the lowest possible down-

time of the service. Live migration considers service migra-

tion as the stateful migration of services where the service

contains internal state data of the user. After the comple-

tion of the migration, the service resumes exactly where it

had stopped before. To ensure this, complex mechanisms

have been proposed including the main two variants called

pre-copy and post-copy. Pre-copy pushes most of the data to

destination host before stopping and migrating the VM [9].

Post-copy pulls most of the data from source host after resum-

ing VM at the destination host [10].

Successively, with the diffusion of container technologies

such as Docker [11], most of the research efforts have been

focused on service container migration. This is justified by

several experiments conducted to compare the performance

of VMs andContainers [12]. In [13], performance evaluations

are carried out to compare standard VM hypervisors and

container-based virtualization technologies for edge-based

IoT applications. Since containers are a more lightweight

virtualization option, several companies started using them

to develop applications. Today, containers are largely used

for edge-based services due to their adaptive characteris-

tics including lightness and portability. Nevertheless, only

very few proposals have started to target the technologi-

cal advances associated with container migration in place

of VM. Some proposal tried to use container virtualization

technology as the object of the live migration (container state

migration). Other efforts, instead, have focused on service

migration by leveraging Docker technology.

At the current stage, Edge Computing does not have a stan-

dardized fast service/data migration support. To tackle this

problem,we focus on reducing the total time of servicemigra-

tion by leveraging the service characteristics. We show how

to design a fast handoff schema that exploits the knowledge of

the characteristics of the service. At the heart of our schema,

there is Docker which allows the separation between data

and service containers. Moreover, our schema profiles data

characteristics and leverages that awareness in order to reduce

the migration time. Finally, most of the existing researches

about Edge Computing focus on offloading tasks to edge

servers in order to save energy for mobile devices. However,

only saving energy for mobile devices is not enough because

the energy consumption of edge servers is non-negligible.

To address this issue, we propose an edge services placement

solution able to reduce energy consumption. In particular,

the proposed work has the following primary innovation ele-

ments and features, which we claim provide a non-negligible

contribution to the advancement of the literature in the field.

First, it enables either application-agnostic or application-

aware approaches for container migration. In the application-

agnosticmode, our framework can performmigrationwithout

having any visibility of the application behavior (just con-

tainer migration). Dually, in the application-aware case, the

framework can fully exploit application specific knowledge

to determine which data should be migrated proactively

in order to minimize latency and to optimize the usage

of possibly limited resources, e.g., inter-edge bandwidth

and edge storage. Second, an efficient way to take advan-

tage of data characteristics has been investigated to reduce

application-aware migration times. We have developed a

Decision Module that contains a set of mechanisms for car-

rying out application-aware migration based on data change

probability. It associates to data with lower access frequen-

cies that can be proactively moved, while it postpones the

migration of data with higher access frequencies. Third, our

framework also guarantees data consistency between edge

nodes after the handoff: if some data moved proactively to

the new edge node have been changed during the handoff

period, our framework automatically reconciles those data.

Last, our framework addresses the problems of heterogene-

ity and energy management at edge nodes by defining an

affinity relationship that depends on service characteristics.

This solution allows our framework to decide the best target

node toward which to perform the handoff in terms of needed

resources and energy consumption.We consider as edge node

both resource-poor devices, including Raspberry Pi acting as

Fog nodes and powerful computers used as MEC node.

The remainder of the paper is structured as follows.

The next two sections provide first an overview of related

works, then report background material and propose design

guidelines needed to fully understand our original proposal.
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Section IV describes the architecture of our solution and

details our novel protocols for fast service handoff manage-

ment at the edge. Section V shows a wide range of perfor-

mance results including both in-the-field experimentation and

CloudSim simulations. Conclusive remarks, and directions of

ongoing related work end the paper.

II. RELATED WORK

Service migration at the edge of the network and container

live migration have been heavily investigated in recent years.

In this section, we discuss two main research directions that

are related to our proposal: i) service migration based onVMs

at the edge, and ii) container service migration.

A. SERVICE MIGRATION AT THE EDGE

In the past few years, notable efforts of researches have been

focused on the benefits and challenges of Edge Computing.

One of the uncleared challenges is service migration, which

guarantees service continuity as users move across different

edge nodes. Ha et al. [14] proposed Cloudlet, as one of

the seminal examples of computing at the network, and a

mechanism for edge-enabled handoff management based on

VM service synthesis and migration to the newly visited edge

nodes. This has led to a few important middleware solutions

to address service migration in the presence of user mobil-

ity. Mobile Micro-Cloud (MMC) [15] started exploring the

idea to place micro-clouds closer to end-users. In that work,

authors faced out the service migration problem by taking

into account the costs associated with running service at the

same MMC server and the costs associated with migrating

the service to another MMC server. To do this, the authors

define an algorithm to predict the future costs for finding the

optimal placement of services. Another important work in

the same context is Follow-Me Cloud [4] that enables mobile

cloud services to follow mobile users alongside datacenters.

The framework allows service migration by migrating all

or portions of services to the optimal data center. Service

migration decision is based on user constraints and network

conditions.

Some other recent proposals are based specifically on

VM migration. Preliminary research efforts focused on the

impact on network performance [16]. To overcome this lim-

itation, various VM migration systems exploit the concept

of live migration optimized for the edge computing. Live

migration is mostly identifying as a technique for VMmigra-

tion in datacenters at the cloud layer. Indeed, datacenters are

assumed to be stable environments with high-bandwidth data

paths always available. Most important solutions are based

on pre-copy approaches, where VM control is not transferred

to the destination until all VM state has been copied. On the

other hand, post-copy approaches resume VM at the destina-

tion first and then the state is retrieved [10].

Ha et al. [14] highlight the limitations of traditional live

VM migration on edge devices and propose live migration in

response to client handoff in cloudlets, with less involvement

of the hypervisor and by promoting migration to optimal

offload sites, adapting to changing network conditions and

processing capacity. The same authors also proposed a mech-

anism called VM handoff that supports agility for cloudlet-

based applications [17]. The mechanism preserves the core

properties of VM live migration for data center while opti-

mizing for the agile environment of Edge Computing. This

approach leverages on pipelined stages that aim at reduc-

ing the differences between the VM state at the source and

VM state at the destination.

B. CONTAINER SERVICE MIGRATION

Containers differ from VMs technology since they directly

share the hardware and the kernel with their host machines.

As a result, containers occupy fewer resources and have lower

virtualization overhead than VMs. For this reason, container

migration has started to be a very active area that has not been

systematically studied in the literature yet. Machen et al. [18]

investigate live migration of LXC containers [19] by propos-

ing a three-layer framework with synchronized filesystem

methodology for memory state sync. Substantially, that work

shows a quantitative view on the difference between LXC

containers migration and KVM [20] migration.

Live migration of containers become possible since

CRIU [21] supports checkpoint/restore functionalities for the

most container solutions such as OpenVZ [22], LXC/LXD,

and Docker [11]. Several solutions have been explored in

the literature that leverage CRIU for migrating stateful con-

tainers. OpenVZ supports live migration of containers [23];

however, it exploits Virtuozzo Storage System [24], that is a

distributed storage system where all files are shared across

the network. In most cases, the network bandwidth of edge

servers is limited, and the deployment of a distributed storage

could be not possible [25]. Moreover, the implementation is

not optimized due to the transfer of root filesystem of the

container across edge nodes. IBM proposes Voyager [26],

a live container migration service designed in accordance

with the Open Container Initiative (OCI) principles: the IBM

solution implements a novel filesystem-agnostic and vendor-

agnostic migration service with consistency guarantees.

Summarizing the related work, although a few solutions

have been proposed to contribute to the field of container

migration in Edge Computing, there is no ready solution that

exploits the characteristics of the application. As a conse-

quence, we present our solution to make container migration

faster and easier than existing proposals. In addition, we claim

that the paper provides a significant contribution to the com-

munity because, to the best of our knowledge, this is the first

system-oriented work onMEC/Fog handoff that leverages the

service characteristics.

III. BACKGROUND AND DESIGN GUIDELINES

To better understand our original proposal, this section pro-

vides all needed definitions for the involved technologies

and methodologies and an overview of our proposed design

guidelines.
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A. MULTI-LAYER CONTAINER MIGRATION

AND RELATED BACKGROUND

The main objective of our proposal is to develop a

novel framework that enables fast service migration for

edge-enabled service by leveraging its characteristics. For

this purpose, we distinguish between so-called layered ser-

vices and monolithic services. Layered services consist of

diverse layers, such as service and data parts, that could be

managed as different separated blocks. Differently, mono-

lithic services have to be considered by our framework as a

single block, which internally includes service components,

data components, and all associated resources. To better

understand layered services, let us describe a simple example:

a simple Python web application represents the service part,

while a Redis database in which data are stored represents

the data part. In this way, the service part and the data part

could be managed as distinct blocks. On the contrary, mono-

lithic services can be put into execution within dedicated

and self-contained VMs as proposed in some recent litera-

ture: for instance, [3] have proposed a mechanism for edge-

enabled handoff management based on VMs synthesis and

migration to the closest edge nodes. However, the usage of

VMs introduces non-negligible latency and overhead due to

VM size and complexity. The exploitation of container-based

virtualization techniques could reduce the above weaknesses,

by enabling the opportunity of considering more layered

services that can be decomposed in various microservices.

We present a novel approach for multi-layer container-

based service migration by leveraging service characteristics.

To achieve this, edge-enabled services in our proposal are

built as Docker Containers composed by a service layer

(acting as the ‘‘business logic’’ part of the service) and

a data layer (representing the state stored and managed

through the service layer) that should be managed as separate

containers. The Data Container is used to persist data and

could be managed by either a DBMS or a NoSQL man-

ager. We followed a general approach able to work also

with no-database-based storage including general filesys-

tems. In addition, our proposal is able to support two kinds

of service migrations: application-agnostic and application-

aware. Application-agnostic handoff enables the migration

of the entire Data Container, as the data backup, without

requiring any previous knowledge of the specific data soft-

ware layer technology. Application-aware, instead, leverages

service characteristics to extract and proactively transfer part

of data to the target edge node in order to reduce service inter-

ruption. However, the latter mode requires partial visibility

of some characteristics of the implementation of the Data

Container, and for this reason, it is not usable for any kind

of application.

As mentioned in the previous section, Docker technology

doesn’t provide any official migration tool, but, recently, few

developers have constructed tools for specific versions of

Docker. For instance, the work [25] supports Docker Con-

tainers migration of docker version 1.9.0, and Boucher [27]

TABLE 1. Docker containers migration time (bandwidth 40mb/s, latency
0ms, and delay 0ms).

extends the previous work to support docker-1.10 migration.

However, both methods simply transfer all the files located

under the mount point of the container root file system. More

recently, also Docker provided somemechanisms not directly

related to the migration but useful for this purpose. For

instance, docker export command enables users to create a

compressed file from the container filesystem as a ‘‘tar’’ file.

This compressed file can be copied over the network to the

target edge node via file transfer and then imported into a new

container via docker import command. The new container

created in the target edge node can be accessed using docker

run command. One drawback of docker export tool is that

it doesn’t copy environment variables and underlying data

volume which contains the container data. Another method

based on Docker commands to move the container to another

host is container image migration. For the container that has

to be moved, its corresponding Docker image is saved into

a compressed file by using docker commit command. Then

compressed file is moved to the target edge node and a new

container is created with docker run command. Using this

method, the data volume will not be migrated, but it pre-

serves the data of the application created inside the container.

Last, Docker provides a mechanism to save an image to a

tarball which preserves the history, layers, and entrypoints

via docker save command; at the same time, it provides the

equivalent command to load the image in the new host: docker

load.

Unfortunately, aforementionedmethods completely ignore

the composition of the service which we claim could pave the

way for smarter migration management. To verify our claim,

we have conducted preliminary experiments to migrate con-

tainers over different network connections. The experiments

use one simple container such as Busybox and one applica-

tion based on OpenCV for face recognition, to conduct edge

task offloading. Busybox is a software suite that provides

several Unix utilities in a single executable file. It has a tiny

file system inside the container. Instead, the face recognition

application is an application that dispatches video streaming

from mobile devices to the edge server, which executes the

face recognition tasks, and sends back a specific frame with

the name of the person. This container hosts a large filesystem

to store all the images (i.e., more than 1 GB).

Table 1 reports obtained preliminary results that show

that migration can be done within 2 seconds for Busybox,

and within 223 seconds for face recognition application. The

network between these two hosts is a Wi-Fi connection with

VOLUME 7, 2019 139749



P. Bellavista et al.: Differentiated Service/Data Migration for Edge Services Leveraging Container Characteristics

TABLE 2. Docker containers migration time (bandwidth 10mb/s, latency
1.5ms, and delay 40ms).

40 MB/s bandwidth, and further tested container migration

over a 10 MB/s Wi-Fi network.

As previously stated, poor performance is caused by trans-

ferring large files comprising the complete file system, for

instance the total migration time of face recognition appli-

cation (Table 2). This performs worse than the state-of-the-

art VM migration solution. Migration of VMs cloud avoid

transferring a portion of the filesystem by sharing the base

VM images [3], which will finish migration within few min-

utes. Therefore, we require a new tool to efficiently migrate

Docker Containers, avoiding transmission of the entire con-

tainer. This new tool should leverage the characteristics and

composition of edge-enable services to transfer proactively

part of the service data.

B. DESIGN GUIDELINES FOR APPLICATION-AWARE

HANDOFF AND FOR HETEROGENEITY MANAGEMENT

In the following, we formally define a way to select chunks

of data to be moved proactively. Mainly, we select data that

have not changed lately, and then we propose a framework

that is able to proactively move that selected data. Finally,

we describe how our framework faces the problem of device

heterogeneity and energy consumption.

1) APPLICATION-AWARE STRATEGY

Our goal is to enable proactive, transparent migration of edge-

enabled services (typically represented by both the data part

and the service part). The idea of this method is based on the

observation that not all data or records are used all the time.

In fact, from a recent study [28], it was found that most data or

records are stored, but rarely or never accessed after a certain

time frame. Therefore, data or records can be categorized

according to their access frequencies: least accessed data

(cold data) and most accessed data (hot data). In our solution,

we define a probability of datamigration according to the data

access frequencies, means cold data are more inclined to be

part of the proactive migration process. To do this, we first

need to introduce an operation meter that, for each data or

records chunk, calculates the total number of operations did

until certain time. The operation meter is defined as:

Ok = Ik (t) + Uk (t) (1)

where Ok denotes the total number of operations did on

particular data or record chunk (k) which is defined as the

sum of the number of insert operations (Ik) and the number

of update operations (Uk). Hence, by repeating the ahead

formula (1) for all data it is possible to obtain the value of

access frequencies defined as:

fk =
Ok

∑n
i Oi

(2)

where fk represents the access frequencies of data or record

chunk defined as the relationship between operations did on

chunk k and the number of total operations did in all data.

Finally, we define the migration probability assigned to each

data chunk k as:

P(x) =
1

f
(3)

As expressed in (3), the migration probability is defined as

the inverse of the access frequencies. This means that data

accessed often have a low value of migration probability,

while data rarely accessed have a high value of migration

probability. Thus, the goal of our work is to get the maximum

benefit from the data characteristics in order to reduce the

overhead and the service interruption during the handoff pro-

cedure. This requires us to calculate the access frequencies, as

well as the migration probability before the handoff happens.

Let us note that the decision on when, where and whether

to perform the migration depends on many aspects, such as

user mobility, user historical paths, resource availability at the

edge nodes, and so on. Our Prediction Module guarantees the

right execution of our service migration. The module is com-

posed by two components: monitoring and trigger. The moni-

toring component monitors users’ location in order to predict

their movement. Several monitoring strategies have been pro-

posed in the literature, and we design the Prediction Module

to work with any such strategy. The trigger component is

in charge of determining the appropriate time to initiate the

handoff (both long- and short-term). We have identified two

distinct handoff triggering strategies: a coarse-grained model

(long-term), and a fine-grained model (short-term).

Coarse-Grained Model: Typically, services running at the

edge server have a limited period of validity, ranging from

few minutes to few hours. The goal of this model is to predict

well in advance the user movement in order to calculate data

to be moved from one edge node to another. Most long-term

handoff triggering algorithms proposed in the literature have

taken into account both QoS of application and users’ mobil-

ity traces. However, if users’ historical path is available,

the system can proactively predict the handoff timing and can

early move service and data from one edge to another.

Fine-Grained Model: The goal of this model is to establish

with high accuracy when the handoff happens. In general,

short-term handoff triggering algorithms are based on moni-

toring wireless indicators, such as Received Signal Strength

Indications (RSSI) [29]. Otherwise, there are other works

that take into account the QoS of application such as TCP

throughput [30].

Our framework works with both long- and short-term

handoff prediction. When a long-term strategy predicts the

handoff, the Prediction Module notifies our Decision Module

that starts to calculate the migration probability for each
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data chunk. In order to choose which data move proactively,

we defined a probability threshold, statically or dynamically

determined, in which our framework migrates all data chunks

that have a probability value greater than the threshold. The

appropriate value of the threshold is chosen based on the

variability characteristics of the data. For instance, if the data

have a high value of variability it would be better to use a

high value of probability threshold (e.g., around 0.9-0.95).

That’s because, using a low value of probability threshold

may cause problems in the reconciliation phase, in the sense

that early migrated data chunks may result changed after the

handoff procedure is completed. Instead, if the data have a

low value of variability could be convenient to use a low value

of probability threshold. Let us note that the correct value

of the probability threshold may be decided dynamically -on

the fly- in relation to the data characteristics. Once defined a

proper value of the probability threshold, when the Prediction

Module predicts the handoff the Decision Module starts to

migrate all data chunks that satisfy the threshold condition.

Finally, when the handoff occurs our framework migrates all

remaining data chunks (data reconciliation phase – step 9’’

Fig. 4) and then checks the data integrity.

Instead, when a short-term strategy predicts the handoff,

as specified before, fine-grained models detect the handoff

more precisely than coarse-grained models. Thus, the system

has better accuracy but less time to operate. For this reason,

could be not possible to send all selected data chunks from

one edge to another before the handoff happens; to avoid this,

we have adopted a strategy named ‘‘sequential execution’’

that starts to sequentiallymigrate data chunkswith the highest

value of the migration probability until the handoff happens.

Finally, when the handoff happens our framework migrates

all remaining data chunks.

Regardless of the model, once the handoff terminates the

framework has to guarantee data consistency. To ensure this,

our framework checks if data chunks sent proactively have

changed during the handoff. If some data chunks differ,

the framework reconciles them. To correctly check if all data

chunks sent proactively are consistent after the handoff, our

framework sends hash values of each data chunk, before and

after the handoff, and checks if these hash values correspond.

If the hash value of some data chunks does not correspond,

we must resend those chunks.

2) HETEROGENEITY AND ENERGY

As stated in Section I, our framework addresses the prob-

lem of edge node heterogeneity by defining an affinity

relationship between the service and the edge node. In gen-

eral, edge nodes are heterogeneous devices spanning from

powerful micro data servers (typical for MEC infrastruc-

ture) to general-purpose resource-poor gateways (typical for

Fog Computing infrastructure). Therefore, if more than one

edge node is available in a certain zone, would it be conve-

nient to select the best target edge node according to both

resource needs and energy consumption considerations. Our

affinity relationship guides the system to take this decision.

FIGURE 1. System architecture.

In the edge computing environment, we can have many

types of affinity, among them: CommunicationAffinity (CA),

Resources Affinity (RA), and Energy Affinity (EA).

CA depends on communication technologies between the

mobile node and the target edge node. RA is derived from

resources needed for executing the service at the edge node.

EA is induced from the minimum resources needed to run the

service and resource availability at the edge node.

Regardless of various affinity types, our work denotes

affinity of edge services as a key factor for allocation of edge

services at the target edge node and takes Energy Affinity as

an example. Let us consider a basic scenario that comprises a

large number of edge nodes available in an edge environment.

The edges are distributed in several zones and are different

from each other (some MEC-based other Fog-based). Each

edge node has a resource capacity to run a specific service.

We aim at minimizing the number of resources needed to run

the service in order to save energy in an edge infrastructure.

In this scenario, we describe the Energy Affinity parameter

as follows. Given the resources consumption of the running

service at the old edge node (in terms of CPU and RAM

consumption), we find the optimal allocation of the service

by comparing with resources available at the edge nodes.

Therefore, the best association is when EA is about 1.

IV. ARCHITECTURE AND HANDOFF MANAGEMENT

This section presents our system architecture and describes

our handoff protocols including reactive handoff, proactive

handoff, and application-aware handoff.

A. ARCHITECTURE

Fig. 1 shows the architecture of our edge node that consists

of a set of components that are deployed at the service layer

and enable our handoffs process.

• Prediction Module (PM) is in charge of determining

the appropriate time to initiate the handoff by monitor-

ing users’ location in order to predict their movement.

Several monitoring strategies have been proposed in

the literature, and we design the PM to work with any

such strategy. Particularly, this module collects infor-

mation about users and calculate several metrics to

trigger the Decision Module and to start the handoff

process. We claim the importance of distinguishing two

kinds of mobility prediction: a coarse-grained historical-

basedmobility prediction and a fine-grainedRSSI-based
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mobility prediction. The first one is based on the history

of user movements: edge nodes, possibly coordinating

also with the mobile node to gather mobility traces (such

as GPS positions) and the global cloud layer (to process

those traces), track user movement to enable long-term

predictions of user mobility habits, such as during work-

ing days, during weekend, and so forth. Moreover, when

it is enabled allows the system to execute proactively

long-running operations such as migration of (static)

service parts towards the target edge. The second

one, namely, fine-grained mobility prediction, evaluates

handoff decision by using the value of edge-to-mobile

RSSI by employing the monitored RSSI values obtained

through heterogeneous short-range wireless technolo-

gies, such asWi-Fi and Bluetooth. As widely recognized

in the literature, this kind of prediction is expensive,

typically works on shorter time intervals, but gives more

accurate information about when to trigger handoff and

consequently the migration of more dynamic data parts.

Finally, the availability of both predictionmodes enables

higher flexibility for handoff management, as better

explained in the next subsection.

• Data Container Manager (DcM) enables the applica-

tion-aware handoff by embedding the application-

specific knowledge to manage finer grained data

migration. In other words, this module observes the

underlying data container by providing several data con-

nector and returns data to be migrated based on the

migration strategy.

• Decision Module (DM) contains a set of strategies

which are used to determine data mobility. Several

strategies can be used for this purpose; in this work,

we propose an approach based on data access frequen-

cies where data accessed less have a higher migration

probability. Moreover, this module is in charge of choos-

ing the best place (MEC node or Fog node if there

are multiple edge nodes in the same region) to forward

the handoff procedure by evaluating the service affinity

relationship.

• Handoff Module (HM) executes the handoff process.

This component offers a set of commonAPIs that enable

the interactions of our handoff protocol between all

involved distributed entities. This module relates to the

same HM of the target edge node and contains all hand-

off steps to perform such as handoff request, start, stop,

and so on.

B. HANDOFF MANAGEMENT

1) REACTIVE HANDOFF

Fig. 2 depicts the primary steps of the baseline (reactive

handoff based on Docker tools) of default Docker Containers

migration. Generally, the reactive handoff procedure starts

when the mobile node loses connection with the old edge

node and sends a handoff request message to the target edge

node (step 1). Upon the old edge node receives the handoff

FIGURE 2. Docker basic reactive handoff.

request (step 2), it starts the migration process by exporting

the container to be migrated by using Docker export com-

mand (step 3). Then, the old node sends the compressed con-

tainer to the target edge node via network file transfer (step 4).

Once the target edge node has received the compressed con-

tainer it restarts it via docker import command (step 5). In par-

allel, the old edge node starts to prepare the backup of Data

Container, if necessary and sends it to the target edge node

which restores it (steps 6-7-8). Finally, the handoff procedure

ends (step 9).

Let us clarify that Fig. 2 describes the basic Docker migra-

tion protocol (reactive handoff), which impose the service

interruption from step 1 to step 9 typically suffered by

monolithic services and VMs as well. Note that, to better

understand our proposal, we implemented the basic Docker

migration protocol also as a baseline to use for compari-

son in our experimental evaluation (see experimental eval-

uation section). Of course, our framework would allow to

optimize also this reactive handoff management, e.g., lever-

aging service/data software layering to avoid migrations

(if needed layers are already available at the target edge) and,

similarly, applying application-aware data management if

possible.

The next section, focuses on our proposed protocols that

implement and enhance a proactive approach in order to

reduce the service interruption interval due to user handoff

between different edges, including pre-loading of all selected

services/data software layers at edge nodes. In this case,

we also distinguish different types of handoff management

improvements depending on how data state is transferred in

application-agnostic and application-aware cases.
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FIGURE 3. Docker proactive handoff.

2) PROACTIVE HANDOFF

This subsection describes the design principles behind

our service/data migration protocols, detailing also the

application-aware optimization. We start by presenting

our optimized proactive application-agnostic handoff pro-

cedure and then we detail our application-aware handoff

strategies.

Fig. 3 shows our optimizations of basic reactive hand-

off based on Docker tools. The optimizations leverage

both long- and short-term predictions to enable proactive

provisioning.

Our handoff procedure begins when the PredictionModule

predicts the migration and triggers the proactive execution of

the handoff procedure (steps 1-2). Then, the protocol starts

the migration of the service part (steps 3-4) and the installa-

tion of the data part (steps 5-6). In this approach, we consider

the data part as a black boxwith no information about its inner

characteristics; in the next optimizations, we describe the

additional modalities of operation of Decision Module which

can operate also the application-aware handoff. Therefore,

steps 5-6 install only the data container while we postpone

the request for data backup migration until the mobile node

loses connection from the old edge node, so to make sure

to receive a more consistent data state, with all changes

made at the old edge node (step 7). Once completed the data

container backup, the old edge node starts to send the backup

to the target edge node (step 8) and then the target edge

node restores the data backup with all latest changes made

at the old edge node by the user (step 9). Finally, the target

edge node sends the handoff complete signal to the mobile

node.

FIGURE 4. Docker proactive application-aware handoff.

As one can see from Fig. 3, this approach of service/data

migration decreases the service interruption time compared to

the previous one (Docker basic reactive handoff). Let us note

that this does not imply any application-specific knowledge

and requirements to perform it. Furthermore, we can further

reduce the service interruption time leveraging the Decision

Module that contains decision mechanisms to move proper

data. This is the core of our proposal and we will explain it in

detail in the next subsection.

3) APPLICATION-AWARE HANDOFF

The idea behind application-aware optimizations is the

exploitation of our Decision Module; thus, beyond the strate-

gies, the Decision Module selects proper data to be moved

proactively to the target edge node.

In our solution, the application-aware service/data migra-

tion process is composed by multiple steps, as depicted

in Fig. 4. The user’s mobility is observed by Prediction Mod-

ule that can activate a trigger when the user mobile node is

likely to go towards the new edge node. The Prediction Mod-

ule can take advantage of both short- and long-term user’s

mobility prediction; for the purpose of application-aware

optimizations, we need to use a long-term user’s mobil-

ity prediction in order to select and move data proactively

(steps 1-2). Let us note that compared to the Docker proac-

tive application-agnostic handoff, application-aware handoff

allows us to proactively move certain data to the target edge

node. Thus, the old edge node migrates the service (steps 3-

4) and the data container part (steps 5-6) to the target edge

node. Then, in order to select proper data to be moved, based

on the migration strategy, we need to invoke the Decision
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Module (step 7). In this time interval, the mobile node

continues to be provisioned through the old edge node.

Consequently, our procedure introduces a periodic data

reconciliation phase, triggered by a short-term mobility pre-

diction (steps 8-9’), to reduce the service interruption inter-

val, by limiting the whole data state migration to those data

chunks. This periodic data injection phase (managed by our

Decision Module by using its strategies) terminates when the

mobile node loses the connection with the old edge node:

our protocol guarantees data consistency by sending another

data chunk update from the old edge node to the target

edge node, and that completes the whole handoff procedure

(steps 9’’-10).

V. EXPERIMENTAL EVALUATION

AND SIMULATION WORK

As already stated, one of the key contributions of this paper

is that our service/data migration solution has been imple-

mented and completely integrated into the a real MEC/Fog

architecture. As a valuable side-effect, differently from sem-

inal efforts available in the existing literature, we are able

to report results obtained in our lab deployment scenario,

with heterogeneous edge devices, and a simulation work for

additional quantitative evaluations and comparisons. To thor-

oughly test and evaluate the performance of our framework,

we carried out three different sets of experiments, respec-

tively, for Docker basic reactive handoff, for our application-

agnostic proactive handoff, and for our application-aware

proactive handoff. The results reported in this section are

average values; all presented measurements have exhibited

a limited variance (under 5% for 30 runs).

A. REAL IN LAB TESTBED EXPERIMENTAL

MEASUREMENTS

To better understand improvements in terms of system com-

plexity and migration time, we quickly introduce our in-lab

deployment scenario. Our evaluation testbed consists of

three Linux boxes (Ubuntu 18.04 distribution): two 3.06GHz

Intel(R) CORE i5 and 8GB 1300 MHz DDR3 memory as

MEC-based edge nodes, and one Raspberry Pi3 equipped

with 64-bit quadcore ARM Cortex-A53 processor, 1 GB of

RAM and 16 GB of storage as a Fog-enabled node. Due to

space constraints, we present a case with heterogeneous edge

devices where the old edge node is a micro datacenter and

the target edge node is a fog node. This because we want to

highlight one of the critical cases of our work. Those nodes

host Docker 18.09-ce and Java 12, and all our framework

components. During our experiments, we have considered

the service migration performance of our framework for a

specific cloud- edge-enabled application based on Docker

Compose [31] defined by the Docker Compose yml file as

follow:

This is the general schema used for implementing multi-

layering Docker-based applications. Our test service consists

of a Java web application defined as the service layer and

an instance of MongoDB as the data layer. The test ser-

vice consists of a web-based application where users report

some information, they find along the road such as obstacles,

restaurants, and groceries. In particular, the Java part provides

a simple human interface which users compile and insert

information through a form that are stored in the MongoDB

database.

The MongoDB container is linked to another con-

tainer (dbdata) that acts as Docker Volume [32] via the vol-

umes_from Docker primitive. Let us recall that in Docker,

a Volume is a mechanism for persisting data in the local

filesystem used by a Docker container. To create a Docker

container for persisting data, it is possible to use the following

dockercli command:

The proposed characterization of our test service helps us

to better understand how application-aware handoff works.

Indeed, the data layer (composed by a MongoDB instance) is

physically separated from the rest of the service, whichmeans

that our framework optimizations can exclusively focus on

this part. MongoDB has been chosen for its simplicity and

because it provides mechanisms that allow us to implement

each step of our application-aware handoff. In particular,

MongoDB assembles the data in the form of collections

which represent our data chunks. Finally, MongoDB provides

mechanisms for sending and restoring only portions of data

(i.e., data chunk) by using mongodump and mongorestore

integrated tools.

Unless otherwise specified, edge nodes connect each other

via IEEE 802.11n connections and their maximum nomi-

nal available bandwidth is 40 Mbit/s. During the first set

of experiments (Docker container migration), the persistent

layer to migrate is around 300 MB until 330 MB depending

on the different number of records (from 10K to 100K). Let

us clarify that we considered the service already installed at

the target edge node, hence we need to migrate only the data

container. The handoff process starts when the mobile node

loses connection with the old edge node. Hence, the total

time of migration is obtained by the sum of three different

steps: export container, send container, and restore container.
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FIGURE 5. Docker basic handoff total migration time.

The first step (step 6 Fig. 2), export container, is done at the

old edge node and consists in collect all container files into

one tar archive file. The second step allows the system to

transfer the tar through the network from the old edge node

to the target edge node. We have run the test several times

by changing the amounts of data stored on MongoDB, from

10K to 100K records. Fig. 5 shows the total migration time

for different amounts of data by highlighting the time needed

to complete each step. As depicted in Fig. 5, the number of

records affects the total migration time by a factor of around

10 s per each stage. In the worst case, the overall service

interruption is around 170 s.

The remaining sets of experiments are related to the more

interesting proactive scenario. We have evaluated the pro-

posed application-aware approach in terms of total migration

time. In this scenario, when the Prediction Module foresees

the handoff (long-term), the Decision Module at the old edge

node starts to calculate data to migrated (cold data) and

migrates the data toward the target edge node. Then, when

the handoff happens, the system sends only the remaining

data (hot data) towards the destination edge node. Finally,

the destination edge node has to check the consistency of

all cold data (some data may have changed value during

the handoff). For this set of experiments, we set the number

of cold blocks at 35% of the total blocks. Each block in

our implementation correspond to a MongoDB collection;

in order to calculate the migration probability of each block,

we used the collection stats command (db.collection.stats()),

provided by mongo API, that returns statistics about the

collection including the total number of insert and update

operations. We simulated different percentages of a correct

guess that means the correctness of the forecast made on

the cold data. The different simulated percentages of correct

guess are: 25%, 50%, 75%, and 100%. If the forecast on

the cold data is incorrect, we need to resend all cold blocks

that do not match. Fig. 6 shows the performance of the

container migration for different amounts of data at different

percentages of a correct guess. On the one hand, when the

percentage of correct guess increases the total migration time

decreases. On the other hand, when more records need to be

processed the total migration time increases.

B. SIMULATION RESULTS ABOUT TOTAL MIGRATION TIME

AND DATA LOSS COMPARED WITH DATA VARIABILITY

For additional quantitative evaluations and comparisons,

we employed CloudSim [33], an extensible and widely

adopted simulation toolkit that enables the modeling and

simulation of cloud computing environments. In particular,

CloudSim simulation framework supports the modeling and

creation of infrastructures and application environments for

distributed multiple clouds. A recent extension of CloudSim,

named EdgeCloudSim [34], builds the concept of Edge Com-

puting upon CloudSim by adding necessary functionalities in

terms of computation and network capabilities. In particular,

we map the framework into the simulator by creating:

• Two micro datacenters, used to migrate our service to;

• one host per datacenter, with 2GB RAM and 250GB

storage each;

• two VMs for each host, with 512MB RAM, 100GB

storage, and 1 CPU each;

• one process per VM representing MongoDB instance.

In this simulated environment, we extensively compared

our application-aware solution with two baseline approaches,

such as reactive migration and proactive migration. The reac-

tive migration adopts the approach of migrating all data at

once when the handoff happens. Thus, it is characterized

by high migration time (because it sends all data), and also

may cause significant data loss in case of high amount

of data received during the migration process. The proac-

tive approach, instead, moves the data in advance before

the handoff happens according to the migration probability.

We simulated different values of data variability and migra-

tion probability in order to show howmigration time and data

loss vary. Fig. 7 and 8 show, respectively, the results about

the total migration time and data loss in relation to the data

variability for the reactive and the proactive migration. The

total migration time for the reactivemigration always remains

the same regardless of data variability value, that is so because

the reactive migration ever sends all data. The same does not

apply to data loss. If we have a high value of data variability,

a long interruption of the service (caused by the migration),

may generate a high value of data loss, because a mobile

device can still use the service at the old edge node during

the handoff. The situation is different when we analyzed

the proactive migration. Let us note that the results reported

in Fig. 8 have been obtained by simulating a migration of

data container with size 200MB, and migration probability

at 0.7. Then, the figure shows how the total migration time

depends on the choice of themigration probability. Therefore,

if the system has more than 1kB/s of data variability rate,

the choice to have 0.7 as migration probability does not lead

to any benefits. In other words, the results in Fig. 7 and 8

highlight the relevance of being able to dynamically adapt

the migration behavior to expected data variability, as in our

proposed framework where we use the migration probability

as a threshold to decide whether or not to move data.
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FIGURE 6. Docker basic handoff total migration time.

FIGURE 7. Total migration time for reactive handoff.

FIGURE 8. Total migration time for proactive handoff.

Finally, Fig. 9 reports about how we have modeled

the migration probability in our simulations, by showing

how the total migration time changes in relation to the

FIGURE 9. Total migration time relates to migration probability.

migration probability and the data variability rate. Indeed,

the figure represents a general model to choose the more

suitable migration probability value in relation to how

quickly data records change. With the simulation results,

we want to give a baseline guide to choose the best value

of migration probability related to the data variability if

available.

VI. CONCLUSION AND ONGOING WORK

The proposed framework supports the mobility of edge-

enabled services in a three-layer edge computing envi-

ronment. In particular, our support works either in

application-agnostic mode and application-aware mode

(if possible), and it manages the heterogeneity of the edge

environment. We have already validated our approach both

via real experiments and using simulations with synthetic

values of data variability. The reported results confirm that
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proactive migration adopted can significantly minimize the

service downtime in the case of layered services (total

migration time reductions of 30% ∼ 50%), by imposing a

very limited overhead on the overall support infrastructure.

A future implementation of the proposed framework may

involve different software components, not only related to

virtualization technologies, such as filesystems. In this case,

our framework should be able to realize which portion of data

can be moved proactively towards the target edge node.

Finally, fueled by these significant results, we are working

on two main ongoing research directions. On the one hand,

we are deploying the realized solution, already widely tested

in the geographically distributed Edge Computing testbed,

in a federated cloud environment with heterogeneous devices.

On the other hand, we are running extensive experiments to

thoroughly assess the impact of our framework, to mitigate

the potentially disruptive effect on other concurrent ongoing

migration sessions.
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