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Abstract

Background

The ability to discriminate between two similar or progressively dissimilar colours is impor-

tant for many animals as it allows for accurately interpreting visual signals produced by key

target stimuli or distractor information. Spectrophotometry objectively measures the spectral

characteristics of these signals, but is often limited to point samples that could underesti-

mate spectral variability within a single sample. Algorithms for RGB images and digital im-

aging devices with many more than three channels, hyperspectral cameras, have been

recently developed to produce image spectrophotometers to recover reflectance spectra at

individual pixel locations. We compare a linearised RGB and a hyperspectral camera in

terms of their individual capacities to discriminate between colour targets of varying percep-

tual similarity for a human observer.

Main Findings

(1) The colour discrimination power of the RGB device is dependent on colour similarity be-

tween the samples whilst the hyperspectral device enables the reconstruction of a unique

spectrum for each sampled pixel location independently from their chromatic appearance.

(2) Uncertainty associated with spectral reconstruction from RGB responses results from

the joint effect of metamerism and spectral variability within a single sample.

Conclusion

(1) RGB devices give a valuable insight into the limitations of colour discrimination with a

low number of photoreceptors, as the principles involved in the interpretation of photorecep-

tor signals in trichromatic animals also apply to RGB camera responses. (2) The hyperspec-

tral camera architecture provides means to explore other important aspects of colour vision
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like the perception of certain types of camouflage and colour constancy where multiple, nar-

row-band sensors increase resolution.

Introduction

The biological world is full of diversity, yet nothing attracts more ‘human’ attention than col-

our. This fascination is demonstrated by the amount of research exploring the mechanisms

surrounding colour perception [1], the evolution of colour diversity [2], and what colours sig-

nal to receivers [3]. From an organismal perspective, as colour vision allows for the discrimina-

tion of stimuli based on spectral differences independent from brightness [4], this ability has

important implications on survival and foraging. For example, colour discrimination allows a

primate to identify ripe fruit [4, 5], a bee to distinguish between rewarding or mimic flowers of

similar appearance [6–8], or a predator to break certain camouflage mechanisms relying on

chromatic similarity between target and background [9, 10]. However, precisely matching a

colour sample target is not a simple task [11].

One main principle in colorimetry is that there can be a number of different spectral signals

that can result in identical stimulation of the respective colour photoreceptors, and thus lead to

stimuli that are not perceivable as different. Whilst early colour theories suggested that colour

perception might have been based on the eye possessing many colour sensitive cells, George

Palmer [12] was the first to put forward the idea that colour perception is based on the maxi-

mal sensitivity of certain retinal particles. This idea was expanded on by Thomas Young [13]

who proposed just three types of colour receptor could be responsible for our rich colour per-

ception, an idea further developed by Hermann von Helmholtz [14] and James Clerk Maxwell

[15] to create the Young- Helmholtz-Maxwell trichromacy theory [16]. An important point

about the way in which a colour visual system thus processes information can be described by

the principle of univariance where the output of a receptor depends upon its quantum catch,

but not upon what quanta are caught [17]. One individual photoreceptor type thus pools all

photons and only the resulting signal is processed by an opponent network in the brain, and

therefore each individual receptor type cannot differentiate between a change in wavelength

and a change in intensity [4]. This physiological principle allows for the economic production

of colour monitors and commercial level cameras that use just three red, green and blue (RGB)

colour channels to represent normal human colour perception [18]. For example, a calibrated

monitor can provide a realistic visual representation of a complex natural environment like

flowers in a garden by using just three broadband channels of information [19].

The Principle of Univariance also explains why certain spectral signals with varying spectral

signatures may be perceived as being the same colour under particular illumination conditions,

a phenomenon referred to asmetamerism [4, 18, 20]. Indeed, metamerism prevents recovering

a unique spectral signal directly from the response of either a biological, or human-made pho-

toreceptor typically used in colour imaging [21–23].

The complexity of studying colour perception from behavioural responses has led to the

study of animal colour vision through the physical properties of the visual signals and systems

employing spectrophotometric techniques and instrumentation [24]. Although the use of spec-

trophotometers changed our understanding of how other non-human animals perceive differ-

ent colour combinations [25, 26], the information that colour communicates [3, 27], and the

evolution of colour expression [2], there is also the understanding that animal eyes do not func-

tion as point-source measuring devices. The understanding that reflectance of the object alone
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is not the only determinant of how colours are perceived [25, 28] is the impetus for using digi-

tal image approaches that incorporate the entire subject and its background. Reconstructing re-

flectance spectra from discrete pixel intensity values returned by digital imaging devices with

three or more sensors has received great interest during the last fifteen years. This shift is main-

ly motivated by: (a) the low cost of digital cameras, (b) the convenience of sampling large and

complex stimuli comprised by different colours and textures without resorting to complex

sampling grids, and (c) the high amount of quality data which can be retrieved within a short

time period [29]. However, to do this reliably it is vital to understand the dynamics of how dif-

ferent camera types process similar, or dissimilar colour stimuli.

The advantages of digital imaging have promoted the use of devices for quality control in

food [30, 31], printing [32], analysis and preservation of paintings [33, 34] and other industries

where colour description and specification is of importance [35]. Visual ecology and evolution-

ary biology have also turned their attention to the potential use of digital imaging as a tool for

quantifying and characterising the spectral properties of complex, natural colour patterns such

as those displayed by plants [19], and animals [29, 36, 37].

Compared to spectrophotometers, digital imaging devices with three colour channels can-

not uniquely reconstruct a spectral signal due to metamerism [21]. Nevertheless, if there are

enough narrow-band sensors reasonably uniformly distributed along the spectral interval effec-

tively sensed by the camera, it is possible to uniquely recover the colour signal from the individ-

ual responses of the available colour channels. This is the rationale for recovering spectral

signals from responses of hyperspectral cameras. For example, to uniquely recover a spectral

signal within 400 to 710 nm sampled at 10 nm intervals, the hyperspectral system must have at

least 32 separate bandwidth sensors [38].

In spite of the popularisation of the usage of digital imaging to study animal colouration,

the development of spectral reconstruction methods, and the increased use of hyperspectral

cameras as image spectrophotometers, there is a dearth of comparative studies exploring the

potential applications of these two methods for discriminating between colours of varying

chromatic similarity. Here we measure the colour discrimination thresholds of an RGB device

and an hyperspectral imaging system using colour samples of varying degrees of perceptual

similarity for a human observer. Due to the relationship between number of channels and the

accuracy of the spectral reconstruction [21, 23], we predict chromatic similarity to be the main

factor limiting the capacity of either imaging system to accurately discriminate between two

colour samples [39]. The extent of such limitations is important for determining which device

is optimal for different applications such as understanding floral colour signals [19] or camou-

flage [40, 41].

The manuscript develops as follows: A Background section introduces basic colorimetric

principles and their relation to colour discrimination, followed by a formal description of the

spectral reconstruction problem. This section sets the basis for explaining our spectral recon-

struction algorithm which is detailed as a separate part under the Materials and Methods sec-

tion, which also describes the different components of the experimental setup. The Materials

and Methods section is then followed by the presentation of the results, discussion and some

practical recommendations specific to hyperspectral imaging.

Materials and Methods

Background

Colorimetric principles. The description of the colour sensation produced by signals of

varying spectral shape using a numerical system allows for the accurate reproduction of colours

in different media such as monitors, coloured lights and pigments [18]. The development of
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such a system was the main goal of colorimetry, which through careful psychophysical experi-

ments, led to the CIE colorimetric system currently in use [20].

The 1931 and subsequent CIE colour specification systems describe a given spectral stimu-

lus by means of three tristimulus values denoted as X, Y and Z. The magnitude of these values

depends on the spectral characteristics of the sample itself, the light source, and a set of func-

tions describing the particular response of each one of the three cone photoreceptors: short,

medium and long, present in the human visual system to signals of varying spectral shape [20].

These functions represent a linear transformation of the spectral sensitivity curves of the pig-

ments present in the three photoreceptors as measured by psychophysics experiments and di-

rectly by spectrophotometry [42–45]. The tristimulus values corresponding to a given spectral

signal are obtained by:

X ¼

Z

λ

RðλÞ � LðλÞ � �xðλÞ dðλÞ;

Y ¼

Z

λ

RðλÞ � LðλÞ � �yðλÞ dðλÞ;

Z ¼

Z

λ

RðλÞ � LðλÞ � �zðλÞ dðλÞ;

ð1Þ

where R(λ) denotes the spectral reflectance of the surface, L(λ) the spectral power distribution

(SPD) of the light source and �x; �y and �z represent functions of wavelength describing the spec-

tral sensitivity of each one of the photoreceptors [20, 45]. In Eq (1), the product R(λ)� L(λ) can

be replaced by a single function P(λ), spectral radiance, rather than using measurements of the

reflectance of the surface and the irradiance of the light source [20].

Eq 1 represents an industry accepted and useful simplification of the sensing process carried

out by the different photoreceptor classes present in the human retina. The calculation of tri-

stimulus values by means of this equation ignores various optical and physiological aspects of

vision such as: viewing angle, spectral transmissive properties of the eye, veiling light effect as a

consequence of transmission medium; i.e. air or water, and viewing distance, and assumes that

the target behaves as a perfect (Lambertian) diffuse surface [20, 24]. Even though all these pa-

rameters may be accounted for by a more detailed description of the visual sensing process, the

tristimulus values obtained from Eq 1 constitute the basis of the CIE colour specification sys-

tem. This system is currently considered the standard for measuring perceptual colour differ-

ences between colour targets when considering human colour vision [20], and was the method

followed for measuring colour differences between the selected samples.

An additional simplification in the calculation of the tristimulus values was done by replac-

ing the continuous functions R(λ) and L(λ) by discrete wavelength intervals or bins of equal

width (Δλ) centred at wavelength λ; consequently, the integrals in Eq (1) are replaced by sums:

X ¼
X

λb

λ¼λa

PðλÞ � �x dλ;

Y ¼
X

λb

λ¼λa

PðλÞ � �y dλ;

Z ¼
X

λb

λ¼λa

PðλÞ � �z dλ;

ð2Þ

calculated over the wavelength interval visible to human observers,� 390–710 nm. Bin size is
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selected based on the required precision of the calculations and the spectral characteristics of

the employed light source, with 10 and 5 nm being the most common bin size choices [46].

Colour perception and discrimination thresholds. The definition and causes of the exis-

tence of colour discrimination thresholds in human colour vision are grounded on the basis of

trichromacy derived from the Young-Helmholtz theory of colour perception [20, 47], and for-

malised by the Principle of Univariance [17]. Discrimination thresholds for large and small col-

our differences have been experimentally established for both simultaneous and successive

colour matches in laboratory conditions using different methodologies such as colour match-

ing [48–51] and visual search experiments [52].

The spectral signal producing a colour sensation in a given human or animal observer can

be represented by a set of coordinates on a plane or colour diagram. A colour diagram can take

into account the particular characteristics of the visual system of the observer, such as the CIE

chromaticity diagram for human vision [20], or just represent a general model of colour vision

as in the case of the Maxwell triangle [20, 47, 53, 54]. Irrespective of the selected colour dia-

gram, it is often of interest to establish the minimum distance at which two or more points,

each one representing a different colour sample, are perceived as being different by a given ob-

server. As two colour samples can be different independently of their hue, e.g. red-green, red-

blue, red-yellow are all perceived as being different, colour differences in a colour diagram are

not represented by a single line but by a region around the selected reference point. This region

determines the colour threshold for a particular stimulus but may change for other samples.

Ellipses, and circles under certain conditions, are commonly used for defining discrimina-

tion thresholds in colour diagrams [20, 54], although with modern computer techniques the re-

presentation of colour thresholds may not always be represented by classically assumed

geometrical shapes. In the particular case of CIE chromaticity diagram, the colour discrimina-

tion threshold for any given sample is defined by fitting an ellipse centred at the coordinates

corresponding to the reference sample which encloses all the points representing the different

colour matches deemed as an identical match to the reference by the observer [55]. The size

and orientation of the ellipses is typically not constant, varying in a non-linear manner with

hue [48], for this reason it was necessary to empirically find the discrimination threshold for a

set of 25 colours covering most of the CIE 1931 chromaticity diagram [20, 48].

In a colour matching experiment, a subject is asked to adjust the colour of a target sample of

constant brightness until it matches a reference sample of known chromatic characteristics. A

satisfactory colour match does not necessarily correspond to the exact chromatic properties of

the sample as measured by spectrophotometry, but will be located around the reference sample.

Colour samples whose chromaticity coordinates are located outside the ellipse are perceived as

being different with colour difference increasing as we move away from the ellipse. The coeffi-

cients describing each one of the ellipses are not unique but vary with colour or, more precisely,

with the position of the sample in the chromaticity diagram [55].

For most applications it is not necessary to reconstruct the ellipses in order to predict the

perceivable colour difference between two targets. Instead, a set of contour plots describing the

variation of the ellipses across the chromaticity diagram is used to recover the ellipse parame-

ters. These parameters are then used to calculate a measure of chromaticity difference (ΔC)

which predicts the extent at which the colour difference is easily, or just-noticeably perceivable

[48]. In fact ΔC� 1 represents chromaticities that are within the standard deviation of a colour

match, whilst ΔC = 2 represents a just-noticeable difference or 1 JND. For ΔC values between 1

and 2 colour differences represent just a little less than the just-noticeable difference per-

ceivable by the reference observer [55].

Whilst thresholds for large colour differences are useful in the construction of colour sys-

tems such as the Munsell Colour Sytem and the OSA Uniform Colour Scale [52, 56], thresholds
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for small colour differences form the basis of uniform colour spaces. Uniform colour spaces

such as the various CIE LAB spaces constitute the basis for estimating colour differences for

most industrial and consumer colour applications [18, 20]. In these colour spaces, the elliptical

regions representing perceptual colour discrimination thresholds are converted into circles of

equal radius. In this way, equal distances between colour samples approximately represent

equally perceivable colour differences [57].

The colour difference measurement used in the uniform CIE LAB space is the ΔE metric.

This metric measures colour difference in the context of the three main attributes of colour:

brightness (luminance), saturation (chroma) and hue [18, 20]. These three properties describe

different characteristics of the spectral signal: brightness represents the total intensity of the

signal calculated as the area under the spectral curve; saturation is a measure of the steepness of

the spectra within a wavelength interval; and hue is related to the wavelength of maximum

slope [24].

In spite of the routine use of the various CIE LAB colour spaces and their associated mea-

sure of colour difference by the colour industry, e.g. [58], this metric has rarely tested the per-

ception of colour difference in natural contexts. This limitation arises due to the complex

visual environments where colour comparisons are commonly made, which differ to those

specified for the CIE LAB colour space. For example, the specification of colour differences by

the ΔE metric assumes that the colour comparison is made against a light grey to white back-

ground and assuming a ‘neutral’ reference point [20]. Moreover, the ΔE metric ignores other

important aspects involved in colour perception such as the cognitive interpretation of physical

properties of the object [18]. Therefore, we selected the ΔC metric over ΔE for measuring col-

our differences between our test targets, as the ΔC metric directly takes into account different

perceptual properties involved in colour discrimination by human observers.

Except for some invertebrates [59–67] and a few vertebrate species including goldfish [68–

70], mice [71], primates [72, 73], pigeons and chickens [74, 75], the precise mechanisms in-

volved in colour perception and discrimination remain mostly unknown. For such cases several

models of colour discrimination thresholds have been proposed based on purely anatomical

and physiological data available from these species [24, 76–78]. However, behavioural data

completely supporting or rejecting the use of these models are still missing. The application of

cameras with different sensor numbers, as discussed in the present manuscript, promises to

provide important insights into how to model animal colour vision.

Spectral reconstruction from camera responses. Eqs (1) and (2) can also be used to pre-

dict the response of a digital camera with three or more colour filters by replacing the cone

photoreceptor functions by the spectral sensitivity of the system’s filters; provided that, there is

a linear relationship between radiation input and camera response. This assumption does not

necessarily hold for many consumer-level devices and has to be tested prior to reconstructing

spectral signals [29, 79]

The function L(λ) in Eq (1) describes the SPD of any light source illuminating the sample.

Examples of light sources include technical lamps [18], as well as for the different conditions of

daylight [80] or the ambient light reaching the floor under the canopy in a forest [24]. Values

for L(λ) are available for different lamps [18], terrestrial and aquatic environments at different

times of day and conditions [81, 82]. On the other hand, the values for the R(λ) or P(λ) func-

tions must be measured directly from point samples on the coloured object either by using a

spectrophotometer or a spectroradiometer [24, 83].

Due to the practical difficulty of accurately measuring R(λ) or P(λ) from point samples on

natural patterns presenting high spatio-chromatic variability due to texture and volume [19], it

would be desirable to recover the values for these functions directly either from camera or
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photoreceptor responses; in other words, solving for R(λ) or P(λ) by inverting Eq (2). When

camera responses are used for this end, the process is referred to as spectral reconstruction.

The rationale for spectral reconstruction is more easily understood by expressing Eq (2) im-

plementing matrix notation [34, 84]:

p ¼ ðSEÞrþ ϵ; ð3Þ

where p is a p × 1 vector holding the camera responses for each of the p sensors present in the

system, E is am ×m square matrix holding the values of L(λ) in its diagonal, i.e. E = diag(L(λ)),

S is a p ×mmatrix holding the spectral sensitivity functions for each one of the p sensors pres-

ent in the system measured inm equally-spaced wavelength bands, r is am × 1 vector holding

the reflectance values for the recorded sample and ϵ is a p × 1 additive noise vector. For exam-

ple, for an RGB camera with red, green and blue sensors and with spectral sensitivity functions

measured at Δλ = 10 nm intervals within a 400 to 710 nm spectral range, p = 3 andm = 32.

Even in the ideal system without noise or where it could be perfectly modelled, the di-

mensionality of S limits the accuracy of the spectral reconstruction attained by inverting Eq

(3). Continuing with the example of the RGB camera, the SEmatrix would be a 3 × 32 matrix

resulting in a an equation system with 32 unknowns in 3 equations. Such a system is undeter-

mined with infinite possible solutions [85]. There are two strategies for improving the accuracy

of the spectral reconstruction of the signal’s spectrum: a) reducing the dimensions of SE to

match those of p, or b) increasing the number of responses in p such that it matches the dimen-

sions of SE.

The dimensions of the SE can be reduced by including a priori information about known

properties and characteristics of reflectance spectra of natural and human-made colour sur-

faces [85–87]. Dimension reduction is achieved by expressing the spectral functions in Eqs (1)

and (2) as linear models with a reduced number, typically 6 to 12, of basis functions [86–90].

Likewise, the SEmatrix in Eq (3) can also be replaced by a matrix that relates the spectral sensi-

tivity functions of the camera to the reflectance spectra of a set of calibration samples of known

spectral properties or calibration set [86]. Alternatively, it is also possible to relate the camera

responses to the reflectance spectra of the calibration set directly [88]. A priori information can

also be used to accurately estimate the noise parameter ϵ. In fact, among the most recent spec-

tral reconstruction methods are those based on the characterisation of the noise vector either

by direct or analytical methods and subsequent reconstruction of the reflectance spectrum by

optimisation techniques [85, 91, 92].

When reflectance spectra are reconstructed from camera responses using linear models, the

number of camera channels should match the number of basis functions. However, as just

three basis functions are not enough for accurately reconstructing a spectrum, the three chan-

nels available in an RGB camera are potentially insufficient for recovering the the signal spec-

trum with any of these methods [90]. Nevertheless, it is possible to increase the number of

camera responses from these devices by sequentially recording a set of images through different

narrow-band filters of varying spectral bandwidth [38]. This effectively converts an RGB device

into amultispectral camera [93]. For example, commercial-level RGB cameras can be fitted

with three additional narrow-band filters thus increasing the size of p from 3 × 1 to 6 × 1 for re-

constructing spectral signals from natural scenes [94].

An alternative method for reconstructing spectral signals by means of RGB devices is by re-

covering themetamer set [21, 95]. The goal of this approach is to recover not the single reflec-

tance spectrum responsible for a given RGB response, but the set of all spectra that can

produce an exact match to it [23]. Recovering the metamer set for a given RGB response can be

achieved with or without knowledge of the camera’s sensor spectral sensitivity [21, 23]. In the
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latter case, the recovery of the set is achieved by exploiting the convex properties of both the

RGB and the spectral space. Convexity permits expressing any reflectance spectrum as the line-

ar combination of a set of calibration spectra comprised of primary colours with high bright-

ness and saturation values. The weights that must be applied to the calibration spectra to

match the sample spectrum are the same as those which relate the RGB values of the calibra-

tion spectra to those of the unknown sample [23]. Therefore the reconstruction of the metamer

set is based on finding these weights from the RGB responses of the samples in the calibration

set and subsequently applying these values to the reflectance spectra available in the calibration

set. Mathematically this is expressed as [23]:

p ¼ Pλ; subject to

1T
λ ¼ 1;

Iλ � 0;

Iλ � 1;

ð4Þ

where P is a 3 × nmatrix holding the RGB responses of a calibration set of n samples, and λ is

a n × 1 vector of weights, n being the number of spectra in the calibration set.

Our spectral reconstruction methodology is also based on the recovery of the metamer set

for a given sample. In contrast to the method proposed in [23], we find the weights vector λ by

testing all the possible linear combinations of four RGB points available in the calibration set P,

and subsequently identifying those combinations of RGB responses for which the sample RGB

is an internal point. In other words, we search and test for all the RGB points whose convex

combination leads to an RGB specification equal to that of the sample. This method contrasts

with the one in [21, 23] where the weights vector is obtained by intersecting the hyperplanes

representing the constraints in Eq (4). Further details of our spectral reconstruction methodol-

ogy are provided in the Spectral Reconstruction subsection.

A more expensive alternative to using a filter-fitted RGB camera is using a hyperspectral

camera. This device records the reflectance spectrum of a given sample at each pixel location

within the recorded image directly by inverting Eq (3). This is possible as the number of avail-

able camera responses is equal or higher than the dimensions of the matrix SE [38]. For exam-

ple, recovering the reflectance spectrum from a coloured object sampled within the 400 to 710

nm interval at Δλ = 10 nm would require a hyperspectral system with a minimum of 32 sen-

sors. Spectral reconstruction from hyperspectral images does not require any a priori informa-

tion from the reflectance or the illumination spectra, the only information required is the

spectral sensitivities of the system’s sensors, noise statistics and a linear relationship between

energy input and camera response [96]. Therefore, this system is expected to produce the most

accurate reconstruction of the sample’s reflectance spectra; in fact, hyperspectral cameras are

also referred to as image spectrophotometers [38]. The main drawback of these devices is the

long total integration time required to record the hyperspectral image cube (hypercube), result-

ing from the sum of the individual integration times required to record the image at each

wavelength step.

Target colour sample pairs and calibration set

We selected seven pairs of colour samples available in the Digital ColorChecker SG (X-rite

Inc., USA) varying in chromaticity difference values (ΔC) [48] from 2.8 up to 61.4 units (Fig 1).

Chromaticity difference (ΔC) values between the two colours making up each of the seven pair

samples were obtained from the coefficient describing the MacAdam’s ellipses for these sam-

ples. Ellipse coefficients for each pair of samples were obtained from published graphs [48]

Differentiating Biological Colours with RGB and Hyperspectral Cameras
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Fig 1. Colorimetric characterisation of the selected target colour pairs. a. Linear RGB representation of the X-rite ColorChecker SG highlighting the
seven colour pairs selected for the experiment. The samples comprising each colour pair are identified by the same roman numeral. b. Reflectance spectra
for the 14 individual colour samples making up each one of the colour pairs and their chromaticity difference values (ΔC). Chromaticity difference values were
calculated from chromaticity coordinates (Table 2) using formulae and diagrams by MacAdam [48] and assuming a mercury discharge lamp illumination.
Individual colour samples are identified by their unique coordinates in the chart (panel a). c. Colour samples in the 1931 CIE chromaticity diagram: (+) pair I,
(×) pair II, (*) pair III, (&) pair IV, (�) pair V, (4) pair VI and (�) pair VII. Colour key of each pair is a crude representation of the linear RGB combination for
each pair in panel a.

doi:10.1371/journal.pone.0125817.g001
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after calculating the chromaticity coordinates corresponding to the tristimulus values for each

colour sample (Eq 1) following standard colorimetric calculations [20].

Samples were selected in such a way that they: (a) represent different colour hues: orange,

red, yellow, blue, green, pink and violet, (b) represent different amounts of perceptual chromat-

ic dissimilarity in terms of just noticeable differences [20, 48], and (c) did not represent ex-

treme points (vertices) in the RGB linear space defined by the samples available in the

calibration set.

Our calibration set contained a total of 1393 colour samples corresponding to the 1301

chromatic and achromatic samples available in The Munsell Book of Color Matte Collection

(X-rite Inc., USA), plus the 94 colour samples available in the Digital ColorChecker SG after re-

moving the samples corresponding to each target sample pair. These carefully specified sam-

ples are based on pigments and have been used in previous colour experiments [97, 98],

representing a broad range of hues. Whilst the stimuli lack of UV components that are impor-

tant for some animal vision and cannot therefore represent spectral characteristics of all natural

spectra, the stimuli broadly have spectral characteristics consistent with the shape and gradi-

ents of some natural stimuli like flowers [99] when considering wavelength greater than 400

nm (see on-line data files). The 44 achromatic samples bordering the Digital ColorChecker SG

(Fig 1, panel a) were not included as part of the calibration set. Details on the composition of

the calibration set and each one of the test targets are available in Table 1.

Reflectance spectra from the target colour pairs and the calibration set were measured with-

in a 390 to 710 nm interval with an USB 4000 spectrophotometer (Ocean Optics, USA) con-

nected to an ISP-50-8-R-GT integrating sphere (Ocean Optics, USA) by means of a 200 μm

optical fibre (Ocean Optics, USA). The halogen lamp of a DH-2000 light source (Ocean Optics,

USA) was used as illumination source, and connected to the integrating sphere by means of a

600 μm optical fibre arranged in a 0/d illuminating and viewing condition [20]. Reflectance val-

ues were measured relative to a certified Spectralon reflectance standard (Labsphere, USA).

Table 1. Details of the composition, source and number of colour samples included as part of the cali-
bration set and target colour sample pairs.

Calibration set Target colour sample pair

Source Munsell Book of Colour & X-rite X-rite

Number of samples 1301 (Munsell) + 92 (X-rite) 14 colour samples in 7 pairs

Sample details Red: 139 samples in 4 hues Pair I: H7 & H8

Yellow-Red: 123 samples in 4 hues Pair II: M7 & H4

Yellow: 143 samples in 4 hues Pair III: C5 & B6

Green-Yellow: 127 samples in 4 hues Pair IV: C3 & I2

Green: 115 samples in 4 hues Pair V: C9 & G9

Blue-Green: 106 samples in 4 hues Pair VI: G3 & M2

Blue: 112 samples in 4 hues Pair VII: B3 & L4

Purple-Blue: 137 samples in 4 hues

Purple:131 samples in 4 hues

Red-Purple: 137 samples in 4 hues

Neutrals: 31 samples in 8 Values

Xrite: 92 samples†

†Excludes the two samples used as target colour pair for each test.

doi:10.1371/journal.pone.0125817.t001
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Chromaticity values corresponding to each of the sample pairs (Fig 1, panel c) were calculat-

ed from their tristimulus values obtained after solving Eq (2). Calculations were made consid-

ering a 390 to 710 nm spectral range sampled at Δλ = 5 nm bins. The �x; �y and �z functions in

Eq (2) correspond to those of the 1931 CIE colour observer [20]. The spectral power distribu-

tion of the light source in Eq (2) (Fig 2) was taken to be the irradiance emitted by a Broncolor

HMI 400.575.800 mercury discharge lamp (Bron Elektronik AG, Switzerland) used to illumi-

nate the Digital ColorChecker SG when recording images with the two camera systems.

The HMI discharge lamp was connected to an electronic ballast providing a stable current

supply at 400 Hz thus minimising potential flickering effects. The mercury lamp emitted a radi-

ation with similar chromatic characteristics to those of daylight (Fig 2, insert) with a high out-

put of short (390–450 nm) wavelength radiation when compared to a halogen tungsten lamp.

The availability of short wavelength radiation was of particular advantage for our purposes as it

helped to diminish the high noise levels expected from the low sensitivity of both camera sys-

tems to this type of radiation.

Fig 2. Spectral power distribution (irradiance) and chromaticity of the mercury discharge lamp used
as light source for the experiment. Chromaticity coordinates corresponding to the light emitted by lamp
(insert) were calculated from tristimulus values obtained after solving Eq (2) using the CIE 1931 colour
matching functions [20]. Spectral irradiance from the light source was measured with an ILT 900
spectroradiometer (International Light Technologies, USA), calibrated for irradiance measurements. Blue
solid line in the insert represents the CIE daylight locus for correlated colour temperatures between 4000 to
25000 K [80].

doi:10.1371/journal.pone.0125817.g002
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Camera system and image recording

Reflectance spectra from the colour samples comprising each one of the target pairs were re-

covered from digital responses, i.e. pixel counts, recorded by two camera systems: (a) a calibrat-

ed Canon EOS 40D RGB digital camera (Canon Inc., Japan) with 3 channels and (b) a SOC710

hyperspectral imaging system (Surface Optics Co., USA) with 128 channels (bands). The RGB

camera was equipped with an 100 mm, electro-focus (EF) macro lens (Canon Inc., Japan) with

a maximum f-stop of 5.6. The RGB camera system has been previously characterised for: (a) re-

covering of linear camera responses by analytical means and look-up tables, (b) quantification

of the uncertainty associated with the linearisation process for camera responses of varying in-

tensity [79], and (c) to quantify total radiation reflected by various flower species [19].

The SOC710 imaging system was equipped with a 70 mm Schneider Xenoplan lens (Schnei-

der Optics, USA) with a maximum aperture of f/8. The hyperspectral camera utilises a

696 × 520 pixel CCD sensor sensitive to radiation between 400 to 1000 nm. Individual images

are produced for each one of the 128 different bands covering the spectrum, with a dynamic

12-bit range [100]. The camera was connected to a PC laptop and operated by means of Lume-

nera drivers v.6.3.0 provided by the manufacturer. The 40D Canon camera has a 3888 × 2592

pixel CMOS sensor, with a measured spectral sensitivity limited to the visible region of the elec-

tromagnetic spectrum (about 390 to 710 nm) [19]. The camera records images in a 14-bit col-

our depth when shooting in RAWmode.

The Digital ColorChecker SG chart was aligned at 45° with respect to the sensor plane of

each camera preventing any specular reflection produced by the semi-glossy surface of the

chart from reaching the sensor in both cameras, and the light source was oriented at 45° with

respect to the ColorChecker. Two Munsell grey N5/stripes 8 mm width were attached to the

lateral borders of the ColorChecker SG chart as an extra achromatic reference.

The colour chart was centered on the viewfinder of the RGB camera, and on the focusing

window available as part of the hyperspectral camera control software. The target was recorded

with one camera at a time to prevent potential differences in illumination produced by changes

in the lighting geometry.

The hyperspectral camera total integration time was determined at 10.00 ms by the camera’s

onboard light metering system. The integration time selected by the hyperspectral camera

summed up the exposure time required by all the channels as our camera model and operating

software did not allow for setting up the integration time individually for each channel. The ex-

posure for the RGB camera was set at 1/640 s, f-stop 8, ISO 200 after performing several

exposure tests.

Variability in the DSLR camera responses, which could be potentially introduced by unsta-

ble light source output, or the mechanical components of the DSLR camera such as shutter cur-

tain and lens aperture blades, was measured in a separate control experiment. For this

experiment we initially recorded, under nominally identical conditions, a series of 30 images of

a set of achromatic targets of varying brightness. Then we selected a 25 × 25 pixel area corre-

sponding to a mid grey and calculated the mean pixel intensity response for the sample area on

each frame. Mean intensity response for the same target on each image was then plotted against

image number to measure any potential variability in camera responses across the 30 shots.

Variability was measured as the absolute difference between the mean minimum and maxi-

mummean intensity value across all the recorded frames. We obtained a mean intensity of 162

intensity levels across the 30 images and minimum and maximum values of 159 and 164 inten-

sity levels respectively. This result shows that the variability in camera response introduced by

the system is around ±2 intensity levels, which represents a variation of about 1% in an

8-bit scale.
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Image Processing

RGB imaging system. RGB images from the DigitalChecker SG colour chart were re-

corded in the native RAW format of the Canon camera using the 5100 K white balance colour

setting. To ensure a correct exposure and white balance setting in the linearised images, several

versions of the original RAW image were produced varying the exposure, colour temperature

and tint values of the original, unprocessed RAW image. This was an iterative process where

several uncompressed TIFF file versions of the original RAW file were produced after encoding

each one of the RAW processed image versions into the Adobe 1998 RGB 8-bit colour space

[101]. Exposure, white balance calibration and image conversion was done using the Camera

Raw v.7.3 plug-in for PhotoShop CS6 (Adobe Inc., USA).

We used the RGB responses corresponding to brightest achromatic patch of an X-rite Col-

orchecker Passport (X-rite Inc., USA) included on each frame (Fig 1) as an exposure calibration

reference. An image was deemed as properly calibrated when the mean camera responses (ρ)

for the achromatic calibration patch were equal to 244 pixel intensity levels across the three

camera colour channels or �rR ¼ �rG ¼ �rB ¼ 244. A pixel response of 244 intensity levels in our

camera system corresponds to the measured 94.8% reflectance value of the achromatic calibra-

tion sample after linearising the image [19, 102].

Each one of the images containing the RGB responses of the calibration set for the spectral

reconstruction process were processed following the protocol just described. A total of 43 im-

ages containing the different pages of the Munsell Book of Color matte edition were recorded

under the same light source used to record the ColorChecker SG colour chart (target image).

To ensure that both the calibration and target images shared the same exposure and colour bal-

ance properties, a robust within-subject ANOVA was performed on the RGB responses corre-

sponding to the brightest achromatic target of the X-Rite Colour Checker Passport. Mean

camera responses for the red (�rR ¼ 244� 0:125), green (�rG ¼ 244� 0:121) and blue chan-

nels (�rB ¼ 244� 0:054) were obtained for the achromatic calibration target across the 44 im-

ages after exposure and white balance processing. These values were not statistically different

from each other (P = 0.795). The final exposure and white balance parameters for the target

image were set as: colour temperature 5480 K, tint -6, exposure as shot.

Colour-corrected images were subsequently linearised using look-up-tables (LUT) derived

for the employed camera using custom code written for Matlab release 2012b (The Math-

Works, USA). Details of the linearisation methodology and a description of the entire camera

characterisation process are available elsewhere [79]. The 1395 linear RGB values used for the

spectral reconstruction exercise were obtained after bootstrapping the mean linear camera re-

sponses of a 2500 × 2500 pixel sample area located at the centre of each colour sample.

All statistical analysis including: bootstrapping, ANOVA tests, linear and non-linear regres-

sions were done using routines available in the R Statistical Language v.3.1.0 [103].

Hyper spectral imaging system. The hyperspectral image cube (hypercube) containing

camera responses for each of the 128 channels recorded by the imaging system was initially cal-

ibrated to express camera responses in radiance units (mW � cm−2 � nm−1 � sr−1). The image

cube calibration was carried out using a dark image reference file recorded immediately after

photographing the target, the calibration file provided by the manufacturer and the integration

time required to record the ColorChecker SG. The recorded radiance-calibrated image hyper-

cube consisted in a 520 × 696 × 128 stacked matrix, where each one of the 128 dimensions cor-

responds to a 520 × 696 monochrome image resulting from recording the scene through the

different bands available on the system. A reduced hypercube containing images from the spec-

tral bands 390.2 to 721.1 nm at Δλ = 4.9 nm intervals was exported into Matlab release 2012b

(The MathWorks Inc., USA) for further processing.
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Ten pixel locations within the image area corresponding to each colour sample were pseu-

do-randomly selected for analysis. Each pixel sample was represented as a 66 × 1 vector whose

entries correspond to the radiance recorded at each one of the wavelengths sensed by the differ-

ent channels of the hyperspectral system. Radiance values within the 395 to 710 nm spectral in-

terval at Δλ = 5 nm were recovered by linear interpolation. This step was necessary in order to

match the sampling interval of the �x; �y and �z colour matching functions, and the spectral irra-

diance measured for the mercury discharge lamp used as light source (Fig 2). This was the

same spectral irradiance used for the calculation of the chromaticity values from the measured

reflectance spectra. Tristimulus values and their corresponding chromaticity coordinates were

calculated for each interpolated radiance spectrum following the same protocol as for the mea-

sured reflectance spectra.

A second hyperspectral image cube expressing camera responses in terms of absolute reflec-

tance at each pixel location was also reconstructed from the raw hyperspectral data. The cali-

bration process for obtaining reflectance data was the same as that described above for

reconstructing the radiance spectra, but included an additional light reference calibration step.

The light reference consisted of a pixel sample area corresponding to a spectrally flat (achro-

matic) sample area within the recorded scene. We selected an image area corresponding to the

‘white’ patch of the ColourChecker SG (sample E5 Fig 1, panel a.). Absolute reflectance data

for each sampled pixel were then recovered by dividing each radiance spectra by the light refer-

ence spectrum. This calculation was done automatically by the hyperspectral camera analysis

software. The remainder of the sampling methodology was identical to the one implemented

for the reconstructed radiance spectra.

Spectral reconstruction from RGB camera responses

Our spectral reconstruction system is based on the convex properties of both RGB and spectral

spaces [23]. The reconstruction algorithm begins by enumerating the n
k

� �

combinations of k = 4

points that can be obtained from each one of the n RGB coordinates corresponding to the sam-

ples available in the calibration set. The λ weights vector for each four point combination is

then obtained from Eq (4) by left division with the additional constraint that the sum of the λi
weights must equal one. If all coefficients are non-negative, the weights are included in the out-

put vector, otherwise that weight vector is discarded and the algorithm proceeds with the next

RGB combination.

A valid weights vector λ is only obtained when the RGB response of the sample can be ex-

pressed as a positive combination of RGB responses from the samples in the calibration set.

Geometrically this means that the sample is located within the closed tri-dimensional space

formed by the linear RGB values of the calibration set, or more precisely, when the sample is

within the convex hull (ch) defined by the set S of linear RGB values corresponding to the cali-

bration samples. If a sample is not within the convex hull, it constitutes a vertex of the hull; no

solution can be obtained for vertices with our algorithm. Fig 3 shows the convex hull corre-

sponding to the 1395 samples available in the calibration set and the 95% quartile ellipsoids

corresponding to the 10 pixels sampled from each colour target.

Attempting spectral reconstruction with our algorithm using all the samples available in the

calibration set is unfeasible in most standard computers due the large number (1.57 × 1011) of

possible combinations. Therefore, we selected a subset of 100 calibration points from our entire

set for reconstructing the spectra of each target. A calibration set of about 100 samples has

been previously proposed as the minimum size at which accuracy of the reconstruction be-

comes independent from sample size in multispectral systems [35], and provides a number of

combinations (� 3.92 × 106) that is manageable by most standard computers.

Differentiating Biological Colours with RGB and Hyperspectral Cameras

PLOS ONE | DOI:10.1371/journal.pone.0125817 May 12, 2015 14 / 31



We selected each particular subset of calibration samples based on their relative distance to

the sample in the linear RGB space. For each sample, we calculated its Chebychev distance to

each of the other samples in the calibration set, and selected the 100 closest points to the sam-

ple as the reference set. The Chebychev distance examines the distance between the target and

the calibration targets across the three RGB channels but only uses the maximum distance

[104]. This process thus ensures creating subsets of similar colour. Spectral reconstruction

from reference samples of a colour similar to that of the target has been shown to improve the

accuracy of the reconstruction when using methods based on basis functions [105, 106]. We

also included the white and black samples in each calibration subset to ensure that it was prop-

erly ‘closed’ at its extreme points (Fig 3).

Evaluation of spectral reconstruction accuracy and chromatic
discrimination power

Accuracy of the spectral reconstruction from camera responses was measured in terms of per-

ceptual colour differences between the chromaticity values calculated from reflectance spectra

measured with a spectrophotometer and those reconstructed from the hyperspectral and RGB

camera responses.

Fig 3. Convex hull in linear RGB space corresponding to the 1395 samples available in our calibration
set, and 95% quartile ellipsoids from the 10 pixels sampled from each colour sample.Colour samples
constituting a pair are coded using the same colour and code as in Fig 1: pair I pale orange, pair III blue, pair
IV purple, pair V green, pair VI red and pair VII pink. Pair II are not ellipsoids but lines as these samples only
present variation along the green axis. The red line represents the theoretical RGB responses for a range of
spectrally uniform, achromatic samples (ρR = ρG = ρB) varying in brightness, and the asterisk markers
represent measured linear camera responses (ρ) for the 31 achromatic samples available in the Munsell
Book of Colour. The magenta sphere indicates the center of the hull corresponding to a theoretical, spectrally
flat, achromatic sample reflecting 50% of incident radiation.

doi:10.1371/journal.pone.0125817.g003
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Chromaticity values corresponding to the measured and reconstructed reflectance spectra

were calculated from tristimulus values (Eqs 1–2) using standard colorimetric formulae [20].

Due to the large number of reflectance spectra reconstructed from a single RGB camera re-

sponse, and the non-normal distribution of their corresponding chromaticity coordinates in

the 1931 CIE chromaticity space (see Results section), we expressed our results as the area de-

limited by the convex hull enclosing all the chromaticity values rather than by ellipses such as

those produced from applying (parametric) multivariate measures of location and spread. The

area in the 1931 CIE chromaticity diagram enclosed by the convex hull of a the chromatic coor-

dinates corresponding to the reconstructed metamers of a colour sample are denoted as chro-

maticity areas (CAs).

In the case of the metamer sets reconstructed from the RGB camera, chromaticity coordi-

nates within any given CA represent colour signals indistinguishable from one another; there-

fore they are partially equivalent to the discrimination ellipses previously used by MacAdam

and others for measuring chromatic discriminability in simultaneous colour-matching experi-

ments [48–51]. However CAs do not represent a region containing a specific percentage of ac-

curate discrimination events, but the absolute colour discrimination threshold of the RGB

camera given the available calibration set. The vertices making up the CAs were calculated

using the convexHull algorithm available in Matlab release 2012b (The MathWorks, USA).

CAs were also calculated from the chromaticity values obtained from the radiance and

smoothed reflectance spectra reconstructed from the hyperspectral image cube

for comparison.

The final experiment compared the two imaging systems in terms of their capability to dis-

criminate two colour samples of varying colour similarity. The power of each imaging system

to accurately discriminate two colour samples was measured in terms of the amount of overlap

between the CAs corresponding to colour samples making up each one of the selected sample

pairs (Fig 1). The intersect region between two CAs is here referred to as the area of confusion

region (ACR). We calculated ACRs with the algorithm for polygon operations polybool avail-

able in the mapping toolbox v.3.6. for Matlab release 2012b (The Mathworks, USA).

We tested for a possible significant effect of colour similarity on chromatic discrimination

power by fitting a logistic regression model. The model was fit to a plot of percentage of ACR

for a given CA as the dependent variable and colour similarity measured in terms of chromatic

difference (ΔC) as the independent variable. For this model, we used the generalised linear

modelling algorithm (GLM) available for the R Statistical Language v.3.1.0 [103].

Results

Spectral reconstruction with RGB and hyperspectral imaging systems

We reconstructed the reflectance spectra from ten pixel sample points for each one of the 14

colour targets making up seven selected pair samples varying in colour difference (Fig 1) using

an RGB and a hyperspectral camera system. Whilst the hyperspectral camera system always

produced one reflectance spectrum per sampled pixel, a set of various reflectance spectra (the

metamer set), was always obtained for any RGB camera response triplet (ρ). The total number

of reflectance spectra making up a given metamer set was not constant but was found to be sig-

nificantly correlated with the sample’s position within the convex hull produced by the calibra-

tion samples (Eq 5). As the Euclidean distance between a sample’s ρ and the the mid-grey

central point (ρR = ρG = ρB = 0.5) increases (Fig 3), the number of metamers (Nmetamers) de-

creases in an exponential fashion (Fig 4):

Nmetamers ¼ exp ½	4:82ð	12:3; 	 1:65Þ � d þ 14:0ð12:7; 15:8Þ
; ð5Þ
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where d is the euclidean distance between the mid-grey point an the RGB sample, and the val-

ues in parentheses represent the lower and upper boundaries of the 95% confidence interval for

the estimated coefficient.

Mean reflectance and radiance spectra reconstructed from the 10 pixels sampled from the

image hypercube containing the different colour targets are presented in Fig 5. Reconstructed

radiance spectra from most of the colour samples present two characteristic peaks at about 545

and 580 nm (Fig 5 panel b) with a secondary peak observable in some samples at 435 nm.

Peaks were still present in the reflectance spectra obtained after calibrating the hyperspectral

image cube against a spectrally flat surface, suggesting a possible effect of sensor saturation or

clipping (Fig 5 panel a). To reduce the potential effect of the peaks in the subsequent colorimet-

ric calculations, we smoothed the reconstructed reflectance spectra by means of a robust local

regression (loess) with a 0.1 span. Results from the smoothing operation are depicted in Fig 5

panel a along with the reflectance spectra as returned by the hyperspectral camera software.

Fig 4. Mean number of metamers recovered from a given ρR, ρG, ρB triplet camera response as a
function of distance from themid point of the RGB linear space. In panel a. each point corresponds to
the mean number of metamers recovered for each ρ triplet and the error bars represent standard deviation
from the mean. Solid line represents the best fit of an exponential model of the form y = y0 exp−(bx) (Eq 5)
fitted by means of a least absolute deviation (LAD) regression [107]. b. Metamer set (477,341 metamers) for
ρR = 0.508, ρG = 0.327, ρB = 0.246 located at 0.307 linear RGB units from the center (red circle in a.)
corresponding to a pixel sample from colour target H8 in Fig 1. c. Metamer set (483 metamers) for ρR =
0.337,ρG = 0.025,ρB = 0.097 located at 0.644 linear RGB units from the center (green circle in a.)
corresponding to a pixel sample from colour target M2 in Fig 1.

doi:10.1371/journal.pone.0125817.g004
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Fig 5. Mean reflectance (panel a.) and radiance (panel b.) spectra recovered from 10 pixel samples of
an hyperspectral image cube containing each one of the colour targets in Fig 1. Reflectance spectra in
first column of panel a. correspond to the radiance spectra in panel b. after calibrating the radiance responses
against a spectrally flat, achromatic surface included in the hyperspectral image cube. Second column in
panel a. depicts the result of performing a robust local regression (loess) with a 0.1 span parameter to smooth
the peaks observed at about 435 and 545 nm.

doi:10.1371/journal.pone.0125817.g005
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Accuracy of the spectral reconstruction and chromatic discrimination
power attainable by the two imaging systems

Density scatter plots were constructed from the chromaticity coordinates obtained from the

metameter set reconstructed from RGB camera responses (Fig 6). These plots revealed that

even though the metamer set reconstructed from any given sample always contained a reflec-

tance spectrum equal to that measured by spectrophotometry, its position within the set

changed in an aleatory manner for each colour. Moreover, the distributions of the chromaticity

points corresponding to the reconstructed metamer sets presented shapes different from the

(bivariate) normal distribution, with bimodal and non-continuous distributions in some cases

(Fig 6).

As the goal of spectral reconstruction is recovering the spectrum from a given pixel location

within an image rather than measuring it with a spectrophotometer, the most parsimonious so-

lution in the case of the RGB camera was to assume that all metamers have the same probabili-

ty of being the spectrum corresponding to a measured point sample. Therefore, we expressed

the result of the spectral reconstruction process from RGB responses not as a single chromatici-

ty value, but as the entire area encompassed by the chromaticity area (CA).

Fig 6. Density scatter plot expressed as hexagonal bins [108] summarising the frequency of chromaticity values obtained from themetamer sets
reconstructed from 10 camera response triplets corresponding to each of the 14 colour samples in Fig 1. The number of metamers resulting in the
same chromaticity values is represented by grey shades as indicated under the label ‘counts’ for each colour sample. The red arrow on each panel indicates
the chromaticity coordinates obtained from the measured reflectance spectrum (panels b and c in Fig 1), and presented in Table 2.

doi:10.1371/journal.pone.0125817.g006
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Sizes of chromaticity areas corresponding to the ten ρRGB camera responses are presented in

Table 2, along with the CAs calculated from the ten radiance and smoothed reflectance spectra

reconstructed from the hyper spectral image cube. CAs were also plotted in the 1931 CIE chro-

maticity space in Figs 7 and 8.

CAs corresponding to the spectra reconstructed from the hyperspectral camera responses

were significantly different from those obtained from the RGB responses (F = 102, P< 0.001,

Table 2). Planned comparison following the omnibus ANOVA test evidenced a significant dif-

ference between the area of the RGB CAs and the mean CAs reconstructed from the hyper

spectral image cube (t = −72.1, P< 0.001). However no significant difference was found be-

tween the CAs recovered from the radiance and smoothed reflectance spectra (t = −1.73,

P = 0.092).

No confusion areas (ACR) were obtained for any of the CA obtained from either the radi-

ance or smoothed reflectance spectra reconstructed from the hyperspectral camera responses

(Fig 8). However we found a significant effect of colour difference (χ2 = 1490, P< 0.001) on

the percentage of ACR shared by the CAs reconstructed from the RGB camera responses. Our

data suggest an exponential drop in ACR with increasing colour difference between the sam-

ples (Fig 9) described by:

ACR ¼ exp ½	2:66ð	2:92; 	 2:42Þ � DCþ 1:85ð1:55; 2:18Þ
; ð6Þ

where ΔC is the chromatic difference between the two colour samples constituting the pair.

Values in parentheses represent the lower and upper boundaries of the 95% confidence interval

Table 2. Colorimetric properties of samples as chromaticity areas: Chromaticity coordinates corresponding to reflectance spectra measured for
each sample constituting the colour pair samples used for the experiment (third column) and chromaticity areas for the spectra reconstructed
with an RGB (fourth column) and a hyperspectral camera (fifth column).

Pair Sample Chromaticity RGB camera CA Hyperspectral camera CA

x y radiance reflectance

I H7 0.392 0.361 5.06 × 10−4 1.15 × 10−6 2.90 × 10−6

H8 0.386 0.355 5.44 × 10−4 1.53 × 10−6 3.51 × 10−6

II M7 0.461 0.479 2.62 × 10−4 1.05 × 10−6 2.22 × 10−6

H4 0.457 0.474 1.89 × 10−4 1.73 × 10−5 1.21 × 10−5

III C5 0.232 0.264 2.19 × 10−4 1.26 × 10−6 2.96 × 10−6

B6 0.226 0.285 1.90 × 10−4 2.60 × 10−6 4.28 × 10−6

IV C3 0.257 0.211 4.01 × 10−4 1.24 × 10−6 3.23 × 10−6

I2 0.275 0.253 2.14 × 10−4 1.04 × 10−5 1.77 × 10−5

V C9 0.297 0.427 2.80 × 10−3 8.63 × 10−6 1.17 × 10−5

G9 0.347 0.471 9.28 × 10−4 2.80 × 10−6 1.87 × 10−6

VI G3 0.484 0.323 2.58 × 10−3 2.22 × 10−6 4.79 × 10−6

M2 0.462 0.274 4.15 × 10−4 2.34 × 10−5 2.08 × 10−5

VII B3 0.322 0.268 1.24 × 10−4 1.89 × 10−6 2.90 × 10−6

L4 0.395 0.309 3.50 × 10−4 1.03 × 10−5 1.81 × 10−5

Average chormaticity area Chromaticity area
standard error

6.95 × 10−4±6.23 × 10−5 6.13 × 10−6±5.03 × 10−7 9.00 × 10−6±5.13 × 10−7

Chromaticity values were calculated from tristimulus values calculated from Eq (1) using the CIE 1931 colour matching functions.

doi:10.1371/journal.pone.0125817.t002
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Fig 7. Chromaticity areas (CAs) corresponding to the convex hull of chromaticity coordinates calculated from themetamer sets reconstructed
from 10 ρRGB responses of the different colour samples in Fig 1 recorded with an RGB camera. A. Panels correspond to each one of the seven
different colour pairs used in our experiment; colour difference values (ΔC) between the pair members are included on each panel. Shaded areas correspond
the the CA’s for each colour sample in a sample pair and their intersection represents the confusion region (ARC) expected for a given sample pair.
Chromaticity coordinates calculated frommeasured reflectance spectra are indicated by the (*) and (•) markers. Ellipses represent MacAdam’s [48] (blue)
and Newhall [50] (green) colour-difference thresholds calculated for the chromaticity coordinates obtained frommeasured spectral data. Both ellipses are
drawn at their actual scale. B. Regions in the 1931 CIE Chromaticity Diagram covered by the x and y axis of the panels in A. Variations in area size are due to
differences in scale required for plotting the two colours making up each sample pair.

doi:10.1371/journal.pone.0125817.g007
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Fig 8. Chromaticity areas (CAs) corresponding to the convex hull of chromaticity coordinates calculated from the radiance and smoothed
reflectance spectra reconstructed from 10 pixel responses in the hyperspectral image cube containing the hyperspectral camera responses for
the different colour samples in Fig 1, and assuming amercury discharge lamp as light source (Fig 2). A. Panels correspond to each one of the seven
different colour pairs used in our experiment; colour difference values (ΔC) between the pair members are included on each panel. Patterned areas
correspond to CA’s calculated from reconstructed radiance spectra, whilst solid shaded areas to CAs calculated from smoothed reflectance spectra for the
two colours of each sample pair. Note that confusion regions were not obtained from CAs reconstructed from the hyperspectral camera responses.
Chromaticity coordinates calculated frommeasured reflectance spectra are indicated by the (*) and (•) markers. Ellipses represent MacAdam’s [48] (blue)
and Newhall [50] (green) colour-difference thresholds calculated for the chromaticity coordinates obtained frommeasured spectral data. Both ellipses are
drawn at their actual scale. B. Regions in the 1931 CIE Chromaticity Diagram covered by the x and y axis of the panels in A. Variations in area size are due to
differences in scale required for plotting the two colours making up each sample pair.

doi:10.1371/journal.pone.0125817.g008
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for the estimated coefficients. Fig 9 depicts the fitted model along with the ACR values for the

seven colour pair samples used in our experiment. Data show less than 1% ACR for samples

with ΔC> 15. The model predicts about a ΔC> 3.3, about 2 JND, to reduce the ACR percent-

age to less than 1%.

Discussion

Spectrophotometry is the most objective and accurate tool available for recording the spectral

signature of any given colour sample [24] and allows for data reanalysis using improved or cor-

rected colour discrimination or perception models once more information is made available.

Despite the benefit of this objectivity, the recording of spectrophotometric data is limited to

point samples which may underestimate the spectral and spatial variability produced by the

various properties of the particular elements (patches) comprising natural patterns including

colour, shape and texture [19]. This has practical consequences as many of the animals used as

model systems for the study of colour evolution possess various combinations of colours in

close proximity, and can use multiple mechanisms to produce colour [109–111]. In systems

such as these, it is highly unlikely that receivers judge colours in isolation of one another. For

this reason a method allowing an effective and practical measurement of reflectance spectra at

Fig 9. Effect of colour difference (ΔC) in the size of the confusion region for the chromaticity areas
corresponding to the metamer sets recovered from the seven colour pairs in Fig 1. The confusion
region for each sample pair is defined as the ratio of intersected area to the sum of the individual chromaticity
areas of the two colour samples constituting a pair. Chromaticity areas correspond to those displayed in Fig
6. Solid line represents the best fit of an exponential model of the form y = y0 exp−(bx) (Eq 6) resulting from a
logistic regression using a logit link function.

doi:10.1371/journal.pone.0125817.g009

Differentiating Biological Colours with RGB and Hyperspectral Cameras

PLOS ONE | DOI:10.1371/journal.pone.0125817 May 12, 2015 23 / 31



multiple points within a sampling grid is highly desirable; digital imaging provides such

a solution.

Our results show that the degree of accuracy with which the signal spectra can be recon-

structed from camera responses is dependent on the number of sensors available in the system

(Table 2). In particular, the RGB camera equipped with just three colour channels was unable

to accurately discern between samples with a chromatic difference of about 2 JND (Fig 9). This

result suggests that RGB cameras are better suited for large-scale examinations in colour pat-

terns such as between-species comparisons (e.g., [112]). Nevertheless, the discrimination ellip-

ses calculated from Newhall’s results for discrimination of small colour differences by 3

observers [50], also intersect for these colour samples (Fig 7). This suggests that differentiating

between very similar colours is indeed a difficult task for trichromatic systems.

Results obtained from the RGB camera are in accordance with our stated hypothesis, which

predicts a low colour discrimination power with systems with just few sensors as expected

from the Principle of Univariance [17]. However, whether animals possessing three or four dif-

ferent photoreceptor classes can unambiguously discern between such small colour differences

is a topic worth further investigation. For example, colour discrimination experiments with

bees and hawkmoths [65, 113, 114] have evidenced smaller discrimination thresholds than

those predicted by models based on spectral sensitivity functions and spectrophotometric data

[77].

In contrast to the RGB system, the hyperspectral camera system always resolved spectral dif-

ferences between the two colour samples irrespective of their similarity (Fig 7). This level of

resolution is provided by the 128 sensors available to recover the spectral signals measured at

64 discrete intervals [38]. Rather than observing compact clusters of ten overlapping chroma-

ticity coordinates for each colour target, we obtained chromaticity areas of varying shape and

size (Fig 7, Table 2).

Interestingly, some of the obtained chromaticity areas (CAs) defined by the hyperspectral

approach are larger than the discrimination ellipses proposed by MacAdam [48] and Newhall

[50] (Fig 7). This suggests the existence of potentially perceivable colour differences within

some of the colour sample targets at least for a human observer. Such a chromatic variability

has also been reported for flowers based on quantitative analysis on linearised RGB images

[19], supporting the idea that observed chromatic variability is not only the result of different

sources of image noise (e.g. shot, thermal, quantisation present in the different colour channels

[115, 116]), but an intrinsic property of natural and man-made colour surfaces.

Spatio-chromatic variability has been greatly overlooked until recently due in part to the in-

herent difficulty of its accurate measurement from point samples [117]. However exploring

spatiochromatic variability in biological samples is important as variation can be a result of tex-

ture, volume and micro structures in plants and animals [109, 110, 118, 119], especially because

such variation is not uniformly distributed within the biological sample. In addition, these mi-

crostructures may change through wear and ageing [120] increasing the variation in the signal

produced. Understanding how these factors change would provide greater insight into the evo-

lution of colour as a signal. For example, recent imaging revealed significant amounts of with-

in-subject chromatic variations, providing interesting insights into the way observers other

than humans may perceive signals produced by plants [19] and animals [40] for communica-

tion and camouflage. RGB systems may thus not be ideal for examination of colour signalling

in multi-coloured species that contain multiple patches, in particular when the objective of the

study is to identify and describe the different chromatic elements comprising them.

Characterisation and quantification of the spatio-chromatic variability present in a sample

is an example of a biological problem well suited for hyperspectral imaging, as it allows for a

precise quantitative estimation of within-subject and intra-specific colour variation. Such
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Fig 10. Hyperspectral image scans generated outdoors under a) partially cloudy and b) windy
conditions using sunlight as the only illumination. a) Passing clouds blocked the sun during image
recording resulting in various underexposed image regions. Similarly, darkened portions of (b) are a result of
overhead leaf cover shading direct sunlight at the end of the scan as the wind increased their movement.
Integration time for both scans was set to 50.00 ms.

doi:10.1371/journal.pone.0125817.g010
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explorations can provide greater insight into plant-insect visual communication [121, 122], the

role of relative variance in multi-coloured patches in fitness [123], and the role of ageing on

colour expression [124]. Likewise, the study of animal camouflage in the context of classic

background matching, where both target and background share similar values in colour and

brightness [24], can benefit from hyperspectral imaging which allows precise spectral measure-

ments on small targets and natural backgrounds displaying complex patterns with various col-

ours, shapes and designs. However, an important point to consider when using these devices is

the extent to which a hyperspectral camera serves as a model for animal colour discrimination.

Currently, just a few organisms which could be regarded as possessing a ‘hyperspectral-type vi-

sual system’, have been reported to actively use more than four photoreceptors for colour dis-

crimination tasks [125–128]. However, many animal species tested to date show a range of

species-specific photoreceptor distribution [129–132], and so mapping complex stimuli with

hyperspectral cameras can cater for new discoveries and guidance on how to model other im-

portant effects such as colour constancy.

Hyperspectral cameras offer new possibilities for the study of colour constancy in natural

contexts. Hyperspectral cameras possess narrow-band sensors in a number higher than the one

required for optimally sampling natural spectra, characteristics closely resembling the ideal sys-

tem for attaining a perfect colour constancy [133]. To date, most of the advances in this topic

have been done based on theoretical models [53, 133–137], and the hyperspectral imaging

principle opens a new perspective in the study of colour constancy by allowing the recording

and analysis of natural scenes under various types of ambient illumination. However, exposure

times required by hyperspectral imaging may limit the extent to which ambient light variations

can be accurately allowed for with these devices. Indeed, the dynamic nature of other environ-

mental factors (e.g. cloud cover) can make it difficult to capture a whole scene under exactly

the same lighting conditions in the field (Fig 10) since natural lighting conditions often change

rapidly in short spatial distances [53]. Despite this disadvantage, hyperspectral cameras may

allow for new opportunities to explore evolutionary questions regarding colour investment.

For example, does variation in illumination and/or background alter the relative benefit of in-

vesting in colour traits in different animals? Such possibilities have been explored for birds dis-

playing in forests and competing for patches of specific illumination to potentially maximise

the communication of colour signals [138], but currently the answer remains unknown for

many animals operating in complex natural environments.
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