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Abstract 

Background: Chest CT screening as supplementary means is crucial in diagnosing 

novel coronavirus pneumonia (COVID-19) with high sensitivity and popularity. Machine 

learning was adept in discovering intricate structures from CT images and achieved 

expert-level performance in medical image analysis.

Methods: An integrated machine learning framework on chest CT images for dif-

ferentiating COVID-19 from general pneumonia (GP) was developed and validated. 

Seventy-three confirmed COVID-19 cases were consecutively enrolled together with 

27 confirmed general pneumonia patients from Ruian People’s Hospital, from January 

2020 to March 2020. To accurately classify COVID-19, region of interest (ROI) delineation 

was implemented based on ground-glass opacities (GGOs) before feature extraction. 

Then, 34 statistical texture features of COVID-19 and GP ROI images were extracted, 

including 13 gray-level co-occurrence matrix (GLCM) features, 15 gray-level-gradient 

co-occurrence matrix (GLGCM) features and 6 histogram features. High-dimensional 

features impact the classification performance. Thus, ReliefF algorithm was leveraged 

to select features. The relevance of each feature was the average weights calculated 

by ReliefF in n times. Features with relevance larger than the empirically set threshold 

T were selected. After feature selection, the optimal feature set along with 4 other 

selected feature combinations for comparison were applied to the ensemble of 

bagged tree (EBT) and four other machine learning classifiers including support vector 

machine (SVM), logistic regression (LR), decision tree (DT), and K-nearest neighbor with 

Minkowski distance equal weight (KNN) using tenfold cross-validation.

Results and conclusions: The classification accuracy (ACC), sensitivity (SEN), specific-

ity (SPE) of our proposed method yield 94.16%, 88.62% and 100.00%, respectively. The 

area under the receiver operating characteristic curve (AUC) was 0.99. The experimen-

tal results indicate that the EBT algorithm with statistical textural features based on 

GGOs for differentiating COVID-19 from general pneumonia achieved high transfer-

ability, efficiency, specificity, sensitivity, and impressive accuracy, which is beneficial for 

inexperienced doctors to more accurately diagnose COVID-19 and essential for control-

ling the spread of the disease.
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Background

Since the first COVID-19 case was discovered in 2019, more than 9.47 million cases 

of novel coronavirus pneumonia have been diagnosed worldwide, with 484,249 deaths 

recently according to World Health Organization Coronavirus disease (COVID-

2019) situation report − 158. Currently, the detection of COVID-19 mainly relies on 

nucleic acid testing. However, many infected patients with obvious typical symptoms 

passed multiple nucleic acid tests but diagnosed positive in the last test [1]. �e high 

false-negative rate results in delayed treatment and even aggravating the spread of 

the pandemic. On February 5, National Health Commission of the  People’s Repub-

lic of China  launched the “Novel Coronavirus Pneumonia Diagnosis and Treatment 

Program (Trial Version 5)”, which updated the diagnostic criteria for novel coronavi-

rus pneumonia with adding CT imaging examinations as one of the main basics for 

clinical diagnosis of COVID-19. CT screening is considerably popular, easy to operate 

and sensitive to COVID-19, which is critical for both early diagnosis and pandemic 

control.

Nevertheless, influenza virus pneumonia and other types of pneumonia might 

occur in this season as well. In some aspects, especially according to clinical features, 

it is troublesome to differentiate COVID-19 from general pneumonia. For instance, 

the main manifestations of COVID-19 in the early stage were fever, fatigue, dry 

cough, and expiratory dyspnea while patients with general pneumonia have similar 

symptoms [2]. COVID-19 pneumonia places a huge burden on the health care system 

because of its high morbidity and mortality. �erefore, early diagnosis and isolation 

of GP patients and COVID-19 patients can better prevent the spread of the pandemic 

and optimize the allocation of medical resources. However, except for the overlap-

ping symptoms and detection abnormalities, CT manifestations of GP and COVID-

19 were similar, causing instability and uncertainty for distinguishing them [3, 4].

Typical CT manifestations of COVID-19 patients consist of pleural indentation 

sign, unilateral or bilateral pulmonary ground-glass opacities, opacities with rounded 

morphology and patchy consolidative pulmonary opacities with the predominance in 

the lower lung [5–8]. GP infections have similar CT manifestations at presentation. 

However, COVID-19 presents more bilateral extensive GGO while GP shows more 

unilateral GGO or consolidation [9]. Furthermore, the other CT findings of GP and 

COVID-19 are difficult to observe and the areas of lungs contain large scale of insig-

nificant extraneous parts. To avoid interference from irrelevant information and more 

accurately and stably identify COVID-19 from GP, GGO was cropped as the ROI and 

features were extracted based on ROIs. Figure 1 shows the samples of COVID-19 and 

GP CT images from the collected dataset.

Lin et  al. proposed a deep learning model, COVNet, based on visual features 

from volumetric CT images to distinguish COVID-19 from community acquired 

pneumonia [10]. 4536 three-dimensional CT images (COVID-19: 30%; commu-

nity acquired pneumonia: 40%; non-pneumonia: 30%) were included in their study. 

U-net was applied to crop the lung region as the ROI and both 2D and 3D features 

were extracted by COVNet based on the ROIs. �en the features were combined 

and inputted to the proposed scheme for predictions. �e sensitivity and specificity 

for detecting COVID-19 were 90% and 96% while for CAP were 87% and 92%. �e 
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AUCs were 0.96 and 0.95. However, the features learned by deep learning models are 

embedded in a network of millions of weights. �us, the method lacks interpretability 

and transparency.

Charmaine et al. evaluated ResNet with a location-attention mechanism model for 

screening COVID-19 [11]. Two ResNet models were enrolled in their study. �ree-

dimensional features were extracted by ResNet-18 and fed into ResNet-23 with loca-

tion-attention mechanism in the full-connected layer for classification while ResNet 

without location-attention mechanism was applied as well for comparison with the 

proposed method. Accordingly, the results show the proposed method achieved bet-

ter performance with an overall accuracy of 86.7%.

Asif et  al. proposed CoroNet model based on Xception architecture using X-ray 

images to differentiate COVID-19 from heathy, bacterial pneumonia and viral pneu-

monia [12]. Notably, Xception is a transfer learning model which pertained to Ima-

geNet dataset and then retained on the collected X-ray dataset. In the proposed 

architecture, the classical convolution layers were replaced by convolutions with 

residual connections. �e overall accuracy was 89.6% while average accuracy of 

detecting COVID-19 was 96.6%. To test the stability and robustness, CoroNet was 

evaluated on the dataset prepared by Ozturk et al. [13] with an accuracy of 90%.

Ozturk et al. developed DarkNet model based on the you only look once (YOLO) 

system to detect and classify COVID-19 [13]. �eir model achieved the accuracy 

of 98.08% for classifying COVID-19 and non-infections and 87.02% for distinguish 

COVID-19 from no-findings and GP. Nevertheless, the proposed methods by Asif 

et  al. and Ozturk et  al. were based on X-ray images. X-ray screening is not sensi-

tive to GGOs which is one of the most significant manifestations at the early stages 

of COVID-19. �is can cause high error rate and ineffective containment of the 

pandemic.

Kang et  al. developed a machine learning method with structured latent multi-view 

representation learning to diagnose COVID-19 and community acquired pneumonia 

[14]. In their work, V-Net was leveraged to extract lung lesions. �en, radiomic features 

and handcrafted features, totally 189-dimensional features, were extracted from the CT 

images. In the end, the proposed model yielded the best accuracy, which was 95.50%. 

Fig. 1 Samples of COVID-19 and GP CT images. Picture a is the CT image of COVID-19 with bilateral GGOs 

while picture b is the CT image of GP with unilateral GGO. The red arrows point at the GGOs of COVID-19 and 

the blue arrow points at the GGO of GP
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�e sensitivity and specificity were 96.6% and 93.2%. Compared with other methods in 

the study, the accuracy was improved by 6.1–19.9% and the sensitivity and specificity 

were improved by 4.61–21.22%.

To our knowledge, most recent researches carried out for detecting COVID-19 are 

based on deep learning. However, deep learning models require a large scale of training 

data while initially the COIVD-19 samples are in shortage. Transfer learning might be 

promising method in terms of small amount of data while negative transfer may exist, 

for initial dataset and target domains may not relate to each other and the standards on 

what types of training data are sufficiently related are not clear.

Machine learning plays an unsubstitutable role in artificial intelligence with outstand-

ing results in medical imaging classification. We developed a machine learning method 

using ensemble of bagged tree based on statistical texture features of CT images, par-

ticularly focusing on differentiating COVID-19 from GP, demonstrating high efficiency 

in the identification of COVID-19 and GP, helping to reduce misdiagnosis and control 

pandemic transmission.

Material

From January 2020 to March 2020, there were 73 COVID-19 cases confirmed by nucleic 

acid test positive and 27 general pneumonia cases enrolled in this study (age ranges from 

14 to 72 years). Both COVID-19 and GP patients who had undergone chest CT scans 

were retrospectively reviewed by two senior radiologists. Of the COVID-19 cases, 12 

patients without obvious characteristics on CT images were excluded (negative rate 

16.4%, 12/73). Finally, 61 confirmed COIVD-19 cases and 27 general pneumonia cases 

were enrolled in this study.

�e images were independently assessed by two radiologists. If the radiologists disa-

greed with each other, a senior radiologist would be invited to review the pulmonary CT 

images and make the final examination. All the CT images were generated from the Sie-

mens Sensation 16-layer spiral CT (Siemens, Erlangen, Germany). �e image format was 

Digital Imaging and Communications in Medicine (DICOM). �e scan parameters were: 

tube voltage 120 kV; tube current automatic regulation; 1-2 mm cross-sectional thick-

ness; 1–2 mm cross-sectional distance; scan pitch 1.3; and 16 × 0.625 mm collimation.

Results

�e proposed diagnosis method is ensemble of bagged trees based on feature combina-

tion 5 (T = 0.11) including ROI delineation, feature extraction, feature selection and clas-

sification which are explicitly described in “Method” section. In this section, the results 

of feature selection, effectiveness of optimal feature combination 5 compared to original 

features, and comparison of EBT algorithm and four other classification methodologies 

are described. �e experimental result demonstrated that the proposed COVID-19 diag-

nosis method outperformed other methods in terms of accuracy, sensitivity, specificity 

and AUC.

Results of feature selection

Table  1 and Fig.  2 show the relevance of each feature and weight curves of each fea-

ture based on ReliefF algorithm. In order to select the optimal feature combination, the 
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proposed threshold T was set to 0.11. To justify optimization, combination 1 (T = 0.11*), 

combination 2 (T = 0.12), and combination 3 (T = 0), combination 4 (T = 0.10) were con-

sidered to compare with combination 5 (T = 0.11). Features included according to four 

different T values are shown in Table 2 (the corresponding feature names of the feature 

numbers are presented in Table 4 in “Method” section).

Performance evaluation

Table  3 shows the diagnosis performance of 5 classifiers based on 5 different fea-

ture combinations. In order to intuitively present the differences in accuracy, sensi-

tivity and specificity of different methods using different feature combinations, we 

Table 1 Relevance of each feature based on ReliefF algorithm

Feature Relevance Feature Relevance Feature Relevance Feature Relevance Feature Relevance

1 0.0421 8 0.1329 15 0.0043 22 0.1348 29 0.1250

2 0.1036 9 0.1338 16 0.0687 23 0.1257 30 0.1025

3 0.0050 10 0.1059 17 0.0548 24 0.1170 31 0.1490

4 0.0178 11 0.0582 18 0.1604 25 0.1574 32 0.1250

5 0.0032 12 0.0360 19 0.1574 26 0.2267 33 0.0389

6 0.1434 13 0.0163 20 0.2561 27 0.2977 34 0.0963

7 0.1036 14 0.1184 21 0.1469 28 0.2094

Fig. 2 The weight curves of 34 features based on ReliefF algorithm. The X-axis represents the numbers of 

features. The Y axis represents the weights of different features at different times. The algorithm run 1000 

times represented by curves with different colors. The dark straight line represents weight = 0.11, which is the 

proposed threshold T 

Table 2 Selected features of four combinations

a Select features with relevance smaller than the threshold T

b No feature selection was applied

Combination T Feature numbers

1 0.11a 1,2,3,4,5,7,10,11,12,13,15,16,17,30,33,34

2 0b All 34 features

3 0.10 2,6,7,8,9,10,14,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32

4 0.12 6,8,9,18,19,20,21,22,23,25,26,27,28,29,31,32

5 0.11 6,8,9,14,18,19,20,21,22,23,24,25,26,27,28,29,31,32
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visualized them with line Fig. 3, line Fig. 4 and line Fig. 5, respectively. �e receiver 

operating characteristic (ROC) curves of EBT algorithm and 4 other classifiers using 

the optimal feature combination 5 are presented in Fig. 6.

E�ectiveness of optimal feature combination 5 compared to original features

Figure 3 elucidates that five classifiers using feature combination 5 achieved the high-

est accuracy than that obtained by other feature combinations. �e measurements in 

the X-axis ranging from 1 to 5 represents the sequence numbers of the feature com-

binations in Table 2. Figures 4 and 5 substantiate that the sensitivity and specificity of 

Table 3 Diagnosis performance based on di�erent methods using di�erent combinations

Method Combination 1 Combination 2 Combination 3 Combination 4 Combination 5

DT

 ACC (%) 81.98 88.82 89.41 89.73 89.82

 SEN (%) 72.03 85.85 84.34 84.39 85.90

 SPE (%) 80.40 91.95 95.64 95.55 95.69

LR

 ACC (%) 70.64 80.57 81.65 79.15 81.73

 SEN (%) 66.50 76.42 77.89 75.61 77.89

 SPE (%) 75.00 84.93 85.62 82.88 85.73

SVM

 ACC (%) 81.90 85.32 85.65 86.07 86.48

 SEN (%) 76.91 83.58 82.11 81.30 83.79

 SPE (%) 87.16 87.16 89.38 91.10 91.44

KNN

 ACC (%) 77.73 83.23 85.40 88.32 88.24

 SEN (%) 69.43 73.98 79.51 81.79 82.33

 SPE (%) 86.47 92.97 91.61 95.21 96.58

EBT

 ACC (%) 86.49 92.91 92.49 93.41 94.16

 SEN (%) 78.37 86.18 85.69 87.32 88.62

 SPE (%) 95.03 100.00 99.66 99.83 100.00
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Fig. 3 Accuracy comparison of five classifiers with different feature combinations
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Fig. 4 Sensitivity comparison of five classifiers with different feature combinations
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Fig. 5 Specificity comparison of five classifiers with different feature combinations

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

S
E
N
S
IT
IV
I
T
Y

1 - SPECIFICITY

Proposed KNN SVM LR DT

Fig. 6 Comparison of receiver operating characteristic curves for the proposed classifier, KNN, SVM, LR, and 

DT using feature combination 5. The receiver operating characteristic curves for the proposed EBT models 

had an AUC that was significantly greater than that for four other models
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the optimal feature set outperformed that of combination 2 as well as combination 1, 

3 and 4. To be noted, combination 2 contains 34 features which indicates that no fea-

ture selection was applied, which illustrates that feature selection is essential.

Comparison of EBT and four other classi�cation methodologies

As shown in Table 3, the best result was obtained by EBT algorithm with feature combi-

nation 5, leading to accuracy, sensitivity and specificity of 94.16%, 88.62% and 100.00%, 

respectively. �e three line figures reveal that EBT algorithm achieved clearly better 

performance compared with other classification methodologies using no matter what 

feature combinations. Figure 6 demonstrates ROC curves of five models based on fea-

ture combination 5. And the AUCs (area under curve, AUC) of DT, LR, SVM, KNN and 

EBT are 0.91, 0.88, 0.94, 0.88, and 0.99, respectively. �e EBT provided the best AUC. 

�erefore, the promising results validate that the proposed method can accurately and 

robustly differentiate COVID-19 from GP.

Discussion

�e proposed diagnosis method was evaluated in terms of accuracy, sensitivity and 

specificity. As shown in Eqs. 2–4 in “Method” section, accuracy measures the ability of 

the diagnosis system to correctly detect COVID-19 and GP. Sensitivity demonstrates the 

proportion of correctly classified COVID-19 cases. Specificity illustrates how good the 

method is at identifying GP cases. As shown in Table 3, the highest accuracy, sensitivity 

and specificity achieved by EBT algorithm with feature combination 5 were 94.16, 88.62, 

and 100.00, respectively. It shows that the proposed method did better performance in 

detecting GP than COVID-19. To alleviate class imbalance, we did data augmentation 

on GP images. However, data augmentation techniques cannot increase the diversity of 

GP features. Although the proposed method achieved the specificity of 100.00%, which 

suggests no GP cases were erroneously classified, there is no denying that it has the 

probability of over-fitting caused by shortage in GP images.

CT of COVID-19 infections presents consolidation, GGO, pulmonary fibrosis, inter-

stitial thickening, and pleural effusion in both lungs [15–17] while CT of GP infections 

presents multifocal nodular opacity with a surrounding halo, diffuse patchy GGO, inter-

lobular septal thickening, multiple ill-defined nodules and consolidation in both lungs 

[18]. �us, most resent researches have proposed heterogeneous methods based on the 

whole lung region. For example, Wang et  al. developed COVID-19Net for diagnosing 

COVID-19 with automatic lung segmentation of CT images using DenseNet121-FPN 

[19]. Notably, DenseNet121-FPN is also a transfer learning framework, which was pre-

trained on ImageNet dataset as well. �e sensitivity and specificity of the method were 

78.9% and 89.93% in the training set. In the two validation sets, the sensitivities were 

80.39% and 79.35% and the specificities were 76.61% and 81.16%. As mentioned previ-

ously in the background section, the deep learning method proposed by Lin et al. imple-

mented U-net for lung segmentation [10]. It achieved the sensitivity and specificity of 

90% and 96%. Zhang et  al. used AI system with a two-stage segmentation framework 

to segment lung lesions and then diagnose COVID-19 [20]. �e first stage of the seg-

mentation framework was manual annotation and the second stage was DeepLabv3-

based backbone for lung lesion segmentation. In their work, they achieved smoother 



Page 9 of 14Liu et al. BioMed Eng OnLine           (2020) 19:66  

and clearer boundaries compared with experts. Besides, they validated their system in 

the dataset from outside China with 84.11% accuracy, 86.67% sensitivity, and 82.26% 

specificity for differentiating COVID-19 from GP. Wu et al. developed a multi-view deep 

learning fusion model based on the architecture of ResNet50 with threshold segmenta-

tion and morphological optimization algorithms for lung segmentation [21]. �e accu-

racy, sensitivity and specificity of their model in the testing set were 0.760, 0.811 and 

0.615, respectively. However, compared with these studies, we did GGO segmentation 

instead of lung lesion segmentation. Our proposed machine learning method in combi-

nation with GGO segmentation accomplished an accuracy of 94.16% for distinguishing 

COVID-19 from GP. It also has a high sensitivity and specificity of 88.62% and 100.00%, 

respectively. �erefore, we achieved better performance in diagnosing COVID-19 based 

on only GGOs. �e results empirically validate that COVID-19 and GP can be robustly 

classified based on GGOs.

Despite the remarkable performance of the proposed methods, limitations still exist in 

our study. First of all, the ROIs were manually delineated which is rather time-consum-

ing especially when doctors are racing against time to save lives. Also, GGOs were the 

exclusive segmented features of CT images of COVID-19 and GP and spending more 

time on ROI segmentation is apparently unworthy while the whole lung region contains 

irrelevant or even pernicious information for diagnosis. Hence, further study should be 

processed on automatically and preciously detect and segment ROIs without manual 

help. Finally, our established model did not determine which specific general pneumonia 

it was, such as viral or bacterial, mainly due to insufficient data. More data will be col-

lected and the prognosis of GPs will be considered in our future study.

Conclusions

�is study explored an ensemble of bagged tree algorithm with statistical textural fea-

tures for differentiating novel coronavirus pneumonia from general pneumonia. �e 

classification accuracy, sensitivity, and specificity of our proposed method yield 94.16%, 

88.62% and 100.00%, respectively. It is noteworthy that compared with four other 

machine learning classifiers, EBT achieved consistent better performance. �e results 

show that classifiers with feature selection excelled classifiers without feature selection 

by 1–5% for accuracy, 2–10% for sensitivity and 0–4% for specificity. More importantly, 

classifiers with feature selection take shorter time. �erefore, feature selection is benefi-

cial for promoting the diagnosis of COVID-19 in terms of all evaluation indexes.

Furthermore, GGOs were proved to play a significant role in distinguish COVID-19 

from GP, which provide reference opinions for radiologists to better diagnose COVID-

19. And extensive experiments will be applied on more features of COVID-19 individu-

ally and unitedly in our future work. In conclusion, the experimental results show that, 

as compared to other state-of-the-art works, the proposed method achieved pronounc-

edly superior performance with a small amount of CT images.

Methods

Overview of the proposed diagnosis framework

Machine learning algorithms integrated with statistical textural features are lever-

aged to differentiate COVID-19 from GP. Figure 7 illustrates the block diagram of the 
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proposed diagnosis framework. After data collection, to more accurately extract features 

of COVID-19 and GP, manual delineation of the ROIs were performed based on GGOs. 

�e details of ROI delineation are presented in “Delineation of ROIs” section. In the next 

step, 34 statistical texture features including 13 GLCM features, 15 GLGCM features 

and 6 histogram features were extracted from the ROIs. After that, ReliefF algorithm 

was used to select features for time-saving and avoiding over-fitting. As a result, five 

feature combinations remained while combination 5 with 18 features were classified as 

the proposed feature group. Details are described in the following feature selection and 

results part. In the last stage of diagnosis process, the selected features with labels were 

combined and input to five classifiers while the ensemble of bagged tree is the proposed 

algorithm for classification. Five classifiers with five feature combinations, respectively, 

were evaluated in term of accuracy, specificity, sensitivity and AUC.

�e framework consists of 4 major steps: delineation of ROIs, feature extraction, fea-

ture selection, and classification. Each of the steps is described in detail in the following 

parts of this paper.

Delineation of ROIs

To improve the accuracy of the diagnosis method, precise segmentation of the ROIs 

from irrelevant parts was essential for feature extraction. �us, GGO region, which is 

the main CT manifestations, was taken as ROI. �e software of MRIcro 1.4 was used 

to extract the rectangle ROI of COVID-19 and GP. ROIs were delineated in CT images 

based on aforementioned GGOs. �e main processes of ROI delineation are as fol-

lows: (1) a rectangular region as large as possible, which is the ROI, was delineated 

within GGOs and export the whole image with delineation to a PNG image; (2) PNG 

images were binarized to get the ROI boundary and fill the rectangular region to get 

the ROI template; (3) the ROI templates were used to extract the ROI in the original 

DICOM image; (4) the gray level of the ROI image was converted to 256 gray levels and 

the images were resized to 32 × 32 pixels. Consequently, 615 COVID-19 and 146 GP 

ROIs were cropped. It is apparent that COVID-19 images were four times larger than 

Fig. 7 The flowchart of the proposed diagnosis framework
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GP images while imbalanced data cannot reflect the true distribution of two categories, 

which could affect the classification performance. �us, we rotated  the  GP images  by 

90°, 180°, 270°. Ultimately, the number of GP images was augmented to 584. In conclu-

sion, 1199 ROI images were enrolled for feature extraction.

Feature extraction

In this stage, a total of 34 statistical texture features were extracted from the ROI 

images of COVID-19 and GP as shown in Table  4, which contain 13 GLCM [22] fea-

tures, 15 GLGCM [23] features and 6 histogram [24] features. GLCM and GLGCM are 

the predominant second-order statistical texture analysis methods to characterize the 

features of an image, which have been widely applied in medical image processing [25, 

26]. Besides, GLCM considers the statistical and spatial relationship of the pixels in the 

image. It is created by calculating how often pairs of pixel with specific values and in 

a specified spatial relationship occur in an image. �en 13 statistical texture features 

are extracted based on the grey-level co-occurrence matrix. In contrast with GLCM, 

GLGCM captures not only gray-scale features, but also the second-order statistics of 

gray-level gradients while gradients indicate the information of image edge which pro-

vides significant features of an image. In addition, the histological characteristics of 

COVID-19 and GP can be well reflected in the gray mode, and the gray histogram is an 

intuitive statistical method [27]. It is a one-dimensional function of the gray level and 

belongs to the first-order statistical method. After obtaining all texture feature data, due 

to the different calculation methods of each feature, the numerical value changes in a 

wide range. �erefore, to facilitate calculation, all data are normalized to [0, 1] based on 

their respective dimensions, the normalized equation (1) is as follows:

where X is the original data of the Nth dimension, MIN is the minimum value in the Nth 

dimension, MAX is the maximum value in the Nth dimension, X* is the normalized feature.

Feature selection

Feature selection plays a critical role in enhancing the performance of medical imaging 

classification. High-dimensional features cause over-fitting, lower accuracy, comprehension 

difficulty and it is rather time-consuming. �us, feature selection is leveraged to select a 

subset of features, which makes the evaluation criteria reach the optimal level, from the 

original feature set. ReliefF algorithm is classified as a typical filter method for feature 

(1)X∗ = (X − IN)/(MAX − MIN),

Table 4 Description of extracted features

Feature groups Description

GLGCM 1. Little gradient advantage; 2. Large gradient advantage; 3. Gray heterogeneity; 4. Gradient 
heterogeneity; 5. Energy; 6. Average gray; 7. Average gradient; 8. Gray mean square error; 
9. Gradient mean square error; 10. Correlation; 11. Gray entropy; 12. Gradient entropy; 13. 
Hybrid entropy; 14. Inertia; 15. Inverse difference moment

GLCM 16. Angular second moment; 17. Correlation; 18. Entropy; 19. Contrast; 20. Inverse difference 
moment; 21. Sum average; 22. Sum entropy; 23. Sum variance; 24. Variance; 25. Dissimilar-
ity; 26. Inertia; 27. Difference variance; 28. Difference entropy

Histogram 29. Entropy; 30. Uniformity; 31. Mean intensity; 32. Standard deviation; 33. Kurtosis; 34. Skew-
ness



Page 12 of 14Liu et al. BioMed Eng OnLine           (2020) 19:66 

selection [28]. It calculates the weight for each feature based on the capability to identify 

feature value differences between nearest neighbor instance pairs. �e weight of a ran-

dom given feature decreases if the difference of the feature value is observed in the nearby 

instance of the same class (called nearest hit). Alternatively, the weight of a random given 

feature increases if the difference of the feature value is observed in the nearby instance of 

the difference class(called nearest miss). ReliefF searches for k-nearest hits and misses and 

averages their contribution to the weights of each feature [29]. Furthermore, m random fea-

tures will be selected and the algorithm repeated n times to improve reliability. After n iter-

ations, divide the sum of each feature’s weights by n. �is is noted as the relevance. Features 

with relevance greater than a threshold T are selected. �erefore, different thresholds yield 

different combinations. Generally, T is supposed to be greater than 0, for negative weights 

means negative impact on classification.

Feature classi�cation

�e ensemble of bagged tree, which is a supervised classification scheme, is regarded as 

the proposed classification algorithm [30]. It adopts the idea of bootstrap aggregating to 

enhance the stability and increase the accuracy. �e training data are partitioned into 

several subsets by random selecting with replacement. Each subset is trained to con-

struct independent base models. All the predictions from different models are applied 

to majority voting scheme. As a result, it reduces the influence of noise data and is less 

susceptible to over-fitting, which improves the robustness.

For comparison with the performance of the EBT algorithm, SVM, LR, DT, KNN are 

implemented with the same texture feature extraction methods and the same feature 

selection method. To superiorly identify the differences of the results, a tenfold cross-

validation strategy method is adopted. In tenfold cross-validation, the original data set 

is equally divided into 10 subsamples. Of the 10 subsamples, 9 subsamples are used as 

training set while the remaining one is taken as validation set. �e process is repeated 10 

times until each of the 10 subsamples is utilized as validation set. �e average of the 10 

results is retained as the final estimation.

Statistics

�e classification metrics used included AUC, sensitivity, specificity, accuracy. Let TP 

(true positive) denote the number of samples belonging to class positive and correctly 

classified; TN (true negative) denote the number of samples belonging to class negative 

and correctly classified; FP (false positive) denote the number of samples not belonging 

to class positive but misclassified as class positive; FN (false negative) denote the num-

ber of samples not belonging to class negative but misclassified as class negative [31]. 

Classification accuracies are reported in terms of accuracy, sensitivity, specificity as

(2)Accuracy = (TP + TN)/(TP + TN + FP + FN),

(3)Sensitivity = TP / (TP + FN),

(4)Specificity = TN / (TN + FP).
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