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With rising populations and changing climates, urban areas need water systems capable of meeting a 
range of social, economic and environmental sustainability objectives. Different configurations of urban 
growth and development also produce varying water system outcomes. In this paper we develop a multi-
dimensional classification scheme that identifies distinct configurations of ‘urban forms’ in Northern 
Utah, USA. We identified characteristics within urban landscapes that have been linked in the scientific 
literature to three types of water outcomes: water demand, water budgets, and water quality. Using 
publicly-available data at the census block scale, we create a typology of urban neighborhoods that share 
distinctive combinations of natural, built, and social structures that are expected to shape water system 
dynamics. The resulting typology provides a conceptual and empirical basis to generate hypotheses and 
design studies of complex urban water systems. We illustrate the value of the typology by using data 
from surveys of urban residents. While our typology classifications are unique to this region, the 
methodology relies on publicly available data and could be replicated in other urban areas. 
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INTRODUCTION 

Rapid population growth, aging infrastructure, and changes in climate have generated a host of 
water-related challenges for cities across the globe. These challenges include difficulties 
projecting or meeting urban water demand, managing wastewater, addressing the impacts of 
urban runoff on water quality, and understanding the broader effect of urban development on 
local and regional hydrology and ecosystems (Vorosmarty et al. 2000; Walsh 2000; Paul and 
Meyer 2001; Brabec et al. 2002; Kaushal et al. 2015; Li et al. 2015). 

 Urban areas, with high population densities and an extensive built environment, 
represent landscapes where human influences on biotic and physical systems are dominant 
(Alberti 2005; Pickett et al. 2011). However, the urban landscape can be extremely complex, and 
neighborhood differences in built, social, and natural environmental characteristics can cause 
different water demand, water quality, and ecohydrologic outcomes (Grove and Burch 1997; 
Cadenasso et al. 2007; Pickett and Grove 2009; Fullerton and Molina 2010; Jacobson 2011). 

In this paper, we use principal components analysis and cluster analysis to generate a 
statistical typology of urban landscapes that captures diverse configurations of biophysical 
conditions, built environment, and social structure that have been linked in the literature to water 
outcomes. We utilize a form of geodemographic segmentation (Troy 2008) by using socially-
constructed boundaries (census block groups) as the units of analysis to help capture the 
important role of social institutions, networks and historic residential settlement processes that 
shape the emergence and evolution of urban neighborhoods. The resulting typology of urban 
landscapes provides a conceptual and empirical basis to generate hypotheses and design studies 
of complex urban water systems. It also is explicitly designed to provide a guide to planners 
seeking to disaggregate the impacts of diverse patterns of urban growth and development on 
water resources and future water demand. In this paper we demonstrate the value of this typology 
in explaining variation in water attitudes and behaviors of urban residents. We also point to ways 
in which the typology could be used to structure the investigation of variable effects of urban 
forms on water quality and ecohydrology. While our typology represents a regional case study, 
and our specific findings are limited to Northern Utah, it utilizes a methodology and relies on 
publicly available data that would allow replication in other urban areas across the U.S. 

Our paper seeks to advance or answer the following research questions: 

i. What measurable attributes of urban neighborhoods have been linked in the 
scientific literature to a range of water outcomes (demand, quality, and 
ecohydrology)? 

ii. To what extent do urban neighborhoods reflect distinctive combinations of these 
measurable attributes? 

iii. Are urban neighborhood types systematically associated with resident water 
attitudes and behaviors? 

iv. How can a formal typology of urban neighborhoods be used to guide the scientific 
study and practical management of urban water systems? 
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DEVELOPMENT OF A ‘WATER-RELEVANT’ URBAN NEIGHBORHOOD 
TYPOLOGY 

Urban Water System Conceptual Model 

Our approach to the study of coupled human-natural water systems is guided by the integrated 
Structure, Actor and Water (iSAW) framework (Figure 1; Hale et al. 2015). The iSAW 
conceptual framework builds on many previous efforts to represent the dynamic relationships 
between human and natural systems (Duncan, Schnore and Rossi 1959; Grove and Burch 1997; 
Wagener et al. 2010; Collins et al. 2011; Pataki et al. 2011; Sivapalan et al. 2014; Grove et al. 
2015). The iSAW framework posits that coupled systems operate in structured contexts, and 
three elements of ‘structure’ – natural, built, and social – mediate relationships between human 
actors and water system outcomes across a range of scales. Natural structures include biophysical 
characteristics of the system including topography, climate, soils, natural vegetation, and other 
ecological components. Built structures in water systems are represented by patterns of human-
altered land cover and landscaping, building types and arrangements, and constructed water 
infrastructure. Social structures reflect sociodemographic attributes of residents, cultural norms 
and values, and market, organizational, legal and policy contexts.  

These structures interact with each other to enable or constrain people’s decisions and 
behaviors and shape water quantity and quality outcomes. The iSAW model suggests that studies 
of urban water system dynamics must account for variation in natural, built and social structures. 
Our urban neighborhood typology is designed to provide a practical approach to mapping 
structural variation across the urban landscape. 

Methodological Approaches to Landscape Classification 

Systems for classifying natural landscapes according to combinations of biophysical 
characteristics and processes (natural structure) are common. For example, ecoregions have been 
defined based on combinations of topography, climate, and vegetative land cover (Thompson et 
al. 2004). The Bailey’s Ecoregion classification system is a hierarchical scheme using data on 
climate (precipitation and temperature) to define physiographic divisions, which are then 
subclassified into provinces based on vegetation and land cover (Bailey 2004). Similarly, 
classification of soils within natural landscapes is often based on combinations of soil formation 
processes and soil texture (Albrecht et al. 2005). A major recent effort by the USGS and ESRI 
used climate, landform, geology, and land cover to classify ‘ecological land units’ globally 
(Sayre et al. 2014). 

Many landscape classification systems include some consideration of human activities 
using measures of landcover (natural and built structure) and land use (a simple expression of 
social structure). Anderson et al. (1976) developed a popular classification scheme in which 
urban land uses are first distinguished from a range of natural forms of land cover (agriculture, 
forests, rangeland, etc.). Within urban areas, these classification systems then sometimes 
differentiate sub-classes based on population density or predominant type of urban land use (e.g., 
residential, commercial, etc.). Ellis and Ramankutty (2008) used global data for 5’ grid cells 
(~87 km2) on population density (urban, non-urban), land use, and land cover in a cluster 
analysis to identify 21 types of  ‘biomes’, 18 of which were ‘anthropogenic’ (where human 
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presence is a defining feature of the landscape). Duany and Talen (2002) characterized ‘urban 
ecozones’ based both on the level and intensity of ‘urban character’ (population density, 
impervious surface area, street networks) and a set of distinctive biophysical and ecological 
properties. Cadenasso et al. (2007) developed the High Ecological Resolution Classification for 
Urban Landscapes and Environmental Systems (HERCULES) methodology to classify urban 
ecosystems in Baltimore, Maryland, USA based on the integration of information about natural 
and built structures with a focus on measures of urban land cover that capture building types, 
surface materials, and vegetation. They demonstrate how differentiation of urban areas based on 
these attributes better explain environmental outcomes (like nitrogen export) than conventional 
categorizations that rely only on land use. 

 

Figure 1 The integrated Structure-Actor-Water (iSAW) framework (Hale et al. 2015). 
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Not many scholars have classified landscapes with a particular focus on water issues. 
Hutchinson et al. (2010) created a national typology of 12 ’Human Impacted Water Environment 
Classes’ using cluster analysis of measures of climate and physical geography (natural structure), 
land cover (built structure) and population density and patterns of water use (social structure) at 
the HUC-8 scale (~500,000 ha watersheds) across the continental U.S.  

While natural and built structures in the urban environment have received the most 
attention, there are a few examples of landscape classifications that have integrated sophisticated 
measures of social structure. However, socially-meaningful units of analysis in urban space, such 
as households, neighborhoods, and communities, can be as important in driving human decisions 
and behaviors as natural or biophysical features like watershed catchments (Hawley and Duncan 
1957). This is partly because natural watershed boundaries (and patterns of surface water flows) 
are often significantly disrupted in urban landscapes due to the impacts of built infrastructure 
(roads, buildings, water distribution networks, wastewater systems, and stormwater management 
structures). Additionally, variation in water use, vegetation/landscaping, and management of the 
water infrastructure is shaped by social actors (individuals and organizations) that act within 
domains of influence in socially-defined geographic areas. 

Grove and Burch (1997) made the case for integrating social and ecological factors when 
differentiating space within urban landscapes, though they did not propose a systematic method 
to implement this idea. Later, Grove et al. (2006a, 2006b) used commercially available data on 
consumption patterns (developed for marketing firms) at the census block scale to demonstrate 
that distinctive social and demographic characteristics of neighborhoods were strong predictors 
of vegetation patterns across a major urban area (see also Boone et al. 2010). Nielsen-Pincus et 
al. (2015) classified land-owners in the wildland-urban interface of Oregon’s Williamette Valley 
Ecoregion at the parcel scale on the basis of lifestyle motivations, land management behaviors, 
real estate properties, and land cover. A growing body of social science research suggests that 
sociodemographic attributes of individuals, households, and neighborhoods are strong predictors 
of behaviors that can shape water system outcomes (summarized below). In sum, studies of 
water within urban landscapes should at minimum capture information about configurations of 
natural (biophysical, climate, land cover), built (roads, buildings, parcels, and infrastructure), and 
social (population density, land use, sociodemographic, and institutional) structural 
characteristics (Pickett and Grove 2009).  

Water-Relevant Characteristics of Urban Landscapes  

Our typology is guided by scientific literature that identifies a number of key natural, built, and 
social structural attributes of urban landscapes that influence three types of water system 
outcomes: water use, water quality, and ecohydrology. In this section we present a brief 
overview of some of the findings from previous research that shaped our selection of variables to 
use in our statistical analysis. While empirical results presented below will focus on water use, 
the variables used in creating the typology were designed to allow the resulting classifications to 
be a basis for structuring studies of the impacts of urban form on water quality and 
ecohydrologic outcomes. 
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Water Use 

A growing literature links different urban configurations of natural, built, and social 
environments to patterns of residential and commercial water use. In a recent literature review, 
House-Peters and Chang (2011) found that climate, land cover (vegetation mix), built 
environment (parcel and housing mix and size), demographic characteristics (age, income, 
education, household size), and policy context (water pricing structure) were all linked to 
patterns of water use at diverse temporal and spatial scales. Other researchers have demonstrated 
strong relationships between water use and different forms of residential housing and vegetative 
cover (Aitken et al. 1994; Troy et al. 2005; Balling 2007; Guhathakurta 2007; Zhou et al. 2009; 
Blokker et al. 2010; Polebitski and Palmer 2010). Specifically, housing type and size (Troy et al. 
2005; House-Peters and Chang 2011; Stoker and Rothfeder 2014), housing age (Grove et al 
2006b), and ownership status (Mee et al. 2014) have all been linked to both landscaping choices 
and water use behaviors. Neighborhood-specific norms of landscaping and water use behavior 
can influence individual water actor decisions (Larson and Brumand 2014).  

Aspects of the built water environment such as road and parcel configurations can affect 
parcel sizes and water use (Chang et al. 2010; Guhathakurta and Gober 2010). In many cities, 
substantial gains in water conservation can be achieved by fixing leaky pipes. As a result, there 
are urgent calls to upgrade and repair aging infrastructure that is used to distribute water to 
customers across the U.S. (Grigg 2005). Differences in regional climate clearly affect regional 
variations in water demand (Balling 2007; Guhathakurta 2007; Endter-Wada et al. 2008), while 
microclimates related to elevation, topography, proximity to open space, or the impacts of urban 
heat islands can explain variation in parcel-scale water use (Whitlow et al. 1992; Nouri et al. 
2013). 

Water Quality 

Urbanization processes have long been linked to ‘urban stream syndrome’ in which ecological 
functions in streams draining urban areas are systematically degraded (Walsh et al. 2005). 
Nitrate, phosphate and sediment pollution from urban runoff are greatly influenced by built 
structures, particularly impervious surface area, landscape plant composition and irrigation 
systems, and stormwater drainage infrastructure (Brabec et al. 2002; Hatt et al. 2004; Yang and 
Li 2013). Effects of natural structures (like topography, climate and land cover) on urban water 
quality can vary depending on the scale at which they are measured (Sun et al. 2014). Cadenasso 
et al. (2007) demonstrated how neighborhood characteristics (land use, population density, and 
built infrastructure) explain more variation in rates of nutrient export from diverse urban 
subwatersheds than many traditional natural structure variables. Finally, variation in landscaping 
and irrigation choices that impact water quality have been linked to aspects of social structure, 
including socioeconomic status, race/ethnicity, local social organizations, and governance 
institutions (Larson et al 2009; Cook et al. 2012; Fraser et al. 2013). 

Ecohydrology 

Ecohydrology is the study of the partitioning of fluxes between groundwater, surface, and 
atmospheric pathways, and the interactions of hydrology with ecological processes (Rodriguez-
Iturbe 2000). Urban environments significantly affect hydrologic processes and sediment flows 
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because of changes in impervious surface area (Paul and Meyer 2001; Alberti 2005; Walsh et al. 
2005). Areas with more imperviousness experience reduced infiltration and accelerated runoff 
(Sanders 1986), though the effects may be non-linear (Dunne and Leopold 1978). Variation in 
the type, density, and spatial configuration of landscape vegetation not only affects the rate of 
infiltration and runoff, but also alters the amount and timing of evapotranspiration in urban 
landscapes (Jenerette et al. 2013; Zhou et al. 2014). Configurations of natural structures (natural 
vegetation and riparian and wetland area conditions) and how those are altered in the 
urbanization process also have implications for hydrologic function (Brody et al. 2007; Brabec 
2009).  

METHODOLOGY 

Study Area 

Our project develops a typology of neighborhoods for the greater Wasatch Range Metropolitan 
Area (WRMA), a nearly continuous area of urbanized land running north and south for 
approximately 260 km along the Wasatch Mountain Range in Northern Utah. The WRMA is 
home to nearly 2.3 million residents and includes numerous incorporated municipalities ranging 
in size from a few thousand to nearly 200,000 people in Salt Lake City (the state capital). A 
relatively young population and high fertility rates contribute to a projected doubling of the 
population by 2050 (UDWR 2012). 

WRMA urban areas vary across different biophysical environments – ranging from the 
original nineteenth century Anglo-European settlements at the canyon mouths where perennial 
streams provide water from mountain snowpack, to warmer and dryer bottomlands of Basin and 
Range valleys shared by irrigated agriculture and new suburban homes, to the colder and wetter 
higher elevation mountain benches and valleys where more expensive residences, second home 
developments, and recreational resorts are concentrated. These urban areas also comprise a 
heterogeneous stock of built environments, including traditional residential neighborhoods with 
aging water infrastructure built in the early twentieth century, dense urban commercial and 
industrial zones, rapidly-expanding suburban areas dominated by single-family homes, multi-
family townhouse developments, downtown condominiums and apartment complexes, and new 
residential and commercial development replacing recently irrigated agricultural lands at the 
urban fringe. Finally, these urban areas include diverse social environments that reflect the 
distinctive demographic, economic, cultural and policy forces that shape patterns of urban 
migration, settlement and land conversion.  

Water resource management is a prominent challenge in this region (Burnham et al. in 

press). Utah ranks near the bottom in the U.S. in state-wide annual precipitation, but per-capita 
domestic water use is among the highest in the nation (Maupin et al. 2014). Most municipal and 
industrial water use in Utah is for outdoor irrigation (UDWR 2010b), and the regional water 
supply relies on a combination of groundwater wells, springs, and reservoirs in nearby mountains 
(U.S. EPA 2010). Urban water demand is expected to soon outstrip this supply system in many 
areas (UDWR 2014).  
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Identifying ‘Neighborhoods’ 

Our analysis sought to differentiate configurations of neighborhoods within the urbanized areas 
of the WRMA. Selecting an appropriate boundary for neighborhoods is a persistent problem that 
challenges studies of housing markets (Clapp and Wang 2006), urban planning (Horner and 
Murray 2002), and other social sciences (Sampson et al. 2002). Moreover, decisions about the 
scale at which neighborhoods are operationalized can affect the patterns we observe (Dark and 
Bram 2007; Wong 2009).  

While imperfect in many respects, census blocks (often similar to a city block) are the 
finest scale geographic area at which demographic information is released by the U.S. Bureau of 
the Census, which makes them particularly useful for large scale studies that require statistical 
data on neighborhood characteristics. Census block groups (CBGs) represent clusters of census 
blocks that follow local roads, natural features, or political boundaries and often (but not always) 
approximate neighborhood boundaries recognized by local residents. As a result, similar to 
previous urban water- and ecosystem-related research (Grove et al. 2006a; Shay and Khattak 
2007; Chang et al. 2010; House-Peters et al. 2010; Larson et al. 2013), we utilized the CBG as 
the unit of analysis for our project.  

Our analysis includes urban or urbanizing areas within the WRMA that have residential 
population densities greater than 38.6 persons per km2 (100 persons per mile2), a conservative 
threshold below which areas are generally defined as exurban and in the process of urbanizing 
(Clark et al. 2009) but are clearly not yet urban (Clark et al. 2009). To capture areas that are in 
the process of transitioning to urban density in this rapidly changing landscape, we used a 
threshold that is lower than the U.S. Bureau of Census’ official definition of ‘urbanized areas’ 
and ‘urban clusters’ (1,000 and 5,000 persons per mile2, respectively; Bureau of Census 2011). 
Moreover, because some CBGs in the WRMA region contain significant areas of federally-
owned land and open water (notably portions of the Great Salt Lake), we calculated population 
density using 2010 CBG population counts divided by the area of non-federal land excluding 
open water (a form of dasymetric mapping – see Mennis 2002 and Boone 2008).  

The 10-county WRMA contains a total of 1,457 CBGs, of which 1,384 had population 
densities above our threshold. These urban CBGs contain 96 percent of the study area’s total 
population, but represent just 8 percent of the overall land area (and 14 percent of the non-federal 
land area). The median size of CBGs included in the analysis was 0.9 km2. 

Attributes of Neighborhoods 

 

To construct our typology, we used publicly available data to capture aspects of natural, built, 
and social structure that have been linked to urban water use, water quality, and ecohydrology. 
The 47 variables used in this analysis are aggregated at the census block group level for all urban 
CBGs in the WRMA. Descriptions of the key measures are summarized below, but full technical 
details and sources of data can be found in (Supplemental Tables A and B and in self-reference 

omitted). 
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Natural Structure 

To capture the effects of neighborhood scale microclimate, we computed average summer and 
annual temperature and precipitation for the period 2010-2012 (using data from the PRISM 
Climate Group), and mean elevation for each CBG (from the USGS National Digital Elevation 
Map dataset). 

Built Structure 

Indicators of build structure include land cover/landscaping, housing density, road and parcel 
configuration, and access to a public water supply. We used three measures of land cover, each 
derived from remotely sensed imagery: percent impervious surface area (using the 2006 National 
Land Cover Database, itself produced from 30m Landsat imagery), percent tree cover (from 
250m MODIS Vegetation Continuous Fields data; VCF), and greenness (using Landsat-derived 
Normalized Difference Vegetation Index at 30m resolution from 2006 and 2007). For each 
measure, we computed the mean value across all pixels using the ArcGIS 10.1 Zonal Statistics 
geoprocessing tool. We estimated housing density with two measures: a) overall housing density 
for the entire CBG land area, excluding federal lands and open water; and b) residential housing 

density to reflect the actual density within the subarea that is in residential land use. We used 
publicly-available parcel and road network data to calculate mean and median parcel size for 
each CBG, as well as four measures of street configurations: average block length, median block 
length, intersection density, and percent of intersections that are four-way stops. Because access 
to a public culinary water supply affects water use (UDWR 2010a), we calculated the percent of 
parcels served by a public water supplier.  

Social Structure 

Variations in social structure are captured with indicators of land use, housing characteristics, 
and individual and household demographics. Using parcel-scale land use classifications from the 
2010 Utah Water Related Land Use (UWRLU) dataset developed by the Utah Division of Water 
Resources (UDWR 2013), we estimated percent land area within each CBG in six mutually 
exclusive categories: residential, commercial/industrial, urban open and green space, farmsteads, 
irrigated agriculture, and non-irrigated agriculture. From the same data we calculated an overall 
measure of land use diversity using the inverse Gini-Simpson entropy index (Simpson, 1949). 
This index represents the weighted arithmetic mean of the proportional abundances of the types 
of interest, and large values represent situations where diversity of two housing types is greater. 
Technically it is a measure of entropy and performs best when the number of different categories 
is relatively small (Jost 2006). We also combined data from ESRI’s online vector database and a 
state database to calculate percent land area that is managed as a local, city, or state park.  

Following the example of Grove et al. (2006b), we used U.S. Census data to calculate 
several indicators of housing characteristics. These included: a) percent vacant housing units, b) 
percent renter-occupied units, c) percent detached single-family homes, d) percent of housing 
built since 1990, e) median year structures were built, f) median number of rooms per housing 
unit, g) median housing value, h) percent mobile homes, and i) diversity of building housing 
types (calculated using the Gini-Simpson entropy index described earlier).  
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We use ten measures, also from U.S. Census data, to describe the aggregate demographic 
attributes of households and individuals in each CBG: a) overall population density; b) natural 
log of residential population density; c) median age; d) percent over 65 years old; e) percent non-
Hispanic white; f) percent adults with BS or higher educational attainment; g) percent with 
household income over $100,000; h) median household income; i) per capita income; and j) 
poverty rate. We use three measures to capture variation in household characteristics at the CBG 
level: a) mean household size; b) percent family households; and c) number of working adults 
per household. 

Factor Analysis 

We used factor analysis with principal components extraction and orthogonal rotation (SPSS 
v21) to reduce the 47 input variables to a smaller set of factors that capture underlying attributes 
of census block groups. Factor analysis examines patterns of correlations among the different 
input variables and extracts uncorrelated statistical dimensions that each explain a proportion of 
the observed variation in the data (e.g., the first principle component selected in the analysis will 
explain the highest variance and each successive factor will be the orthogonal dimension that 
explains the next most variance (Thompson 2004). Our factor analysis identified a set of 9 
distinct factors with eigenvalues over 1 that together explained 76.4 percent of the variation 
among the 47 observed variables (Table 1).  

A brief description of each factor is included below. 

 FACTOR 1: Housing Mix – Suburban (=8.4; 17.9% variance explained). The housing 
mix-suburban factor describes how strongly neighborhoods display the characteristics of 
typical suburban residential neighborhoods. High values represent neighborhoods with a 
high percentage of single-family homes, low levels of housing diversity, few renters, 
larger houses and more people per household. These neighborhoods also have relatively 
low population density, higher household income, and low poverty rates. 

 FACTOR 2: Microclimate (=4.9; 10.4%). High scores on the elevation/climate factor 
describe neighborhoods with higher elevation, cooler temperatures, and greater 
precipitation. These are also places that have significant amounts of vacant housing and 
greater tree cover, which are typical of mountain second home developments in this 
region.  

 FACTOR 3: Land Use Diversity – Non-Residential (=4.7; 10.0%). Neighborhoods 
scoring high on this factor have high diversity of land uses and a relatively low fraction 
of land in residential uses. These places also tend to have lower population and housing 
density, less tree cover, and significant areas of non-irrigated agriculture or commercial 
and industrial land uses.  

 FACTOR 4: Socioeconomic Status (=4.2; 9.0%). High scores on the Socioeconomic 
Status (SES) factor typify neighborhoods that have a relatively large percentage of adults 
with at least a BS degree, higher median housing values and per capita incomes, and a 
greater percentage of households with incomes above than $100,000. Neighborhoods 
with higher SES scores in this area also have less racial or ethnic diversity. 

9

Jackson-Smith et al.: Urban Neighborhood Typology

Published by Digital Commons at Loyola Marymount University and Loyola Law School, 2016



  

 FACTOR 5: Low Density Settlement (=4.2; 8.9%). High scores on this factor describe 
neighborhoods that have large parcel and block sizes. These tend to be places that are less 
likely to be served by a public water supplier. A map of this factor suggests that it 
captures areas on the exurban fringes of the WRMA. 

 FACTOR 6: Population/Housing Age (=3.3; 7.1%). High scores on this factor describe 
neighborhoods that have a relatively young population, large household sizes, and a high 
percentage of housing built since 1990, as well as a high (recent) median year built. One 
interesting finding is that age of population and age of housing stock are positively 
correlated in Utah; younger populations tend to live in more recently-built housing. 

 FACTOR 7: Irrigated Agriculture and Greenness (=2.6; 5.6%). This factor describes 
neighborhoods that are relatively dominated by vegetation. High values are associated 
with relatively high NDVI scores, a greater fraction of land in irrigated agriculture and 
farmsteads, and smaller fraction of impervious surface area or commercial and industrial 
land uses.  

 FACTOR 8: Urban Parks and Open Space (=2.0; 4.3%). High scores on this factor 
describe neighborhoods that have a high percentage of land in urban open space and 
parks. 

 FACTOR 9: Mobile Homes (=1.6; 3.4%). The mobile homes factor describes 
neighborhoods with a relatively large percentage of housing units that are mobile homes, 
more recently-built housing stock, fewer four-way intersections and shorter median block 
lengths.   
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Table 1 Factor loadings for all 47 variables used in analysis (only loadings greater than +/- 0.3 

are shown; largest loading for each variable in bold). 
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Eigenvalue 8.4 4.9 4.7 4.2 4.2 3.3 2.6 2.0 1.6 

Percent of Variance Explained 17.8 10.4 10.0 9.0 8.9 7.1 5.6 4.3 3.4 

% Detached SF Homes 0.933                 

% Renter Occupied -0.896         

Diversity of Housing Types -0.888         

% Family Households 0.858         

Median # Rooms 0.842   0.375      

Log of Residential Housing Density -0.736      -0.437   

Mean Household Size 0.694     0.613    

Poverty Rate -0.611         

Log of Residential Pop Density -0.569      -0.502   

Employed Adults Per Household 0.557              

Average Summer Max. Temperature  -0.930               

Average Annual Temperature  -0.888        

Mean Elevation  0.797  0.331      

Average Annual Precipitation  0.784        

Average Summer Precipitation  0.748        

% Vacant Housing Units -0.447 0.549              

% in Residential Land Use    -0.834   -0.359         

Land Use Diversity Index   0.776       

 Overall Population Density -0.379  -0.768       

Intersection Density   -0.718  -0.319     

Overall Housing Density -0.579  -0.659       

% Land In Non-Irrigated Agriculture   0.483   0.326    

% Tree Cover  0.389 -0.460 0.384  -0.324    

% Adults with BS or Higher Education      0.818           

Median Housing Value    0.805      

Per Capita Income  0.319  0.744  -0.342    

% Households with Income > 100K 0.509   0.738      

Median Household Income  0.627   0.649      

% Non-Hispanic White 0.348     0.528   0.394     

Median Parcel Size     0.812         

Average Block Size     0.801     

Average Parcel Size     0.785     

Median Block Size     0.778    -0.344 

% Parcels Served By Public Supplier     -0.774     

% Over 65          -0.861       

Median Age      -0.826    

% Housing Built Since 1990   0.445   0.588   0.308 

Median Year Structure Built   0.390   0.537   0.489 

Greenness (NDVI)           0.620     

% Commercial/Industrial Land Uses -0.504  0.458    -0.582   

% Land In Irrigated Ag   0.365  0.424  0.568   

% Impervious Surface -0.422 -0.339 -0.355  -0.325  -0.513   

% Land In Farmsteads     0.319  0.500   

% Land In Open Space              0.944   

% Land In Urban Parks               0.936  

% Four-Way Intersections         -0.668 

% Mobile Homes       -0.302         0.624 
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Cluster Analysis 

We then used the factor scores from the top eight factors1 as input data in a hierarchical cluster 
analysis to group CBGs into ‘neighborhood types’. Cluster analysis uses measures of statistical 
similarity or distance to combine diverse units of analysis (census block groups in our case) into 
sets that are as homogenous as possible within each cluster, and as different as possible between 
the clusters (Anderberg 1973). Similarity is measured in terms of communalities that reflect 
statistical distance between individual members and the aggregated clusters (Kaufman and 
Rousseeuw 1990). We used the SPSS v21 CLUSTER procedure, a hierarchical clustering that 
utilizes a squared Euclidean distance measure based on within-group average linkages. The 
process initially treats each individual case as a separate cluster, then sequentially combines them 
into new clusters based on identifying the merger that produces a group with the smallest within-
group average distance scores across the 8 input factors. The process repeats iteratively until all 
cases are included in a single cluster. 

A variety of techniques can be used to determine the number of clusters that represent the 
optimal balance between the goals of within-cluster homogeneity, between-cluster heterogeneity, 
and overall parsimony (e.g., a tractable number of cluster groups). Before conducting the 
analysis, we set a maximum of 50 clusters and examined the merger dendogram and 
agglomeration schedule for the last 50 iterations of clustering to see where natural break points 
could be identified (e.g., where statistical indicators of distance suggested that relatively unlike 
clusters were being forced to merge at a given step). Based on an evaluation of the cluster 
distance scores and a visual assessment of the dendogram associated with the final stepwise 
clustering mergers, we identified several points where additional clustering would more 
dramatically reduce internal coherence within the clusters than previous mergers (Supplemental 
Figure A). Using this information, we selected two cutoffs for our analysis.  

First we determined a more thematically resolved set that included 32 individual clusters: 
we refer to these as Neighborhood Types (NTs). A coarser aggregation of 10 major 
neighborhood clusters was also defined, with each of the 32 NTs being nested within one of 
these 10 major clusters (hereafter Cluster Groups, or CGs). Two of these 10 major CGs and 14 of 
the NTs had ten or fewer CBG members and were dropped from further discussion since they 
represent outliers that did not fit with many other cases and forcing them into a cluster group or 
neighborhood type would reduce the internal coherence of those categories. Overall, nearly 98 
percent of CBGs were classified into a CG and an NT.  

  

                                                        
1 The ninth factor (mobile homes) was not used as input to the cluster analysis because it explained little variance 

and generated clusters that were somewhat less consistent with locally recognized neighborhood types. 
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RESULTS 

 

This analytic approach identified 8 major CGs and 18 associated NTs across the nearly 1,400 
census block groups with population densities over 100 persons per square mile in Northern 
Utah. Each CG (and NT) was given a specific descriptive name that reflects its defining 
attributes (Table 2).  

Major Cluster Groups 

The 8 major CGs each account for 6 to 20 percent of the population and 2 to 27 percent of the 
urban land area in the WRMA region. The defining attributes for each cluster group and 
neighborhood type (mean scores on the 8 factors; Figures 2a and 2b) and map of cluster results 
(Figure 3) show how the urban landscape can be differentiated into substantively meaningful 
subareas from the perspective of human/natural water systems. Based on our interactions with 
researches, urban planners, and elected officials since the development of the typology, the 
cluster groups appear to capture boundaries and regions that are consistent with many 
stakeholder recognized neighborhood boundaries within our larger metropolitan study area. 
Below we present more detailed descriptions and profiles of the major CGs and individual NTs. 

Housing Type and Land Use Patterns 

Different mixes of housing types and land uses serve to distinguish most of our neighborhood 
types. Mean factor scores on two key factors – Housing Mix-Suburban (Factor 1) and Land Use 
Diversity-Non-Residential (Factor 3) – are important drivers of classification into the cluster 
groups. Three major CGs – New Suburban, Suburban Working Class, and Moderate Middle – 
are notable for unusually high scores on the Housing Mix-Suburban factor. This reflects a greater 
predominance of single-family homes, less diversity in housing types, larger household sizes, 
lower overall housing density, and fewer renters. At the same time, two other CGs –Mixed 
Urban Residential and Urban Scene –have unusually low scores on that same factor. These 
places have more non-family housing, greater housing diversity and density, and smaller housing 
units.  

Two CGs – Expanding City and Urban Scene – are also distinguished for having high 
scores on the Land Use Diversity - Non-Residential factor, which captures situations with greater 
land use diversity and lower proportions of residential land use. Interestingly, these CGs appear 
at both extremes of urban development. The first consists of three NTs at the urban fringe that all 
have significant areas of agricultural or undeveloped land uses. The second reflects three NTs 
that are located in highly urbanized downtown areas with a greater amount of commercial and 
industrial land uses. Finally, three major CGs – Suburban Working Class, Moderate Middle, and 
Mixed Urban Residential neighborhoods – share notably low scores on the Land Use Diversity-
Non-Residential factor. In these neighborhoods, one finds less land use diversity, a greater share 
of land used for housing, and higher population densities  
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Table 2 Major urban cluster groups and neighborhood types in WRMA. 

CLUSTER GROUP (CG) 

Description 
Neighborhood Type (NT) N 

CBGs 

Percent 

Pop. 

Percent 

Area1 

     

EXPANDING CITY 
 

168 14.5% 27.2% 

High land use diversity, low overall 

residential land use, large lots, 

lower elevation; irrigated farms 

Mature Homesteaders 91 7.5% 13.6% 

Young Homesteaders 60 5.8% 7.4% 

Green Acres 17 1.3% 6.2% 

    

NEW SUBURBAN 
 

228 20.4% 19.8% 

Single-family homes, low levels of 

housing diversity, newly built 

houses, family households, younger 

populations, smaller lot sizes 

Starter Suburbs 124 10.6% 6.7% 

Away-from-it-all Suburbs 47 5.1% 7.4% 

Suburban Elite 47 4.1% 3.5% 

Other 10 0.5% 2.2% 

SUBURBAN WORKING CLASS 
 

100 7.5% 9.1% 

Single-family homes, family 

households, younger, low green 

land cover, moderate to low SES. 

Working Class Suburban 99 7.5% 8.4% 

Other 1 0.0% 0.8% 

MODERATE MIDDLE 
 

224 14.4% 17.0% 

Residential land use, family 

households, older housing and 

populations. 

Working Class Trad. 112 7.2% 5.8% 

Middle Class w/ a View 106 6.8% 7.6% 

Other 6 0.4% 3.6% 

TRADITIONAL RESIDENTIAL 
 

281 17.4% 11.1% 

Older housing stock, smaller lot 

sizes, lower elevations. 

Original Residential 131 7.4% 3.7% 

Traditional Upper Crust 146 9.8% 5.7% 

Other 4 0.2% 1.7% 

PARKSIDE RESIDENTIAL 
 

87 5.7% 3.0% 

Predominantly residential, but 

contains significant urban park and 

open space areas. 

Neighborhood Park 70 4.7% 2.5% 

City Park 12 0.6% 0.4% 

Other 5 0.4% 0.2% 

MIXED URBAN RESIDENTIAL 
 

137 9.2% 1.9% 

Dominated by residential land use, 

but non-suburban character, diverse 

housing mix, non-family 

households, young. 

Working Class Mixed 70 5.2% 1.2% 

Wasatch Bohemians 62 3.7% 0.6% 

Other 5 0.3% 0.1% 

URBAN SCENE 
 

127 8.7% 7.0% 

Diverse land use, non-residential 

land use, mixed housing, low green 

landcover. 

Downtown Residential 75 5.1% 2.3% 

Downtown Industrial 36 2.5% 3.7% 

Downtown Commercial 15 1.0% 0.9% 

Other 1 0.1% 0.1% 

     

Unclassified CBGs  32 2.1% 3.9% 

     

TOTAL  1,384 100.0% 100.0% 
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Figure 2a Mean factor scores by cluster groups and neighborhood types.  
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Figure 2b Mean factor scores by cluster groups and neighborhood types (continued).
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Greenness and Urban Open Space 

Combinations of two other factors reflect the types of land cover and amount of ‘greenness’ 
found within each census block group. Two major CGs are uniquely defined by their relatively 
high (Expanding City) or low (Urban Scene) scores on Irrigated Agriculture/Greenness (Factor 
7). In the first instance, the cluster group includes CBGs located in transitioning areas at the 
urban fringe with significant amounts of remaining agricultural land use and exurban housing 
development. In the latter case, the remaining land cover has a much lower NDVI greenness 
score. Interestingly, among the two ‘suburban’ CGs, the Suburban Working Class cluster group 
is distinctive for having relatively low greenness. 

A separate factor – Urban Parks and Open Space (Factor 8) – captures the percent of land 
area in a CBG that is in urban parks and open spaces. One major CG – Parkside Residential – is 
characterized primarily based on this factor. Both individual NTs in this group have scores on the 
urban open space factor that are 2 to 5 standard deviations above the average. 

Socioeconomic Status and Age 

Three major CGs are noted for having older than average populations and older housing stock: 
Moderate Middle, Traditional Residential, and Parkside Residential. By contrast, three CGs have 
notably younger housing stock and residents: New Suburban, Suburban Working Class, and 
Mixed Urban Residential.  

Aside from the Suburban Working Class and Moderate Middle groups, the 
Socioeconomic Status (SES; Factor 4) scores did not define many major CGs, but rather SES 
characteristics serve to distinguish individual neighborhood types within several of the major 
cluster groups. For example, within each of the New Suburban and Traditional Residential CGs, 
a single NT (Suburban Elite and Traditional Upper Crust, respectively) present the two highest 
SES clusters in the WRMA. However, the other NTs in their CGs did not have notably high or 
low scores on the SES factor. Similarly, the four NTs with the lowest SES scores (Working Class 
Traditional, Working Class Mixed, Suburban Working Class, and Downtown Industrial) are each 
found in different cluster groups. 

Elevation and Lot Size 

Mean scores for the Microclimate (Factor 2) and Low Density Settlement (Factor 5) factors 
illustrate that two CGs (Expanding City and Urban Scene) tend to be found at lower elevations in 
valley floors with higher temperatures and lower rainfall, while one CG tends to be located at 
higher elevations with cooler and wetter climates (Moderate Middle). Neighborhoods in the 
Expanding City CG (particularly the Green Acres NT) are also defined by having larger than 
average lot sizes and lower settlement densities.  
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Figure 3 Distribution of Neighborhood Types (NTs) across WRMA. Includes all census block groups 

with population density over 100 persons/sq.mile. See Supplemental Figure B for a more fine-grained 

illustration of the distribution of neighborhood types in a single county. See Supplemental Figures C and 

D for illustrations of the Cluster Group (CG) distributions.   
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Uses of the Neighborhood Typology  

The various combinations of distinctively high and low scores on the 8 factors used in our cluster 
analysis produced eight major cluster groups (CGs) that reflect unique combinations of urban 
characteristics on the core analytical factors. Moreover, within each major CG, individual 
neighborhood types represent distinctive combinations of unusually high or low scores on 
additional factors. As part of a larger study of urban water systems, the typology has been used 
to provide a conceptually and theoretically grounded basis for organizing our social and 
biophysical data collection and structuring our analysis of the impacts of natural, built, and social 
structures on urban water system processes and outcomes (iUTAH 2016).  

For example, we have used the typology as an analytical tool for studying geographic 
patterns of water behaviors in urban water systems. Initially, parcel-scale water use data for a 
major metropolitan utility was used to assess the links between parcel attributes and indoor and 
outdoor water use rates. Indicators of neighborhood-level attributes from the typology were then 
included in a multi-level model. Controlling for parcel-scale attributes, results suggest that 
neighborhoods with high scores on the ‘suburbanity’ factor had markedly higher per parcel water 
use (Stoker et al. In Review). 

A second example reflects results from an extensive survey of residential household 
water attitudes and behaviors conducted in summer 2014. Similar to Grove et al. (2015) and 
Zhou et al. (2008), we used the typology to stratify our sampling locations. Specifically, the 
survey was administered in 23 neighborhoods (CBGs) in 3 counties across the WRMA that were 
selected to include good exemplars of each of the major neighborhood types. Households were 
then randomly selected within each study neighborhood. A total of 2,343 households completed 
the survey, a response rate of over 62%, and respondents had characteristics that were consistent 
with attributes reported in recent census data (Jackson-Smith et al. In Press).  

Selected summary statistics from the survey are broken out by Cluster Group type in 
Table 3. Bivariate tests demonstrate strong and statistically significant differences between CGs 
in how residents think about and make decisions regarding a range of landscaping and lawn 
watering practices. Residents in neighborhoods at the urban/rural fringe (Expanding City CGs) 
were least likely to have reduced indoor or outdoor water use in recent years, least concerned 
about water shortages, and least likely to agree that residential lawns use too much water.  

Residents in the most urbanized neighborhood types (Mixed Urban Residential and 
Urban Scene CGs) were much less likely to have a lawn (at all) or to plant low water use plants 
on their properties, often had no responsibility for landscaping or irrigation decisions, but were 
more likely to say that residential lawns use too much water and that water conservation 
considerations are important in their water behaviors. Residents in the Traditional Residential 
Core and Parkside Residential neighborhoods were much more likely to have low water use 
plants, were more concerned about water shortages and deteriorating infrastructure, and reported 
some of the highest reductions in water use over the last 5 years. Finally, residents in New 
Suburban neighborhoods were least likely to say that water conservation was important in their 
landscaping and watering decisions, watered more days per week on average, but were among 
the most likely to use indoor water conservation practices. 

19

Jackson-Smith et al.: Urban Neighborhood Typology

Published by Digital Commons at Loyola Marymount University and Loyola Law School, 2016



  

Table 3 Attitudes, beliefs, and behaviors of adults living in different neighborhood types. 
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Significance tests 

           
 

percent of respondents Chi-Sq. 

 Has lawn on property 92.0 94.5 99.0 93.4 94.4 100 67.5 75.9 0.000 
 Has low-water use plants 32.9 31.4 20.8 34.0 46.4 50.0 27.9 30.1 0.000 
 Household responsible for:           

Landscaping decisions 89.6 90.4 88.3 89.8 92.3 97.0 53.8 71.0 0.000 
 Watering lawn 84.0 94.0 97.7 93.7 95.0 98.1 52.4 65.4 0.000 
 Household decreased water 

use in last 5 years 
          Indoors 14.8 17.2 22.5 25.1 24.6 22.0 21.7 19.6 0.032 

 Outdoors 12.5 14.1 15.3 18.4 24.3 28.7 27.3 21.6 0.002 
 

           

 
mean score of respondents 

ANOVA 

F-test Pairwise Contrasts (LSD) 

Importance of minimizing 
water use in landscaping i 

3.23 3.18 3.82 3.37 3.53 3.53 3.39 3.60 0.000 
a<c; a<e; a<f; a<h; b<c; b<e; b<f; 

b<h; c>d; c>g; d<h 

Mean days per week waters 
lawn in July 

3.36 4.05 3.52 3.05 3.39 3.42 2.90 3.05 0.000 
a<b; a>d; a>g; b>c; b>d; b>e; b>f; 

b>g; b>h; c>d; c>g; c>h; d<e; d<f; 

e>g; f>g; f>h 

Index for use of indoor water 
saving practices ii 

18.8 19.5 18.8 18.4 19.7 19.2 17.9 17.5 0.000 
a<b; a<e; a>g; a>h; b>d; b>g; b>h; 

c<e; c>g; c>h; d<e; d<f; d>h; e>g; 

e>h 

Concern about issues i 
          

Water shortages 3.63 3.68 3.96 3.64 4.03 4.14 3.68 3.85 0.000 
a<c; a<e; a<f; a<h; b<c; b<e; b<f; 

b<h; c>d; c>g; d<e; d<f; d<h; e>g; 

f>g; f>h 

High cost of water 3.83 4.20 4.35 3.84 3.89 4.14 3.73 3.95 0.000 
a<b; a<c; a<f; b>d; b>e; b>g; b>h; 

c>d; c>e; c>g; c>h; d<f; f>g; g<h 

Agrees that residential lawns 
use too much water i 

3.41 3.68 3.56 3.61 4.03 3.93 4.00 3.98 0.000 
a<b; a<d; a<e; a<f; a<g; a<h; b<e; 

b<f; b<g; b<h; c<e; c<f; c<g; c<h; 

d<e; d<f; d<g; d<h 

NOTES: i = scale from 1 to 5; ii = scale from 1 to 25; highest and lowest values on each row are bolded. 
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DISCUSSION AND CONCLUSIONS 

Studies of urban ecological systems require a sophisticated understanding of the complex 
arrangements of social, built, and biophysical components that comprise the urban landscape 
(Pickett and Grove 2009; Grove et al. 2015). A large literature has identified a number of 
characteristics of urban areas that are linked to water demand, water quality, and ecohydrology 
outcomes. Our work demonstrates that publically available data for 47 key variables at the 
neighborhood scale (operationalized as the census block group) can be used to identify a set of 
underlying dimensions (or statistical ‘factors’) that make urban neighborhoods distinctive in a 
particular region. Moreover, indicators for these dimensions can be used to create a typology of 
neighborhoods where each type (or ‘cluster group’) has distinguishing characteristics that are 
expected to be linked to a range of urban water system dynamics. We have demonstrated that 
neighborhood types are systematically linked to variation in attitudes towards water conservation 
and self-reported water use behaviors in this region. Ongoing research by members of our larger 
research team is exploring whether the hypothesized relationships between the typology classes 
and other water system outcomes (water quality, water budgets, and urban ecohydrology) are 
borne out in the field. 

Our research is methodologically similar to other research that developed urban 
neighborhood typologies (Chow 1998; Shay and Khattak 2007), but is the first to develop a 
typology that fully integrates spatially explicit measures of physical, built, and social structures 
which have been linked to urban water system dynamics. The typology is built on socially-
defined small area boundaries (census block groups) that more closely capture important 
household, neighborhood, and city governance system processes than more biophysically-
defined units of analysis (e.g., subwatersheds derived from digital elevation maps). Our 
exclusive use of publicly available data sources overcomes some of the constraints associated 
with previous work that relied on commercially available demographic segmentation data (Grove 
et al. 2006a). 

While data presented above primarily focuses on links between urban neighborhood 
types and water use, our urban typology provides an empirically grounded basis for designing 
field research projects to explore linkages between urban forms and a range of hydrologic 
outcomes and ecosystem services that are driven by flows and fluxes of water. We are exploring 
several key questions in our larger ongoing interdisciplinary research, including: How does 
urban form affect water use patterns and how can we design growth policies and plans to 
encourage more neighborhoods that promote long-term water sustainability? In what ways do 
patterns of infiltration, evapotranspiration, and stormwater runoff differ between neighborhoods? 
What aspects of urban neighborhoods are associated with various water quality outcomes and 
how might urban growth management tools be used to mitigate future negative impacts? How do 
neighborhood characteristics influence urban ecohydrology (particularly vegetation types, 
density, and biodiversity) and how can this knowledge be better incorporated into integrated 
urban water system modeling? Addressing these questions requires a systematic and theoretically 
grounded approach to classifying the urban landscape, and our urban neighborhood typology 
provides a basis for making these distinctions. 

All of the variables used in our analysis were chosen because they can be easily obtained 
across the U.S., making our methods generalizable to other urban areas. However, since the 
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specific cluster groups and neighborhood types were derived through an inductive statistical 
process using data from a particular region, we would anticipate that other metropolitan regions 
might identify somewhat different configurations of neighborhood types that reflect the local 
distribution of the underlying factors in their region. Additionally, the specific links between 
neighborhood characteristics and water use patterns presented above may well be different in 
other regions with different climate and built water system characteristics. Extending the spatial 
footprint of such a typology to include multiple metropolitan regions would reveal how 
commonalities and differences across neighborhood types affect urban water systems and help 
advance interdisciplinary urban water science.  

There are a number of limitations of our approach that should be acknowledged. First, 
our methodology is dependent on a particular operationalization of the idea of ‘neighborhood’ 
(census block groups), and our results should only be generalized to this scale of analysis (Wong 
2009). We also recognize that the statistical methods we utilized may require technical expertise 
that is not common among some non-academic organizations (public utilities, urban planners, 
etc.), which might limit the widespread use of our approach to classifying urban landscapes. 
Finally, there are a number of variables that would have been theoretically interesting to include, 
but were not readily available across our study area. Examples include soil maps to capture 
variation in the permeability and infiltration capacity of soils; the presence or absence of sewer 
service lines (versus septic tanks) and measures of the presence of different levels of stormwater 
management infrastructure. Future efforts to replicate versions of the typology in other regions 
are encouraged to take advantage of locally available datasets that capture these additional 
attributes. 
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