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Abstract—Based on analysis of cubic spline interpolation, 
the differentiation formulas of the cubic spline interpolation 
on the three boundary conditions are put up forward in this 
paper. At last, this calculation method is illustrated through 
an example. The numerical results show that the spline 
numerical differentiations are quite effective for estimating 
first and higher derivatives of equally and unequally spaced 
data. The formulas based on cubic spline interpolation 
solving numerical integral of discrete function are deduced. 
The degree of integral formula is n=3.The formulas has high 
accuracy. At last, these calculation methods are illustrated 
through examples. 
 
Index Terms—cubic spline function, numerical 
differentiation, numerical integral, first derivative, second 
derivative 
 

I.  INTRODUCTION 

Splines and particularly cubic splines are very popular 
models for interpolation. Historically, a ``spline'' was a 
common drafting tool, a flexible rod, that was used to 
help draw smooth curves connecting widely spaced 
points. The cubic spline curve accomplishes the same 
result for an interpolation problem. The spline technology 
has applications in CAD, CAM, and computer graphics 
systems. We describe cubic splines in this note and 
discuss their use in interpolation and curve fitting.. The 
cubic spline interpolation is a piecewise continuous curve, 
passing through each of the values in the table. There is a 
separate cubic polynomial for each interval, each with its 
own coefficients. The first derivative and the second 
derivative of a cubic spline are continuous. For the 
approximation of gradients from data values at vertices of 
a uniform grid, P. Sablonnière[1] compare two methods 
based on cubic spline interpolation with a classical 
method based on finite differences. For univariate cubic 
splines, p. Sablonnière use the so-called de Boor's Not a 
Knot property and a new method giving pretty good 
slopes. J. S. Behar, S. J. Estrada and  M. V. Hernández [2] 
have developed a G 2-continuous cubic A-spline scheme 
smoothing the polygon defined by the line segments 
joining consecutive data points, such that the spline curve 

lies completely on the same side of the boundary polygon 
as the data. The proposed A-spline scheme provides an 
efficient method for generating a smooth robot's path that 
avoids corners or polygonal objects for a given planned 
path, for designing a smooth curve on a polygonal piece 
of material, etc. Petrinovic, Davor [3] presents two 
formulations of causal cubic splines with equidistant 
knots. Both are based on a causal direct B-spline filter 
with parallel or cascade implementation. In either 
implementation, the causal part of the impulse response is 
realized with an efficient infinite-impulse-response (IIR) 
structure, while only the anticausal part is approximated 
with a finite-order finite-impulse-response (FIR) filter. 

Formulas for numerical derivatives are important in 
developing algorithms for solving boundary value 
problems for ordinary differential equations and partial 
differential equations. Numerical differentiation is a 
technique of numerical analysis to produce an estimate of 
the derivative of a mathematical function or function 
subroutine using values from the function and perhaps 
other knowledge about the function. Numerical 
differentiation is the process of finding the numerical 
value of a derivative of a given function at a given point. 
In general, numerical differentiation is more difficult than 
numerical integration. This is because while numerical 
integration requires only good continuity properties of the 
function being integrated, numerical differentiation 
requires more complicated properties such as Lipschitz 
classes. The differentiation formulas of the cubic spline 
interpolation on the three boundary conditions are put up 
forward in this paper. 

Numerical integration is concerned with developing 
algorithms to approximate the integral of a function f(x). 
The most commonly used algorithms are Newton-Cotes 
formulas, Romberg's method, Gaussian quadrature, and 
to lesser extents Hermite's formulas and certain adaptive 
techniques. We got interpolatory quadrature formulas 
with equidistance knots using three types of cubic spline 
for oscillating integral, estimated the error, and a 
numerical example was given to illustrate the high 
accuracy of our method as wel1. 
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II.  CUBIC SPLINE INTERPOLATION 

Suppose that  are  points, where 
. The function  is called a 

cubic spline if there exit N  cubic polynomials and 
satisfy the properties: 
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Each cubic polynomial has four unknown constants, 

hence there are  coefficients to be determined. The 
data points supply  conditions, and properties II, III 
and IV each supply 

N4
N 1

1N  conditions. Hence, 
 conditions are specified. This 

leaves us two additional degrees of freedom. The choice 
of these two extra conditions determines the type of the 
cubic spline obtained.  
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One of the following sets of boundary conditions is 
satisfied [4][5][6][7]: 

(i) Clamped spline: ,  '
00 )(' yxS  ')(' nn yxS 

(ii) Curvature-adjusted cubic spline: , 
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For the clamped boundary conditions, we use 

. Specify , , 
we obtain linear equations involving the 
coefficients . 
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This is a tridiagonal linear system. The 

are obtain by Crout 
Factorization algorithm. The result is the 
following expression for the cubic 
function  on . 
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where , , 
 and . 

x
2
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III. DIFFERENTIATION OF THE CUBIC SPLINE 
INTERPOLATION 

A. Finite difference formulae 
The simplest method is to use finite difference 

approximations. A simple two-point estimation is to 
compute the slope of a nearby secant line through the 
points (x,f(x)) and (x+h,f(x+h)). Choosing a small number 
h, h represents a small change in x, and it can be either 
positive or negative. The slope of this line is 

h
h)xf (  xf )(

 

This expression is Newton's difference quotient. 
The slope of this secant line differs from the slope of 

the tangent line by an amount that is approximately 
proportional to h. As h approaches zero, the slope of the 
secant line approaches the slope of the tangent line. 
Therefore, the true derivative of f at x is the limit of the 
value of the difference quotient as the secant lines get 
closer and closer to being a tangent line: 

h
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Since immediately substituting 0 for h results in 
division by zero, calculating the derivative directly can be 
unintuitive. 

A simple three-point estimation is to compute the 
slope of a nearby secant line through the points (x-h,f(x-h)) 
and (x+h,f(x+h)). The slope of this line is 

h
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B. Differentlation of cubic spline 
If the nodes are equally spaced, that is, when 

hxx  01 x2, , the formulas (1) can be 
expressed as 
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From Eq.(2), 
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Substitution of , ,  in 
equation (3) produces the solution 
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C. Clamped spline 

The  and  are known. '
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Substituting  into equation (5),(6) and (7) 
respectively, the solutions are 
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The solution of differentiation of the Clamped Spline 
is shown in table 1. 
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D. Curvature-adjusted cubic spline 

The  and  are known. "
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The values , ,  are substituted in (6), the 
solution is 
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The solution of differentiation of the Curvature-
adjusted cubic spline is shown in table 2. 

TABLE II.   
T THE SOLUTION OF DIFFERENTIATION OF THE CURVATURE-ADJUSTED 

CUBIC SPLINE 
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The values , ,  are substituted in (5), (6) 
and (7) respectively, the solution is 
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The solution of differentiation of the periodic spline is 
shown in table 3. 
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TABLE III.   
THE SOLUTION OF DIFFERENTIATION OF THE PERIODIC SPLINE 
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IV.  DIFFERENTIATION EXAMPLES 

Example 1: Clamped spline: Find differentlation for 
the points (0,1), (1,2), (2,3), where 0)0(' y  and 
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The cubic spline is shown in figure 1. 
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Fig. 1: The cubic spline of Example 1 

Example 2: Curvature-adjusted cubic spline: Find 
differentlation for the points (0,1), (1,0), (2,-5), where 
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The solution is , ,  and 
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The cubic spline is shown in figure 2. 
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Fig. 2: The cubic spline of Example 2 

Example 3: Periodic spline: Find differentlation for 
the points (0,2), (1,3), (2,2). 

The solution is ,  and 
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The cubic spline is shown in figure 3. 

-2 -1 0 1 2 3 4
2

2.2

2.4

2.6

2.8

3

 
Fig. 3: The cubic spline of Example3 

V.  NUMERICAL INTEGRAL OF THE CUBIC SPLINE 
INTERPOLATION 

A. Quadrature rules based on interpolating functions 
There are several reasons for carrying out numerical 

integration. The integrand f(x) may be known only at 
certain points, such as obtained by sampling. Some 
embedded systems and other computer applications may 
need numerical integration for this reason. 
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A large class of quadrature rules can be derived by 
constructing interpolating functions which are easy to 
integrate. Typically these interpolating functions are 
polynomials. 

The simplest method of this type is to let the 
interpolating function be a constant function (a 
polynomial of degree zero) which passes through the 
point ((a+b)/2, f((a+b)/2)). This is called the midpoint 
rule or rectangle rule. 
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Therefore, the degree of formula (19) is 3n . 

C. Curvature-adjusted cubic spline 

When ，  are known, 
we obtain linear equations involving the 
coefficients . 
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From equations (20), we can get , the value 

 and  are substituted into equations (19), then 
obtain the integral. 
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D. Periodic spline 
The condition of periodic spline are 

,  and . 
Then numerical integral formula is 
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It is compound trapezoid formula. 

VI NUMERICAL INTEGRAL EXAMPLES 

Example 4: Find integral for the points (-1,14), (0,-3), 
(1,8), (2,24), (3,34), (4,32), and (5,16), where 
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The cubic spline is shown in figure 4. 

2042 JOURNAL OF COMPUTERS, VOL. 6, NO. 10, OCTOBER 2011

© 2011 ACADEMY PUBLISHER



-1 0 1 2 3 4 5
-5

0

5

10

15

20

25

30

35

 
Fig. 4: The cubic spline of Example 4 

Example 5: Find the integral for the points (0,0), 
(1,1), (2,9), (3,34), and (4,84), where 0)0(" f  and 

. 36)4(" f
Using equation (20), we obtain 
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Fig. 5: The cubic spline of Example 5 

Example 6: Find the integral for the points (0,4), 
(1,5), (2,6), (3,5), and (4,4). 

Using equation (21), the numerical integral 
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The cubic spline is shown in figure 6. 
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Fig. 6: The cubic spline of Example 5 

VII.  CONCLUSIONS 

Cubic splines are popular because they are easy to 
implement and produce a curve that appears to be 
seamless. As we have seen, a straight polynomial 
interpolation of evenly spaced data tends to build in 
distortions near the edges of the table. Cubic splines 
avoid this problem, but they are only piecewise 
continuous, meaning that a sufficiently high derivative 
(third) is discontinuous. So if the application is sensitive 
to the smoothness of derivatives higher than second, 
cubic splines may not be the best choice. The formulas 
solving numerical differential and integral of discrete 
function are deduced in this paper. By numerical 
simulation the practicability and effectiveness are verified. 
The three-point spline numerical differentiation formulas 
are given in this paper. Similarly, the other points spline 
numerical differentiation formulas can also computed. 
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