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Differentiation and Passivity for Control of
Brayton–Moser Systems

Krishna Chaitanya Kosaraju , Michele Cucuzzella , Jacquelien M. A. Scherpen ,
and Ramkrishna Pasumarthy

Abstract—This article deals with a class of resistive–
inductive–capacitive (RLC) circuits and switched RLC
(s–RLC) circuits modeled in the Brayton–Moser framework.
For this class of systems, new passivity properties using a
Krasovskii-type Lyapunov function as storage function are
presented, where the supply rate is function of the system
states, inputs, and their first time derivatives. Moreover, af-
ter showing the integrability property of the port-variables,
two simple control methodologies called output shaping
and input shaping are proposed for regulating the voltage
in RLC and s–RLC circuits. Global asymptotic stability is
theoretically proved for both the proposed control method-
ologies. Moreover, robustness with respect to load uncer-
tainty is ensured by the input shaping methodology. The
applicability of the proposed methodologies is illustrated
by designing voltage controllers for dc–dc converters and
dc networks.

Index Terms—Brayton–Moser (BM) systems, dc net-
works, passivity-based control (PBC), power converters,
resistive–inductive–capacitive (RLC) circuits.

I. INTRODUCTION

I
N THE recent years, passivity theory has gained renewed

attention because of its advantages and practicality in mod-

eling and control of multidomain dynamical systems [1], [2].

In general, a system is passive if there exists a (bounded from

below) storage function S : R
n → R+ satisfying

S(x(t))− S(x(0)) ≤
∫ t

0

u⊤ydt (1)
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where x ∈ R
n is the system state, u, y ∈ R

m are the input and

the output, also called port-variables, and the product u⊤y is

commonly known as supply rate [3], [4]. Naturally, one can

interpret the storage function as the total system energy and the

supply rate as the power supplied to the system. Consequently,

inequality (1) implies that the newly stored energy is never

greater than the supplied one.

In order to analyze the passivity properties of a general

nonlinear system, it is usually required to be artful in designing

the storage function. For this reason, it is helpful to recast the

system dynamics into a known framework, such as the port-

Hamiltonian (pH) one [5], where the storage function, also called

Hamiltonian function, generally depends on the system energy.

Another well-known framework that has been extensively ex-

plored for modeling of nonlinear resistive–inductive–capacitive

(RLC) circuits is the Brayton–Moser (BM) framework [6], [7],

where the storage function relies on the system power (see [8]

for further details on geometric modeling of nonlinear RLC

circuits).

Nowadays, power converters play a prominent role in smart

grids. Conventional power converters consist of (passive) sub-

systems interconnected through switches. In this article, we

consider a large class of switched RLC (s–RLC) circuits, which

models the majority of the existing power converters (e.g., buck,

boost, buck–boost, and Cúk). Although the analysis of s–RLC

circuits has received a significant amount of attention (see, for

instance, [9]–[12] and the references therein), we notice that

results based on the passivity properties of the open-loop system

are still lacking. On the other hand, a significant number of

results have been published relying on passivity-based control

(PBC) [13]–[19], where the main idea is generally to passify

the controlled system such that the closed-loop storage function

has a minimum at the desired operating point [2]. However, the

passivity properties and the control techniques developed for pH

systems cannot be straightforwardly applied to s–RLC networks.

Alternatively, in [20], the authors formalize the use of the BM

framework for analyzing s–RLC circuits and also provide tuning

rules based on the well-known BM theorems.

A. Motivation and Main Contributions

Lyapunov theory is fundamental in systems theory. In order to

study the stability of a dynamical system, one generally needs to

find a suitable Lyapunov function. Krasovskii proposed a simple

and elegant candidate Lyapunov function, where one needs to

compute some pointwise conditions for sufficiency of Lyapunov

stability [21]. In a similar manner, passivity theory hinges on

0018-9286 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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finding candidate storage functions satisfying (1). However, the

candidate Lyapunov function proposed by Krasovskii is not

well explored as a storage function. In [22]–[24], the authors

presented a preliminary result on the passivity property for a

class of RLC circuits using such a storage function, named

Krasovskii storage function, i.e.,

S(x, ẋ) =
1

2
ẋ⊤M(x)ẋ (2)

where M(x) > 0 ∈ R
n×n. By using such a storage function, in

this article, we present completely new passivity properties for

a class of s–RLC circuits and for a class of RLC circuits wider

than the one considered in [22]–[24].1

The output port-variables associated with the above storage

function have integrability properties. It is well established that

the integrated output port-variable can be used to shape the

closed-loop storage function. This leads to the development of a

new control technique, named output shaping. More precisely,

the above storage function allows to establish a passivity prop-

erty with supply rate depending on the system state x, input

u, and also their first time derivatives ẋ, u̇. This enables us to

develop a second control technique that we call input shaping,

which is radically new in PBC methodology. More precisely, we

use the integrated input port-variable to shape the closed-loop

storage function. Furthermore, a Krasovskii storage function has

the following advantages.

1) Since the supply rate is a function of the first time deriva-

tive of the system state and input, the so-called dissipation

obstacle2 problem [2] is avoided.

2) There are no parametric constraints that usually appear in

BM framework (see, for instance, [25, Theorem 1]).

3) The port-variables are integrable.

In the following, we list the main contributions of this article.

1) The use of a storage function similar to (2) for s–RLC

circuits leads to a new passive map useful for control

purposes.

2) We use the integrated port-variables to shape the closed-

loop storage function and propose two simple control

techniques: Output shaping and input shaping. Both the

techniques are used for regulating the voltage in RLC and

s–RLC circuits.

3) The input shaping technique is robust with respect to load

uncertainty and requires less assumptions on the system

parameters/structure than the output shaping one.

The proposed techniques are finally illustrated with applica-

tion to buck, boost, buck–boost, Cúk dc–dc converters, and dc

networks, which are attracting growing interest and receiving

much research attention [26]–[31]. Simulation results show

excellent performance.

1Note that in [22], the authors have only explored as a conclusive remark
(see [22, Section V]) the idea of using (2) as storage function for a particular
electrical example. Moreover, in [23] and [24], only a preliminary result on the
passivity property of only RLC circuits is established under some assumptions
that are more restrictive than the ones in this article.

2For a system with nonzero supply rate at the desired operating point, the con-
troller has to provide unbounded energy to stabilize the system. In the literature,
this is usually referred to as dissipation obstacle or pervasive dissipation.

Note that the BM framework adopted in this article to model

RLC and s–RLC circuits represents a larger class of nonlin-

ear gradient systems [32], [33]. For instance, in [1], the BM

equations are shown to be applicable to a wide class of nonlin-

ear physical systems, including lumped-parameter mechanical,

fluid, thermal, and electromechanical systems, electrical power

converters, mechanical systems with impacts, and distributed-

parameter systems [34] (see also [9], [19], [35]–[37] for further

applications). Moreover, a practical advantage of using the BM

framework is that the system variables are directly expressed in

terms of easily measurable physical quantities, such as currents,

voltages, velocities, forces, volume flows, pressures, or tem-

peratures. On the other hand, the Lagrangian and Hamiltonian

formulations normally involve generalized displacement and

momenta, which in many cases cannot be measured directly.

Furthermore, s–RLC circuits do not generally inherit a stan-

dard pH structure because the interconnection matrix is often a

function of both the system state and control input, rather than

only the state [10]. As a consequence, the existing passivity-

based techniques may not be useful for the analysis and control

purpose.

B. Outline

This article is outlined as follows. In Section II, we recall the

BM representation of RLC and s–RLC circuits and formulate

the control objective after introducing the required assump-

tions. In Section III, we present the newly established passivity

property for the RLC and s–RLC circuits. Then, using these

properties, we propose two novel control techniques: Output

shaping and input shaping. In Section IV and Appendix, we

illustrate the proposed techniques on buck, boost, buck–boost,

Cúk dc–dc converters, and dc networks with buck and boost

converters interconnected through resistive–inductive lines. Fi-

nally, we conclude and present some possible future directions in

Section V.

C. Notation

The set of real numbers is denoted by R. The set of positive

real numbers is denoted by R+. Let x ∈ R
n and y ∈ R

m. Given

a mapping f : R
n × R

m → R, the symbols ∇xf(x, y) and

∇yf(x, y) denote the partial derivative of f(x, y) with respect

to x and y, respectively. Let K ∈ R
n×n, then K > 0 and K ≥ 0

denote that K is symmetric positive definite and symmetric pos-

itive semidefinite, respectively. Assume K > 0, then ||x||K :=√
x⊤Kx and ||K||s denotes the spectral norm of K. Let Q1 and

Q2 denote square matrices of order m and n, respectively. Then

diag{Q1, Q2} denotes a block-diagonal matrix of order m+ n
with block entries Q1 and Q2. Given p ∈ R

n and q ∈ R
n, “◦”

denotes the so-called Hadamard product (also known as Schur

product), i.e., (p ◦ q) ∈ R
n with (p ◦ q)i := piqi, i = 1, . . . , n.

Moreover, [p] := diag{p1, . . . , pn}.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we briefly outline the BM formulation of RLC

circuits and extend it to the case including an ideal switching

element.

Authorized licensed use limited to: University of Groningen. Downloaded on October 19,2021 at 09:26:24 UTC from IEEE Xplore.  Restrictions apply. 
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A. Nonswitched Electrical Circuits

Consider the class of topologically complete RLC cir-

cuits [20] with σ inductors, ρ capacitors, and m (current-

controlled) voltage sources us ∈ R
m connected in series with

inductors. In [6] and[7], Brayton and Moser show that the

dynamics3 of this class of systems can be represented as follows:

−Lİ = ∇IP (I, V )−Bus

CV̇ = ∇V P (I, V )
(3)

where L ∈ R
σ×σ and C ∈ R

ρ×ρ are the inductance and capac-

itance matrices, respectively. The state variables I ∈ R
σ and

V ∈ R
ρ denote the currents through theσ inductors and the volt-

ages across theρ capacitors, respectively. The matrixB ∈ R
σ×m

is the input matrix with full column rank and P : R
σ×ρ → R

represents the so-called mixed-potential function, given by

P (I, V ) = I⊤ΓV + PR(I)− PG(V ) (4)

where Γ ∈ R
σ×ρ captures the power circulating across the dy-

namic elements. The resistive content PR : R
σ → R and the

resistive co-content PG : R
ρ → R capture the power dissipated

in the resistors connected in series to the inductors and in parallel

to the capacitors, respectively.

Remark 1 (Current sources): For the sake of simplicity, in

(3), we have not included current sources. However, the results

presented in this note can also be developed for current sources

in a straightforward manner.

According to the BM formulation, system (3) can compactly

be written as follows:

Qẋ = ∇xP (x) + B̃us (5)

where x = (I⊤, V ⊤)⊤, Q = diag{−L,C}, and B̃ =
(−B⊤ O)⊤, O ∈ R

m×ρ being a zero-matrix. To permit

the controller design in the following sections, we introduce the

following assumptions.

Assumption 1 (Inductance and capacitance matrices): Mat-

rices L and C are constant, symmetric,4 and positive definite.

Assumption 2 (Resistive content and co-content): The resis-

tive content and co-content of current-controlled resistors R
and voltage-controlled resistors G are quadratic in I and V
respectively, i.e.,

PR(I) =
1

2
I⊤RI, PG(V ) =

1

2
V ⊤GV (6)

where R ∈ R
σ×σ and G ∈ R

ρ×ρ are positive-semidefinite ma-

trices.

Under Assumptions 1 and 2, it can be shown that system (3)

is passive with respect to the power-conjugate5 port-variables

us, B⊤I and the total energy stored in the network as storage

function (see Remark 3).

3For further details and a large number of examples, we suggest the reading of
the sidebar “History of the Mixed-Potential Function” and section “The Brayton–
Moser equations” in [1].

4MatricesL andC can possibly capture mutual inductances and capacitances,
respectively.

5We use the expression power-conjugate to indicate that the product of input
and output has units of power.

B. (Average) Switched Electrical Circuits

We now consider the class of RLC circuits including an ideal

switch6 (s–RLC). Let ud ∈ {0, 1} and Vs ∈ R
m denote the state

of the switching element, i.e., open or closed, and the (current-

controlled) voltage sources, respectively. To describe the dynam-

ics of s–RLC circuits, we adopt the BM formulation (3) with the

mixed-potential function and input matrix depending on the state

of the switching element, i.e., P : {0, 1} × R
σ × R

ρ → R and

B : {0, 1} → R
σ×m can be expressed as follows:

P (ud, I, V ) = udP1(I, V ) + (1− ud)P0(I, V )

B(ud) = udB1 + (1− ud)B0 (7)

where P1(I, V ), B1 and P0(I, V ), B0 represent the mixed-

potential function and the input matrix of the s–RLC circuit

when ud = 1 and ud = 0, respectively. Under the reasonable

assumption that the pulsewidth modulation frequency is suf-

ficiently high, the state of the system can be replaced by the

corresponding average state representing the average inductor

currents and capacitor voltages, while the switching control

input is replaced by the so-called duty cycle of the converter

[10]. For the sake of notational simplicity, from now on, let I ,

V , and u ∈ [0, 1] denote the average signals of I , V , and ud,

respectively, throughout the rest of the article. Consequently,

the average behavior of an s–RLC electrical circuit can be

represented by the following BM equations:

−Lİ = ∇IP (u, I, V )−B(u)Vs

CV̇ = ∇V P (u, I, V ). (8)

Remark 2 (Resistive content and co-content structure): Note

that if the content and co-content structure is not affected by

the switching signal, the mixed-potential function in (7) can be

rewritten as follows:

P (u, I, V ) = I⊤Γ(u)V + PR(I)− PG(V ) (9)

where the mapping Γ : [0, 1] → R
σ×ρ is defined as follows:

Γ(u) = uΓ1 + (1− u)Γ0 (10)

and Γ1,Γ0 capture the interconnection of the storage ele-

ments (i.e., inductors and capacitors) when u = 1 and u = 0,

respectively.

In the following, we consider that the resistive content and

co-content structure is not affected by the switching signal. As

a consequence, system (8) can be written as follows:

−Lİ = RI + Γ(u)V −B(u)Vs

CV̇ = Γ⊤(u)I −GV.
(11)

The main symbols used in (3)–(11) are described in Table I.

Remark 3 (Total energy as storage function): It can be

shown that the RLC circuit (3) is passive with respect to the

storage function

Se(I, V ) =
1

2
I⊤LI +

1

2
V ⊤CV (12)

6For the sake of simplicity, we restrict the analysis to RLC circuits including
only one switch. However, in Section IV-C, we analyze a dc network including
an arbitrary number of switches.

Authorized licensed use limited to: University of Groningen. Downloaded on October 19,2021 at 09:26:24 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I
DESCRIPTION OF THE USED SYMBOLS

and port-variables us and B⊤I (see, for instance, [2]). Consider

now the s–RLC circuit (11). The first time derivative of the

storage function (12) along the solutions to (11) satisfies

Ṡe ≤ I⊤B0Vs + uI⊤ (B1 −B0)Vs.

Consequently, system (11) is passive with respect to the storage

function (12) and supply rateuI⊤B1Vs if and only ifB0 = 0 and

B1 
= 0. However, if we consider for instance the model of the

boost converter (see Section IV-B), the conditions B0 = 0 and

B1 
= 0 are not satisfied. Furthermore, even supposing that the

conditionsB0 = 0 andB1 
= 0 hold, we note that the supply rate

uI⊤B1Vs is generally not equal to zero at the desired operating

point, implying the occurrence of the so-called “dissipation

obstacle” problem [2].

As a consequence of Remark 3, adopting the pH framework

(using the total energy as Hamiltonian) does not provide any ad-

ditional advantage compared to the BM framework. Moreover,

s–RLC circuits do not inherit a standard pH structure [10].

Remark 4 (pH formulation for s–RLC circuits): Generally,

a standard pH system has the following structure:

ẋ = [J(x)−R(x)]∇xH(x) + g(x)u (13)

where x : R+ → R
n, u : R+ → R

m denote the state and input,

respectively, J(x) = −J(x)⊤, R(x) ≥ 0, H : R
n → R+ is the

Hamiltonian and g(x) the input matrix. The skew symmetric

matrixJ(x)generally captures the interconnection of the storage

elements and R(x) describes the dissipation structure of the

system. As a result, we have the following dissipation inequality:

Ḣ ≤ u⊤y

where y = g(x)⊤∇xH(x). However, s–RLC circuit does not

generally inherit this structure. To represent s–RLC circuits, it

may be needed to modify (13) as follows (see [10] for some

examples):

ẋ = [J(x, u)−R(x)]∇xH(x) + g(x)Vs (14)

where J(x, u) = J0(x) +
∑m

i=1 Ji(x)ui, Ji + J⊤
i = 0 for all

i ∈ {0, . . . ,m}, u and Vs denote the duty ratio and the supply

voltage, respectively. This implies the following dissipation

inequality:

Ḣ ≤ V ⊤
s y (15)

which may be not useful for control purpose sinceVs is generally

not controllable.

Alternatively, in [25, Th. 1], it is shown, under some assump-

tions, that system (3) is passive with respect to the port-variables

us, B⊤İ , and the so-called transformed mixed-potential func-

tion as storage function. However, finding the transformed

mixed-potential function is not trivial and often requires that

(sufficient) conditions on the system parameters are satisfied.

Differently, in this article, we overcome these issues by propos-

ing a Krasovskii Lyapunov function similar to (2) as storage

function.

C. Problem Formulation

The main goal of this article is to propose new PBC method-

ologies for regulating the voltage in RLC and s–RLC circuits.

Before formulating the control objective and in order to permit

the controllers design in the next sections, we first make the fol-

lowing assumption on the available information about systems

(3) and (11).

Assumption 3 (Available information): The state variables I
and V are measurable.7 The voltage source Vs in (11) is known

and different from zero.

Second, in order to formulate the control objective aiming at

voltage regulation, we introduce the following two assumptions

on the existence of a desired reference voltage for both RLC and

s–RLC circuits, respectively.

Assumption 4 (Feasibility for RLC circuits): There exist a

constant desired reference voltage V ⋆ ∈ R
ρ
+ and a constant

control input us such that a steady-state solution (I, V ⋆) to

system (3) satisfies

0 = ΓV ⋆ +RI −Bus

0 = Γ⊤I −GV ⋆. (16)

Assumption 5 (Feasibility for s–RLC circuits): There exist a

constant desired reference voltage V ⋆ ∈ R
ρ
+ and a constant

control input u ∈ (0, 1) such that a steady-state solution (I, V ⋆)
to system (11) satisfies

0 = Γ(u)V ⋆ +RI −B(u)Vs

0 = Γ⊤(u)I −GV ⋆. (17)

We note now that system (11) can be written as follows:
[

−Lİ

CV̇

]

=

[

RI + Γ0V −B0Vs

Γ⊤
0 I −GV

]

+

[

(Γ1 − Γ0)V − (B1 −B0)Vs

(Γ1 − Γ0)
⊤ I

]

u.

Consequently, we introduce the following assumption for con-

trollability purposes.

Assumption 6 (Controllability necessary condition): There

exists (at least) an element in the column vector
[

(Γ1 − Γ0)V − (B1 −B0)Vs

(Γ1 − Γ0)
⊤ I

]

7Note that, when needed, we also assume that İ and V̇ are available.

Authorized licensed use limited to: University of Groningen. Downloaded on October 19,2021 at 09:26:24 UTC from IEEE Xplore.  Restrictions apply. 
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that is different from zero for all (I, V ) ∈ R
σ×ρ and any t ≥ 0.

The control objective can now be formulated explicitly.

Objective 1 (Voltage regulation):

lim
t→∞

V (t) = V ⋆. (18)

Remark 5 (Robustness to load uncertainty): In power net-

works, it is generally desired that Objective 1 is achieved in-

dependently from the load parameters, which are indeed often

unknown (see also Assumption 3).

III. THE PROPOSED CONTROL APPROACHES

In this section, we present new passivity properties (akin to

differential passivity [38]) for the considered RLC circuits (3).

Then, we extend these properties to s–RLC circuits (11).

A. New Passivity Properties

Novel passive maps for a class of RLC circuits are presented in

[23],8 where the authors use a Krasovskii-type storage function

similar to (2), i.e.,

S(İ , V̇ ) =
1

2
‖İ‖2L +

1

2
‖V̇ ‖2C . (19)

The use of such a storage function enables to relax the constraints

on the system parameters required in [25, Theorem 1].

Since the storage function (19) depends on İ and V̇ , we

consider the following extended dynamics9 of system (3):

−Lİ = ΓV +RI −Bus (20a)

CV̇ = Γ⊤I −GV (20b)

−LÏ = ΓV̇ +Rİ −Bυs (20c)

CV̈ = Γ⊤İ −GV̇ (20d)

u̇s = υs (20e)

where (I, V, İ, V̇ , us) and υs ∈ R
m are the (extended) system

state and input, respectively. Then, inspired by [22]–[24], the

following result can be established.

Proposition 1 (Passivity of RLC circuit): Let Assumptions 1

and 2 hold. System (20) is passive with respect to the storage

function (19) and the port-variables ys = B⊤İ and υs.

Proof: The first time derivative of the storage function (19)

along the trajectories of (20) satisfies

Ṡ ≤ u̇⊤
s B

⊤İ = υ⊤
s ys. (21)

�

Remark 6 (Physical interpretation of (21)): The established

passivity property can be interpreted as the passivity property

derived from the total energy of the “dual” circuit, which is

constructed by using capacitors as inductors, voltage sources as

current sources, and vice versa. This follows from considering

VL as the voltage across the inductor and IC as the current

8The class of RLC circuits considered in [23] is a subclass of the systems
analyzed in this article. More precisely, in [23], the authors assume that L,C
are diagonal and R,G are positive definite. These assumptions are relaxed in
this article (see Assumptions 1 and 2).

9These dynamics are differentially extended with respect to time.

through the capacitor. As a consequence, the storage function

(19) can be rewritten as follows:

S(IC , VL) =
1

2
‖VL‖2L−1 +

1

2
‖IC‖2C−1 . (22)

In (22), the term 1/2‖VL‖2L−1 represents the energy stored into

a capacitor with capacitance L−1 and charge qL = L−1VL.

Similarly, the term 1/2‖IC‖2C−1 represents the energy stored

into an inductor with inductance C−1 and flux φC = C−1IC .

Furthermore, let is denote the current source constructed from a

capacitor with capacitanceL−1 and chargeL−1Bus. As a result,

(21) becomes

Ṡ ≤ u̇⊤
s B

⊤L−1VL = i⊤s VL. (23)

Before presenting an analogous passive map also for s–RLC

circuits (11), similarly to (20), we consider the following ex-

tended dynamics of system (11):

−Lİ = RI + Γ(u)V −B(u)Vs (24a)

CV̇ = Γ⊤(u)I −GV (24b)

−LÏ = Rİ + Γ(u)V̇ + ((Γ1 − Γ0)V − (B1 −B0)Vs) υ
(24c)

CV̈ = Γ⊤(u)İ + (Γ1 − Γ0)
⊤ Iυ −GV̇ (24d)

u̇ = υ, (24e)

where (I, V, İ, V̇ , u) and υ ∈ R are the (extended) system state

and input, respectively. Then, the following result can be estab-

lished.

Proposition 2 (Passivity of s–RLC circuit): Let Assump-

tions 1 and 2 hold. System (24) is passive with respect to the

storage function (19) and the port-variables υ and

y =
(

V̇ ⊤ (Γ1 − Γ0)
⊤ I − İ⊤ (Γ1 − Γ0)V

− İ⊤ (B0 −B1)Vs

)

. (25)

Proof: The time derivative of the storage function (19) along

the trajectories of (24) satisfies

Ṡ = − İ⊤
(

((1− u)Γ0 + uΓ1) V̇ + u̇(Γ1 − Γ0)V

+ Rİ − u̇(B1 −B0)Vs

)

+ V̇ ⊤ (((1− u)Γ0

+ uΓ1) İ + u̇(Γ1 − Γ0)
⊤I −GV̇

)

= − İ⊤Rİ − V̇ ⊤GV̇ + u̇y

≤ u̇y = υy. (26)

�

Note that if Vs is controllable, then the storage function (19)

along the extended dynamics of (11) satisfies

Ṡ = − İ⊤Rİ − V̇ ⊤GV̇ + u̇y + İ⊤B(u)V̇s

≤ υy + θ⊤φ (27)

where θ = V̇s and φ = B(u)⊤İ . Therefore, the extended dy-

namics of (11) are passive with port-variables [υ, θ⊤]⊤ and

[y, φ⊤]⊤.
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Remark 7 (Insights on the storage function S): The storage

function (19) depends on the states İ , V̇ of system (20) or (24).

Consequently, S depends on the entire state of the extended

system (20) or (24). This follows from replacing İ , V̇ by the

corresponding dynamics (20a) and (20b) or (24a) and (24b).

Moreover, we will show in Theorems 3 and 4 that designing

the controller by using the storage function (19) enables the

achievement of Objective 1 despite the load uncertainty (see

Remark 5). However, the cost of designing a robust controller

is the need of information about the first time derivative of the

signals I and V .

By using the passive maps presented in Propositions 1 and 2,

we propose in the next two sections two different PBC method-

ologies for both RLC and s–RLC circuits, respectively.

B. Output Shaping

The first methodology, which we call output shaping, relies

on the integrability property of the output port-variable. More

precisely, we use the integrated output port-variable to shape

the closed-loop storage function. In this section, we first extend

this methodology to a wider class of RLC circuits than the one

considered in [23]. Subsequently, we further extend the output

shaping methodology to s–RLC circuits.

Theorem 1 (Output shaping for RLC circuits): Let Assump-

tions 1–4 hold. Consider system (20) with control input υs given

by

υs =
(

µs − kiB
⊤ (

I − Ī
)

− kdys
)

(28)

with ys = B⊤İ , kd > 0, ki > 0 and µs ∈ R
m. The following

statements hold.

1) System (20) in closed-loop with control (28) defines a

passive map µs 
→ ys.

2) Let µs be equal to zero. If any of the following conditions

holds:

a) R > 0 and G > 0;

b) G > 0 and Γ⊤ has full column rank,

then the solution to the closed-loop system asymptotically

converges to the set

{(I, V, İ, V̇ , us) : V̇ = 0, İ = 0, u̇s = 0, B⊤ (

I − I
)

= 0}.
(29)

Proof: We use the integrated output port-variable to shape

the desired closed-loop storage function, i.e.,

Sd = S +
1

2

∣

∣

∣

∣B⊤(I − I)
∣

∣

∣

∣

2

ki
(30)

where S is given by (19). Then, Sd along the trajectories of

system (20) controlled by (28) satisfies

Ṡd = −İ⊤Rİ − V̇ ⊤GV̇ + y⊤s
(

υs + kiB
⊤(I − I)

)

(31a)

= −İ⊤Rİ − V̇ ⊤GV̇ − kdy
⊤
s ys + µ⊤

s ys (31b)

≤ µ⊤
s ys (31c)

where, in (31a), we use the controller (28). This concludes the

proof of part 1). For part (2-a), letµs be equal to zero. Then, from

(31b), there exists a forward invariant set Π and by LaSalle’s

invariance principle, the solutions that start in Π converge to the

largest invariant set contained in

Π ∩ {(I, V, İ, V̇ , us) : İ = 0, V̇ = 0}. (32)

From (20c), it follows that Bυs = 0, i.e., υs = 0 (B has full

column rank). Moreover, from (28), it follows thatB⊤(I − I) =
0, concluding the proof of part (2-a). For part (2-b), the solutions

that start in the forward invariant set Π converge to the largest

invariant set contained in

Π ∩ {(I, V, İ, V̇ , us) : Rİ = 0, V̇ = 0, ys = 0}. (33)

On this invariant set, from (20d), we obtain Γ⊤İ = 0, which

implies İ = 0 (Γ⊤ has full column rank). This further implies

that, also in this case, the solutions starting in Π converge to

the set (32). The rest of the proof follows from the proof of

part (2-a). �

Remark 8 (Alternative controller to (28)): The controller

(28) needs the information of the first time derivative of the

inductor current. This can be avoided by rewriting (28) as

follows:

us = −
(

kiφ+ kdB
⊤I

)

φ̇ = − 1

ki
µs +B⊤ (

I − I
)

. (34)

By using the storage function (30), the same results of Theo-

rem 1 can be established analogously. Moreover, note that (28)

can be rewritten as in (34) because of the integrability of the

port-variables.

We now extend this methodology to s–RLC circuits (11). One

possible issue in extending this methodology to s–RLC circuits

may be the integrability of the output port-variable y given by

(25). In order to avoid this issue, we introduce the following

assumption.

Assumption 7 (Integrating factor): There exist m : R
σ ×

R
ρ → R different from zero and γ : R

σ × R
ρ → R such that

γ̇ = my.

It is however worth to mention that the second methodology

(i.e., input shaping) that we propose in Section III-C does not

need Assumption 7. Relying on Assumption 7, the following

lemma provides a new passive map with integrable output port-

variable for system (24).

Lemma 1 (Integrable output): Let Assumptions 1, 2, and 7

hold. System (24) is passive with port-variables
υ

m
and γ̇ = my.

Proof: After multiplying and dividing the last line of (26) by

m, we obtain

Ṡ ≤ υy =
υ

m
γ̇.

�

Theorem 2 (Output shaping for s–RLC circuits): Let Assu-

mptions 1–3 and 5–7 hold. Consider system (24) with control

input υ given by

υ = m (µ− ki (γ − γ⋆)− kdγ̇) (35)

with γ⋆ = γ(I, V ⋆), kd > 0, ki > 0 and µ ∈ R. The following

statements hold.

1) System (24) in closed-loop with control (35) defines a

passive map µ 
→ γ̇.
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2) Let µ be equal to zero. If any of the following conditions

holds:

a) R > 0 and G > 0;
b) G > 0, Γ⊤(u) has full column rank;

(Γ1 − Γ0)V − (B1 −B0)Vs 
= 0, (36)

then the solution to the closed-loop system asymptotically

converges to the set

{(I, V, İ, V̇ , u)| V̇ = 0, İ = 0, u̇ = 0, γ = γ⋆}. (37)

Proof: We use the integrated output port-variable γ (see

Lemma 1) to shape the desired closed-loop storage function,

i.e.,

Sd = S +
1

2
ki (γ − γ⋆)2 (38)

where S is given by (19). Then, Sd along the trajectories of

system (24) controlled by (35) satisfies

Ṡd = −İ⊤Rİ − V̇ ⊤GV̇ +
υ

m
γ̇ + ki (γ − γ⋆) γ̇ (39a)

= −İ⊤Rİ − V̇ ⊤GV̇ − kdγ̇
2 + µγ̇ (39b)

≤ µγ̇ (39c)

where, in (39a), we use Proposition 2, Lemma 1, and the

controller (35). This concludes the proof of part 1). For part

(2-a), let µ be equal to zero. Then, from (39b), there exists a

forward invariant set Π and by LaSalle’s invariance principle,

the solutions that start in Π converge to the largest invariant set

contained in

Π ∩ {(I, V, İ, V̇ , us) : İ = 0, V̇ = 0, γ̇ = 0}. (40)

On this invariant set, from (24c) and (24d), it follows that

[

(Γ1 − Γ0)V − (B1 −B0)Vs

(Γ1 − Γ0)
⊤ I

]

υ = 0.

Then, according to Assumption 6, we have υ = 0, which implies

u̇ = 0. Moreover, from (35), it follows that γ = γ⋆, concluding

the proof of part (2-a). For part (2-b), when only G is positive

definite, the solutions that start in the forward invariant set Π
converge to the largest invariant set contained in

Π ∩ {(I, V, İ, V̇ , us) : Rİ = 0, V̇ = 0, γ̇ = 0}. (41)

On this invariant set, from (24c) and (36), we obtain υ = 0.

Consequently, from (24d), we have Γ⊤(u)İ = 0, which im-

plies İ = 0 (Γ⊤(u) has full column rank). This further implies

that, also in this case, the solutions starting in Π converge to

the set (40). The rest of the proof follows from the proof of

part (2-a). �

Remark 9 (Output shaping stability): Theorems 1 and 2 im-

ply that the integrated output port-variables converge to the

corresponding desired values and the first time derivatives of the

state converge to zero. However, this generally does not imply

that the trajectories of the closed-loop system asymptotically

converge to the corresponding desired operating point.10 Fur-

thermore, for the buck, boost, buck–boost, and Cúk applications

(see Section IV and Appendix), we will show that Theorems 1

and 2 also imply that all the trajectories of the closed-loop system

asymptotically converge to the corresponding desired operating

point. We also note that for the input shaping methodology that

we present in next section, under some mild and reasonable

assumptions, the stability results will be strengthened.

Remark 10 (Limitations of output shaping): Note that if the

resistance R of a RLC circuit is negligible, then, in order to

establish the stability results presented in Theorem 2 part (2-a),

condition (36) needs to be satisfied. More specifically, for a buck

converter (see Section IV-A), this is equivalent to have Vs 
= 0,

which is, in practice, true (see also Assumption 3). Yet, for a

boost converter (see Section IV-B), satisfying condition (36)

is equivalent to require V 
= 0, which generally could be not

always true. Moreover, the output shaping control methodology

relies on finding γ satisfying γ̇ = my, with m 
= 0. This may

not always be possible. Finally, designing a controller based on

the output shaping methodology requires the information of I ,

which often depends on the load parameters. Consequently, the

output shaping methodology is sensitive to load uncertainty (see

Remark 5).

C. Input Shaping

The second methodology, which we call input shaping, relies

on the integrability property of the input port-variables υs and

υ (see Proposition 1 and Proposition 2), respectively. Similarly

to the output shaping technique, we use the integrated input

port-variable to shape the closed-loop storage function such that

it has a minimum at the desired operating point (see Objective 1).

Compared to the output shaping methodology, the input shaping

methodology has the following advantages.

1) Assumption 7 on the integrability of the output port-

variable is no longer needed.

2) The knowledge of ūs and ū, given by (16) and (17),

respectively, does not usually require the information of

the load parameters (see the examples in Sections IV-A

and IV-B), making the input shaping control methodology

robust with respect to load uncertainty.

3) Condition (36) is not required anymore, and, in addition,

all the trajectories of the extended system converge to the

desired operating point.

We now first present the input shaping methodology for RLC

circuits (3).

Theorem 3 (Input shaping for RLC circuits): Let Assump-

tions 1–4 hold. Consider system (20) with control input υs given

by

υs =
1

kd
(µs − ki (us − ūs)− ys) (42)

with ys = B⊤İ , kd > 0, ki > 0 and µs ∈ R
m. The following

statements hold.

10Ifσ = m, the input matrix becomes a full rank matrix and, as a consequence,
in case of RLC circuits, asymptotic convergence to the corresponding desired
operating point can be proved.
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1) System (20) in closed-loop with control (42) defines a

passive map µs 
→ u̇s (note that us is a state of the

extended system (20)).

2) Let µs be equal to zero. If any of the following conditions

holds:

a) R > 0 and G > 0;
b) R > 0 and Γ has full column rank;

c) G > 0 and Γ⊤ has full column rank,

then the solution to the closed-loop system asymptotically

converges to the set

{(I, V, İ, V̇ , us) : V̇ = 0, İ = 0, u̇s = 0, us = us}.
(43)

3) If any of the conditions in (b) holds and the matrix

As =

[

R Γ

Γ⊤ −G

]

(44)

has full rank, then the solution to the closed-loop system

asymptotically converges to the desired operating point

(I, V ⋆, 0, 0, us), which is unique.

Proof: We use the integrated input port-variable to shape the

desired closed-loop storage function, i.e,

Sd = S +
1

2
||us − ūs||2ki

(45)

where S is given by (19). Then, Sd along the trajectories of

system (20) controlled by (42) satisfies

Ṡd = −İ⊤Rİ − V̇ ⊤GV̇ + u̇⊤
s (ys + ki (us − us)) (46a)

= −İ⊤Rİ − V̇ ⊤GV̇ − kdu̇
⊤
s u̇s + µ⊤

s u̇s (46b)

≤ µ⊤
s u̇s (46c)

where, in (46a), we use Proposition 1 and the controller (42).

This concludes the proof of part 1). For part (2-a), letµs be equal

to zero. Then, from (46b), there exists a forward invariant set Π
and by LaSalle’s invariance principle, the solutions that start in

Π converge to the largest invariant set contained in

Π ∩ {(I, V, İ, V̇ , us) : İ = 0, V̇ = 0, u̇s = 0}. (47)

On this invariant set, İ = 0 and u̇s = 0 further imply ys = 0
and υs = 0, respectively. Consequently, from (42), it follows

that us = ūs, concluding the proof of part (2-a). For parts (2-b)

and (2-c), the solutions that start in the forward invariant set Π
converge to the largest invariant set contained in

Π ∩ {(I, V, İ, V̇ , us) : Rİ = 0, GV̇ = 0, u̇s = 0}. (48)

On this set, from (20c) and (20d), we get ΓV̇ = 0 and Γ⊤İ = 0,

respectively. Consequently, if (2-b) or (2-c) holds, then İ = 0
and V̇ = 0. This further implies that the solutions that start in

Π converge to the set (47). The rest of the proof follows from

the proof of part 2). For part 3), we first note that from (16), we

have
[

I

V ⋆

]

= A−1
s

[

Bus

0

]

(49)

implying that (I, V ⋆) is unique. Moreover, on the set (47), from

(20a) and (20b), we obtain
[

I

V

]

= A−1
s

[

Bus

0

]

. (50)

Then, from (49), I and V converge to I and V ⋆, respectively.�

We now extend these results to s–RLC circuits (11).

Theorem 4 (Input shaping for s–RLC circuits): Let Assum-

ptions 1–3, 5, and 6 hold. Consider system (24) with control

input υ given by

υ =
1

kd
(µ− ki (u− ū)− y) (51)

with y given by (25), kd > 0, ki > 0 and µ ∈ R. The following

statements hold.

1) System (24) in closed loop with control (51) defines a

passive map µ 
→ u̇ (note that u is a state of the extended

system (24)).

2) Let µ be equal to zero. If any of the following conditions

holds:

a) R > 0 and G > 0;
b) R > 0 and Γ(u) has full column rank;

c) G > 0 and Γ⊤(u) has full column rank,

then the solution to the closed-loop system asymptotically

converges to the set

{(I, V, İ, V̇ , u)| V̇ = 0, İ = 0, u̇ = 0, u = u}. (52)

3) If any of the conditions in (2) holds and the matrix

A =

[

R Γ(u)

Γ⊤(u) −G

]

(53)

has full rank, then the solution to the closed-loop system

asymptotically converges to the desired operating point

(I, V ⋆, 0, 0, u), which is unique.

Proof: We use the integrated input port-variable to shape the

desired closed-loop storage function, i.e.,

Sd = S +
1

2
ki (u− ū)2 (54)

where S is given by (19). Then, by using the storage function

(54), the proof is analogous to that of Theorem 3. �

Remark 11 (Robustness property of input shaping method-

ology): Note that the controllers (42) and (51) proposed in

Theorems 3 and 4, respectively, require information of the

desired value of the control input. If R = 0, from the first line of

(16) and (17), it follows that us and u require only information

of the desired voltage V ⋆. This implies that the input shaping

methodology is robust with respect to load uncertainty (see

Remark 5).

Remark 12 (Initial conditions for us and u): The control in-

puts u and us of systems (3) and (8) are states of the extended

systems (20) and (24), respectively. Moreover, we proved that the

closed-loop dynamics of these extended systems are asymptot-

ically stable. Therefore, independently of the initial conditions

of u and us, the proposed dynamic controllers stabilize the

corresponding closed-loop systems to their desired operating

points.
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Fig. 1. Electrical scheme of the buck converter.

Before showing the application of the proposed control

methodologies to power converters in the next section, we note

that, under certain assumptions on Γ, the input shaping method-

ology allows forR ≥ 0 orG ≥ 0. Differently, the output shaping

methodology allows only forR ≥ 0. Furthermore, under certain

assumptions on the steady-state equations, the input shaping

methodology guarantees that all the solutions to the extended

system converge to the desired operating point.

IV. APPLICATION TO DC–DC POWER CONVERTERS

In this section, we use the control methodologies proposed in

the previous section for regulating the output voltage of the most

widespread dc–dc power converters: The buck and the boost

converters,11 respectively.

A. Buck Converter

Consider the electrical scheme of the buck converter in Fig. 1,

where the diode is assumed to be ideal. Then, by applying the

Kirchhoff’s current and voltage laws, the average governing

dynamic equations of the buck converter are the following:

−Lİ = V − uVs

CV̇ = I −GV. (55)

Equivalently, system (55) can be obtained from (11) with Γ0 =
Γ1 = 1, B0 = 0, B1 = 1, and R = 0. By using Proposition 2,

the following passivity property is established.

Lemma 2 (Passivity property of the buck converter): Let

Assumptions 1 and 2 hold. System (55) is passive with respect

to the storage function (19) and the port-variables u̇ and İVs.

By virtue of the above passivity property, we can now use

the output shaping and input shaping control methodologies to

design voltage controllers.

Corollary 1 (Output shaping for the buck converter): Let

Assumptions 1–3 and 5 hold. Consider system (55) with the

dynamic controller

u̇ = −Vs

(

ki
(

I − I
)

+ kdİ
)

(56)

with kd > 0 and ki > 0. Then, the solution (I, V, u) to the

closed-loop system asymptotically converges to the desired

steady-state (I, V ⋆, u).

11Buck and boost converters describe in form and function a large family of
dc–dc power converters. Moreover, in the Appendix, we also study other two
common types of dc–dc power converters: The buck–boost and Cúk converters.

Fig. 2. Electrical scheme of the boost converter.

Proof: For the buck converter (55), condition (36) is equiv-

alent to require Vs 
= 0, which holds by Assumption 3. Conse-

quently, Theorem 2 can be used by selecting m = 1, γ = IVs,

and γ⋆ = IVs. In analogy with Theorem 2, the solutions to the

closed-loop system converge to the set

Π ∩ {(I, V, u) : İ = 0, V̇ = 0}. (57)

By differentiating the first line of (55), on this invariant set, we

get u̇ = 0. As a consequence, from (56), it follows that I = I
which further implies V = V ⋆ and u = u (see Assumption 5).�

Corollary 2 (Input shaping for the buck converter): Let As-

sumptions 1–3 and 5 hold. Consider system (55) with the dy-

namic controller

u̇ = − 1

kd
(ki (u− u) + Vsİ) (58)

with kd > 0 and ki > 0. Then, the solution (I, V, u) to the

closed-loop system asymptotically converges to the desired

steady-state (I, V ⋆, u).
Proof: The proof is analogous to that of Theorem 4. �

B. Boost Converter

Consider now the electrical scheme of the boost converter

in Fig. 2, where the diode is again assumed to be ideal. The

average governing dynamic equations of the boost converter

are the following:

−Lİ = (1− u)V − Vs

CV̇ = (1− u)I −GV. (59)

Also, in this case, system (59) can be obtained from (11) with

Γ0 = 1, Γ1 = 0, B0 = B1 = 1, and R = 0. By using Proposi-

tion 2, the following passivity property is established.

Lemma 3 (Passivity property of boost converter): Let Assu-

mptions 1 and 2 hold. System (59) is passive with respect to the

storage function (19) and the port-variables u̇ and İV − V̇ I .

Remark 13 (Integrable output port-variables for the boost

converter): Note that the output port-variable İV − V̇ I is not

integrable. It is however possible to find a different output port-

variable that is indeed integrable (see Lemma 1). More precisely,

if we choose, for instance,m = 1/I2, we obtain the passive map

u̇I2 
→ − d
dt
(V/I) (see Table II for different passivity proper-

ties corresponding to different choices of (integrable) output

port-variables).
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TABLE II
PASSIVE MAPS FOR THE BOOST CONVERTER

By virtue of the above passivity property, we can now use

the output shaping and input shaping control methodologies to

design voltage controllers.

Corollary 3 (Output shaping for the boost converter): Let

Assumptions 1–3 and 5 hold. Moreover, let V (t) be different

from zero for any t ≥ 0. Consider system (55) with the dynamic

controller

u̇ = − 1

V 2

(

ki

(

I

V
− I

V ⋆

)

+ kd
d

dt

I

V

)

(60)

with kd > 0 and ki > 0. Then, the solution (I, V, u) to the

closed-loop system asymptotically converges to the desired

steady state (I, V ⋆, u).
Proof: For the boost converter (59), condition (36) is equiva-

lent to require V (t) 
= 0 for any t ≥ 0, which holds by assump-

tion. Consequently, Theorem 2 can be used by selecting, for in-

stance, m = 1/V 2, γ = I/V , and γ⋆ = I/V ⋆. In analogy with

Theorem 2, the solutions to the closed-loop system converge to

the set

Π ∩ {(I, V, u) : V̇ = 0, İ = 0}. (61)

By differentiating the first line of (59), on this invariant set, we

get u̇ = 0. As a consequence, from (60), it follows that γ = γ⋆.

Then, from the second line of (59), it yields

u = 1−G
V

I
= 1−G

1

γ
= 1−G

V ⋆

I
= u (62)

which further implies V = V ⋆ and I = I . �

Corollary 4 (Input shaping for boost converter): Let As-

sumptions 1–3, 5, and 6 hold.12 Consider system (59) with the

dynamic controller

u̇ := − 1

kd

(

ki (u− ū) +
(

İV − V̇ I
))

(63)

with kd > 0 and ki > 0. Then, the solution (I, V, u) to the

closed-loop system asymptotically converges to the desired

steady state (I, V ⋆, u).

12For the boost converter, Assumption 6 is equivalent to require that V and
I are not equal to zero at the same time (i.e., V can be equal to zero when I
is different from zero and vice versa). We note that to use the output shaping
methodology, we need a stronger assumption, i.e., V different from zero for any
t ≥ 0 (see Corollary 3).

Fig. 3. Output shaping for the buck converter. From the top: Time
evolution of the voltage, current, and duty cycle considering a load
variation ∆G at the time instant t = 1 s (parameters: L = 1 mH, C = 1
mF, Vs = 400 V, G = 0.04 S, ∆G = 0.02 S, V ⋆ = 380 V, kd = 5× 105,
and ki = 1× 107).

Fig. 4. Input shaping for the buck converter. From the top: Time evolu-
tion of the voltage, current, and duty cycle considering a load variation
∆G at the time instant t = 1 s. Input shaping for buck converter is plotted
in blue color, while Parallel Damping PBC approach proposed in [20] is
plotted in red-dashed (parameters: L = 1 mH, C = 1 mF, Vs = 400 V,
G = 0.04 S, ∆G = 0.02 S, V ⋆ = 380 V, kd = 10× 105, ki = 8× 107,
u = V ⋆/Vs, and gamma in [20, Equation (19)] is set to 0.97).

Proof: The proof is analogous to that of Theorem 4. �

In Table III, we have summarized the passivity properties

derived in the pH [2], BM [25], and proposed framework,

respectively.

For the sake of completeness, we now show in Figs. 3–6

the simulation results obtained by implementing the proposed

methodologies to control the output voltage of a buck and boost

converter, respectively. In order to verify the robustness property

of the proposed controllers with respect to the load uncertainty,

the value of the load is changed from G to G+∆G, with ∆G
uncertain, at the time instant t = 1 s (all the simulation parame-

ters are reported at the end of the caption of each figure). More
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TABLE III
SUPPLY RATES OF RLC AND S–RLC CIRCUITS

Fig. 5. Output shaping for the boost converter. From the top: Time
evolution of the voltage, current, and duty cycle considering a load
variation at the time instant t = 1 s (parameters: L = 1.12 mH, C = 6.8
mF, Vs = 280 V, G = 0.04 S, ∆G = -0.02 S, V ⋆ = 380 V, kd = 5× 102,
and ki = 1× 106).

precisely, Figs. 3 and 5 show that after the load variation, the

voltage converges to a steady-state value different from the de-

sired one. Controllers (56) and (60) depend indeed on I = GV ⋆

and, therefore, require the information of G. On the contrary,

Figs. 4 and 6 clearly show that the input shaping methodology

is robust with respect to load uncertainty (see also Remark 11).

Furthermore, for the sake of fairness, we compare the proposed

input shaping methodology with the Parallel Damping PBC

approach proposed in [20, Section V]. Figs. 3 and 5 indicate that

Parallel Damping PBC approach is also robust with respect to

load variation. However, it is important to note that the Parallel

Damping PBC approach requires the information of the filter

inductance L and capacitance C.

C. DC Networks

In this section, we consider a typical dc microgrid of which

a schematic electrical diagram is provided in Fig. 7, includ-

ing a buck and boost dc–dc power converter interconnected

through resistive–inductive power lines. In the following, we

adopt the subscripts α or β in order to refer to the buck or boost

type converter, respectively. The network consists of nα buck

converters and nβ boost converters such that the total number

of converters is nα + nβ = n. The overall network is repre-

sented by a connected and undirected graph G = (Vα ∪ Vβ , E),
where Vα = {1, . . . , nα} is the set of the buck converters,

Vβ = {nα + 1, . . . , n} is the set of the boost converters, and

Fig. 6. Input shaping for the boost converter. From the top: Time
evolution of the voltage, current, and duty cycle considering a load
variation at the time instant t = 1 s. Input shaping for boost converter
is plotted in blue color, while Parallel Damping PBC approach proposed
in [20] is plotted in red-dashed (parameters: L = 1.12 mH, C = 6.8 mF,
Vs = 280 V, G = 0.04 S, ∆G = 0.02 S, V ⋆ = 380 V, kd = 1× 106,
ki = 4× 107, u = 1− Vs/V

⋆, and gamma in [20, Equation (23)] is set
to 0.1).

E = {1, ...,m} is the set of the distribution lines interconnecting

the n converters. The network topology is represented by its

corresponding incidence matrix D ∈ R
n×m. The ends of edge

k are arbitrarily labeled with a + and a −, and the entries of D
are given by

Dik =

⎧

⎪

⎨

⎪

⎩

+1 if i is the positive end of k

−1 if i is the negative end of k

0 otherwise.

According to (55), the average dynamic equations of the buck

converter i ∈ Vα become

−Liİi = Vi − uiVsi

CiV̇i = Ii −GiVi −
∑

k∈Ei
Ilk (64)

where Ei ⊂ E is the set of the distribution lines incident to the

node i and Ilk denotes the current through the line k ∈ Ei. On

the other hand, according to (59), the average dynamic equations

of the boost converter i ∈ Vβ become

−Liİi = (1− ui)Vi − Vsi

CiV̇i = (1− ui)Ii −GiVi −
∑

k∈Ei
Ilk. (65)
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Fig. 7. Considered electrical diagram of a (Kron reduced) dc network representing node i ∈ Vα and node j ∈ Vβ interconnected by the line k ∈ E .

The dynamic of the current Ilk from node i to node j 
= i, i, j ∈
Vα ∪ Vβ , is given by

−Llk İlk = −(Vi − Vj) +RlkIlk. (66)

Let V = [V ⊤
α , V ⊤

β ]⊤, with Vα = [V1, . . . , Vnα
] and Vβ =

[Vnα+1, . . . , Vn]. Analogously, let Iα = [I1, . . . , Inα
] and Iβ =

[Inα+1, . . . , In]. To study the interconnected dc network, we

write (64)–(66) compactly for all buses i ∈ Vα ∪ Vβ

−Lαİα = Vα − uα ◦ Vsα (67a)

−Lβ İβ = (1nβ
− uβ) ◦ Vβ − Vsβ (67b)

−Llİl = DTV +RlIl (67c)

CαV̇α = Iα −GαVα +DαIl (67d)

CβV̇β = (1nβ
− uβ) ◦ Iβ −GβVβ +DβIl (67e)

where Iα, Vα, Vsα, uα ∈ R
nα , Iβ , Vβ , Vsβ , uβ ∈ R

nβ , Il ∈
R

m. Moreover, Lα, Lβ , Ll, Cα, Cβ , Rl, Gα, Gβ are positive-

definite diagonal matrices of appropriate dimensions, e.g.,Lα =
diag(L1, . . . , Lnα

), and 1nβ
∈ R

nβ denotes the vector consist-

ing of all ones. The matrices Dα ∈ R
nα×m and Dβ ∈ R

nβ×m

are obtained by collecting from D the rows indexed by Vα and

Vβ , respectively. Let I = [I⊤α , I
⊤
β , I

⊤
l ]

⊤, u = [u⊤
α, u

⊤
β ]

⊤, Vs =

[V ⊤
sα, V

⊤
sβ ]

⊤, L = diag(Lα, Lβ , Ll), and C = diag(Cα, Cβ).
We note that system (67) can be expressed in the BM formulation

(8) with

B(u) =

⎡

⎢

⎣

diag(uα) 0
nα×nβ

0
nβ×nα Inβ

0
m×nα 0

m×nβ

⎤

⎥

⎦
(68)

and

P (u, I, V ) = I⊤Γ(u)V +
1

2
I⊤l RlIl

− 1

2
V ⊤
α GαVα − 1

2
V ⊤
β GβVβ (69)

where Γ ∈ R
(n+m)×n is given by

Γ(u) =

⎡

⎢

⎣

Inα
0
nα×nβ

0
nβ×nα Inβ

− diag(uβ)

DT
α DT

β

⎤

⎥

⎦
(70)

where I is the identity matrix. By using now the storage function

in (19), the following passivity property for the considered dc

network (67) is established.

Fig. 8. Scheme of the considered network with four power converters:
Nodes 1 and 3 have buck converters and nodes 2 and 4 have boost
converters.

TABLE IV
NETWORK PARAMETERS

Lemma 4 (Passivity property of dc networks): Let Assump-

tions 1 and 2 hold. System (67) is passive with respect to the

storage function (19) and the port-variables u̇ and

ydc =

[

İα ◦ Vsα

İβ ◦ Vβ − V̇β ◦ Iβ

]

. (71)

By virtue of the above passivity property, we can now use the

input shaping methodology to design a decentralized control

scheme for regulating the voltage of (67).

Proposition 3 (Input shaping for dc networks): Let Assum-

ptions 1–3, 5, and 6 hold. Consider system (67) with the dynamic

controller

u̇ = −K−1
d (Ki (u− ū) + ydc) (72)

whereKd andKi are positive-definite diagonal matrices of order

nα + nβ , and ydc is given by (71). Then, the solution (I, V, u) to
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Fig. 9. Input shaping for the dc network. From the top: Time evolution
of the voltage of each node, current generated by each converter, and
duty cycle of each converter, considering a load variation at the time
instant t = 1 s.

the closed-loop system asymptotically converges to the desired

steady state (I, V ⋆, u).
Proof: Consider the storage function (19). We use the in-

tegrated input port-variable to shape the desired closed-loop

storage function, i.e.,

Sd = S +
1

2
(u− ū)⊤ Ki (u− ū) . (73)

Then, the first time derivative of Sd along the trajectories of

system (67) controlled by (72) satisfies

Ṡd = −İ⊤l Rlİl − V̇ ⊤GV̇ + u̇⊤ydc + u̇⊤Ki (u− u) (74a)

= −İ⊤l Rlİl − V̇ ⊤GV̇ − u̇⊤Kdu̇ (74b)

where we use Lemma 4 and the controller (72). Then, from

(74b), there exists a forward invariant set Π and by LaSalle’s

invariance principle, the solutions that start in Π converge to the

largest invariant set contained in

Π ∩ {(I, V, İ, V̇ , u) : İl = 0, V̇ = 0, u̇ = 0}. (75)

On this invariant set, by differentiating (67d) and (67e), we get

İ = 0. Moreover, from (72), it follows that u = u, which further

implies V = V ⋆ and I = I . �

The proposed decentralized control scheme is now assessed in

simulation,13 considering a dc network comprising four power

converters (i.e., two buck and two boost converters) intercon-

nected as shown in Fig. 8. The parameters of the converters and

lines are reported in Table IV and [31, Table IV], respectively.

The controller gains for the buck converters are kdα = 4× 105

and kiα = 4× 107, while those for the boost converters are

kdβ = 1× 106 and kiβ = 4× 107. The most significant electri-

cal signals of the simulation results are shown in Fig. 9. In order

to verify the robustness property of the control scheme with

respect to the load uncertainty, the value of the load is changed

from G to G+∆G at the time instant t = 1 s (see Table IV).

One can appreciate that the input shaping methodology is robust

with respect to load uncertainty (see Remark 11).

V. CONCLUSION AND FUTURE WORK

In this article, we have presented new passivity properties

for a class of RLC and s–RLC circuits that are modeled using

the BM formulation. We use these new passivity properties to

propose two new control methodologies: Output shaping and

input shaping. The key observations are as follows.

1) The output shaping methodology exploits the integrabil-

ity property of the output port-variable. The input shaping

technique instead exploits the integrability property of the

input port-variable.

2) The controllers based on the input shaping methodol-

ogy show robustness properties with respect to load

uncertainty.

Possible future directions include to incorporate nonlinear

loads (e.g., constant power loads [39], [40]), develop distributed

control schemes (e.g., for achieving load sharing [41]), and

extend such a new passivity concept to a wider class of nonlinear

systems [42], [43].

APPENDIX

In this Appendix, we use the input shaping methodology to

design voltage controllers for the buck–boost and Cúk convert-

ers, respectively. The proofs of the following corollaries are

analogous to those of Corollaries 2 and 4 presented in Section IV.

Buck–Boost Converter

The average governing dynamic equations of the buck–boost

converter are the following:

−Lİ = (1− u)V − uVs

CV̇ = (1− u)I −GV. (76)

Equivalently, system (76) can be obtained from (11) with Γ0 =
1, Γ1 = 0, B0 = 0, B1 = 1, and R = 0. By using Proposition 2,

the following passivity property is established.

Lemma 5 (Passivity property of the buck–boost converter):

Let Assumptions 1 and 2 hold. System (76) is passive with

13For the readers interested also in experimental results obtained by imple-
menting the input shaping control methodology in a real dc microgrid comprising
boost converters, we refer to [39].
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respect to the storage function (19) and the port-variables u̇ and

y = İV − V̇ I + Vsİ .

By virtue of the above passivity property, we can now use the

input shaping methodology to design a voltage controller.

Corollary 5 (Input shaping for the buck–boost converter):

Let Assumptions 1–3, 5, and 6 hold. Consider system (76) with

the dynamic controller

u̇ = − 1

kd
(ki (u− u) + (İV − V̇ I + Vsİ)) (77)

with kd > 0 and ki > 0. Then, the solution (I, V, u) to the

closed-loop system asymptotically converges to the desired

steady state (I, V ⋆, u).

Cúk Converter

The average governing dynamic equations of the Cúk con-

verter are the following:

−L1İ1 = (1− u)V1 − Vs (78a)

−L2İ2 = uV1 + V2 (78b)

C1V̇1 = (1− u)I1 + uI2 (78c)

C2V̇2 = I2 −GV2. (78d)

Equivalently, system (78) can be obtained from (8) with

Γ0 =
[

1 0

0 1

]

, Γ1 =
[

0 0

1 1

]

, B0 = B1 = [1 0]⊤, PR(I) = 0,

and PG(V ) = 1
2GV 2

2 . By using Proposition 2, the following

passivity property is established.

Lemma 6 (Passivity property of the Cúk converter): Let As-

sumptions 1 and 2 hold. System (78) is passive with respect

to the storage function (19) and the port-variables u̇ and y =
V̇1(I2 − I1)− V1(İ2 − İ1).

By virtue of the above passivity property, we can now use the

input shaping methodology to design a voltage controller.

Corollary 6 (Input shaping for the Cúk converter): Let As-

sumptions 1–3, 5, and 6 hold. Consider system (76) with the

dynamic controller

u̇ = − 1

kd
(ki (u− u) + V̇1 (I2 − I1)− V1(İ2 − İ1)) (79)

with kd > 0 and ki > 0. Then, the solution (I, V, u) to the

closed-loop system asymptotically converges to the desired

steady state (I, V ⋆, u).
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