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Abstract 

Background: To compare the diagnostic performance of neurite orientation dispersion and density imaging 
(NODDI), mean apparent propagator magnetic resonance imaging (MAP-MRI), diffusion kurtosis imaging (DKI), diffu-
sion tensor imaging (DTI) and diffusion-weighted imaging (DWI) in distinguishing high-grade gliomas (HGGs) from 
solitary brain metastases (SBMs).

Methods: Patients with previously untreated, histopathologically confirmed HGGs (n = 20) or SBMs (n = 21) appear-
ing as a solitary and contrast-enhancing lesion on structural MRI were prospectively recruited to undergo diffusion-
weighted MRI. DWI data were obtained using a q-space Cartesian grid sampling procedure and were processed to 
generate parametric maps by fitting the NODDI, MAP-MRI, DKI, DTI and DWI models. The diffusion metrics of the 
contrast-enhancing tumor and peritumoral edema were measured. Differences in the diffusion metrics were com-
pared between HGGs and SBMs, followed by receiver operating characteristic (ROC) analysis and the Hanley and 
McNeill test to determine their diagnostic performances.

Results: NODDI-based isotropic volume fraction  (Viso) and orientation dispersion index (ODI); MAP-MRI-based mean-
squared displacement (MSD) and q-space inverse variance (QIV); DKI-generated radial, mean diffusivity and fractional 
anisotropy  (RDk,  MDk and  FAk); and DTI-generated radial, mean diffusivity and fractional anisotropy (RD, MD and FA) 
of the contrast-enhancing tumor were significantly different between HGGs and SBMs (p < 0.05). The best single dis-
criminative parameters of each model were  Viso, MSD,  RDk and RD for NODDI, MAP-MRI, DKI and DTI, respectively. The 
AUC of  Viso (0.871) was significantly higher than that of MSD (0.736),  RDk (0.760) and RD (0.733) (p < 0.05).

Conclusion: NODDI outperforms MAP-MRI, DKI, DTI and DWI in differentiating between HGGs and SBMs. NODDI-
based  Viso has the highest performance.
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Background
High-grade gliomas (HGGs) and brain metastases are 

common malignancies in the central nervous system 

(CNS). HGGs account for approximately 80% of primary 

CNS malignancies [1]. Meanwhile, metastatic tumors 

occur ten times more frequently than primary malig-

nancy in the brain [2]. �e differentiation between HGGs 

and brain metastases is critical, as the management 
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strategies for these two malignant brain tumors are vastly 

different. For patients with HGGs, surgical resection is 

the first choice, and it is usually not necessary to perform 

a systemic examination [2]. However, for patients with 

suspected brain metastases, comprehensive systemic 

examinations are needed, and if confirmed, stereotactic 

radiosurgery or systemic therapy such as targeted ther-

apy and immunotherapy are recommended [3].

Magnetic resonance imaging (MRI) is the mainstay of 

imaging modalities for the diagnosis of brain tumors. For 

patients who present multiple cerebral lesions and have 

a history of primary malignancy, the diagnosis of brain 

metastases may be straightforward by MRI. However, 

solitary brain metastases (SBMs) are the first manifesta-

tion in nearly 30% of patients with systemic malignancy 

[4]. �erefore, when patients show a solitary and con-

trast-enhancing brain lesion, it would be challenging to 

distinguish HGG from solitary brain metastasis (SBM) 

because they often show similar signal features and con-

trast enhancement patterns on conventional MRI, lead-

ing to incorrect diagnosis in over 40% of cases [5]. In this 

case, tumor biopsy is often performed to confirm the 

histologic diagnosis, whereas it has inherent limitations, 

such as procedure-related complications, interobserver 

variability and sampling errors [6]. �us, a noninvasive 

method to differentiate HGGs from SBMs is prefer-

able and sometimes mandatory when the patient cannot 

receive surgery due to poor general condition or when 

the tumor involves or is adjacent to important brain 

areas.

Diffusion-weighted imaging (DWI) is one of the most 

widely used advanced MRI techniques to characterize 

the microstructural changes in cerebral tumors, which 

complements the anatomic information provided by con-

ventional MRI [7]. Previously, Gaussian-based DWI and 

diffusion tensor imaging (DTI) have been used to distin-

guish HGGs from SBMs, with DWI-based apparent dif-

fusion coefficient (ADC) and DTI-generated fractional 

anisotropy (FA) being the most commonly used metrics. 

However, contradictory results have been reported on 

the ability of ADC and FA to differentiate HGGs from 

SBMs [8–10].

Recently, novel diffusion MRI techniques, such as the 

three-compartment biophysical model neurite orienta-

tion dispersion and density imaging (NODDI) and the 

non-Gaussian-based mean apparent propagator (MAP)-

MRI, have emerged as powerful tools to evaluate brain 

microstructure in vivo, as they can provide new insights 

into the complexity and inhomogeneity of brain micro-

structure [11, 12]. Both NODDI and MAP-MRI have 

shown promising results in lateralization of temporal 

lobe epilepsy [13], assessment of Parkinson’s disease [14] 

and grading of gliomas [15]; nonetheless, whether they 

outperformed the more commonly used non-Gaussian-

based DKI and Gaussian diffusion models such as DTI 

and DWI in differentiation between HGGs and SBMs 

remains unknown. �erefore, the aim of our study was to 

compare the diagnostic performance of NODDI, MAP-

MRI, DKI, DTI and DWI in distinguishing HGGs from 

SBMs.

Methods
Study participants

Our institutional review board approved this prospec-

tive study, and all participants provided written informed 

consent. From January 2019 to March 2020, 175 con-

secutive patients who presented a solitary and contrast-

enhancing brain lesion on structural MRI, which were 

identified by a radiologist with 3  years of experience, 

were enrolled to undergo diffusion-weighted MRI. �e 

inclusion criteria were as follows: (a) a solitary and con-

trast-enhancing brain lesion on structural MRI, and (b) 

a pathological diagnosis of HGG according to the world 

health organization (WHO) 2016 classification of brain 

tumors, or a pathological diagnosis of SBM. �e exclu-

sion criteria were as follows: (a) brain lesions that had 

received previous treatment before MRI, (b) brain lesions 

that had received no surgery or biopsy after MRI, (c) his-

tologically confirmed other diseases except HGG and 

SBM, and (d) poor-quality MR images due to movement 

artifacts. Finally, 41 patients (26 males and 15 females; 

mean age, 54.85  years; age, 19–81  years) were included 

in our study. �e flowchart for the selection of the study 

population is shown in Fig. 1.

MRI

All patients included in our study underwent structural 

and diffusion MRI on a 3.0T scanner (MAGNETOM 

Skyra, Siemens Healthcare, Erlangen, Germany) with a 

20-channel head/neck coil. �e structural MRI sequences 

included axial turbo spin echo (TSE) T2-weighted 

(T2W) imaging and axial TSE T1-weighted (T1W) imag-

ing. After intravenous administration of 0.1  mmol/kg 

gadobutrol (Gadovist, Bayer Healthcare), axial contrast-

enhanced TSE T1W imaging, as well as coronal and 

sagittal contrast-enhanced FLASH T1W imaging, was 

performed. On the second day after the structural MRI, 

diffusion MRI was performed in the axial plane using a 

full q-space Cartesian grid sampling procedure with a 

radial grid size of 3, ninety-nine diffusion directions and 

ten different b-values (from 0 to 3000 s/mm2). �e acqui-

sition time was 10 min 32 s. �e acquisition parameters 

of all MR sequences are shown in Table 1. �e geomet-

ric parameters, including slice thickness, slice gap and 

FOV of axial T1W and T2W, were identical to those of 

diffusion-weighted MRI. Moreover, the imaging planes of 
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Fig. 1 Flowchart shows the selection of the study population

Table 1 Imaging sequences and acquisition parameters of structural and di�usion MRI

TSE turbo spin echo, T2W T2-weighted, T1W T1-weighted, TR repetition time, TE echo time, TI inversion time, FOV �eld of view

Sequence Slice orientation TR/TE (ms) TI (ms) Slice thickness/
gap (mm)

FOV  (mm2) Matrix Averages

TSE T2W Axial 4500/96 – 4/0 220 × 220 320 × 240 1

TSE T1W Axial 2000/9 900 4/0 220 × 220 320 × 240 1

FLASH T1W Coronal 175/4.73 – 5/1 220 × 220 320 × 208 2

FLASH T1W Sagittal 150/4.73 – 4/1 220 × 220 320 × 256 2

Diffusion MRI Axial 6000/109 – 4/0 220 × 220 110 × 110 1
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axial T2W and T1W and diffusion MRI were all aligned 

parallel to the genu and splenium line of the corpus 

callosum.

Di�usion data analysis

All DWI data were converted to the NIfTI format using 

the DCM2NII tool and then processed using the NeuDi-

Lab software developed in-house based on the open-

resource tool DIPY (Diffusion Imaging in Python, http://

nipy.org/dipy). �e five diffusion models and the derived 

diffusion metrics are as follows:

For the conventional DWI model, the ADC measures 

the magnitude of diffusion of water molecules in a voxel, 

which was calculated with the following equation [16]:

where S(b) is the signal intensity according to the given b 

value and S (0) is the signal intensity for b = 0 s/mm2.

For the DTI model, the axial and radial diffusivity (AD 

and RD) are the average diffusivities, respectively, in the 

directions parallel and perpendicular to the diffusion ten-

sor (DT) eigenvector with the largest eigenvalue. Mean 

diffusivity (MD) quantifies the mean extent of the diffu-

sion of water molecules in a voxel and reflects the overall 

level of molecular dispersion. Fractional anisotropy (FA) 

represents the amount of diffusion asymmetry within 

a voxel, which in theory should range between 0 and 1. 

AD, RD, MD and FA were all derived from the princi-

pal eigenvalues (λ1, λ2, and λ3) of DT with the following 

equations [17]:

For the DKI model, AD, RD, MD, and FA were denoted 

as  ADk,  RDk,  MDk, and  FAk, respectively, which were 

derived from the principal eigenvalues (λ1, λ2, and λ3) of 

the corrected diffusion tensor (DT) with the same equa-

tions as the DTI model. �e axial, radial, and mean kur-

tosis (AK, RK, and MK) were derived from the kurtosis 

tensor (KT). Specifically, AK and RK are the average kur-

tosis parallel and perpendicular to the principle diffusion 

eigenvector. MK is the average kurtosis of all diffusion 
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directions. �e DKI model is described with the follow-

ing equation [18]:

where  ADCDKI is the apparent diffusion coefficient 

obtained with DKI and K is the kurtosis parameter.

For the MAP model, the non-Gaussianity (NG) char-

acterizes the three-dimensional diffusion process and 

is defined as NG = sin θPG , which quantifies the dis-

similarity between the propagator, P(r), and its Gaussian 

part, G(r). Axial non-Gaussianity  (NGAx) and radial non-

Gaussianity  (NGRad) are the derivations of NG for diffu-

sion on the axial and radial directions, respectively. �e 

return-to-origin probability (RTOP) describes the prob-

ability of no net displacement of molecules between two 

diffusion sensitization gradients, and the return-to-plane 

probability (RTPP) and return-to-axis probability (RTAP) 

are its variants for diffusion in one- and two-dimen-

sions. �e mean squared displacement (MSD) measures 

the average amount of diffusion in a voxel. �e q-space 

inverse variance (QIV) measures the inverse variance of 

the q-signal geometric means. RTOP, RTAP, RTPP, MSD 

and QIV are calculated using the following equations 

[19]:

where q indicates the q-space wave-vector; E(q) is the 

ratio of the signal at q to that at q = 0;  q
⊥

 denotes the 

q-vector on the sampled plane; and  q// denotes the com-

ponent of the q-vector along the fiber axis. R denotes a 
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three-dimensional displacement vector. P(R) indicates 

the likelihood of particles to undergo a net displacement.

For the NODDI model, the isotropic volume fraction 

 (Viso) measures the isotropic diffusion compartment in 

a voxel, the intracellular volume fraction  (Vic) represents 

diffusion within the axons and cells, and the orientation 

dispersion index (ODI) measures the orientation disper-

sion of fibers in a voxel.  Viso,  Vic and ODI are calculated 

using the following equation [17]:

where Eic is the signal contribution from the intracellu-

lar compartment; Eec is the signal due to diffusion in the 

extracellular space; and an isotropic Gaussian compart-

ment Eiso represents free diffusion.

All diffusion parametric images and axial postcontrast 

T1W images were coregistered to T2W images using 

Elastix software (http://elast ix.isi.uu.nl/) and transformed 

into the same imaging space. For diffusion images, base-

line data with b = 0 were used for registration. Rigid 

transform was used due to its robustness with compari-

son to affine transform for the multicontrast data. For 

quantitative analysis, a neuroradiologist (with 8 years of 

experience in neuroradiology) performed region of inter-

est (ROI) measurements with guidance from a board-

certified radiologist (with 17  years of experience in 

neuroradiology), and both radiologists were blinded to 

the histological results. All the ROIs were drawn on the 

registered postcontrast T1W images and T2W images 

using the open-source application ITK-SNAP (www.itk-

snap.org). �e enhanced areas seen on the postcontrast 

T1W images were delineated and defined as the ROIs of 

the contrast-enhancing tumor. �e hyperintense signal 

that represented peritumoral edema on the T2W images 

was manually outlined and defined as the ROI of peri-

tumoral edema. Areas of necrosis, cysts or hemorrhage 

that were detectable on the postcontrast T1W images or 

T2W images were excluded from the ROIs. Finally, the 

ROIs were directly copied to the coregistered paramet-

ric diffusion maps of the same patient by using MRIcron 

software (https ://peopl e.cas.sc.edu/rorde n/mricr on/

index .html) to calculate the corresponding average values 

of the contrast-enhancing tumor and peritumoral edema.

Statistical analysis

�e normality and equal variance of diffusion metrics 

were checked using the Shapiro–Wilk test and Levene’s 

F test, respectively. Differences in all diffusion parameters 

between HGGs and SBMs were compared by using the 

independent Student’s t test or the Mann–Whitney U 

test. �e diagnostic performance of the significant diffu-

sion metrics to discriminate HGGs from SBMs was eval-

uated by receiver operating characteristic (ROC) curve 

E = (1 − Viso)(VicEic(ODI) + (1 − Vic) ∗ Eec) + VisoEiso

analysis. �e optimal cutoff value, sensitivity, specificity 

and accuracy were calculated. �e area under the curve 

(AUC) was compared by using the Hanley and McNeill 

test using the R software (version 3.2.4; R Foundation for 

Statistical Computing). All other statistical analyses were 

performed using SPSS (version 26.0; SPSS, Chicago, III, 

USA). A two-tailed p < 0.05 was considered to indicate a 

significant difference.

Results
Study population

Twenty patients (13 males and 7 females; mean age, 

55.70 years; age, 19–67 years) with HGGs diagnosed by 

histopathology including seven patients with anaplas-

tic astrocytoma (WHO grade III) and thirteen patients 

with glioblastoma (WHO grade IV) and twenty-one 

patients (13 males and 8 females; mean age, 54.05 years; 

age, 43–81  years) with SBMs confirmed by histopathol-

ogy were included. �e primary tumors were lung carci-

noma (n = 10), breast carcinoma (n = 5), colon carcinoma 

(n = 3), liver carcinoma (n = 1), gastric carcinoma (n = 1), 

and thyroid carcinoma (n = 1).

Di�usion parameters between HGGs and SBMs

�e averages of all diffusion parameters and their com-

parison between the HGG group and SBM group are 

shown in Table  2. �e RD, MD,  RDk,  MDk, MSD, QIV, 

 Viso and ODI of the contrast-enhancing tumors were sig-

nificantly lower in the HGGs than in the SBMs (p = 0.006, 

p = 0.016, p = 0.002, p = 0.007, p = 0.002, p = 0.039, 

p = 0.001, and p = 0.003, respectively). �e FA and  FAk of 

the contrast-enhancing tumors were significantly higher 

in the HGGs than in the SBMs (p = 0.007 and p = 0.021, 

respectively). No significant differences were found 

among all other diffusion parameters in the contrast-

enhancing tumors or peritumoral edema between the 

two groups (p > 0.05).

Diagnostic performances of di�usion metrics

ROC curve analyses of the significant diffusion metrics of 

the contrast-enhancing tumors are shown in Table 3 and 

Fig. 2. �e best single discriminative parameters for DTI, 

DKI, MAP-MRI and NODDI were RD,  RDk, MSD and 

 Viso, respectively (AUC = 0.733, 0.760, 0.736, and 0.871, 

respectively). Among them, NODDI-based  Viso showed 

the best performance in differentiating HGGs from 

SBMs, with a sensitivity of 95.0%, specificity of 76.2% 

and accuracy of 85.4% at the optimal threshold of 0.158. 

�e AUC of NODDI-based  Viso was significantly higher 

than MAP-MRI-based MSD, DKI-based  RDk and DTI-

based RD (p = 0.012; p = 0.047; p = 0.007), suggesting that 

NODDI outperforms MAP-MRI, DKI and DTI in distin-

guishing HGGs from SBMs. No significant differences 

http://elastix.isi.uu.nl/
http://www.itk-snap.org
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https://people.cas.sc.edu/rorden/mricron/index.html
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Table 2 Di�usion parameters in the contrast-enhancing tumor or peritumoral edema of HGGs and SBMs

All numerical data are presented as the mean ± standard deviation. *p < 0.05

Parameters Contrast-enhancing tumor p value Peritumoral edema p value

HGGs (n = 20) SBMs (n = 21) HGGs (n = 20) SBMs (n = 21)

DWI

 ADC  (10–3  mm2/s) 0.56 ± 0.10 0.64 ± 0.14 0.068 0.57 ± 0.10 0.59 ± 0.15 0.876

DTI

 AD  (10–3  mm2/s) 0.88 ± 0.11 0.93 ± 0.15 0.361 0.92 ± 0.18 0.97 ± 0.30 0.715

 RD  (10–3  mm2/s) 0.55 ± 0.15 0.69 ± 0.18 0.006* 0.56 ± 0.15 0.61 ± 0.26 0.754

 MD  (10–3  mm2/s) 0.66 ± 0.12 0.77 ± 0.17 0.016* 0.68 ± 0.15 0.73 ± 0.26 0.958

 FA 0.33 ± 0.13 0.22 ± 0.09 0.007* 0.35 ± 0.11 0.33 ± 0.15 0.315

DKI

 AK 0.72 ± 0.13 0.75 ± 0.09 0.396 0.81 ± 0.12 0.74 ± 0.15 0.120

 RK 0.95 ± 0.34 0.82 ± 0.19 0.137 0.95 ± 0.28 1.03 ± 0.31 0.397

 MK 0.80 ± 0.20 0.78 ± 0.12 0.681 0.84 ± 0.16 0.86 ± 0.18 0.756

 ADk  (10–3  mm2/s) 1.31 ± 0.18 1.42 ± 0.27 0.095 1.34 ± 0.24 1.44 ± 0.43 0.449

 RDk  (10–3  mm2/s) 0.81 ± 0.21 1.09 ± 0.32 0.002* 0.83 ± 0.23 0.94 ± 0.38 0.549

 MDk  (10–3  mm2/s) 0.97 ± 0.17 1.21 ± 0.30 0.007* 1.03 ± 0.24 1.10 ± 0.38 0.835

 FAk 0.32 ± 0.15 0.23 ± 0.09 0.021* 0.33 ± 0.11 0.31 ± 0.13 0.309

MAP

 NG 0.27 ± 0.06 0.25 ± 0.38 0.216 0.28 ± 0.05 0.27 ± 0.05 0.426

 NGAx 0.22 ± 0.04 0.21 ± 0.32 0.295 0.29 ± 0.13 0.23 ± 0.44 0.192

 NGRad 0.15 ± 0.04 0.14 ± 0.02 0.784 0.15 ± 0.03 0.14 ± 0.03 0.359

 MSD  (10−5mm2) 18.77 ± 4.27 24.24 ± 6.12 0.002* 20.09 ± 4.09 21.90 ± 7.62 0.855

 QIV  (10−10mm5) 45.40 ± 22.28 73.67 ± 45.77 0.039* 49.77 ± 29.74 71.50 ± 95.45 0.754

 RTOP  (105 mm−3) 3.28 ± 1.31 2.57 ± 0.89 0.100 3.48 ± 1.25 3.32 ± 1.34 0.691

 RTAP  (103 mm−2) 5.11 ± 1.71 4.17 ± 1.17 0.068 5.41 ± 1.37 5.33 ± 1.88 0.876

 RTPP  (101 mm−1) 5.03 ± 0.42 4.87 ± 0.44 0.229 5.08 ± 0.60 4.90 ± 0.68 0.404

NODDI

 Vic 0.49 ± 0.14 0.46 ± 0.10 0.485 0.51 ± 0.12 0.50 ± 0.15 0.796

 Viso 0.09 ± 0.05 0.23 ± 0.12 0.001* 0.11 ± 0.07 0.16 ± 0.14 0.167

 ODI 0.35 ± 0.11 0.45 ± 0.09 0.003* 0.34 ± 0.12 0.36 ± 0.14 0.631

Table 3 ROC analyses of the signi�cant parameters of the contrast-enhancing tumor to di�erentiate HGGs from SBMs

CI con�dence interval

Parameters Cuto� value AUC (95% CI) Sensitivity (95% CI) Speci�city (95% CI) Accuracy (95% CI)

DTI

 RD  (10–3  mm2/s) 0.597 0.733(0.580, 0.887) 0.700(0.457, 0.872) 0.667(0.431, 0.845) 0.683(0.519, 0.819)

 MD  (10–3  mm2/s) 0.797 0.686(0.522, 0.850) 0.900(0.669, 0.982) 0.428(0.226, 0.656) 0.658(0.494, 0.799)

 FA 0.287 0.731(0.567, 0.894) 0.700(0.457, 0.872) 0.810(0.574, 0.937) 0.756(0.597, 0.876)

DKI

 RDk  (10–3  mm2/s) 1.106 0.760(0.613, 0.906) 0.950(0.730, 0.997) 0.476(0.264, 0.697) 0.707(0.545, 0.839)

 MDk  (10–3  mm2/s) 1.084 0.745(0.593, 0.898) 0.850(0.611, 0.960) 0.619(0.387, 0.810) 0.732(0.571, 0.858)

 FAk 0.255 0.711(0.544, 0.877) 0.750(0.506, 0.904) 0.667(0.431, 0.845) 0.707(0.545, 0.839)

MAP

 MSD  (10−5mm2) 24.688 0.736(0.683, 0.888) 0.950(0.730, 0.997) 0.428(0.226, 0.656) 0.683(0.519, 0.819)

 QIV  (10−10mm5) 75.891 0.688(0.524, 0.852) 0.900(0.669, 0.982) 0.428(0.226, 0.656) 0.658(0.494, 0.799)

NODDI

 Viso 0.158 0.871(0.756, 0.987) 0.950(0.730, 0.997) 0.762(0.524, 0.909) 0.854(0.708, 0.944)

 ODI 0.409 0.770(0.621, 0.919) 0.800(0.557, 0.934) 0.667(0.431, 0.845) 0.732(0.571, 0.858)
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were found between the AUCs of RD,  RDk and MSD 

(p > 0.05). Two representative cases in each group are 

shown in Figs. 3 and 4.

Discussion
Our results demonstrated that HGGs and SBMs showed 

distinctive NODDI, MAP-MRI, DKI and DTI-based dif-

fusion metrics in the contrast-enhancing tumor region, 

while no difference was observed for any of the diffu-

sion parameters in peritumoral edema. NODDI-based 

tumoral  Viso had the greatest discriminative power 

between HGGs and SBMs.

Patients with HGGs or SBMs generally have a dis-

mal prognosis, but correct differential diagnosis and 

appropriate clinical decisions can significantly prolong 

the survival time [20]. �us, it is crucial to distinguish 

HGGs from SBMs. Nonetheless, it is always challeng-

ing to differentiate between these two malignancies only 

by conventional MRI [5]. In recent years, advanced dif-

fusion-weighted MRI techniques have emerged as pow-

erful tools to assess microstructural changes in CNS 

diseases. As the complex microstructures in neural tissue 

Fig. 2 ROC curves of the significant diffusion metrics to distinguish 
HGGs from SBMs

Fig. 3 A patient with histologically confirmed glioblastoma. a T2W images and b post-contrast T1W images show a contrast-enhancing tumor with 
peritumoral edema located in the right frontal lobe. Pseudocolorful maps show the lesion (inside the white circle) having a slightly increased RD (c), 
 RDk (d), MSD (e), and  Viso (f) compared to the contralateral normal white matter
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(e.g., cell membranes and myelin fibers) change water 

molecule diffusion into a non-Gaussian probability dis-

tribution, non-Gaussian diffusion models such as MAP-

MRI and DKI are supposed to reflect the real situation 

of water molecule diffusion more accurately and better 

characterize the complexity and inhomogeneity of the 

tissue microenvironment than Gaussian diffusion mod-

els [21]. Specifically, DKI is a commonly used and mod-

erately complex physical model that is sensitive to DWI 

sampling and noise [22]. MAP-MRI is a more recent and 

highly complex physical model that can evaluate three-

dimensional q-space data [11] but shows increased sen-

sitivity to DWI sampling and noise [22]. Comparatively, 

NODDI is an increasingly popular biophysical model 

with low complexity that attempts to separate the signal 

contribution of neural tissue into three compartments, 

including restricted, hindered, and isotropic diffu-

sion, and to model the dispersion of axonal fibers [17]. 

NODDI metrics are highly stable to DWI sampling and 

image quality [22]. In the present study, we found that 

NODDI-based  Viso outperformed other non-Gaussian 

or Gaussian diffusion parameters in the differentiation 

between HGGs and SBMs. Although no single diffusion 

parameter can fully capture the complexity of neural tis-

sue, our findings suggest that NODDI-Viso could poten-

tially be a sensitive imaging biomarker in neuro-oncology 

research and deserves further investigation.

NODDI-Viso represents isotropic diffusion within the 

tissue; in our study, HGGs showed a lower tumoral  Viso 

value than SBMs. �is phenomenon can be explained by 

the fact that HGGs are characterized by enlarged extra-

cellular space and overproduction of certain components 

of extracellular matrix components, mainly tenascin [23]. 

�ese molecules accumulate and orient in the extracellu-

lar matrix [24], resulting in less isotropy at DWI. In con-

trast, metastatic brain tumors degrade the extracellular 

matrix with heparanase and matrix metalloproteinases, 

thereby growing into the brain parenchyma in an expan-

sive and noninfiltrating pattern [25], resulting in higher 

isotropy at DWI. NODDI-based ODI represents the ori-

entation dispersion of fibers in tissue [12]. In this study, 

the tumoral ODI value was found to be lower in HGGs 

Fig. 4 A patient with a histologically confirmed solitary brain metastasis from the colon carcinoma. a T2W images and b post-contrast T1W images 
represent a contrast-enhancing tumor with peritumoral edema located in the right parietal lobe. Pseudocolorful maps show the lesion (inside 
the white circle) having a slightly increased RD (c),  RDk (d), MSD (e) and a moderately increased  Viso (f) compared to the contralateral normal white 
matter
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than in SBMs, which could also be explained by the fact 

that tumor tissue tends to be less isotropic for HGGs 

than for SBMs. For MAP-MRI, we found that HGGs 

showed lower MSD and QIV values than SBMs. MSD 

indicates the mean square displacement of the water mol-

ecules. �ese results can be explained by the fact that the 

solid part of HGGs had higher cellularity than did brain 

metastases [26–28], which might lead to higher diffusion 

restriction in HGGs, and the water molecules will thus 

move shorter distances and result in a lower MSD value 

[19]. QIV signifies the q-space inverse variance, which 

is a pseudodiffusivity measure and represents different 

diffusion components [29]; thus, a higher tumoral QIV 

value for SBM suggested a higher proportion of fast dif-

fusivity in SBMs. For DTI, we found that HGGs showed a 

higher tumoral FA value and lower tumoral RD and MD 

values than SBMs. FA is a measurement of the direction-

ality of water diffusion along with the white matter, which 

has a positive correlation with tumor cellularity [30]. 

Higher tumoral FA values for HGGs than SBMs were 

also described in recent studies [31, 32], where a higher 

FA value of the contrast-enhancing region of HGGs was 

reported to be assumed to be due to the higher cellular-

ity of HGGs [26–28]. MD reveals the rate of water mol-

ecule diffusional motion; RD represents the diffusion rate 

of water perpendicular to white matter fibers [17]. Both 

MD and RD show an inverse relationship with tumor cel-

lularity [33, 34], which can explain the opposite change 

trend of MD and RD compared with FA. As an exten-

sion of DTI [35], DKI-based RD, MD and FA in our study 

showed similar change patterns with DTI-based RD, MD 

and FA.

Previously, the ability of diffusion MR metrics such as 

ADC and FA to distinguish peritumoral edema of HGGs 

from that of SBMs has been widely investigated, but the 

study results remain controversial [8–10]. In the present 

study, although five diffusion models were utilized, no 

significant differences were found in any of the diffusion 

parameters between the peritumoral edema of HGGs 

and SBMs. �ese inconsistent results may contribute to 

the intrinsic heterogeneity of HGGs. Although it was 

confirmed histologically that tumor cells exist in the peri-

tumoral edema of HGGs, the magnitude of tumor cell 

infiltration actually has a substantially wide range [36]. 

�us, minimal tumor infiltration may not cause a sig-

nificant signal change in diffusion MRI. Further studies 

applying three-dimensional texture analysis of volumet-

ric diffusion MR images could provide additional infor-

mation on the heterogeneity of tumor cell infiltration in 

peritumoral edema, which may be helpful in the differen-

tiation of tumor-infiltrated edema from purely vasogenic 

edema.

Our study has some limitations. First, the sample size 

was small for both the HGG and SBM groups, as all 

patients were prospectively enrolled from a single insti-

tution. However, our study showed that the advanced 

diffusion-weighted technique NODDI-based  Viso had 

a desirable diagnostic performance (AUC = 0.871) for 

distinguishing HGGs from SBMs. �is model deserves 

further study with a larger sample size to validate the cur-

rent results. Second, the diffusion MR examination in 

our study requires a long scan duration of approximately 

10 min. In the future, this problem can be overcome by 

using advanced techniques, such as compressed sensing 

[37] and simultaneous multislice acquisition techniques 

[38].

Conclusion
Our study shows that NODDI outperforms MAP-MRI, 

DKI, DTI and DWI in distinguishing HGGs from SBMs. 

Among all the diffusion metrics, NODDI-based  Viso 

has the highest performance in differentiating between 

HGGs and SBMs.
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