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Differentiation dynamics of mammary epithelial
cells revealed by single-cell RNA sequencing
Karsten Bach1,2,3, Sara Pensa1,3, Marta Grzelak2,3, James Hadfield 2,3, David J. Adams3,4,

John C. Marioni2,3,4,5 & Walid T. Khaled1,3

Characterising the hierarchy of mammary epithelial cells (MECs) and how they are regulated

during adult development is important for understanding how breast cancer arises. Here we

report the use of single-cell RNA sequencing to determine the gene expression profile of

MECs across four developmental stages; nulliparous, mid gestation, lactation and post

involution. Our analysis of 23,184 cells identifies 15 clusters, few of which could be fully

characterised by a single marker gene. We argue instead that the epithelial cells—especially

in the luminal compartment—should rather be conceptualised as being part of a continuous

spectrum of differentiation. Furthermore, our data support the existence of a common luminal

progenitor cell giving rise to intermediate, restricted alveolar and hormone-sensing pro-

genitors. This luminal progenitor compartment undergoes transcriptional changes in

response to a full pregnancy, lactation and involution. In summary, our results provide a

global, unbiased view of adult mammary gland development.
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T
he purpose of the mammary gland is to provide nourish-
ment and passive immunity for the young until they are
capable of feeding themselves. From a developmental

biology perspective, the mammary gland is a unique organ as it
undergoes most of its development during puberty and
adulthood1–4. In the pre-pubertal mouse, the mammary gland
consists of a rudimentary epithelial ductal structure embedded
within a mammary fat pad, which is connected to the
nipple5, 6. At the onset of puberty and in response to hormonal
changes, the rudimentary ductal structure will proliferate and
migrate to fill the entire mammary fat pad, leaving a developed
network of ductal structures that later serve as channels for
milk transport during lactation. At the onset of pregnancy,

a highly proliferative stage is initiated, characterised by further
ductal side-branching and widespread lobuloalveolar
development1. Differentiation of the epithelial cells within alveoli
prepares the gland for milk production and secretion. Towards
the end of pregnancy, the gland is extremely dense and
primarily occupied by epithelial cells and very little fat. This
morphology is largely maintained throughout lactation. However,
in response to cessation of suckling the gland undergoes
involution, which is characterised by extensive cell death and
tissue remodelling4, 7. Towards the end of involution, the gland
reaches a morphology resembling that of glands prior to preg-
nancy and subsequent pregnancies will trigger the same chain of
events.
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Fig. 1 Single-cell RNA sequencing identifies 15 clusters of mammary epithelial cells. a Schematic diagram highlighting the experimental setup for isolating

and sequencing the RNA of single cells using the 10× chromium system. b t-SNE plot of 23,184 cells visualises general structure in the data. Cells are

coloured by the four developmental time points as follows: pink=NP, dark green=G, light green= L, purple= PI. c Same as b but colouring cells by

clusters. d t-SNEs coloured by the normalised log-transformed expression of the basal marker Krt5 and the luminal marker Krt18
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Recent efforts have focused on the identification and char-
acterisation of the various mammary epithelial cell lineages
within the gland that contribute to this developmental homo-
eostasis. Pioneering fat pad transplantation studies nearly 70
years ago were the first to demonstrate the regenerative and
differentiation capacity of small numbers of cells8–10. More
recently the use of cell surface markers coupled with flow cyto-
metry has been used to enrich for various progenitor and stem
cell compartments10–13 and showed that imbalance of such cell
populations results in cellular transformation and subsequently
breast cancer14, 15. Other studies, inspired by breast cancer
transcriptomic profiling, have identified transcriptional regulators
of mammary epithelial cell types such as GATA3 in luminal
cells13, 16. More recently, elegant lineage-tracing studies used key

markers to address the contribution of each lineage to adult
mammary epithelial cell homoeostasis4. However, in all of these
studies only a handful of markers and genes were used to define
the cellular hierarchy of the mammary epithelial cells, with a
principal focus on the nulliparous developmental stage. There-
fore, to properly understand its changing role throughout life,
there is a need for an unbiased and comprehensive character-
isation of mammary epithelial cell compartments at different
developmental stages.

Here we used single-cell RNA sequencing (scRNAseq) to map
the cellular dynamics of mammary epithelial cells across four
adult developmental stages; nulliparous, mid gestation, lactation
and post weaning (full natural involution). Our data from 23,184
individual cells identify 15 distinct cell populations within the
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Fig. 2 Putative identities of mammary epithelial cell clusters. a Dendrogram of clusters based on the log-transformed mean expression values of the 15

clusters. The tree was computed based on Spearman’s rank correlation with Ward linkage. b t-SNEs with overlaid expression of cluster-specific genes. c

Heatmap highlighting key marker genes that were used to infer putative identities. Colour scale represents log-transformed and normalised counts scaled
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gland and allow their hierarchical structure across developmental
time points to be charted.

Results
Single-cell RNA sequencing identifies 15 clusters of mammary
epithelial cells. We isolated mammary epithelial cells from four
developmental time points; nulliparous (NP), day 14.5 gestation
(G), day 6 lactation (L) and 11 days post natural involution (PI).
For each time point, we sorted mammary epithelial cells based on
the EpCAM cell surface marker from two independent mice
(Supplementary Fig. 1; Fig. 1a). All samples were then prepared
for scRNAseq using the 10× Chromium platform17. Following
quality control (Methods), this yielded an average of 6175 unique
transcripts and 2118 genes detected from 25,010 cells (4223 in
NP, 5826 in G, 9319 in L and 5642 in P) with high reproducibility
between the biological replicates (Supplementary Figs. 2 and 3).
Visual inspection of the data using t-distributed stochastic
neighbour embedding (t-SNE) suggested that although there is
grouping of cells by time point, there are also other factors that
underlie structure within the data set (Fig. 1b). First, we dissected
the global structure by unsupervised clustering using a shared-
nearest-neighbour clustering approach (see Methods). This
resulted in a coarse clustering into 13 groups (Supplementary
Fig. 4a). In a second step, we applied hierarchical clustering to
each of the identified groups to further resolve the cellular het-
erogeneity (Fig. 1c, Supplementary Fig. 4b). After removal of
endothelial and immune cell clusters (Supplementary Fig. 4c–e),
this resulted in a total of 15 mammary epithelial cell clusters
(C1–C15) of 23,184 cells. Based on the expression of Krt18, Krt8,
Krt5, Krt14 and Acta2, we noted that 11 clusters showed a
luminal profile (C1–C11) and 4 showed a basal profile (C12–C15)
(Fig. 1d; Supplementary Data 1–15).

To further characterise the clusters, we identified differentially
expressed genes and inferred putative identities based on known
marker (Fig. 2a, b). As shown in Table 1, multiple clusters of cells
have been assigned to the same putative cell type. We found that
in these instances the cells showed a high similarity and expressed
the same marker genes but derived from different developmental
stages (see NP, G, L or PI suffix in Fig. 2a), suggesting that the

stage of the gland has specific effects on the transcriptional
landscape of certain cell types.

In the luminal compartment, we found two larger subgroups
(Fig. 2a). C1–C5 showed characteristics of hormone-sensing cells
(Hs) such as high expression levels of hormone receptors (Pgr,
Esr1, Prlr) (Fig. 2b, c). Of the putative Hs cells, we noted that C1/
C2 expressed progenitor markers (e.g. Aldh1a3, Cd14, Kit)18,
suggesting restricted progenitor function (Hsp) (Fig. 2b, c),
whereas C3/4/5 showed a more differentiated state (Hsd) (Fig. 2b,
c; Table 1). The second subgroup within the luminal compart-
ment (C6–C11) expressed only low levels of hormone receptors.
C6/7 expressed high levels of progenitor markers, which is
consistent with a luminal progenitor (Lp) phenotype (Fig. 2b, c).
In contrast, C8–C11 expressed milk proteins (e.g. Wap, Csn2),
and were exclusively composed of cells from gestation and
lactation, supporting the hypothesis that these are secretory
alveolar cells (Av) (Fig. 2b, c; Table 1). Of the putative alveolar
cells, we noted that C10/C11 expressed genes associated with a
restricted alveolar progenitor function (Avp), whereas C8/C9
appeared to be in a more differentiated alveolar state (Avd)
(Fig. 2b, c).

In the basal compartment we found that cells from C14 showed
characteristics of myoepithelial cells such as high levels of Acta2,
Oxtr and Krt15 (Fig. 2b, c). In addition, the basal compartment
also contained a cluster of cells, C15, that expressed high levels of
Procr, Gng11 and Zeb2 suggesting that these represent the
previously identified Procr+ basal cells, which have been shown to
be enriched for mammary repopulating units19 (Fig. 2b, c).

Reconstruction of the luminal differentiation hierarchy. We
focused on cells from the NP and G time points to investigate
mammary epithelial differentiation states of the gland. These
differentiation states and the transitions between them can be
computationally reconstructed using diffusion maps20. Briefly,
the method embeds the data in a low-dimensional space, where
distances between cells represent the progression through a gra-
dual but stochastic process such as differentiation. In diffusion
maps constructed from all epithelial cells, we observed a clear
segregation between the luminal and basal clusters, with virtually

Table 1 Summary of mammary epithelial cell clusters

Cluster Key genes Number of cells captured Putative identity Name

NP1 NP2 G1 G2 L1 L2 PI1 PI2

C1 Esr1, Prlr, Pgr, S100a6, Cited1,

Aldh1a3, Cd14 and Kit

1 0 0 0 0 0 107 385 Hormone sensing

progenitors

Hsp-PI

C2 265 169 0 0 0 0 5 2 Hsp-NP

C3 Esr1, Prlr, Pgr, S100a6 and Cited1 12 5 0 0 0 0 412 2487 Hormone sensing

differentiated

Hsd-PI

C4 971 1212 0 0 0 1 40 88 Hsd-NP

C5 0 0 20 41 2 0 0 0 Hsd-G

C6 Aldh1a3, Cd14 and Kit 372 316 2 3 0 2 22 9 Luminal progenitor Lp-NP

C7 0 1 0 0 0 0 824 1102 Lp-PI

C8 Wap, Csn2, Glycam1 and Lalba 0 0 1926 1818 1 1 0 1 Alveolar differentiated cells Avd-G

C9 0 0 0 0 42 47 0 0 Avd-L

C10 Wap, Csn2, Glycam1, Lalba, Aldh1a3,

Cd14 and Kit

2 1 89 126 3 2 0 1 Alveoloar progenitor cells Avp-G

C11 0 0 0 0 142 89 0 0 Avp-L

C12 Krt4, Krt14, Pdpn, Etv5 and Acta2 504 282 2 10 1 1 27 53 Basal cells Bsl-G

C13 0 1 525 594 1 0 0 5 Bsl

C14 Oxtr, Acta2, Krt4 andKrt14 0 0 1 0 4637 3104 1 1 Myoepithelial cells Myo

C15 Procr, Igfbp4, Gng11 and Zeb2 0 1 0 0 205 57 2 0 Procr + basal cells Prc

Overview of the different clusters including number of cells captured for each time-point and key genes that were used to infer their identities
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no transition states between the two (Fig. 3a). This supports the
hypothesis that during normal tissue homoeostasis the two
lineages are largely self-maintained, which is in agreement with
the majority of lineage tracing studies21–23. In contrast, the
luminal compartment showed a distinct structure, with gradual
transitions between different clusters and cells originating from a
common origin (Fig. 3b). We confirmed the robustness of this
bifurcation by verifying that it was present when different
methods of feature selection, algorithms for trajectory inference
and down-sampling were employed (Supplementary Fig. 5).

We found the expression of the progenitor marker Aldh1a3
gradually decreased as cells progressed away from their common
origin (Fig. 3c), which was largely composed of cells from C6
(Lp). We further noted that the left arm of the differentiation
trajectory terminates at C8 (Avd) and shows increasing expres-
sion of Csn2 and Glycam1 (Fig. 3c), consistent with a secretory

phenotype. In between C6 and C8, we found cells that were
mainly derived from C10 (Avp, Fig. 3b). On the right arm of the
differentiation trajectory, cells from C6 transitioned to C2 and
C4/5 (Hsp and Hsd), during which the expression of Esr1 and Pgr
increased suggesting that this branch represents differentiation
towards hormone-sensing luminal cells (Fig. 3c).

Being confident that the diffusion map recapitulates the
luminal differentiation process, we then computationally inferred
the two branches and ordered the cells according to their
progression through ‘pseudotime’24 (see Methods for further
explanation) (Fig. 4a). This allows us to identify genes whose
expression changes during the process of differentiation. We
found 456 genes that showed a pseudotime-dependent expression
with the same directionality along both differentiation trajectories
(see Methods for definition, Supplementary Data 16). These
included genes associated with known progenitor characteristics
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such as Aldh1a3 and Tspan825 as well as transcription factors that
have not previously been associated with luminal differentiation
such as Creb5, Hmga1 and Fosl1 (Fig. 4b). Hmga1 is a known
chromatin remodeller with reprogramming activity that has been

implicated in basal-like breast cancer26, 27. In addition, we
identified 1005 genes with branch-specific expression patterns.
We then clustered the gene expression trend on each of the two
branches and identified sets of genes that change over pseudotime
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(Fig. 4e, f, Supplementary Data 17, Supplementary Fig. 6). On the
alveolar branch, we found two clusters of genes that increase in
expression during differentiation, one that is switched on early
and another that is activated later in the final stages of
differentiation. The early cluster is enriched for genes involved
in fatty-acid oxidation and lipid biosynthetic processes (e.g. Lipa,
Dbi and Lpl, Fig. 4f). The second, smaller group of genes that is
switched on during the late stages of differentiation was enriched
for genes involved in fatty-acid transport and lipid homoeostasis
(e.g. Olah, Cd36, Fig. 4f). Of note, milk genes vary in their time of
activation, with caseins switched on earlier during differentiation,
whereasWap, Glycam1 and Lalba were only expressed in the final
stages. Genes involved in cell division and translation show a
transient phase of upregulation during the alveolar differentiation
process (e.g. Aurka, Cenpa, Cdk6), whereas genes regulating cell
shape and morphogenesis of a branching epithelium are
repressed early on (e.g. Vdr and Areg). During the process of
differentiation towards hormone-sensing luminal cells, we
identified two broad clusters of genes that gradually increase or
decrease their expression. Genes with increasing expression are
involved in hormone metabolic processes and the regulation of
morphogenesis of an epithelium (e.g. Vdr, Esr1, Pgr and Msx2).
Amongst the branch-specific transcription factors we found, for
example, Runx1, Tox2 and Bhlhe41 (also known as Sharp1) to be
transcribed during differentiation towards the hormone-sensing
lineage (Fig. 4c) and Elf5, Foxs1 and Ehf in the secretory lineage
(Fig. 4d). Runx1 is a known repressor of Elf5 and its deletion has
been shown to be deleterious for ductal morphogenesis28. The
expression of the known progenitor master regulator Elf529, 30 is
maintained and further increased during secretory differentiation
suggesting that its transcriptional level is fine-tuned in luminal
progenitors (Fig. 4d).

Parity primes luminal progenitors towards the alveolar fate.
Our data illustrate how the cellular composition of the gland
changes during the pregnancy cycle. The luminal compartment
shifts from giving rise to mainly hormone sensing cells to pro-
ducing alveolar, milk-producing cells during pregnancy and lac-
tation. The basal compartment on the other hand differentiates to
produce oxytocin-sensing, myoepithelial cells that enable duct
contraction and milk secretion during lactation. At the end of
lactation, the gland then reverts back to a stage that resembles the
pre-pregnancy state. However, we found that in particular the
post-parous luminal compartment differs from its nulliparous
counterpart (Fig. 1b, c). Here the effect of parity is most pro-
nounced for the luminal progenitor cell types (Fig. 1c), which
show larger numbers of differentially expressed genes as com-
pared to the differentiated cell types (Supplementary Fig. 7a). C6
and C7 both showed characteristics of luminal progenitor cells,
but we identified C6 predominantly in the nulliparous gland and
C7 predominantly in the post-parous gland. To ensure that
C7 still represents the progenitor population in the post-parous
gland, we identified genes that distinguish C6 from the rest of the
luminal compartment to see if they are also characteristic for the
proposed post-parity progenitor population C7. Indeed, we find
genes that are differentially expressed between C6 and the rest of
the luminal compartment to show the same trend between C7
and the luminal compartment (Fig. 5a). In a similar manner we
can distinguish C7 from the rest of the PI gland in a principal
component analysis (PCA) using the identified progenitor genes
(Supplementary Fig. 7b, c). From this we conclude that C7 indeed
represents the post-parity luminal progenitor population. Inter-
estingly, genes that were upregulated in C7 compared to C6 were
significantly enriched for pathways that are involved in the
immune response and lactation (Fig. 5b; Supplementary Fig. 7d).

These included genes that play roles in various processes during
lactation, e.g. milk-proteins (Csn2, Lalba), lipases (Lipa), proteins
involved in milk secretion (Xdh, Cd36) and transcriptional reg-
ulators of lactation (Cidea)31. Of note, the genes of the casein
locus (Csn2, Csn1s1, Csn1s2a, Csn3) have previously been
reported to be upregulated in the parous gland, most likely due to
changes in chromatin accessibility32, 33. However, it has not been
shown before that this effect is confined to the progenitor
population of the luminal compartment. Some of the genes that
are involved in the immune response are known regulators of the
involution process such as Ctsc, Tgfb3 or Mfge834. The upregu-
lation of these genesets was also present in C1 (Hsp) and in some
cases even the differentiated C3 (Hsd) cluster, yet the effect
remained strongest in the progenitor cells (Fig. 5c, d). Finally, we
compared the differentiation processes of the luminal compart-
ment of the parous gland to the nulliparous gland by mapping the
luminal cells from PI to the trajectory of NP and G cells. Inter-
estingly, C1 and C3 generally maintain the position of their
nulliparous counterpart in the differentiation hierarchy whereas
the C7 cluster is stretched out from the origin down towards the
alveolar branch, suggesting that these are biased towards the
alveolar fate (Fig. 5e). This is in agreement with the over-
expression of genes related to the production and secretion of
milk. Together, the data suggest that luminal progenitor cells
maintain memory of having undergone gestation and lactation.
This memory could potentially prime progenitor cells towards the
alveolar fate to facilitate alveologenesis in subsequent
pregnancies.

Discussion
We have reported here the use of single cell RNA sequencing to
comprehensively map the transcriptomes of thousands of mam-
mary epithelial cells across four developmental time points. Our
analysis identified 15 clusters of epithelial cells, some of which are
only present during specific developmental stage. This study
provides a rich data set that can be mined online (see link in
Methods) to identify marker genes and lineage specific promoters
that can be used to trace populations of cells in vivo. We note,
however, that only some of the clusters can be fully characterised
by a single marker gene. Instead we argue that the epithelial cells
—especially in the luminal compartment—should rather be
conceptualised as being part of a continuous spectrum of differ-
entiation as visualised in Figs. 3 and 4. This view highlights the
plasticity of the tissue and might help to explain the tissue
homoeostasis of the adult mammary gland4. In this study, we
could not detect any cells in transition between the basal and
luminal cells. Therefore, we have no evidence to support the
contribution of a putative multipotent stem cell to the day-to-day
homoeostasis of the gland. We do note, however, that cells from
C15 (Prc) expresses high levels of the stem cell marker Procr19

and high levels of the luminal progenitor marker Notch335

(Fig. 2c). Yet, our data does not support a central role of this
cluster in the day-to-day homoeostasis of the gland. In addition,
cells from C15 also express some but not all markers of pericytes
and it thus cannot be excluded that these are non-epithelial cells
(Supplementary Fig. 4f). Based on the gene expression data pre-
sented here, the luminal compartment appears to have one
common progenitor population (Lp). Lp gives rise to inter-
mediate states of either hormone-sensing or secretory cells that
express differentiation markers as well as progenitor markers and
appear to represent meta-stable states on the differentiation path
from luminal progenitors towards fully differentiated cells. Fur-
thermore, we characterised gene expression patterns along the
differentiation hierarchy. Here we identified genes that are line-
age-specific, thus enabling us to disentangle the transcriptional
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events that regulate differentiation of the luminal compartment.
By analysing the mammary gland at various stages of develop-
ment, we were also able to describe the effects of parity at cellular
resolution. We found that the luminal progenitor compartment
undergoes lasting changes at the transcriptional level. This is
especially interesting in the light of the protective effect of
pregnancies against breast cancer and the role of luminal pro-
genitors as cell of origin. The majority of the changes were related
to pathways involved in immunity and lactation, suggesting that,
in particular, the luminal progenitors maintain a memory of
gestation and lactation. We assume that C7 overlaps at least
partially with the previously described parity-induced mammary
epithelial cells (PI-MECs)36.

In summary, our data provide an unbiased view of mammary
gland development. This approach helps support some previously
formed hypotheses in the mammary gland field and describes
differentiation processes at a high cellular resolution. The data set
will be a useful resource for future studies that aim to understand
the relationship of the different cell types in the gland and how
breast cancer develops and progresses.

Methods
Animals. All experimental animal work was performed in accordance to the
Animals (Scientific Procedures) Act 1986, UK and approved by the Ethics Com-
mittee at the Sanger Institute. C57BL/6N mice were housed in individually ven-
tilated cages under a 12:12 h light–dark cycle, with water and food available ad
libitum. The experiment was set up to allow for all of the developmental time
points to be collected and tissues to be processed at the same time. Mice were
euthanized by terminal anaesthesia. Females were mated with studs and allowed to
litter. Tissues were then harvested at gestation day 14.5 (G), lactation day 6 (L) and
day 11 post natural weaning of the pups (PI). Tissue from NP females was har-
vested at 8 weeks of age. Two individual mice per developmental time-point were
used in the study. The oestrus cycle stage of animals from the NP and PI timepoint
were determined by vaginal smears (Supplementary Fig. 8).

Mammary gland dissociation into single-cell suspension. Lymph node divested
mammary glands (excluding the cervical pair) were dissected from the mice and
mechanically dissociated. The finely minced tissue was transferred to a digestion
mix consisting of DMEM/F12 (Gibco) + 10 mM HEPES (Gibco) + collagenase
(Roche) + 200 Uml−1 hyaluronidase (Sigma) + gentamicin (Gibco) for 3 h at 37 °C
and vortexed every 30 min. After the lysis of red blood cells in NH4Cl, cells were
briefly digested with warm 0.05% Trypsin-EDTA (Gibco), 5 mgml−1 dispase
(Sigma) and 1 mgml−1 DNase (Sigma), and filtered through a cell strainer (BD
Biosciences).

Cell labelling followed by flow cytometry and sorting. Single-cell suspensions
were incubated in HF medium (Hank’s balanced salt solution (Gibco) + 1% foetal
bovine serum, Gibco) + 10% normal rat serum (Sigma) for 20 min on ice to pre-
block before antibody staining. All antibody incubations were performed for 10
min on ice in HF media. Mammary cells were stained with the following primary
antibodies: CD31-biotin (eBioscience, clone 390, 1 µg ml−1, 1:500); CD45-biotin
(eBioscience, clone 30F11, 1 µg ml−1, 1:500); Ter119-biotin (eBioscience, clone
Ter119, 1 µg ml−1, 1:500) and EpCAM-PE (Biolegend, clone G8.8, 0.5 µg ml−1,
1:500). Cells were then stained with streptavidin-PE-CF594 (BD-Biosciences, 0.4
µg ml−1, 1:500). Propidium Iodide (PI, Sigma, 1 µg ml−1, 1:1000) was used to detect
dead cells. Cells were filtered through a cell strainer (Partec) before sorting. Sorting
of cells was done using a SH800Z sorter (SONY). Single-stained control cells were
used to perform compensation manually and unstained cells were used to set gates.
Chip alignment and sorting calibration was performed with automatic setup beads
(SONY) immediately prior to sorting. Doublets, dead cells and contaminating
haematopoietic, endothelial and stromal cells were gated out and EpCAM-positive
cells were sorted in LoBind microcentrifuges tubes (Eppendorf) with HF. After
sorting, cells were spun down and resuspended in HF. Samples were manually
counted using an improved Neubauer chamber and the cell concentration was
normalised by addition of HF. Equal numbers of cells per sample were processed
for scRNA library preparation. Samples were processed for library preparation
within 9 h from tissue isolation.

Library preparation and sequencing. Library preparation was performed
according to instruction in the 10× Chromium single-cell kit. The libraries were
then pooled and sequenced across six lanes on a HiSeq2500.

RNA-seq data processing. Read processing was performed using the 10X
Genomics workflow17. Briefly, the Cell Ranger Single-Cell Software Suite was used

for demultiplexing, barcode assignment and UMI quantification (http://
software.10xgenomics.com/single-cell/overview/welcome). The reads were aligned
to the mm10 reference genome using a pre-built annotation package obtained from
the 10X Genomics website. All lanes per sample were processed using the ‘cell-
ranger count’ function. The output from different lanes was then aggregated using
‘cellranger aggr’ with –normalise set to ‘none’.

Quality control and pre-processing. In total, the Cell Ranger software identified
25,806 barcodes that contained enough unique molecules to be considered as cells
(4376 in NP, 6021 in G, 9603 in L and 5806 in PI). Libraries prepared from all time
points showed high quality that was reproducible between the two biological
replicates (Supplementary Figs. 2 and 3). We used the following metrics to flag
poor-quality cells: number of genes detected, total number of unique molecular
identifiers (UMIs) and percentage of molecules mapped to mitochondrial genes.
Poor-quality cells were then identified by setting a threshold on the number of
genes and number of UMIs that was defined as three median absolute deviations
(MAD) below the median for each time-point, while requiring a minimum value of
1000 total molecules and 500 genes detected. This resulted in the following
thresholds for total number of genes detected: 1042 for NP, 836 for G, 500 for L
and 759 for PI; and the following for total number of molecules: 2012 in NP, 1479
in G, 1000 in L and 1379 in G. In addition, all cells with 5% or more of UMIs
mapping to mitochondrial genes were defined as non-viable or apoptotic and
removed from the analysis (Supplementary Fig. 2d). We finally also ensured that
none of the reads in our data set derived from index swapping37, 38. For this, we
excluded cells with barcodes that appeared in more than one sample (non-unique
barcodes). The reasoning behind this being that any index swapped read between
samples will also share the same cellular barcode. Exclusion of these cells hence
offers protection against index swapping. This left us with a total number of 25,010
cells (4223 in NP, 5826 in G, 9319 in L and 5642 in P). Gene expression values were
then normalised by size factors that were estimated using the “computeSumFac-
tors” function in scran39. The log-transformed (log2(counts + 1)) counts of highly
variable genes (HVGs) were used as features for dimensionality reduction and
clustering. HVGs were identified by first fitting a mean-dependent trend to the
gene-specific variances to all genes assuming that this trend is dominated by
technical variance. This trend was then used to estimate the technical component
of the variance and all genes with a biological component (the residual variance) of
at least 0.5 and a Benjamini–Hochberg adjusted P value smaller than or equal to
0.05 were defined as HVG. The t-SNE embedding was computed using the ‘Rtsne’
package with default settings and perplexity set to 50 (https://github.com/jkrijthe/
Rtsne).

Clustering. Due to the large number of cells, we used a two-step approach to
identify clusters of cells. In a first step, we clustered cells using a shared-nearest-
neighbour graph (SNN graph)-based approach. This has the advantage of not
requiring the computation of a distance matrix that is computationally prohibitive
for large numbers of cells. The SNN graph was constructed using the
‘buildSNNGraph’ function from scran with the number of nearest neighbours set
to 2040. Community-based clustering was then performed on the SNN graph by
multi-level modularity optimisation using the ‘cluster_louvain’ function in
igraph41. This identified a total of 13 clusters. Despite this, the majority of clusters
still contained substructure as evident from the t-SNE (Supplementary Fig. 4a). To
resolve the cellular heterogeneity further, we then applied agglomerative hier-
archical clustering on each of the 13 clusters (Supplementary Fig. 4b). For this, we
first computed the pairwise distances between cells based on Spearman’s rank
correlation of log-transformed HVG counts. The dissimilarity matrix was then
used to perform hierarchical clustering with the ‘hclust’ function in R using average
linkage. Clusters were defined using the ‘cutree’ function and the optimal k was
determined by maximising the gap statistic using the clusGap function from the
cluster package42. With this we identified a total number of 21 clusters. As the last
step we performed a post-hoc test as previously reported43 by merging clusters with
less than 10 differentially expressed genes (at a P-value threshold of 0.01 and
minimum log fold change of 1). This resulted in combining clusters 7 and 8
(Supplementary Fig. 4a) in C14. Next, we flagged clusters that expressed clear
markers of non-epithelial cells as ‘contaminating cells’ and removed them from the
downstream analysis. Clusters C16 and C17 were tagged as immune cells based on
the expression of Cd74, Cd72 and Cd5444, C18 as fibroblasts based on the
expression of collagens and fibronectin and C19 as endothelial cells based on the
expression of Eng, S1pr1 and Emcn (Supplementary Fig. 4c–e). We retained C15 as
it expressed markers of a previously described cell type in the gland19, despite being
positive for 2 out of 4 (Des and Cspg4) pericyte markers45 (Supplementary Fig. 4f).
The high number of cells loaded on the 10× increased the chance of doublet
formation in the droplet encapsulation17. We thus identified clusters that appeared
at low frequencies (less than the maximum doublet rate of 7%, Supplementary
Fig. 9a) and that were highly similar to at least two other clusters present in the
same sample (ρ> 0.9 of mean log2(counts + 1)). The only cluster that fulfilled this
criterion was cluster C20, whose gene expression was strongly correlated with C13
and C8 (Supplementary Fig. 9b). In addition, the gene expression profile of this
cluster is virtually identical to the average expression values of C13 and C8, sup-
porting the hypothesis that it is indeed a mixture of the two clusters (Supple-
mentary Fig. 9b). As C13 and C8 are the most prevalent clusters in these samples
(Table 1), doublets would be expected to be enriched for a combination of the two.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02001-5 ARTICLE

NATURE COMMUNICATIONS |8:  2128 |DOI: 10.1038/s41467-017-02001-5 |www.nature.com/naturecommunications 9

http://software.10xgenomics.com/single-cell/overview/welcome
http://software.10xgenomics.com/single-cell/overview/welcome
https://github.com/jkrijthe/Rtsne
https://github.com/jkrijthe/Rtsne
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Finally, C20 also belonged to the clusters with a high number of genes detected and
a high number of unique molecules, which is also indicative for doublet clusters
(Supplementary Fig. 9c, d). We hence excluded C20 from any downstream analysis.

Differential expression analysis. Differential gene expression analysis was per-
formed using edgeR46. For pairwise comparisons between clusters genes with a
mean expression level below 0.1 were removed from the analysis. A negative
binomial generalised log-linear model was fitted to the remaining genes with the
cluster assignments as covariate(s). The ‘glmTreat’ function was used to identify
genes that have a significantly higher log fold change than 1 at an FDR of 0.01. The
marker genes visualised in Fig. 2 were identified using the ‘findMarkers’ function in
scran with default settings on genes that had a median expression of 1 in at least
one cluster40.

Diffusion maps and pseudotime inference. For inferring the differentiation
trajectory, we used diffusion maps. First, we selected all cells from the NP and G
time point (Fig. 3a) and detected the HVGs as described above. The log-
transformed (log2(count + 1)) gene counts were then used to compute the diffusion
components using the ‘DiffusionMap’ function (default parameters as in destiny47).
In Fig. 3b, we then focused on the luminal compartment and recomputed the
diffusion map based only on the luminal cells, using the aforementioned procedure.
Notably, the structure inferred by the diffusion map algorithm was robust to the
choice of features and down-sampling of cells (Supplementary Fig. 5b). The
structure of a common origin and the two branches could also be inferred using
Monocle with standard settings48 (Supplementary Fig. 5a). For inferring the
branches and pseudotime ordering, we defined the following three tips, the cell
with the largest value for the second eigenvector (which was set as root) and the
cells with the largest and smallest values for the first eigenvector (compare Fig. 4a).

Pseudotime-dependent expression. To identify genes whose expression was
significantly associated with the pseudotime, we first fitted a natural cubic spline
with three degrees of freedom to the log-transformed (log2(counts + 1)) expression
data in each branch. A likelihood ratio test was then used to assess statistical
significance of the fit compared to a null (pseudotime-independent) model. Genes
with a Benjamini–Hochberg corrected P-value below 0.01 and a minimum change
in log2(expression) along pseudotime of 0.5 were considered to be significantly
pseudotime-dependent. We then used a heuristic definition of branch-specific
expression instead of modelling the branch assignment explicitly. This was moti-
vated as follows. We were interested in general expression trends of genes, i.e.
increase or decrease along the differentiation towards one of the two cell types,
rather than comparing the exact timing of gene activation/inactivation between the
branches. Any approach trying to do the latter would have been complicated by the
different cell densities along the branches, differences in branch length and by the
difficulty of verifying any such hypotheses in vivo. Hence, we defined genes to be
branch-specific when they were pseudotime-dependent in their expression in at
least one of the two branches and when the gradient differed in signs between two
branches. The gradient was determined as the coefficient of a linear model fit to the
spline-smoothed expression values, which was set to 0 if the coefficient was not
significantly different from 0 at alpha = 0.01. Consequently, the gradient of a gene
could either be −1 (decreasing), 0 (flat) or 1 (increasing).

Gene set enrichment analysis. A gene set enrichment analysis based on gene-
ontology (GO) terms was conducted to characterise various genesets in the ana-
lysis. The genes of interest were compared to all genes that were tested for dif-
ferential expression using topGO with default settings49.

Data availability. The authors declare that all data supporting the
findings of this study are available within the article and its supplementary
information files or from the corresponding author upon reasonable request. The
RNA sequencing data have been deposited in the Gene Expression Omnibus
(GEO) database under accession code GSE106273. Data can also be explored at
http://marionilab.cruk.cam.ac.uk/mammaryGland. All computational analyses
were performed in R (Version 3.4.1) using standard functions unless otherwise
indicated. Code is available online at https://github.com/MarioniLab/
MammaryGland.
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