Applied and Environmental Microbiology	Differentiation of " <i>Candidatus</i> Liberibacter asiaticus" Isolates by Variable-Number Tandem-Repeat Analysis			
	Hiroshi Katoh, Siti Subandiyah, Kenta Tomimura, Mitsuru Okuda, Hong-Ji Su and Toru Iwanami <i>Appl. Environ. Microbiol.</i> 2011, 77(5):1910. DOI: 10.1128/AEM.01571-10. Published Ahead of Print 14 January 2011.			
	Updated information and services can be found at: http://aem.asm.org/content/77/5/1910			
REFERENCES	<i>These include:</i> This article cites 33 articles, 11 of which can be accessed free at: http://aem.asm.org/content/77/5/1910#ref-list-1			
CONTENT ALERTS	Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»			

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/

Differentiation of "*Candidatus* Liberibacter asiaticus" Isolates by Variable-Number Tandem-Repeat Analysis[∇]

Hiroshi Katoh,¹ Siti Subandiyah,² Kenta Tomimura,³ Mitsuru Okuda,⁴ Hong-Ji Su,⁵ and Toru Iwanami¹*

National Institute of Fruit Tree Science, Fujimoto 2-1, Tsukuba, Ibaraki 305-8605, Japan¹; Department of Entomology and

Plant Pathology, Gadjah Mada University, Yogyakarta 55281, Indonesia²; Kuchinotsu Citrus Research Station,

National Institute of Fruit Tree Science, Kuchinotsu, Minami-shimabara, Nagasaki 859-2501, Japan³;

National Agricultural Research Center for Kyushu Okinawa Region, Suya 2421, Koshi,

Kumamoto 861-1192, Japan⁴; and Department of Plant Pathology and

Microbiology, National Taiwan University, Taipei 106, Taiwan⁵

Received 2 July 2010/Accepted 29 December 2010

Four highly polymorphic simple sequence repeat (SSR) loci were selected and used to differentiate 84 Japanese isolates of "*Candidatus* Liberibacter asiaticus." The Nei's measure of genetic diversity values for these four SSRs ranged from 0.60 to 0.86. The four SSR loci were also highly polymorphic in four isolates from Taiwan and 12 isolates from Indonesia.

Citrus greening (Huanglongbing) is one of the most devastating citrus diseases prevalent in many parts of the world. This disease is a major cause of yield and tree losses in Asia and Africa (8). This disease was first noted in southern China at the end of the 19th century, and it was known as yellow shoot disease in this region (35). By the 1920s, diseases similar to vellow shoot disease were recorded in Taiwan (likubin or drooping disease) (25) and India (citrus dieback) (4). The disease was first recorded in Indonesia in the 1940s and was described as vein phloem degeneration (31). The causal agents, which are phloem-limited and Gram-negative bacteria, belong to the genus "Candidatus Liberibacter." Thus far, three species of this organism have been identified: "Ca. Liberibacter africanus" is found mainly in African countries, "Ca. Liberibacter americanus" is found in Brazil (3), and "Ca. Liberibacter asiaticus" is widely found in Asian countries as well as in Sao Paulo (Brazil) and Florida (United States). The pathogens are transmitted mainly by the psyllids Trioza erytreae in Africa (2) and Diaphorina citri in Asia, Florida, and Sao Paulo (12). Contaminated plant materials used for the propagation of nursery plants also transmit these pathogens.

In Japan, this disease was first found in 1988 on Iriomote Island, the southernmost island in the chain of the Ryukyu Islands that stretch near Taiwan in the subtropical East China Sea (21) (Fig. 1). The disease apparently moved northward through the Ryukyu Islands, being recognized on Okinawa Main Island in 1994 (16), Yoron Island in 2002 (13), and Okinoerabu, Tokunoshima, and Kikai Islands in 2003 (28) (Fig. 1). Extensive field surveys by local governments revealed about 1,200 infected trees around these areas (22, 28). The transmission vector D. *citri* was distributed throughout the Ryukyu Islands, and "*Ca*. Liberibacter asiaticus"-positive psyllids were found on most of these islands (24). Kyusyu, which is

* Corresponding author. Mailing address: National Institute of Fruit Tree Science, Fujimoto 2-1, Tsukuba, Ibaraki 305-8605, Japan. Phone: (029) 838-6544. Fax: (029) 838-6541. E-mail: tiwsw37@affrc.go.jp. the main citrus production area, is located at the north of these subtropical islands. Northbound dispersion of the disease poses a large threat to citrus cultivation in this region.

Methods for distinguishing bacterial isolates are important for epidemiological analysis and understanding the genetic structure of microbial populations. Simple sequence repeat (SSR) markers, also known as microsatellites, are tandem repetitive DNA sequences with repeat motif lengths of 2 to 6 bp or more (33). The variability of the repeats is believed to be caused by slipped-strand mispairing (29), the genetic instability of polynucleotide tracts, especially poly(G-T) (14), and DNA recombination between homologous repeat sequences (33). SSRs with a potential variable number of tandem repeats (VNTR) in bacterial DNA have been used as markers for differentiating and subtyping strains of several bacterial species, including Yersinia pestis (1), Haemophilus influenzae (15), Mycobacterium tuberculosis (11, 18), Mycobacterium africanum (34), Salmonella enterica subsp. enterica serovar Typhimurium (20), Bacillus anthracis (17), and Xylella fastidiosa (7, 19). Strains of X. fastidiosa cause serious diseases, such as Pierce's disease of grapevine and variegated chlorosis of citrus (5). The multilocus SSR primers, distributed across the X. fastidiosa genome, clearly differentiated and clustered X. fastidiosa strains collected from grape, almond, citrus, and oleander (19).

Recently, Chen et al. applied a similar strategy to characterize the variation in "*Ca*. Liberibacter asiaticus" strains from Guangdong, China, and Florida by using one repeat unit (AGACACA) (6). However, VNTR analysis using only one SSR locus is apparently insufficient to reveal the precise genetic diversity of "*Ca*. Liberibacter asiaticus," especially in newly invaded areas, such as Japan and the United States, where less genetic variation is expected. The complete genomic sequence of the pathogenic "*Ca*. Liberibacter asiaticus" psy62 strain (1.23 Mb) (9) was determined, and this allowed the analysis of SSRs in the entire genome. The objectives of this study were to identify SSR loci with VNTR within Japanese, Taiwanese, and Indonesian isolates and to determine genetic

^v Published ahead of print on 14 January 2011.

FIG. 1. Spread of citrus greening disease in Japan. Maps of the Ryukyu Islands and the world were downloaded from free map websites (http://www.freemap.jp/japan/ja_island1.html and http://www.craftmap.box-i.net/map.php, respectively). The numbers under the island names indicate the year when citrus greening disease was found on each island.

diversity among approximately 100 isolates of "*Ca*. Liberibacter asiaticus," collected from a total of about 1,200 trees found in major infested sites in the Ryukyu Islands (22, 28), by using several SSR regions. Comparison was also made with isolates from Taiwan and Indonesia. We investigated the relationship between genetic diversity and the geographic origin of the isolates on the Ryukyu Islands.

A genome-wide search was performed on the complete sequence of "*Ca*. Liberibacter asiaticus" to identify SSR loci by using the Tandem Repeats Finder software, version 2.0 (7), which is available from the Tandem Repeats Finder website (http://tandem.bu.edu/trf/trf.html). The complete genomic sequence (1.23 Mb) of the pathogenic "*Ca*. Liberibacter asiaticus" strain psy62 (accession number CP001677) was obtained from the GenBank DNA database. Samples were collected from "*Ca*. Liberibacter asiaticus"-infected citrus trees in different groves in Japan, Taiwan, and Indonesia (Fig. 1 and Table 1). Total DNA was extracted from the leaf midrib tissue from the infected citrus tree using the DNeasy plant minikit (Qiagen, Valencia, CA) according to the manufacturer's instructions with minor modifications, which was that ~0.2 g of the leaf

midrib was placed in 400 μl of AP1 buffer (in kit) in a mortar and ground with a pestle until the leaf midrib became a fine green liquid.

All primers in Table 2 were selected and designed from the sequences of surrounding SSRs found in the complete sequence of the pathogenic "*Ca*. Liberibacter asiaticus" psy62 (1.23 Mb) strain by using a program available on the Primer3 website (http: //frodo.wi.mit.edu/primer3/). PCR was performed using Gene-Amp PCR system 9700 (Applied Biosystem, Foster City, CA) in 20-µl reaction mixture volumes containing 1 µl of DNA template, 0.1 µM each primer, 200 µM deoxynucleoside triphosphate (dNTP) mixture, 1× PCR buffer, and 2.5 units of *Ex Taq* DNA polymerase, Hot Start version (TaKaRa, Shiga, Japan). The thermal cycling conditions were as follows: initial denaturation at 92°C for 2 min and 35 cycles of denaturing at 92°C for 30 s, annealing at 54°C for 30 s, and extension at 72°C for 1 min.

Amplified PCR products were separated by electrophoresis in a 1.5% (wt/vol) agarose gel in Tris-boric acid EDTA buffer. The PCR products were extracted from the gel slice by using the QIAquick gel extraction kit (Qiagen) according to the manufacturer's instructions.

TABLE 1. Isolates of "Candidatus Liberibacter asiaticus" used in this study and comparison of the repeat numbers at respective SSR regions

Island or		C 1		Yr of	VNTR			
country	isolate Code		Location	collection	001	002	005	077
Kikai Island	Kikai-130	Hm1	Osato, Kikai, Kagoshima	2006	15	7	11	9
	Kikai-145	Hm2	Osato, Kikai, Kagoshima	2006	15	7	11	9
	Kikai-147	Hm3	Osato, Kikai, Kagoshima	2006	15	7	11	9
	Kikai-269	Hm4	Osato, Kikai, Kagoshima	2007	15	7	11	9
	Kikai-301	Hm5	Osato, Kikai, Kagoshima	2007	15	7	11	9
	Kikai-323	Hmo Hm7	Osato, Kikai, Kagoshima Osato, Kikai, Kagoshima	2007 2007	15	7	11	9
Tokunoshima	Toku-225	Hm8	Kinen, Isen, Tokunoshima, Kagoshima	2006	8	7	5	9
Island	Toku-228	Hm9	Kinen, Isen, Tokunoshima, Kagoshima	2006	12	7	5	9
	Toku-229	Hm10	Kinen, Isen, Tokunoshima, Kagoshima	2006	12	7	5	9
	Toku-230	Hm11	Kinen, Isen, Tokunoshima, Kagoshima	2006	12	7	5	9
	Toku-231	Hm12	Kinen, Isen, Tokunoshima, Kagoshima	2006	12	7	5	9
	Toku-232 Toku 222	Hm15 Um14	Kinen, Isen, Tokunoshima, Kagoshima	2006	12	7	5	9
	Toku-235	Hm15	Nishi-metegu Isen Tokunoshima Kagoshima	2006	14	7	5	9
	Toku-235	Hm16	Higashi-metegu, Isen, Tokunoshima, Kagoshima	2006	12	7	5	9
	Toku-236	Hm17	Higashi-metegu, Isen, Tokunoshima, Kagoshima	2006	12	7	5	8
	Toku-237	Hm18	Higashi-metegu, Isen, Tokunoshima, Kagoshima	2006	12	7	5	8
	Toku-238	Hm19	Higashi-metegu, Isen, Tokunoshima, Kagoshima	2006	12	7	5	9
	Toku-239	Hm20	Higashi-metegu, Isen, Tokunoshima, Kagoshima	2006	12	7	5	9
	Toku-240	Hm21	Saben, Isen, Tokunoshima, Kagoshima	2006	12	7	5	9
	Toku-241 Toku-244	Hm22 Hm23	Saben, Isen, Tokunoshima, Kagoshima Saben, Isen, Tokunoshima, Kagoshima	2006	12	7	5 5	9
Voron Island	Voron 57	U 1	Voron Kagoshima	2002	12	8	10	0
i oron island	Yoron-83	H2	Voron Kagoshima	2002	12	07	10	9
	Yoron-121	H3	Yoron Kagoshima	2002	16	7	11	9
	Yoron-127	H4	Yoron, Kagoshima	2002	15	7	9	9
Iheya Island	Iheya-2	K13	Iheya, Okinawa	2007	18	7	11	10
Okinawa Main	OgimiA-3	K20	Ogimi, Okinawa	2007	12	7	12	9
Island	Nakijin-5	K18	Nakijin, Okinawa	2007	14	6	12	9
	MotobuB-1	K16 K10	Motobu, Okinawa	2007	15	7	11	9
	Nago-Ne-1	K19 K14	Higashi, Okinawa Nago, Okinawa	2007	11	7	13	9
	Nago-4	K14 K15	Nago, Okinawa	2007	15	7	12	9
	Kin2-1	K17	Kin. Okinawa	2007	14	6	12	10
	KIN-3	Ns1	Kin, Okinawa	2007	15	7	13	8
	KIN-1	Iw2	Kin, Okinawa	1994	14	7	11	9
	Uruma1-1	K21	Gushikawa, Uruma, Okinawa	2007	13	7	8	9
	UrunaKA-5	K22	Katsuren, Uruma, Okinawa	2007	15	7	11	9
	ISHI-2 A 17	INSZ K22	Okinawa Okinawa	2007	15	7	15	9
	A2-12	K23 K24	Okinawa, Okinawa	2007	16	7	13	9
	B-8	K25	Okinawa, Okinawa	2007	7	8	8	8
	A-11	K26	Tomigusuku, Okinawa	2007	13	7	13	9
	C-3	K27	Itoman, Okinawa	2007	18	6	6	9
	A-3	K28	Naha, Okinawa	2007	12	7	6	9
	Hae-5	K29	Haebaru, Okinawa	2007	17	7	11	9
	KO-7	IW5 K30	Yaese, Okinawa	2005 2007	14 15	7	9 11	9
Miyako Island	08GA-5	08M1	Jobe Miyakojima Okinawa	2008	15	11	10	8
Wilyuko Island	08G-3	08M2	Irie, Miyakojima, Okinawa	2008	15	10	9	11
	08U-1	08M3	Ueno, Miyakojima, Okinawa	2008	14	10	11	8
	08U-2	08M4	Nohara, Miyakojima, Okinawa	2008	15	10	9	8
	08U-3	08M5	Ueno, Miyakojima, Okinawa	2008	17	8	5	7
	08GB-3	08M6	Jobe, Miyakojima, Okinawa	2008	14	8	4	7
	068-2-2	06M3	Shimoji, Miyakojima, Okinawa	2006	15	10	9	7
	068-2-3	06M4 06M5	Shimoji, Miyakojima, Okinawa	2006	18	11	9	7
	066-3	06M10	Johe Miyakojima Okinawa	2006	10	8	9	7
	06G-4	06M11	Jobe, Miyakojima, Okinawa	2006	15	11	12	7
	S-2-4	K1	Shimoji, Miyakojima, Okinawa	2006	19	10	9	8
	H-3	K3	Hiraya, Miyakojima, Okinawa	2006	14	8	11	8
	U-4	K4	Ueno, Miyakojima, Okinawa	2006	15	10	4	8
Irabu Island	06I-5	06M9	Irabu, Miyakojima, Okinawa	2006	16	10	6	7
	1-1	K2	Irabu, Miyakojima, Okinawa	2006	14	11	10	8
Tarama Island	Tarama-12	K12	Trama, Okinawa	2006	16	8	6	7
	NI I - 3 MT_4	Mt4	Trama, Okinawa Trama, Okinawa	2008	15	97	4 1	9
	MT-6	Mt6	Trama, Okinawa	2008	9	6	4	8
	MT-7	Mt7	Trama, Okinawa	2008	9	6	4	8
	MT-8	Mt8	Trama, Okinawa	2008	9	6	4	8

Downloaded from http://aem.asm.org/ on February 20, 2013 by Univ of Florida

Continued on following page

Island or country	Isolate	Code	Location	Yr of	VNTR			
				collection	001	002	005	077
	MT-9	Mt9	Trama, Okinawa	2008	8	6	4	8
	MT-10	Mt10	Trama, Okinawa	2008	16	8	6	7
	MT-11	Mt11	Trama, Okinawa	2008	23	10	6	7
	MT-12	Mt12	Trama, Okinawa	2008	9	6	4	7
Ishigaki Island	Ishi-1	Iw3	Ishigaki, Okinawa	2005	14	7	8	9
	Hirakubo-5	K5	Hirakubo, Ishigaki, Okinawa	2007	19	9	6	9
	Hirano-4	K6	Hirano, Ishigaki, Okinawa	2007	14	7	12	10
	Kawahara-4	K7	Kawahara, Ishigaki, Okinawa	2007	17	8	5	8
	Hirae-1	K8	Hirae, Ishigaki, Okinawa	2007	22	7	5	9
Iriomote Island	OK-901	Iw1	Iriomote, Taketomi, Okinawa	1988	14	7	11	9
Kohama Island	Kohama-4	K10	Kohama, Taketomi, Okinawa	2007	13	10	17	8
Yonaguni Island	Higawa-1	K11	Higawa, Yonaguni, Okinawa	2007	16	11	10	8
Hateruma Island	Hateruma-1	K9	Hateruma, Taketomi, Okinawa	2007	13	10	12	11
Taiwan		II-2	Pingting	2006	11	10	7	9
		II-5	Douliu	2006	25	11	5	13
		II-6 ^a	Pingting	2006	9, 22, 26, 27, 28	9	6	13
		II-7	Hualian	2006	11	10	21	8
Indonesia	1	Pum 12	Magetan	2007	23	8	9	10
	9	Pum 3	Magetan	2007	18	7	6	10
	11	EJ5-1	Magetan	2007	25	7	2	9
	17	Pum 8	Magetan	2007	29	8	11	10
	4	Pu1	Purworejo	2007	23	10	8	9
	5	ND5	Purworejo	2007	29	7	9	10
	7	Pu3	Purworejo	2007	29	7	9	10
	16	Pu2	Purworejo	2007	11	8	7	11
	18	ND3	Purworejo	2007	23	7	8	6
	25	P1-9-4	Purworejo	2007	23	7	2	10
	12	KIT-3	Kintamani	2007	24	8	8	10
	13	B3T3	Buleleng	2007	14	9	7	11

TABLE 1-Continued

^a Doublet bands were observed when the 001 primer set was used.

The nucleotide sequence of the DNA fragment was obtained by directly sequencing both strands of the purified PCR products by using the dideoxynucleotide triphosphate (ddNTP) termination method (26). DNA sequences were aligned using the ClustalW program (30), and homology analysis was performed following instructions from the website of the DNA Data Bank of Japan (http://www.ddbj.nig.ac.jp/Welcome-j.html). The number of repetitions in each SSR was manually counted from the aligned sequence data.

No one- or two-base SSRs were found, but there were 27 perfect SSRs with four to 63 nucleotides per unit (Table 2), including a previously reported repeat motif (AGACACA) (6). Typically, four-nucleotide SSRs were present at six loci with copy numbers varying from three to eight copies per repeat.

For DNA polymorphism analysis of the SSR regions, we designed primers on each side of these 27 SSRs (Table 2). First, amplification using all SSR primers was performed in nine "*Ca*. Liberibacter asiaticus" isolates collected from Miyako Island because we obtained many isolates from this island, which also has a long history of invasion by "*Ca*. Liberibacter asiaticus" (22). Attempts to amplify SSR regions using three SSR primer sets (081, 083, and 091) failed, although several different amplification programs and reaction mixtures were utilized. The 078 primers generated the same PCR products for the nine domestic isolates, even though these repeat numbers were different from American psy62. On the other hand, the repeat sequences generated by 093 primers were (TCGTTACGCT)₃ (psy62) and (ACGCTTCATC)₃ (Japanese isolates) (subscript 3 indicates the number of repe-

titions for each motif in the genome). Although the 006, 007, 010, 013, 014, 022, 024, 080, 082, 084, 085, 086, 087, 089, 090, and 092 primers generated the same PCR products for the nine isolates from Japan, five pairs of primers (001, 002, 005, 077, and 088) generated different results for the nine isolates and thus appear to represent genuine VNTRs. When 088 primers were used, polymorphic PCR products were generated for Japanese isolates. However, we did not consider 088 as a VNTR because the motif was imperfect and appeared only a few times. Therefore, we investigated the diversity of "*Ca*. Liberibacter asiaticus" within a set of 84 isolates in the Ryukyu Islands, Japan, as well as four and 12 isolates from Taiwan and Indonesia, respectively, using four pair of primers (001, 002, 005, and 077).

Table 1 shows the variable numbers of tandem repeats in the four SSR loci. SSR loci amplified by four pairs of primers (001, 002, 005, and 077) had different repeat numbers within a set of 84 isolates in the Ryukyu Islands, Japan, as well as four and 12 isolates from Taiwan and Indonesia, respectively. Doublet bands were consistently observed when the 001 primer set was used with Taiwanese source II-6. The PCR product was then subcloned into the plasmid vector pCR4-TOPO (Invitrogen, Tokyo, Japan), and sequencing of the inserts from multiple clones revealed several lengths of SSRs (Table 1). This indicates the presence of five alleles for the same SSR locus, presumably due to mixed infection with five isolates. In particular, 12 alleles in VNTR locus 001, six alleles in VNTR locus 002, nine alleles in VNTR locus 005, and five alleles in the south-

Locus location in genome	255591–255646 537729–537760 354493–354527	684193-684216 670617-670634 950213-950224 747800-747813 748463-748476 2063-2074	1193755-1193766 655277-655332 80549-30566 405894-405905 444036-444047 444057-444524 555168-555192 555168-555192 576776-576817	698567–698620 803665–803790 974568–974593 982762–982783 1009710–1009823	1188378–1188397 1196101–1196142 1197512–1197541	1208243-1208320 1219080-1219099	l, 002, 005, and 077)
ORF definition c	Noncoding Noncoding Bacteriophage repressor	protein C1 Noncoding Cell division protein Noncoding Noncoding Aminodeoxychorismate lyase Conserved hypothetical	protein SNF2 Noncoding Noncoding Predicted GTPase Predicted membrane protein Noncoding Noncoding Conserved hypothetical	protein Noncoding Noncoding Noncoding Noncoding Conserved hypothetical	protein Noncoding Guanylate kinase Conserved hypothetical	Methyl-accepting chemotaxis protein Noncoding	te four most variable SSR loci (001
Type of repeat motif ^{p}	(TACAGAA) ₈ (CAGT) ₈ (AGACACA) ₅	(TCTTTACA) ₃ (TCAGTA) ₃ (CAAT) ₃ (CAAT) ₃ (TAAAGAG) ₂ (AAAC) ₃	(TTGG) ₃ (TTTG) ₁₄ (TTTTAA) ₃ (ATTG) ₃ (TTTTTA) ₂ (TTTTTA) ₃ (TTAAT) ₃ (TCAGTCTTGTGCGGTTCAATGT) ₂	(TGTCCATATGATCTTCGATAATGCGAG) ₂ (TCTTTTTGCTATTTTTAGTAAATAAAGCGTTTAGAT ATTTATTAAAAAGTTGATGATGATACCAAG) ₂ (TTTTATTCAAAAGTTGATGTTACCAAG) ₂ (ATTTATTTTTT) ₂ (ATTTATTTTTT) ₂ (ATTCAGGCAGGTTTTCTATTGCAATATCGATCTCAC	TAGCITIGATGGTTTGATTTCAA) ₂ (TGTTACATTC) ₂ (TCGCAAATGTACGTATAGAAG) ₂ (CTCTAGTGTCATCAA) ₂	(TCCTTATCCGCTTTCTCTCTGTCGGCTTTTTCTTTA GCT) ₂ (TCGTTACGCT) ₂	ccession number is CP001677 (9). The primer sets that amplify th 2. e SSR locus.
Reverse primer sequence	GGTGAATTAGGATGGAATGC TCCATACCCAAAAGAAAAG	CACTTAATAACGCCCCGAAA AAGGCAAATTTCCCCATACG TGGATTCGAAAG AACCGTCT TGTCGCATTGAAGCGAATT AAAGATAAGCGACCCGGATT ATTTGAGCCGTGAAACTTCG	ACCGTACCGCTCCAATATGA AGACACGCCAAACAAGGAAT GAGGCAATACGTCCATCGTT TCGCCTTTCGCAATACTTCT GCGGATTCATAATGACCTT GCCGGATTCATAATGACCTT TGCTTTCGCAATAACATTAGCA GAAGCCGGTGGGAGAAGTCGT TACGCCTGTATCGCATGGTA	AATTGTGTCGCGAGTCTGTG ATGCTTCGAAGAGCACATTG ATGAGGTCGAAATCCATCCA CTGTTGGTGGAAATCCATCCA CTGTTGGTGGAAGTGGAGGT TGCTAGCAGGCTATCTTTGGA	CAGAGGCCATGAGAACGATT GGTTGATGGCTTCACTGCTT AAACGGAAGATGTTGGTCGT	GGGGGATAAGTCGGATGAGT AGAAAGCCCCAAAAAGACC	iberibacter asiaticus" strain psy62. The ac ons for each motif in the genome of psy62 he gene that is adjacent to or contains th
Forward primer sequence	TGAAGTAGCTCTGCAATATCTGA TTGATAATATAGAAAGAGGCGAAGC ATTGAAGGACGAAGCGAAG	TCATGTTGATCAGACGCTTTTT TGGATAGCATGCTCATTGAA CGTCGGAATAATCAGCGCATA AGATGAATGGCGATAGCTG AATCCCTTGGTCGTA GGTGA AATCCCTTGCTCGTA GGTGA	GTGGGGAGAAGTCGGTTT TGACTGATGGCAAAGATGG CCCCCAGAACTTCATTTTTC GGCGCACTCAGCATCAAA GGCGCACTCAGCATCTAAA TCCGATGCGTCTAAAA TGGGAAAAATTTCGCGATAAAAA GGATTATAGCGACGGCGGGGTAAAAAA GGATTATAGCGACGGCGGGGGTGGTT AATCCTGCCAAGGTTGATTG	GGAAGAACGTTTCCAAGCTG TTTCAGGGCAAGATAGCACA TGGTTTGTGATGGCGATAAA TTGCTTTCGCATCATACAGG CGTTGGGATATCTGACCACA	AGGGGTGTTTCTGTCGTTTTT TTGAGGCAAGCCATACAAAA TCACGTAGATTGGCACTTCG	AAGGGAGCCCTAAACCAAAA GCCACTTTGGGGTAGCAGTA	ta are based on the genome sequence of " Ca . I 'able 1 are underlined. rical subscripts indicate the number of repetiti- pen reading frame (ORF) definition refers to t
SSR primer	<u>001</u> 005	$\begin{array}{c} 006 \\ 007 \\ 010 \\ 013 \\ 013 \\ 022 \end{array}$	$\begin{array}{c} 0.24\\ 0.77\\ 0.78\\ 0.79\\ 0.81\\ 0.82\\ 0.83\end{array}$	084 085 086 087 087 088	089 090 091	092 093	^{<i>a</i>} All da listed in T ^{<i>b</i>} Nume ^{<i>c</i>} The o _]

TABLE 2. Characteristics of SSR primer sequences produced and used to study "Ca. Liberibacter asiaticus" bacteria^a

1914 KATOH ET AL.

FIG. 2. Dendrogram of genetic similarity among 104 "*Ca*. Liberibacter asiaticus" isolates based on the unweighted paired-group method using arithmetic averages cluster analysis of data from four VNTR loci (001, 002, 005, and 077). Superscript letters: a, isolates originated from Kikai and Tokunoshima Islands; b, isolates originated from Yoron, Iheya, and Okinawa Main Islands; c, isolates originated from Miyako, Irabu, Tarama, Ishigaki, Kohama, Iriomote, Hateruma, and Yonaguni Islands and isolates originated from Taiwan and Indonesia.

ern parts of the Ryukyu Islands (Miyako Island, Irabu Island, Tarama Island, Ishigaki Island, Kohama Island, Iriomote Island, Hateruma Island, and Yonaguni Island) near Taiwan (Table 1); these findings suggested that the four VNTR loci are diverse among these isolates.

Tomimura et al. estimated the genetic diversity among "*Ca*. Liberibacter asiaticus" isolates by sequencing a bacteriophage-type DNA polymerase region (32). The 3,610-nucleotide sequence of the bacteriophage-type DNA polymerase region was analyzed for 27 isolates (32). Among 27 isolates, 86 single nucleotide polymorphisms (SNPs) were found (32). In contrast, among approximately 100 isolates used in this study, no nucleotide differences were observed in the genomic region surrounding four VNTRs (001, 002, 005, and 077) (data not shown), suggesting that VNTR could differentiate isolates of "*Ca*. Liberibacter asiaticus" more precisely than SNPs.

The unweighted paired-group method using arithmetic averages cluster analysis was performed with AEW3220DA (Nihon NAG, Tokyo, Japan) by using SSR numbers of the four VNTR loci, 001, 002, 005, and 077. Since Taiwanese source II-6 had five alleles at locus 001 and one allele at 002, 005, and 077, it was treated as five isolates in the dendrogram analysis. The resulting clusters were expressed as a dendrogram. Cluster analysis of genetic distance divided the 104 isolates into 10 major clusters (Fig. 2). These clusters were correlated with geographical origins of the isolates (Fig. 2).

Twenty-one isolates from Okinawa Main Island had nine alleles in VNTR locus 001, three alleles in VNTR locus 002, seven alleles in VNTR locus 005, and three alleles in VNTR locus 077. On the other hand, for all seven isolates from Kikai Island, which is located on the northern border of the Ryukyu Islands, none of the four loci showed polymorphism (Table 1), suggesting that these seven isolates are highly homologous. Kikai Island is located on the northern border of the Ryukyu Islands and is also the last island involved in the recent outbreak of "Ca. Liberibacter asiaticus" in Japan (28). The homogeneity of "Ca. Liberibacter asiaticus" in Kikai Island is in accordance with the apparent short incubation period of the bacterium on this island. Isolates with the same repeat numbers as the four VNTR loci were not found in the neighboring islands of Kikai Island. The three isolates (K16, K22, and K30) collected from Okinawa Main Island had the same number of tandem repeats in each of the four loci as the seven isolates collected from Kikai Island (Table 1), which indicated that the isolates from these two islands share the same origin. Okinawa Main Island and Kikai Island are separated by approximately 270 km and several islands. It is more likely that "Ca. Liberibacter asiaticus" was introduced into Kikai Island by contaminated budwood rather than by dispersion of "Ca. Liberibacter asiaticus"-positive psyllids.

Nei's measure (*H*) is useful to compare genetic diversity among biological populations, and it is frequently applied for VNTR loci of bacteria (1, 7, 17). The value was calculated as $H = 1 - \sum pi^2$, where *pi* is the frequency of allele *i* at the locus (23). VNTR typing of *B. anthracis*, *Y. pestis*, and *X. fastidiosa* has been shown to produce the highest *H* values, of 0.80, 0.82, and 0.83, respectively (1, 7, 17). The *H* value of VNTR locus 005 within 84 Japanese isolates from the Ryukyu Islands was 0.86 (Table 3), which was the highest among the four VNTR loci, closely followed by the *H* value of VNTR locus 001 (Table

TABLE 3. Values of Nei's genetic diversity (*H*) for the variablenumber tandem-repeat (VNTR) loci in 84 Japanese isolates of "*Ca.* Liberibacter asiaticus" bacteria from different areas

Tt'	<i>H</i> values for VNTR locus:					
Location	001	002	005	077		
Northern area ^a	0.53	0.00	0.42	0.16		
Central area ^b	0.83	0.33	0.83	0.27		
Southern area ^c	0.87	0.80	0.84	0.67		
Whole area ^d	0.84	0.62	0.86	0.60		

 $^{a}\,H$ values for the SSR loci in 23 isolates originated from Kikai and To-kunoshima Islands.

 bH values for the SSR loci in 26 isolates originated from Yoron, Iheya, and Okinawa Main Islands.

^c H values for the SSR loci in 35 isolates originated from Miyako, Irabu, Tarama, Ishigaki, Kohama, Iriomote, Hateruma, and Yonaguni Islands.

 dH values for the SSR loci in all 84 Japanese isolates of "Ca. Liberibacter asiaticus."

3). All four VNTR loci (001, 002, 005, and 077) were also highly variable within four and 12 isolates from Taiwan and Indonesia, respectively (Table 1). In the analysis of Japanese "*Ca*. Liberibacter asiaticus" isolates, the population in the southern area had higher *H* values than those from the central and northern areas of Ryukyu Islands (Table 3). These results showed that the genetic diversity was higher in southern areas than in any other areas of the Ryukyu Islands, which suggested that Japanese "*Ca*. Liberibacter asiaticus" isolates were primarily introduced in the southern area, most probably from Taiwan. It is also surmised that the spread of the pathogen in the northern border region took place recently.

On the basis of the four VNTR markers found in this study (001, 002, 005, and 077) the 21 isolates from Okinawa Main Island were differentiated into 17 genetic groups (Table 1), whereas on the basis of a single VNTR marker that was previously reported (6), the isolates were divided into only seven genetic genotypes. The results suggested that the analysis using several VNTR loci, rather than a single VNTR locus, reveals genetic diversity more precisely. We have reported for the first time that several SSR regions in the genome of "*Ca*. Liberibacter asiaticus" are genuine VNTR loci, and these VNTR markers could be used to estimate the genetic diversity and population structures of "*Ca*. Liberibacter asiaticus" in Japan, Taiwan, and Indonesia.

The growing numbers of prokaryotic DNA sequences, including those from plant pathogens in databases and computer programs available for the detection of SSR loci, have facilitated the evaluation of SSR within DNA sequences. SSR markers are useful not only for their hypervariability and reproducibility, but "*Ca*. Liberibacter asiaticus"-specific primers allow *in situ* analysis of a known gene without bacterial isolation. This approach could greatly facilitate epidemiological, genetic, and ecological studies of fastidious bacteria, such as "*Ca*. Liberibacter asiaticus," which are difficult to isolate and grow stably despite the recent advances in cultivation (10, 27).

REFERENCES

- 1. Adair, D. M., et al. 2000. Diversity in a variable-number tandem repeat from *Yersinia pestis*. J. Clin. Microbiol. **38**:1516–1519.
- Aubert, B. 1987. *Trioza erytreae* Del Guercio and *Diaphorina citri* Kuwayama (Homoptera: Psylloidea), the two vectors of citrus greening disease: biological aspects and possible control strategies. Fruits 42:149–162.

- Bové, J. M. 2006. Huanglongbing: a destructive, newly emerging, century-old disease of citrus. J. Plant Pathol. 88:7–37.
- 4. Capoor, S. P. 1963. Decline of citrus trees in India. Bull. Natl. Inst. Sci. India 24:48–64.
- Chang, C. J., M. Garnier, L. Zreik, V. Rossetti, and J. M. Bové. 1993. Culture and serological detection of the xylem-limited bacterium causing citrus variegated chlorosis and its identification as a strain of *Xylella fastidiosa*. Curr. Microbiol. 27:137–142.
- Chen, et al. 2010. Guangdong and Florida populations of '*Candidatus* Liberibacter asiaticus' distinguished by a genomic locus with short tandem repeats. Phytopathology 100:567–572.
- Coletta-Filho, D. H., M. A. Takita, A. A. de Souza, C. I. Aguilar-Vildoso, and M. A. Machado. 2001. Differentiation of strains of *Xylella fastidiosa* by a variable number of tandem repeat analysis. Appl. Environ. Microbiol. 67: 4091–4095.
- da Graça, J. V. 1991. Citrus greening disease. Annu. Rev. Phytopathol. 29:109–136.
- Duan, Y., et al. 2009. Complete genome sequence of citrus Huanglongbing bacterium, '*Candidatus* Liberibacter asiaticus' obtained through metagenomics. Mol. Plant Microbe Interact. 22:1011–1020.
- Garnet, H. M. 1984. Isolation of the greening organism. Citrus Subtrop. Fruit J. 611:4–5.
- 11. Gascoyne-Binzi, D. M., et al. 2001. Rapid identification of laboratory contamination with *Mycobacterium tuberculosis* using variable number tandem repeat analysis. J. Clin. Microbiol. **39**:69–74.
- Halbert, S. E., and K. L. Manjunath. 2004. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Florida Entomol. 87:330–353.
- Hamashima, A., S. Hashimoto, K. Nagamatsu, and T. Muta. 2003. First report of citrus greening disease in Kagoshima. Ann. Phytopathol. Soc. Jpn. 69:307–308.
- Henderson, S. T., and T. D. Petes. 1992. Instability of simple sequence DNA in *Saccharomyces cerevisiae*. Mol. Cell. Biol. 12:2749–2757.
- 15. Hood, D. W., et al. 1996. DNA repeats identify novel virulence genes in *Haemophilus influenzae*. Proc. Natl. Acad. Sci. U. S. A. **93**:1121–1125.
- Kawano, S., H. J. Su, and K. Uehahara. 1997. First report of citrus greening disease in Okinawa Island. Ann. Phytopathol. Soc. Jpn. 63:256.
- Kim, W., et al. 2002. Genetic relationship of *Bacillus anthracis* and closely related species based on variable-number tandem repeat analysis and BOX-PCR genomic fingerprinting. FEMS Microbiol. Lett. 207:21–27.
- Kremer, K., et al. 1999. Comparison of methods based on different molecular epidemiological markers for typing of *Mycobacterium tuberculosis* complex strains: interlaboratory study of discriminatory power and reproducibility. J. Clin. Microbiol. 37:2607–2618.
- Lin, H., et al. 2005. Multilocus simple sequence repeat markers for differentiating strains and evaluating genetic diversity of *Xylella fastidiosa*. Appl. Environ. Microbiol. 71:4888–4892.
- 20. Lindstedt, B., A. E. Heir, E. Gjernes, and G. Kapperud. 2003. DNA finger-

printing of *Salmonella enterica* subsp. *enterica* serovar Typhimurium with emphasis on phage type DT104 based on variable number of tandem repeat loci. J. Clin. Microbiol. **41**:1469–1479.

- Miyakawa, T., and K. Tsuno. 1989. Occurrence of citrus greening disease in the southern islands of Japan. Ann. Phytopathol. Soc. Jpn. 55:667–670.
- Naito, T., et al. 2001. Detection of the citrus Huanglongbing (greening disease) by polymerase chain reaction (PCR) assays and distribution in Okinawa, Japan. Bull. Okinawa Agric. Exp. Stn. 23:74–81.
- Nei, M. 1973. Analysis of genetic diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70:3321–3323.
- Ooishi, T., et al. 2006. Geographical distribution of the Asian citrus psyllid infected with *Candidatus* Liberibacter asiaticus in Okinawa prefecture. Kyushu Plant Prot. Res. 52:66–70.
- 25. Otake, A. 1990. Bibliography of citrus greening disease and its vectors attached with indices and a critical review on the ecology of the vectors and their control, p. 161. Japanese International Cooperative Agency, Tokyo, Japan.
- Sanger, F., S. Nickien, and A. R. Coulson. 1997. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. U. S. A. 74:5463–5467.
- Sechler, A., et al. 2009. Cultivation of 'Candidatus Liberibacter asiaticus,' 'Ca. L. africanus,' and 'Ca. L. americanus' associated with Huanglongbing. Phytopathology 99:480–486.
- Shinohara, K., et al. 2006. Survey of citrus Huanglongbing (greening disease) on the Amami islands. 1. Characteristics of distribution in the Amami islands. Kyushu Plant Prot. Res. 52:6–10.
- Strand, M., T. A. Prolla, R. M. Liskay, and T. D. Petes. 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274–276.
- Thompson, J. D., D. G. Higging, and T. J. Gibson. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.
- Tirtawidjaja, S., T. Hadewidjaja, and A. M. Lasheen. 1965. Citrus vein phloem degeneration virus, a possible cause of citrus chlorosis in Java. Proc. Am. Soc. Hon. Sci. 86:23–243.
- Tomimura, K., et al. 2009. Evaluation of genetic diversity among *Candidatus* Liberibacter asiaticus isolates collected in Southeast Asia. Phytopathology 99:1062–1069.
- van Belkum, A., S. Scherer, L. van Alphen, and H. Verbrugh. 1998. Shortsequence DNA repeats in prokaryotic genomes. Microbiol. Mol. Biol. Rev. 62:275–293.
- 34. Viana-Niero, C., et al. 2001. Genetic diversity of *Mycobacterium africanum* clinical isolates based on IS6110-restriction fragment length polymorphism analysis, spoligotyping, and variable number of tandem DNA repeats. J. Clin. Microbiol. 39:57–65.
- Zhao, X. Y. 1981. Citrus yellow shoot disease (Huanglonbing)—a review, p. 466–469. Proc. 4th Int. Citrus Congr. International Society of Citriculture, Tokyo, Japan.