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Abstract

During the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC)
from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a
limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative
can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including
embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be
differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that
human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of
human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the
in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of
the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease
modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from
human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for
patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to
present an overview of the current status and applications of this field.
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Introduction

Blood transfusion is the main therapeutic option and a

crucial part of modern medicine for patients with severe

anemia [1, 2]. A limited resource of blood, blood group

compatibility (ABO and Rh antigens), and the risks of

infection can present great challenges for blood transfu-

sion [2, 3]. Therefore, any alternative solution methods

would be most helpful for patients with rare blood

groups [4]. Mature red blood cells (RBCs) or erythro-

cytes/erythroid cells in a complex process called erythro-

poiesis are produced from hematopoietic stem cells

(HSCs) [5–7]. Erythroblasts (precursors of RBCs) are dif-

ficult to proliferate in vitro [2, 8, 9]. In past decades, sev-

eral groups have generated erythrocytes from umbilical

cord blood (UCB)-derived HSCs [2, 10]. Although multi-

potent HSCs have the capacity for self-renewal, the

large-scale in vitro/ex vivo HSCs expansion and differen-

tiation into RBCs is a difficult task [2, 11, 12]. Ex vivo

cultured RBCs can also be obtained from immortalized

erythroid precursors and pluripotent stem cells (PSCs)

[13, 14]. Human PSCs including embryonic stem cells

(ESCs) and induced pluripotent stem cells (iPSCs) have

the potential to proliferate indefinitely in culture and

give rise to lineages of ectoderm, mesoderm, and endo-

derm [15–17]. Therefore, much attention has focused on

human PSCs to replace current transfusion banking [18,
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19]. Several previous studies have revealed that human

ESCs can differentiate into functional oxygen-carrying

erythrocytes with normal function [18, 20, 21]. Unfortu-

nately, the ex vivo expansion of human ESC-derived

RBC is ethically and politically controversial [22, 23]. In

contrast, human iPSCs have less ethical and social issues

compared to human ESCs [24, 25]. Human iPSCs are

produced by the manipulation of differentiated somatic

cells [26–29]. Reprogramming of human somatic cells

through the ectopic expression of transcription factors

has provided a new avenue for disease modeling and re-

generative medicine [16, 30]. As human iPSCs have

similar properties with human ESCs, these cells can be a

suitable therapeutic choice for the in vitro/ex vivo

manufacture of RBCs to eliminate blood supply short-

ages [31, 32]. Various techniques have been developed

to generate enucleated RBCs from human iPSCs [31, 33,

34]. Genome editing and human iPSCs technology has

greatly accelerated the use of autologous transfusion

therapies [35–38]. In this review, we focused on the gen-

eration of human iPSC-derived erythrocytes to present

an overview of the current status and applications of this

field.

In vivo and in vitro erythropoiesis

Erythropoiesis is a complex process in the bone marrow

in which HSCs proliferate and give rise to erythroid

committed progenitors (EPC) and mature RBCs [39, 40].

Following differentiation toward the erythroid lineage,

HSCs lose their self-renewal properties and become

restricted to generate burst-forming unit (BFU-E), colony-

forming unit-erythroid (CFU-E), basophilic (BasoE),

polychromatophilic (PolyE), orthochromatic erythroblasts

(OrthoE), reticulocytes (Retic), and RBCs [8] (Fig. 1). This

developmental procedure is controlled by cell-cell/cell-

matrix interactions along with several cytokines and

growth factors including IL-3, IL-6, erythropoietin (EPO)

(the main erythropoietic stimulating hormone), EPO-

receptor, members of the transforming growth factor-β

(TGF-β), activin A, activin receptor-II, Flt3 ligand (Flt3-L),

vascular endothelial growth factor (VEGF), stem cell

factor (SCF), thrombopoietin (TPO), and granulocyte

colony-stimulating factor (G-CSF) [26, 41, 42]. Erythro-

poiesis is controlled and characterized via multiple tran-

scriptional regulators, including myb, Sox6, Bcl11A,

Gata1, and Klf1 [43, 44].

Up to date, several culture systems have been estab-

lished to obtain a sufficient number of mature and func-

tional RBCs in vitro [8]. Three culture systems including

erythroid cells lines (the murine erythroleukemia cell

line and the human K562 cell line), HSCs derived from

peripheral blood (PB) and UCB, and stem cells (human

ESCs, neonatal cord blood (CB), mesenchymal stem cells

(MSCs), and human iPSCs) have been evaluated to

obtain RBCs [26, 45]. An immortalized or continuous

cell lines have a homogenous karyotype that can be

altered following continuous cell culture, which might

not be the most appropriate for pre-clinical studies or

clinical applications [46]. In contrast, human PSCs-

derived RBCs can be achieved in larger scale cultures

[47, 48]. Many attempts have been made previously to

establish all blood lineages, including lymphocytes,

megakaryocytes, neutrophils, and RBCs from human

ESCs [49–52]. Kaufman et al. for the first time revealed

that human ESCs on the murine bone marrow cell line

or a yolk sac endothelial cell line could give rise to

erythroid cells [53]. Similar results were investigated by

other lab using human fetal liver cells to improve the

yield of human ESCs-derived erythroid cells [54]. How-

ever, the use of human ESCs has faced several chal-

lenges, including the host immune response toward

ESCs and the ethical issues associated with the destruc-

tion of human embryos [55]. Differentiation of mouse

iPSCs to blood cells has been investigated less inten-

sively compared to the ESCs [56, 57]. Recently, human

iPSCs have been studied as one of the potential sources

for HSCs and RBCs [58–60].

In vitro culture of human iPSC-derived RBCs

In 2006, murine iPSCs for the first time were obtained

from somatic cells by using four transcription factors,

Oct4/Klf4/Sox2/c-Myc [61]. In 2007, human iPSCs were

generated from primary human fibroblasts using Oct4/

Klf4/Sox2/LIN28 [62]. Human iPSCs enable researchers

to generate PSCs using well-defined and highly reprodu-

cible protocols [63–65].

Although HSCs can be used for the treatment of

hematological disorders [66, 67], the bone marrow

biopsy is an invasive procedure with chronic graft-

versus-host diseases (GVHD), morbidity, and mortality

in patients who received allogeneic HSC therapy [68,

69]. Autologous HSCs are an alternative option with a

lower mortality rate, though in some cases, genetic cor-

rection is necessary before autologous HSCs transplant-

ation [70–72]. However, in vitro expansion of HSCs is

one of the main hurdles of autologous HSCs [73, 74].

These limitations can be solved with a renewable source

of cells. Human iPSCs as unlimited supplies of autolo-

gous cells can be an ideal candidate for genetic correc-

tion, differentiation to healthy HSCs, and autologous

transplantation [67, 75].

More recently, established iPSCs from human fibro-

blast cells represent a powerful tool for the investigation

of early hematopoiesis [59, 76, 77]. One of the promising

strategies for the use of iPSC is their capacity to differ-

entiate into RBCs and to eliminate the allogeneic blood

shortages [78, 79]. Two approaches including embryoid

body (EB) formation (feeder-free culture) and co-culture
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of human iPSCs with feeder cells have been employed

for the generation of HSCs from human iPSCs. Many

studies have aimed to differentiate human iPSCs into

RBCs using EB formation [31, 33, 34]. In general, there

are three steps for differentiation of iPSCs into RBCs, in-

cluding the generation of iPSCs, HSCs, and mature

RBCs [33, 80] (Fig. 2). Many attempts have been made

previously to achieve human iPSC-derived RBCs under

conventional culture methods with SCF, EPO, VEGF,

insulin-like growth factor I (IGF-1), dexamethasone

(glucocorticoid receptor agonist), ITS (insulin, transfer-

rin, and selenium), TPO, FLT3, BMP4, IL-3, IL-6, and

EPO (Table 1). However, an ideal culture condition for

human iPSC-derived RBCs should be able to generate

large numbers of functional enucleated erythrocytes [31,

86]. Feeder cells as a major cellular component have

been found to enhance hematopoiesis from human

iPSCs [81, 82]. It has been shown that OP9 feeder cells

as a mouse bone marrow stromal cell line may enhance

the hematopoietic differentiation of human iPSCs [86].

Also, C3H10T1/2 feeder cells have the capacity to

stimulate the hematopoietic differentiation of human

iPSCs [38, 87]. Increasing in vitro evidence indicates

that the cell type of origin and an epigenetic memory

for iPSCs may influence on the hematopoietic differ-

entiation of human iPSCs [34, 88, 89]. Compared with

iPSC-derived fibroblast cells, the human CD34+

hematopoietic population with the features of MSCs

might be more suitable for the hematopoietic differ-

entiation of iPSCs [81]. Following differentiation,

HSCs lose their repopulation capacity. Hence, CD34+

HPCs must be purified before starting the differenti-

ation [38]. Human iPSC-derived CD43+ hematopoietic

cells have a strongly glycosylated transmembrane sia-

lomucin that can be a suitable option for in vitro

erythropoiesis [79]. In HSCs, reactive oxygen species

(ROS) can modulate a balance between proliferation

and differentiation. In the early stage of hematopoietic

differentiation, mitochondria and NADPH oxidases

(NOX) are the main sources of ROS [90, 91]. NOX4

as the major NOX enzyme have been shown to play

a significant role in the early stages of hematopoietic

Fig. 1 In vivo erythropoiesis. Erythropoiesis is a complex process in the bone marrow in which HSCs proliferate and give rise to erythroid
committed progenitors (EPC) and mature red blood cells (RBCs). During development, HSCs lose their self-renewal properties and become
restricted to generate burst-forming unit (BFU-E), colony-forming unit-erythroid (CFU-E), basophilic (BasoE), polychromatophilic (PolyE),
orthochromatic erythroblasts (OrthoE), reticulocytes (Retic), and RBCs. Erythropoiesis is controlled by cell-cell/cell-matrix interactions along with
several cytokines and growth factors including IL-3, IL-6, erythropoietin (EPO) (the main erythropoietic stimulating hormone), EPO-receptor,
members of the transforming growth factor-β (TGF-β), activin A, activin receptor-II, Flt3 ligand (Flt3-L), vascular endothelial growth factor (VEGF),
stem cell factor (SCF), and thrombopoietin (TPO)
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differentiation from iPSCs [85]. UM171 is a potent

small molecule (HSC self-renewal agonist) that in-

creases the derivation of HSPCs from human iPSCs

in vitro [84, 92]. Choi et al. found some variations in

the efficiency of human iPSCs differentiation into

RBCs. While the pattern of hematopoietic differenti-

ation was similar in seven tested lines [81], Dorn

et al. reported that all human iPSCs could give rise

to enucleated reticulocytes. But, the growth rate of

erythroid cells from iPSC-derived CD34+ HSCs was

slightly higher [34]. Uchida et al. demonstrated that

compared to the yield of erythroid cells from PB erythroid

progenitor-derived iPSCs, MSC-derived iPSCs produced

more efficient definitive erythroid cells with higher b-

globin expression [48]. Lapillonne et al. for the first time

reported the complete differentiation of human iPSCs into

definitive erythrocytes and RBCs with fetal hemoglobin

[33]. Dias et al. revealed that the episomal reprogramming

or transgene-free human iPSCs can be used for large-scale

expansion of human iPSC-derived RBCs [82]. Olivier et al.

Fig. 2 Differentiation of human iPSCs into RBCs. Human iPSCs can be produced from primary human fibroblasts using Oct4/Klf4/Sox2/LIN28.
There are three steps for differentiation of iPSCs into RBCs, including the generation of human iPSCs, HSCs, and RBCs. Several growth factors and
cytokines, including SCF, EPO, VEGF, IGF-1, ITS (insulin, transferrin, selenium), dexamethasone (glucocorticoid receptor agonist), TPO, FLT3, BMP4,
IL-3, IL-6, and EPO have various functions on human iPSCs differentiation to the erythroid lineage
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Table 1 In vitro differentiation of human induced pluripotent stem cells (iPSCs) into red blood cells (RBCs)

Human iPSC cell
source

Reprogramming
transcription factors

Cluster of differentiation (CD)
markers

iPSC culture condition Results Refs.

IMR90 POU5F1, SOX2, and
NANOG

CD34+ and CD43+
(hematopoietic progenitors),
CD31+ and CD43− (endothelial
cells), CD43+, CD235a+, and
CD41a+/− (erythro-
megakaryopoietic)

α-MEM with 20% defined FBS,
100 ng/mL bFGF, OP9 feeder
layer

Seven human iPSC lines
could differentiate into
RBCs with the similar
pattern of differentiation

[81]

Fetal and newborn
foreskin fibroblasts

POU5F1, SOX2,
NANOG, and LIN28

Adult skin fibroblasts POU5F1, SOX2, and
NANOG (M3-6) or
POU5F1, SOX2,
NANOG, and LIN28

IMR90 and FD-136 pSin-EF2-Oct4-Pur,
pSin-EF2-Sox2-Pur,
pSin-EF2-Nanog-Pur
and pSin-EF2-Lin28-
Pur13

CD34 and/or CD45
(hematopoietic progenitors),
CD36 and CD235a (erythroid
cells), CD71 (transferrin receptor),
CD45, CD34, and CD71
(hematopoietic and erythroid
cells)

EB formation on a cellular stroma
100 ng/mL SCF, 100 ng/mL TPO,
100 ng/mL FL, 10 ng/mL BMP4, 5
ng/mL VEGF, 5 ng/mL IL-3, 5 ng/
mL IL-6, 3 U/mL Epo, 10 μg/mL
insulin, 3 U/mL heparin

The complete
differentiation of human
iPSCs into definitive
erythrocytes and RBCs
with fetal hemoglobin

[33]

Human adult and
fetal fibroblasts

POU5F1, SOX2, and
NANOG

CD235a+ and CD45− (leukocyte-
free RBCs), CD34+ or CD31+
(erythroid cells)

100 ng/mL ZbFGF, OP9 feeder
layer, serum free medium, SCF,
G-CSF, GM-CSF, IL3, IL6

The episomal
reprogramming or
transgene-free human
iPSCs for large-scale ex-
pansion of RBCs

[82]

Neonatal fibroblasts Episomal vectors that
express OCT4, SOX2,
NANOG, LIN28, MYC,
KLF4, and LT

Human cord blood OCT4 and SOX2
alone (CD34-2F-iPSC)
or expressing OCT4,
SOX2, KLF4, and c-
MYC (CD34-4F-iPSC)

CD34+ (iPSCs), CD45+/CD34+
(HSCs), CD45+/CD34− (myeloid
precursors), GPA+/CD45−
(erythroid cells), CD36 and CD71
(primitive erythroid cells)

10% human plasma, 10 μg/mL
insulin, 330 μg/mL human
holotransferrin, 100 ng/mL SCF,
100 ng/mL TPO, 100 ng/mL Flt3-
L, 5 ng/mL IL-3, 5 ng/mL IL-6, 5
ng/mL VEGF, 10–20 ng/mL BMP4,
3 U/mL EPO

The growth rate of
erythroid cells from iPSC-
derived CD34+ HSCs was
slightly higher

[34]

iPSC line (33D6),
iPSC lines from
fibroblast cells
(blood group O
RhD2), and
peripheral blood

CD144+/CD31+ (endothelial
cells), CD31, CD34, CD36, CD41a,
CD43, CD44, CD45, CD71, and
CD235a

Stemline II medium, 20 ng/mL
bFGF, 20 ng/mL recombinant
vitronectin, 1 mM StemRegenin
(SR1), 1 mM hydrocortisone, 30–
50 ng/mL SCF, 16.7 ng/mL Flt3-
ligand, 10 ng/mL Wnt3A, 2 mM
GSK3b inhibitor VIII or A-
A014418, 6.7–20 ng/mL BMP4,
6.7 ng/mL IL-3, 6.7 ng/mL IL-11,
50 mM IBMX, 1.3 U/mL EPO, 30
ng/mL VEGF, 10 ng/mL FGFa, 10
ng/mL IGF, 10 ng/mL TPO, 5 mg/
mL heparin, 50 mM IBMX, 0.4 ng/
mL b-estradiol

The large-scale expansion
of human iPSC-derived
erythroid cells under
feeder-free and serum-
free culture condition

[83]

Cord blood CD34+
cells

OCT4, SOX2, KLF4,
and c-Myc

CD43+ (hematopoietic
progenitors), CD36, CD235a,
CD45, CD71 (hematopoietic
markers), CD31, CD144, CD41a,
CD309, and CD4

VEGF, BMP4, Flt3-ligand, IL-3, IL-6,
SCF, TPO, EPO

Human iPSC-derived
CD43-expressing
hematopoietic cells are a
suitable option for
in vitro erythropoiesis

[79]

PBMCs or MSCs
from SCD patients

Oct4, Klf4, Sox2, and
c-Myc

CD36+/CD71+ (peripheral blood
erythroid progenitors (EP)), CD31,
CD34, CD41a, CD43, CD45, CD71,
CD73, CD144, CD235a, CD309

IDMEM medium, 0.2 mg/mL
insulin, 0.11 mg/mL transferrin,
0.1 μg/mL sodium selenite, 0.45
mM a-mono-thioglycerol, 50 μg/
mL AA, 20 ng/mL VEGF, 50 ng/
mL SCF, 50 ng/ml fms-related
tyrosine kinase 3 ligand, 50 ng/
mL TPO, 5 μg/mL IL-3, 10 ng/mL
BMP4,
5 U/ml EPO

MSC-derived iPSCs
produced more efficient
definitive erythroid cells
with higher b-globin
expression

[48]

Human urine OCT4, SOX2, KLF4,
and MYC

CD34, CD43, CD45, CD31, CD144,
CD235a, CD11b, CD14, CD3,
CD4, CD5, CD7, CD8a

Matrigel, mTeSR1 medium,
stemline II, ITS, 20 ng/mL BMP4,
5 ng/mL Activin A, 5 ng/mL
bFGF, 40 ng/mL VEGF, 50 ng/mL
SCF, 50 ng/mL Flt3-ligand, 10 ng/

UM171 improved in vitro
derivation of HSCs from
human iPSCs

[84]
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illustrated the large-scale expansion of human iPSC-

derived erythroid cells under feeder-free and serum-free

culture conditions [83]. They used several small molecules

such as StemRegenin (SR1, a dual RasGAP and ERK1/2

inhibitor), BIO (archetypal GSK3b inhibitor), CHIR99021

(GSK3b inhibitor), IBMX (nonspecific inhibitor of cAMP

and cGMP phosphodiesterases), and A-A014418 (GSK3b

inhibitor VIII) to promote erythroid differentiation of

human iPSCs [83]. Recently, Bernecker et al. described a

simplified cell culture system with low cytokine support

(SCF, EPO, and IL-3) to generate prolonged human iPSC-

derived RBCs [31]. Tursky et al. compared four serum and

feeder-free iPSC hematopoietic differentiation protocols

and investigated that two-dimensional (2D)-multistep

protocol was simple and time- and cost-effective with the

most efficient CD34+ progenitor cells [93].

Primary technical challenges for the clinical application of

iPSC-derived RBCs

The in vitro production of human iPSC-derived RBCs

can be an alternative treatment option for patients with

blood disorders [94]. Many attempts have been exam-

ined to differentiate iPSCs into RBCs, but no clinical

trials using iPSC-derived RBCs transfusion have been

conducted [60]. Table 2 shows patient-specific iPSCs

models of hematological disorders.

Before iPSC-derived RBCs derivatives can be used in

the clinic, it is essential to found the risks and process-

related challenges associated with the generation of late-

stage maturity RBCs in vitro [132, 133]. The technology

of manufacturing functional erythroid cells from iPSCs

needs a sufficient number of functional RBCs in a serum

free-liquid culture system or chemically defined media,

which is necessary for any potential clinical trials [134,

135]. Human iPSCs may be considered as an unlimited

source of RBCs than HSCs, but generating mature RBCs

from iPSCs is still an inefficient process and less strict

experiment protocols using low-cost media and reagents

are needed [136]. Thus, the challenge for large-scale

expansion of iPSC-derived erythroid cells needs to be

overcome [8, 60].

The use of small molecules as substitutes for growth

factors or various cytokines can reduce side effects and

media costs [137, 138]. Further studies are necessary to

understand which genetic or epigenetic alternations

improve the terminal differentiation of iPSC-derived

erythroid cells [139]. Recent studies have shown that

histone deacetylases such as histone deacetylase 2

(HDAC2) are the critical regulator for chromatin con-

densation in mouse erythroblasts [140]. Administration

of HDAC2 inhibitors can suppress the terminal differen-

tiation of human erythroid precursors [139]. It is

Table 1 In vitro differentiation of human induced pluripotent stem cells (iPSCs) into red blood cells (RBCs) (Continued)

Human iPSC cell
source

Reprogramming
transcription factors

Cluster of differentiation (CD)
markers

iPSC culture condition Results Refs.

mL TPO, 50 ng/mL IL-3, 50 ng/mL
IL-6,

Cord blood CD34+
cells and CD36+
erythroblasts

OCT4, SOX2, KLF4,
and c- MYC

CD34+/CD45+ (hematopoietic
progenitors), CD36+/CD45+
(erythroid precursors)

Matrigel, STEMdiff™ APEL™2
medium, 5% PFHM-II Protein-free
Hybridoma Medium, 5 ng/mL IL-
3, 100 ng/mL SCF, 3 U/mL EPO,
10% human plasma, 10 μg/mL in-
sulin, 330 μg/mL human
holotransferrin

Prolonged human iPSC-
derived RBCs in a simpli-
fied cell culture system
with low cytokine
support

[31]

WT-iPSC line CD34, CD38, CD45, CD90, CD117,
CD133

Vitronectin, OP9 feeder layer,
MEM medium with 10% FBS,
100 μM MTG, 50 μg/mL AA

NOX4 has a significant
role in the early stages of
hematopoietic
differentiation from iPSCs

[85]

Bone marrow
stromal cells from a
SCD patient

CD31, CD34, CD36, CD38, CD41a,
CD43, CD45, CD45RA, CD49f,
CD71, CD73, CD90, CD144,
CD184

mTeSR1 media, Matrigel, IMDM,
C3H10T1/2 feeder cells, 1% ITS,
50 mg/mL AA, 0.45 mM a-
monothioglycerol, 20 ng/mL hu-
man VEGF, 15% FBS or 20% KSR,
OP9 feeder cells, 50 ng/mL FL,
50 ng/mL TPO, 5 ng/mL IL3, 50
ng/mL SCF, 5 U/mL EPO, and 10
ng/mL BMP4, 1.0 μM estradiol,
1.0 μM dexamethasone, 2% BSA,
0.56 mg/mL transferrin

Serum-free iPSC sac-
derived erythroid
differentiation

[38]

IMR90 human fetal lung fibroblasts, PBMCs peripheral blood mononuclear cells, IDMEM Iscove’s modified Dulbecco’s medium, SCD sickle cell disease, FD-136 skin

primary fibroblast cell line, OP9 mouse bone marrow stromal cell line, EB embryoid body, SCF stem cell factor, TPO thrombopoietin, FLT3 Fms-related tyrosine

kinase 3 ligand, FL FLT3 ligand, BMP4 bone morphogenetic protein 4, VEGF vascular endothelial growth factor, IL-3 interleukin-3, EPO erythropoietin, ZbFGF

zebrafish basic fibroblast growth factor, HSCs hematopoietic stem cells, IGF insulin-like growth factor, IBMX isobutyl methyl xanthine, MTG monothioglycerol, AA

ascorbic acid, KSR knockout serum replacement, BSA bovine serum albumin, ITS insulin, transferrin, selenium
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Table 2 Patient-specific iPSC models of hematological disorders

Authors Disorder iPSC cell source Ref.

Ye et al. 2009 Myeloproliferative disorders (MPDs) iPSCs from peripheral blood CD34+ cells of patients with MPDs [95]

Zou et al. 2011 Chronic granulomatous disease (CGD) iPSCs from patient with X-linked CGD [96]

Kumano et al.
2012

Chronic myelogenous leukemia (CML) iPSCs from imatinib-sensitive CML patient [97]

Chang et al. 2012 α-Thalassemia (α-Thal) iPSCs from α-Thal fibroblasts [98]

Garçon et al.
2013

Diamond Blackfan anemia (DBA) iPSCs from fibroblasts of DBA patient [99]

Bedel et al. 2013 CML iPSCs from CD34+ blood cells isolated from CML patients [100]

Yuan et al. 2013 Paroxysmal nocturnal hemoglobinuria (PNH) iPSCs from adult male dermal fibroblasts [101]

Saliba et al. 2013 Polycythemia vera (PV) iPSCs from 2 polycythemia vera patients carrying a heterozygous and a
homozygous mutated JAK2 JAK2V617F

[102]

Sakurai et al.
2014

Familial platelet disorder (FPD)/AML iPSCs from three distinct FPD/AML pedigrees [103]

Sun et al. 2014 Sickle cell disease (SCD) iPSCs from patient with SCD mutation [104]

Ye et al. 2014 PV iPSCs from PV patient blood [105]

Xie et al. 2014 β-Thalassemia (β-Thal) iPSCs from patient with β-Thal [106]

Amabile et al.
2015

CML Primary bone marrow cells obtained from a BCR-ABL-positive CML
patient

[107]

Ge et al. 2015 DBA iPSCs from DBA patients carrying RPS19 or RPL5 mutations [108]

Park et al. 2015 Hemophilia A (HA) iPSCs from patients with chromosomal inversions that involve introns 1
and 22 of the F8 gene

[109]

Kotini et al. 2015 Myelodysplastic syndromes (MDS) iPSCs from hematopoietic cells of MDS patients [110]

Huang et al.
2015

SCD iPSCs from adult patients of SCD, which harbor the homozygous βs

mutation in the HBB gene
[111]

Chang et al. 2015 Severe combined immunodeficiency (SCID) iPSCs from SCID patients with Janus family kinase (JAK3)-deficient cells [112]

Menon et al.
2015

X-linked severe SCID (SCID-X1) iPSCs from SCID-X1 patients [113]

Ingrungruanglert
et al. 2015

Wiskott-Aldrich syndrome (WAS) iPSCs from patients with mutations in WASP [114]

Wu et al. 2016 HA iPSCs from peripheral blood from severe HA patients [115]

Pang et al. 2016 HA iPSCs from patients with severe HA [116]

Niu et al. 2016 β-Thal iPSCs from patient with β-Thal [117]

Laskowski et al.
2016

WAS iPSCs from CD34+ hematopoietic progenitor cells of a WAS patient [118]

Doulatov et al.
2017

DBA iPSCs from skin fibroblasts from DBA patient [119]

He et al. 2017 Hemophilia B (HB) iPSCs from HB patient [120]

Chao et al. 2017 Acute myeloid leukemia (AML) iPSCs from AML patient [121]

Kotini et al. 2017 AML iPSC from patients with low-risk MDS (refractory anemia [RA]), high-risk
MDS (RA with excess blasts [RAEB]) and secondary AML (sAML or MDS/
AML from preexisting MDS)

[122]

Miyauchi et al.
2018

CML iPSCs from the bone marrow of two CML-CP patients [123]

Olgasi et al. 2018 HA iPSCs from peripheral blood (PB) CD34+ cells of HA patient [124]

Ramaswamy
et al. 2018

HB iPSCs from HB patients [125]

Lyu et al. 2018 HB iPSC from peripheral blood mononuclear cells (PBMNCs) [126]

Cai et al. 2018 β-Thal iPSCs from patient with β-Thal [127]

Wattanapanitch
et al. 2018

HbE/β-Thal iPSCs from Skin cells of HbE/β-Thal patients [128]
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Table 2 Patient-specific iPSC models of hematological disorders (Continued)

Authors Disorder iPSC cell source Ref.

Sfougataki et al.
2019

β-Thal, SCD, DBA, severe aplastic anemia (SAA),
dedicator of cytokinesis 8 (DOCK8)
immunodeficiency

iPSCs from human bone marrow-derived mesenchymal stromal cells
(BM-MSCs)

[129]

Kohara et al.
2019

Type IV congenital dyserythropoietic anemia
(CDA)

iPSCs from CDA patient carrying the KLF1 E325K mutation [130]

Hoffmann et al.
2020

Severe congenital neutropenia (SCN) iPSCs from a SCN patient with a nonsense mutation in the glucose-6-
phosphatase catalytic subunit 3 (G6PC3) gene

[131]

Fig. 3 New technologies toward the large-scale expansion of human iPSC-derived erythroid cells. Conventional differentiation methods
compared with the novel growth factor- and serum-free culture approaches for erythroid differentiation of human iPSCs
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therefore conceivable that HDAC2 activators may en-

hance chromatin condensation of iPSC-derived erythroid

cells [141]. MicroRNAs are important regulators that

downregulate the expression of target genes [142, 143]

and improve the maintenance of immature

hematopoietic cells and terminal erythroid differenti-

ation [58, 143]. Therefore, different combinations of

microRNAs may increase the numbers of iPSC-derived

mature RBCs [139]. In addition to microRNAs, long

noncoding RNAs (lncRNAs) have recently been reported

that can determine the fate of stem cells [144]. A recent

study has shown that long intergenic noncoding RNA

erythroid prosurvival (lincRNA-EPS) can suppress apop-

tosis and facilitate erythropoiesis [145–147]. In this re-

gard, lncRNAs might allow the generation of functional

and mature RBCs from iPSCs [148, 149]. Several groups

have recently shown that 3D scaffolds such as poly (D,

L-lactide-co-glycolide), polyurethane, collagen type I,

and porous polyvinyl fluoride resin can mimic the bone

marrow niche and improve maintenance of immature

hematopoietic cells [150–154]. Although the in vitro

maturation of iPSC-derived RBCs still presents several

barriers, the cultured erythroid cells from iPSCs provide

an important step toward fully defined and animal-free

cultivation protocols that can be applied for transfusion

medicine [67]. Figure 3 shows new technologies toward

the large-scale expansion of human iPSC-derived eryth-

roid cells.

Conclusion

Reprogramming of somatic cells to the pluripotent state

has been suggested as an alternative source and a novel

opportunity for patient-specific stem cell-based therap-

ies, modeling of RBCs diseases, and drug testing [155].

Previous studies have shown that human iPSCs can give

rise to erythroid cells, while in vitro derivation and

maintenance of enucleated erythrocytes have still been

challenging [86]. Also, many hurdles such as reprogram-

ming without retroviruses, large scale and cost-effective

production of iPSC-derived enucleated RBCs, and de-

fined xenogenic-free conditions remain to be improved

before human iPSC-based therapy [156, 157]. According

to good manufacturing practice (GMP) guidelines, the

establishment of iPSC-derived RBCs using a reprodu-

cible, defined, and simple method will ease the transla-

tion of iPSCs into the clinic [93, 158, 159].
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