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Abstract: For the clinical assessment of motor speech disorders (MSDs) in French, the MonPaGe-
2.0.s protocol has been shown to be sensitive enough to diagnose mild MSD based on a combina-
tion of acoustic and perceptive scores. Here, we go a step further by investigating whether these
scores—which capture deviance on intelligibility, articulation, voice, speech rate, maximum phona-
tion time, prosody, diadochokinetic rate—contribute to the differential diagnosis of MSDs. To this
aim, we trained decision trees for two-class automatic classification of different pairs of MSD subtypes
based on seven deviance scores that are computed in MonPaGe-2.0.s against matched normative data.
We included 60 speakers with mild to moderate MSD from six neuropathologies (amyotrophic lateral
sclerosis, Wilson, Parkinson and Kennedy disease, spinocerebellar ataxia, post-stroke apraxia of
speech). The two-class classifications relied mainly on deviance scores from four speech dimensions
and predicted with over 85% accuracy the patient’s correct clinical category for ataxic, hypokinetic
and flaccid dysarthria; classification of the other groups (apraxia of speech and mixed dysarthria)
was slightly lower (79% to 82%). Although not perfect and only tested on small cohorts so far, the
classification with deviance scores based on clinically informed features seems promising for MSD
assessment and classification.

Keywords: dysarthria; apraxia of speech; automatic classification; decision tree

1. Introduction

Motor speech disorders (MSDs) in adults can appear suddenly or progressively, de-
pending on the underlying etiology (stroke or brain injury versus neurodegenerative
diseases or brain tumors). Motor speech disorders include two main subtypes, apraxia
of speech (AoS) and dysarthria, which are further subdivided into subtypes, at least for
dysarthria. Despite the fact that AoS and dysarthria have been attributed to the disrup-
tion of different processes of motor speech planning/programming (impaired retrieving
and/or assembling of speech motor plans in AoS [1–5], versus impaired motor program-
ming and execution of the neuromuscular commands involved in speech production in
dysarthria [3,6–8]), they share several clinical signs. For instance, slow speech rate and
sound distortions are observed both in several subtypes of dysarthria and in AoS [6–10].
On the other hand, dysarthria can manifest through different patterns of impaired speech
and several subtypes of dysarthria have been classically described in relationship to the
impaired underlying pathophysiological neuro-subsystem [2,8]. Currently, at least seven
subtypes are identified: flaccid dysarthria (in bulbar palsy), spastic dysarthria (in pseu-
dobulbar palsy), ataxic dysarthria (in cerebellar disorders), hypokinetic dysarthria (in
parkinsonism), hyperkinetic dysarthria (in dystonia and chorea), mixed dysarthria (e.g., a
combination of flaccid and spastic dysarthria, as observed in amyotrophic lateral sclerosis).

In clinical practice, the diagnosis of MSD and of its subtypes is mainly based on an
auditory-perceptual approach in association with the information about the underlying

Brain Sci. 2022, 12, 1471. https://doi.org/10.3390/brainsci12111471 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci12111471
https://doi.org/10.3390/brainsci12111471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-1747-1322
https://orcid.org/0000-0002-4054-0939
https://doi.org/10.3390/brainsci12111471
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci12111471?type=check_update&version=2


Brain Sci. 2022, 12, 1471 2 of 16

neuropathology. The accuracy and inter-judge agreement of perceptual classification is
nevertheless quite low [11–16], where even the two main subtypes (AoS versus dysarthria)
are often confounded. For instance, in [16], speech and language therapists have often
misclassified AoS and confused it with mixed dysarthria. As for the perceptual classifi-
cation of subtypes of dysarthria, some subtypes seem to be easier to identify than others.
For instance, hypokinetic dysarthria is often better identified perceptually than other
types of dysarthria [15,16], while identification of “mixed” subtypes of dysarthria is quite
bad [13,16]. These observations indicate that only some perceptual features of impaired
speech are stable within a MSD category and/or easy to identify by ear, while most features
or combinations of features of MSD are variable. On the other hand, low inter-judge agree-
ment of perceptual classification is also inherent to the subjectivity of auditory-perceptual
ratings that are based on the internal representations of each rater, or because some speech
parameters are difficult to assess by ear. Given the difficulty of reliably describing impaired
speech features/parameters with solely auditory-perceptual assessments, clinicians and
researchers have sought acoustic approaches to describe impaired speech parameters and
identify patterns of features leading to reliable classification of subtypes of MSD [17,18].

The MonPaGe-2.0.s protocol [19,20] provides a standardized assessment taking ad-
vantage of acoustic descriptors on several impaired speech parameters in MSD that are
obtained via semi-automatic acoustic analysis routines, complemented by targeted/guided
perceptual coding of some other speech aspects. The extracted acoustic and perceptual
measures are compared to normative data, considering a matching in sex and age (from a
dataset of 404 speakers), leading to a deviance score for each parameter. The MonPaGe-2.0.s
screening protocol is currently based on a relatively limited set of seven descriptors linked
to intelligibility, articulation, voice, speech rate, maximum phonation time, prosody and
diadochokinetic rate measures. It has been shown to be quite performant in terms of
sensitivity and specificity in detecting MSDs relative to neurotypical speech, even in the
case of mild speech impairments [20]. Although the first diagnostic level when assessing
speech is presence versus absence of MSD, a further step would be to tease out the different
subtypes of MSD. Our aim here is to investigate whether the MonPaGe-2.0.s screening
protocol provides the information on the impaired dimensions that allow the classifica-
tion of different subtypes of patients with mild to moderate MSD. To this end, we will
use the deviance scores from the different speech parameters/features assessed via the
MonPaGe-2.0.s protocol to automatically classify speakers with MSD from six different
neuropathological groups.

If automatic classification (i.e. machine-based classification as opposed to human-
based classification) exploiting the derived deviance scores (hereafter “DevS”) yields a
high classification accuracy, it can be concluded that the MonPaGe-2.0.s DevS can be
discriminative of the considered MSD subtypes. If automatic classification exploiting
the derived deviance scores yields a low classification accuracy, alternative scores have
to be sought for MSD differential diagnosis between our subgroups. To the best of our
knowledge, the majority of automatic techniques in the state-of-the-art literature deal with
classifying dysarthria against neurotypical speech, with most contributions considering
hypokinetic and mixed dysarthria linked to Parkinson disease and amyotrophic lateral
sclerosis respectively [21–28]. Automatic classification of subtypes of MSDs has only been
seldomly considered, with the differentiation between apraxia of speech and dysarthria
investigated in [29,30] and for instance the differentiation between dysarthria subtypes
investigated in [31,32]. Further, state-of-the-art automatic techniques typically exploit a
vast number of acoustic features extracted from the raw acoustic signal intended to capture
impaired speech dimensions such as fundamental frequency, formant frequencies, jitter,
shimmer, harmonics-to-noise ratio (HNR), Mel frequency cepstral coefficients or spectro-
temporal sparsity [21–27,33]. In this paper, we investigate the automatic classification of
several subtypes of MSDs. To this end, decision trees are trained as two-class classifiers
to discriminate between each pair of MSD subtypes within the considered six different
neuropathological groups. Instead of exploiting a vast number of acoustic features extracted
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automatically from the raw speech signals as in the state-of-the-art literature, we exploit
only seven features, and these features are ‘clinically informed’, in the sense that the speech
dimensions they capture are already expressed as ‘deviance’ from neurotypical speech.

2. Materials and Methods
2.1. Population

We included 60 patients with MSD, ten from each of six different neuropathology
groups: two groups of patients with mixed dysarthria associated with amyotrophic lateral
sclerosis (ALS) and Wilson disease; one group of patients with flaccid (bulbar) dysarthria
associated with Kennedy disease; one group of patients with hypokinetic dysarthria as-
sociated with Parkinson Disease (PD); one group of patients with ataxic dysarthria in
the context of spinocerebellar ataxia (SCA), and a group with apraxia of speech (AoS)
following a left-hemisphere stroke. The data were extracted from the “MoSpeeDi dataset”
(https://www.unige.ch/fapse/mospeedi/mospeedi-dataset accessed on 15 February 2021).
The patients in the “MoSpeeDi dataset” were all French native speakers, had a neurological
diagnosis established by neurologists in the hospitals of recruitment, and presented mild
or moderate acquired or progressive speech difficulty noticed by the patient and a speech
and language pathologist (SLP). No patients had a diagnosis of dementia or psychiatric
disorder. The inclusion of the patients from the “MoSpeeDi dataset” was guided by the
necessity to balance the severity of MSD across the six neuropathological subgroups. To
avoid redundancy with the MonPaGe-2.0.s deviance scores used in the study, an external
composite perceptive severity score was used as an inclusion criterion: the composite per-
ceptive severity score (hereafter CPSS) from a French perceptive-based speech assessment
protocol [34]. The CPSS score was computed via a perceptual rating on a 5-point scale (from
normal - 0 - to severely impaired - 4 -) of the participant’s speech on five dimensions: voice
quality, segmental realization, prosody, intelligibility and naturalness of speech (maximum
score = 20). Two trained SLPs assessed each dimension on recordings of about two minutes
of continuous read speech. Only patients with a minimum of 4 and a maximum of 14 in the
CPSS score were included here, a range that is clinically associated with mild to moderate
MSD. Five subgroups of patients partially overlapped with those in [20] (100% overlap
for the groups of patients with post-stroke AoS and Wilson disease, and 90%, 60% and
20%, respectively, for the group with mixed dysarthria in ALS, with flaccid dysarthria in
Kennedy disease and with hypokinetic dysarthria in PD. The distribution of the patients
in the six clinical groups with associated basic descriptors and CPSS severity scores is
presented in Table 1.

Table 1. Patients’ clinical groups and associated descriptors: sex, age and CPSS.

Clinical group Sex (F-M) Age (range) CPSS (range)

Post-stroke apraxia of speech (AoS) 6-4 52.5 (24–72) 8.5 (4–14)
Hypokinetic dysarthria in Parkinson Disease (PD) 2-8 74.5 (55–93) 7.2 (4–11)

Mixed dysarthria in amyotrophic lateral sclerosis (ALS) 3-7 61.5 (45–75) 8.6 (6–14)
Flaccid dysarthria in Kennedy disease 0-10 68.7(49–85) 7.7 (5–13)

Ataxic dysarthria in spinocerebellar ataxia (SCA) 7-3 50.4 (27–67) 7.8 (6–12)
Mixed dysarthria in Wilson disease 1-9 35.5 (26–49) 9.2 (5–14)

2.2. Assessment of Speech Dimensions

All the patients underwent speech assessment with the MonPaGe-2.0.s screening
protocol (https://lpp.in2p3.fr/monpage/ accessed on 15 February 2021) in a clinical set-
ting, with audio recorded with external sound cards and professional microphones (at a
44,100 Hz sampling rate). The MonPaGe-2.0.s protocol is based on semi-automated acoustic
and perceptual measures on several speech dimensions in French and has been normalized
on 404 neurotypical speakers aged 20–93 (from the MonPaGe_HA [19]) and validated on
80 speakers with MSD [20]. Two speech dimensions are evaluated perceptually (intelligi-
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bility and articulation) and five dimensions are assessed acoustically (maximum phonation
time, voice, speech rate, prosody and diadochokinetic (DDK) rate). In the endeavor to
define the set of deviance scores, our challenge was to determine which dimensions were
adequate to accurately profile the MSDs, to differentiate MSD from neurotypical speech,
and to differentiate MSD subtypes. In the vast array of potential speech features measur-
able [17], our selection was guided by the applicability of the protocol in clinical practice. In
other terms, characterizing the recordings of the patients along the selected speech features
needed to be little time- and expertise-consuming; to be weakly sensitive to the quality of
the speech signal, both in terms of quality of the recording conditions but also in terms
of the quality of the speech produced, which inherently deteriorated in MSDs (since both
negatively impact the accuracy and validity of the measurement), and to be easy to extract.

The tasks and measures for each speech dimension are briefly described below (for
further details see [19,20]).

2.2.1. Intelligibility

The intelligibility test is an interactive task between the examiner and the participant
in a face-to-face setting, in which the participant has to instruct the examiner to place test-
words on a 5 × 5 grid combining icons of various shapes and colors, using a pre-learned
carrier sentence (“Place the word [target_word] on the [color] [shape]”, e.g., “Place the
word [dog] on the [red] [circle]”). Fifteen test words are randomly drawn from a database
of four hundred and thirty-seven picturable French words, with each word having several
phonological competitors (minimal pairs). Only the participant sees the 15 test words on
the computer screen and the examiner has to write each target word on a paper grid. The
perceptual intelligibility score is computed off-line: it corresponds to the number of test
words that are understood correctly by the examiner during the interaction.

2.2.2. Articulation

Articulatory precision was assessed on the production of a list of 50 pseudo-words
(presented to the participants, both auditorily and visually, and in the same order), covering
the articulation of most French consonants and vowels as well as consonant clusters. The
scoring of articulation accuracy was also computed off-line based on the audio-recordings
of the productions via a guided procedure that allows the raters to play each pseudo-
word as many times as needed and score targeted phonemes or syllables as correctly or
incorrectly pronounced. Overall, 151 target phonemes or syllables are assessed and the score
is expressed in terms of a number of incorrect productions (from 0 to a maximum of 151).

2.2.3. Maximum Phonation Time (MPT)

This is a standard measure of pneumo-phonatory control, based on maximum phona-
tion time measured with a Praat [35] script over the sustained vowel /a/. The best perfor-
mance out of two recorded trials is retained as a single measure.

2.2.4. Voice

Voice-related acoustic measures were based on a sustained production for 2-3 seconds
of the vowel /a/ at a comfortable height and loudness and on the reading of a seven-syllable
sentence composed of only voiced sounds (“Mélanie vend du lilas” (melanivãdylila),
‘Melanie sells lilac’). All measurements were computed with Praat using a semi-automatic
procedure. Six measures related to voice were included: (a) over 2 seconds of the sustained
/a/, we computed jitter (as the 5-point Period Perturbation Quotient), shimmer (as the
11-point Amplitude Perturbation Quotient), f0 standard deviation, and smoothed cepstral
peak prominence (CPPs), (b) over the sentence, we computed f0 standard deviation and
CPPs. A DevS was compounded for each measure, then combined in a unique composite
voice deviance score (see below).
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2.2.5. Prosodic Contrast

The production of an assertive vs. interrogative prosodic contrast was tested on a
four-syllable fully voiced sentence (‘Laurie l’a lu’ (loKtilaly), ‘Laurie has read it’) produced
as a statement and as a question. The prosodic contrast between the two modalities was
computed in terms of a difference in f0 modulation (f0 range in semitones) between the
beginning and the end of the sentences measured with a guided Praat script.

2.2.6. Speech Rate

Speech rate was measured in phonemes/sec on the production of the short read
sentence (“Mélanie vend du lilas” (melanivãdylila), ‘Melanie sells lilac’), with boundaries
at sentence onset and offset determined with a guided Praat script.

2.2.7. Diadochokinetic Rate

Maximum repetition rates with oral DDK tasks are often used in clinical practice to test
the ability to make alternating articulatory movements in quick and accurate succession.
Seven items, which vary in terms of phonological complexity, were used here. They
included standard sequences used to compute alternating motion rate (AMR) with the
repetition of a CV syllable (AMRCV) or a CCV syllable (AMRCCV). Different CV and CCV
syllables were used to target alternating movements with different articulators: jaw/lips
with /ba/, front part of the tongue with /de/, tongue body with /go/, back to front
constrictions with /kla/ and front to back with /tKa/. Finally, a repetitive sequence
/badego/ was used to compute a sequential motion rate (SMRCV). Participants were
instructed to produce these sequences in a continuous manner for at least five seconds as
fast and as accurately as possible. An interval of four seconds was determined by a Praat
script from a boundary placed at the onset of the production and was manually adjusted to
the right in order to not cut the last syllable if needed. The number of phonemes produced
over this interval was used as an index of DDK rate. In order to capture difficulties in the
repetition of the same syllables (AMR) vs. the repetition of a sequence of three syllables
(SMR) which could be found for speakers with AoS for instance [36], the difference between
the sequential motion rate and the alternating motion rate averaged over all CV sequences
was also computed (SMRCV - AMRCV). The four DDK scores (AMRCV, AMRCCV, SMRCV
and SMRCV - AMRCV) were then combined in a unique composite DDK deviance score
(see below).

2.3. Measures of Impaired Speech (Deviance Scores)

For each speech dimension, a deviance score (DevS) is calculated in MonPaGe-2.0.s
in terms of deviance from the normative data according to the position of the speaker’s
descriptor value relative to the corresponding (in age and sex) reference distribution.
The DevS spans from no-deviance, i.e. within the normal range, to excessive deviance,
with normal range defined as superior to centile 5, and severity of DevS computed
based on centiles and inter-centile distance (DevS=1 : < c5 and ≥ c1; DevS=2: < c1 and
≥ 1.5*(C50-C5); DevS=3: >1.5*(C50-C5) and 2*(C50-C5); DevS=4 : > 2*(C50-C5)). For
intelligibility, articulation, MPT, speech rate and prosody the maximum deviance score
is 4 and relates directly to severity for each single measure. For voice and DDK rate, the
DevS obtained on each of the six voice measures and on each of the four DDK measures
are then combined in a composite DevS with a computation that leads to a maximum score
of 6 in order to balance their weights when the DevS from the seven speech dimensions are
summed for the total MonPaGe-2.0.s deviance score (totalDevS) (for more details of the
computation of these composite DevS in MonPaGe-2.0.s see [20]).

2.4. Automatic Classification

To investigate whether the MonPaGe-2.0.s screening protocol assesses impaired di-
mensions that allow discriminating between different subtypes of patients, we train
vanilla decision trees for two-class automatic classification of the different pairs of MSD
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subtypes based on the obtained deviance scores. Decision trees are advantageous due
to their interpretability, implicit feature selection and their ability to handle numerical
and categorical data [30]. Fifteen different decision trees are trained to discriminate be-
tween AoS/Parkinson, AoS/ALS, AoS/Kennedy, AoS/Wilson, AoS/SCA, Parkinson/ALS,
Parkinson/Kennedy, Parkinson/Wilson, Parkinson/SCA, ALS/Kennedy, ALS/Wilson,
ALS/SCA, Kennedy/Wilson, Kennedy/SCA and Wilson/SCA. The quality of each split
during training is measured through the Gini impurity [37], which measures the frequency
at which any element of the dataset will be mislabeled when it is randomly labeled. Given
the relatively small number of patients currently available in the corpus, validation is done
following a leave-one-speaker-out validation strategy. To avoid overfitting, we set the
maximum length of the longest path from the root to a leaf to three. Since we deal with
small datasets and many two-class classifications, we decided not to tune this hyperpa-
rameter. Instead, we used the default value of three suggested in the used decision tree
Python implementation [38]. The suitability of the MonPaGe-2.0.s DevS to discriminate
between the different subtypes of MSDs is evaluated through the classification accuracy
of the trained decision trees. Further, the importance of each DevS for each two-class
classification is also analyzed. Feature importance refers to the usefulness of the feature at
predicting the class of interest in each considered two-class classification. Note that feature
importance is a direct outcome of the training process of decision trees and is computed as
the total reduction of the Gini impurity in the training set brought by each feature.

3. Results
3.1. Description of Speech Profiles Per Group

Figure 1 presents the speech profiles of the ten speakers in each of the MSD subgroups
included in the cohort, according to their deviance in each of the seven considered speech
dimensions. In these radar plots, each color corresponds to a speaker and the scores are
more deviant toward the periphery. Clearly apparent in these graphs is the variability of the
impairments across speakers within each group, both in their degree of deviance (e.g., on
the voice dimension for the PD group) and in the co-occurrence of features (e.g., in the group
with Kennedy disease, deviance on prosody or speech rate co-occurs for two speakers
with the other dimensions shared by the whole group). Shared deviant dimensions across
groups are also clearly visible (e.g., deviance on the articulation dimension occurring in the
AoS, ALS, Wilson and Kennedy group).

Nonetheless, some group profiles emerge such as the PD group with main abnormali-
ties in articulation and voice, the Kennedy group with main abnormalities in articulation,
the ALS and SCA groups with slow DDK rate, and the Wilson group with deviant artic-
ulation associated with impaired intelligibility. The AoS, ALS and SCA groups have a
wider array of impaired dimensions than the other groups, extending to impaired DDK
and speech rates associated with impaired articulation.
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Figure 1. Individual DevS in each assessed speech dimension in each clinical group, from 0 to 4 for
intelligibility, articulation, maximum phonation time (MPT), speech rate and prosody. For voice and
diadochokinetic (DDK) rate the DevS is a composite computation of six and four DevS, respectively,
with a maximum of 6. Articul: articulation; Intellig: Intelligibility; AoS: post-stroke apraxia of speech;
ALS: mixed dysarthria in amyotrophic lateral sclerosis; Kennedy: flaccid dysarthria in Kennedy
disease; SCA: ataxic dysarthria in spinocerebellar ataxia; Wilson: mixed dysarthria in Wilson disease.

3.2. Two-Class Automatic Classification

Table 2 presents the overall classification accuracy for each two-class classification,
i.e., the percentage of correctly classified patients out of the 20 patients belonging to the
two classes. Further, the percentage of correctly classified patients from class 1 (out of the
10 patients in class 1) and the percentage of correctly classified patients from class 2 (out of
the 10 patients in class 2) are also presented in parenthesis.

Table 2. Classification accuracy (i.e., percentage of correctly classified patients) for all considered
two-class classifications. The first entry inside the parentheses corresponds to the percentage of
correctly classified patients from class C1. The second entry inside the parentheses corresponds to
the percentage of correctly classified patients from class C2.

C1
AoS Parkinson ALS Kennedy Wilson SCA

C2

AoS - 75 (90/60) 80 (80/80) 70 (70/70) 75 (100/50) 95 (100/90)
Parkinson 75 (60/90) - 80 (90/70) 90 (90/90) 95 (100/90) 90 (90/90)

ALS 80 (80/80) 80 (70/90) - 100 (100/100) 75 (90/60) 70 (80/60)
Kennedy 70 (70/70) 90 (90/90) 100 (100/100) - 75 (50/100) 90 (80/100)
Wilson 75 (50/100) 95 (90/100) 75 (60/90) 75 (100/50) - 90 (80/100)

SCA 95 (90/100) 90 (90/90) 70 (60/80) 90 (100/80) 90 (100/80) -

Mean ± SD
79.0 ± 8.6

(70.0 ± 14.1 /
88.0 ± 14.1)

86.0 ± 7.3
(86.0 ± 8.0 /
86.0 ± 13.6)

81.0 ± 10.2
(78.0 ± 16.0 /
84.0 ± 10.2)

85.0 ± 11.0
(92.0 ± 11.7 /
78.0 ± 17.2)

82.0 ± 8.7
(88.0 ± 19.4 /
76.0 ± 18.5)

87.0 ± 8.7
(86.0 ± 8.0 /
88.0 ± 4.7)

AoS: post-stroke apraxia of speech; ALS: mixed dysarthria in amyotrophic lateral sclerosis; Kennedy: flaccid
dysarthria in Kennedy disease; SCA: ataxic dysarthria in spinocerebellar ataxia; Wilson: mixed dysarthria in
Wilson disease.

The table is symmetric along the diagonal (except for the accuracies in parenthesis
where class 1 and class 2 are interchanged). For each MSD subtype, the last row of the table
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presents the mean and standard deviation of all presented accuracies when discriminating
between that subtype and the remaining subtypes. It should be noted that these average
accuracy values cannot be interpreted as the performance one expects to obtain for the
respective MSD subtype in a six-class classification setting. Instead, these average accuracy
values can be used to compare which MSD subtype is on average easier to discriminate
from the remaining subtypes in the considered two-class classification setting. Generally, it
can be observed that the obtained automatic classification accuracies are relatively high
(i.e., within the typical range that is considered to be high in the state-of-the-art literature
on automatic classification between dysarthria and neurotypical speech, e.g. [21,24,26]),
with the average performance ranging from 79% to 87%. Further, it can be observed that
the best discrimination accuracy is observed for the SCA, PD and Kennedy groups (87%,
86% and 85%, respectively). The lowest average classification accuracy of 79% is obtained
when discriminating between AoS and other MSD subtypes (dysarthria). However, the
classification accuracies when discriminating between mixed dysarthria in ALS or Wilson
disease and other MSD subtypes are also comparable, i.e., 81% and 82%, respectively.
When considering individual two-class classification results, the best classification accuracy
of 100% is obtained when discriminating between flaccid dysarthria in Kennedy and
mixed dysarthria in ALS. Also, discriminating between AoS and ataxic dysarthria in
patients with SCA or with hypokinetic dysarthria in PD and mixed dysarthria in Wilson
disease yields a very high classification accuracy of 95%, meaning that out of 20 patients in
each classification, only one is wrongly classified. More specifically, when discriminating
between AoS and ataxic dysarthria in SCA, one patient with AoS gets misclassified as SCA.
When discriminating between hypokinetic dysarthria in PD and mixed dysarthria in Wilson
patients, one patient with PD gets misclassified as a patient with Wilson disease. Finally, the
lowest classification accuracy when considering individual two-class classifications is 70%,
which is obtained when discriminating between AoS and flaccid dysarthria in Kennedy
disease or mixed dysarthria in ALS and ataxic dysarthria in SCA patients.

3.3. Feature Importance for all Considered Two-Class Classifications

Figure 2 presents the importance of each DevS for all considered two-class classifi-
cations. Feature importance is a scalar between 0 and 1, with a value of 0 showing that
the feature is not useful for the classification and a value of 1 showing that the feature
is the only useful feature for the classification. It should be noted that the importance
values for all features in each classification (i.e., each row in Figure 2) sum to 1. Except for
when discriminating between patients with AoS and patients with Wilson disease, either
DDK rate or articulation are the most important discriminative features for all remaining
two-class classifications. When discriminating between patients with AoS and patients with
Wilson disease, speech rate plays the most important role. After DDK rate and articulation,
voice quality is also important for many two-class classifications. The remaining DevS, i.e.,
intelligibility, MPT and prosody appear to be the least important, with MPT in particular
not being useful in any of the two-class classifications.
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4. Discussion

As noted in the introduction, the main challenge in classifying patients with MSD
relates to the facts that (a) deviant dimensions show considerable overlap between subtypes
of MSD, (b) MSD profiles may be captured by the co-appearance or non-appearance of
deviant features rather than single salient speech characteristics, and (c) large inter-speaker
variation in speech profiles may occur within MSD subtypes [8]. All these aspects are
clearly illustrated in the speech profiles of our population in Figure 1 on the seven speech
dimensions selected in MonPaGe-2.0.s. Despite this well-known variability and overlap,
the objective of the present work was to assess whether and to what extent the deviance
scores from MonPaGe-2.0.s are able to differentiate major subgroups of MSD.

In the remainder of this section, we discuss the performance of our DevS-based classi-
fication according to (1) its successes and the possible causes of its failures to differentiate
MSD speakers, and (2) the contribution of each deviance score for differential diagnosis
among MSDs.

4.1. Success and Failures to Classify Subtypes of MSD

Although the overall differential diagnosis based on the seven DevS is far from perfect,
our results show that relatively high accuracy (ranging from 79% to 87%) can be obtained
in determining a patient group membership over our pool of 60 patients, particularly
considering the fact that the patients present only mild to moderate speech impairments.
Overall, the two-class classifications predicted the patient’s correct category with 81% to
87% accuracy for the subgroups with dysarthria, while classification of the group with AoS
was slightly lower with 79% accuracy.
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Interestingly, despite similarity in the severity of MSD across groups, the MonPaGe
DevS appeared to better distinguish some MSD subgroups than others. This was the case
for the groups with ataxic dysarthria in SCA, hypokinetic dysarthria in PD and flaccid
dysarthria in Kennedy groups, which showed the highest classification accuracy rates.

The recognition of dysarthria as ataxic is valuable information for the localization of
the neurologic dysfunction since ataxic dysarthria is usually associated with cerebellar
disease (here spinocerebellar ataxia). Linked to impaired motor control, ataxic dysarthric
speech is said to be predominantly poorly timed and discoordinated, although deficits may
affect the different speech dimensions in a variable manner, resulting in a large variety of
speech profiles [8,39]. This diversity is clearly visible in the heterogeneity of the speech
profiles of our group with ataxic dysarthria in SCA. Nonetheless, the patients of this group
are associated with the best classification scores: in all two-class classifications, at least eight
out of the ten patients with SCA were correctly classified as belonging to the SCA group
(100% and 90% in the SCA/AoS and SCA/PD classification, respectively, and 80% in the
other classifications, see results in parenthesis in Table 2), and except for the patients with
ALS (discussed below), no more than one patient of another group was wrongly classified
as belonging to the SCA group. Two main features contribute to the correct classification
of the patients with SCA: articulation, which is preserved for eight of the speakers with
SCA as compared to the AoS, ALS and Wilson groups, and DDK rate, which is relatively
slow (with a deviant score higher than two for eight of the speakers) as compared to the
PD and Kennedy groups. While reduced speech rate is also a feature described for ataxic
dysarthria in SCA [40], most of our speakers in the SCA group however did not present the
impaired articulation observed in previous studies [40,41].

Hypokinetic dysarthria associated with PD has usually been shown to be quite well
differentiated in perceptual classifications from other types of dysarthria (see introduction).
Here, a good accuracy (90%) is also found for the classification of the patients with PD in all
the two-class classifications of MSDs, except in the PD/ALS classification. In the PD/ALS
classifications, three out of ten patients from the PD group were misclassified as ALS (while
only one of the ALS was misclassified as PD). A similar error rate was found in a previous
study testing perceptual classification on a set of patients overlapping in part the PD and
ALS cohorts included here [16]: perceptually, the patients with hypokinetic dysarthria
in PD were perceptually classified with only 72% accuracy in a PD/ALS classification.
Analysis of the deviant dimensions contributing to the correct classification of patients
with PD shows here that two different main features contribute the most to characterize
hypokinetic dysarthria in PD: the absence of deficit in the DDK task (vs. presence in AoS,
ALS and SCA), and quasi-absence (or weak) deviance on the articulatory dimension (vs.
Kennedy and Wilson).

Flaccid dysarthria associated with Kennedy disease can be misdiagnosed, at least at
onset of the disease, as ALS (associated with mixed dysarthria with flaccid and spastic
components). However, the differential diagnosis between the two dysarthria has strong
implications for patient management [42,43]. Interestingly, our Kennedy/ALS classification
allows us to predict group membership with 100% accuracy, with a strong contribution
of the deviance in the DDK rate and voice, which are present only in the ALS group
(probably linked to its spastic component). This absence of deviance in the DDK rate
appears to contribute predominantly to the correct classification of speakers with Kennedy
disease when compared to the groups marked by slow DDK rates (SCA, Wilson, ALS, AoS).
Compared to the other MSD subtypes, dysarthria associated with Kennedy disease has
been very little described in the literature. In previous studies, higher jitter, shimmer and
HNR and hypernasality have been reported in only a subset of the patients with Kennedy
disease [44,45]. In our data, no voice impairment was observed. On the other hand, all
the patients with Kennedy disease had high deviance scores (3 or 4) on the pseudo-word
production. These articulatory impairments could reflect reduced muscular force at the
level of the tongue [46] or the jaw, as for patients with ALS. However, in the Kennedy group
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compared to the ALS group, articulatory distortions are not linked to a reduced speech
rate, as also found in [43].

The mixed dysarthria in Wilson disease is said to combine features of ataxic, hy-
pokinetic and spastic dysarthria, associated sometimes with hyperkinetic features [47].
Classification of the patients with Wilson disease was correct in most of the two-class
classification (with 90 to 100% of the patients correctly classified as belonging to the Wilson
group), except when tested with the Kennedy group. Indeed, in this Wilson/Kennedy
classification, half of the patients with Wilson disease were misclassified as Kennedy. Fur-
ther evidence for the failure in accurately classifying these patients is found in the feature
contribution: the DDK rate DevS is the predominant feature used by the classifier, while
little differences are found in this dimension between the two groups (only a few speakers
with Wilson disease show some deviance in DDK rate in Figure 1). Another interesting
aspect of the classifications involving the speakers with Wilson disease is that speakers
with ALS and, to a lesser extent with SCA, were often misclassified as Wilson, probably
due to the shared spastic and ataxic components. More surprisingly, 50% of the speakers
with AoS were classified as Wilson, probably due to the absence of deviance in speech rate,
which is more characteristic of the profile in the Wilson group and is variable in the profile
of the group with AoS (see Figure 1).

In the ALS group, the involvement of both lower and upper motor neurons, with
various prevalence, results in a mixed dysarthria with various dominance of flaccid and
spastic components. This heterogeneity of speech profiles within the ALS group is reflected
in our population (see Figure 1). Nonetheless, as previously mentioned, patients with ALS
are never confused with the purely flaccid dysarthric patients of the Kennedy group. They
are rather misclassified as belonging to the other mixed dysarthria with a spastic component
(40% are classified as Wilson) or as belonging to the group with ataxic dysarthria (40%
classified as SCA, a misclassification that has also been mentioned previously, [8]).

Finally, the poorest classification accuracy is found for the group with post-stroke
AoS, except for the AoS/SCA classification. Apraxia of speech is rarely pure following
stroke and the main challenge in the diagnosis of AoS is to distinguish AoS signs from
possibly co-occurring dysarthria or aphasia. The speakers included in the post-stroke AoS
group had dominant AoS signs but might also show concomitant mild non-fluent aphasia
and/or associated dysarthria. This diversity in the AoS pool may be responsible for the
heterogeneity in the speech profiles in this group, especially for the voice impairments that
are rather associated with dysarthria. Speakers with AoS were mostly confused with Wilson
(50%), PD (60%) and Kennedy (70%) groups in the relevant two-class classifications. One
reason for these misclassifications is to be found in the shared impairment observed: deviant
articulation (shared by the four groups), slow speech rate (shared with a few patients in
the Kennedy group) and impaired voice quality (shared with a few patients in the PD
group). Another reason for this poor classification of patients with AoS is that the deviance
scores we use may not capture some of the salient features of AoS. Sound distortions, slow
speech rate, distant substitutions, syllable segmentation, lengthened pauses, increased
segment duration and groping are the seven top features for the diagnosis of AoS [48]. The
DevS associated with articulation, speech rate and DDK rate may capture part of these
aspects. However, they are obviously not sufficiently fine-grained to differentiate deviance
on these dimensions linked to poor planning/programming from those linked to poor
motor execution. Further development of the MonPaGe-2.0.s DevS scores is currently in
progress to better capture different impairments linked to the unfolding of speech events in
time and its variability.

4.2. Relative Contribution of the Seven DevS

The deviance scores used in the MonPaGe-v2-0.s assessment protocol are grounded
in offline perceptual judgments and in acoustic measures, which have been compared to
normative references in order to define their deviance from neurotypical speech. In that
sense, these deviance scores are ‘clinically informed features’. Therefore, a classification
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based on these deviance scores differs fundamentally from unsupervised automatic speech
classification made on raw acoustic signals, as mentioned in the introduction.

Based on the seven DevS, the MonPaGe-2.0.s screening protocol has already proven its
sensitivity and specificity (see introduction and method). In the present study, we prove its
potential applicability for differential diagnosis among most of the MSD subtypes examined
and on a restricted number of speakers per group. However, examination of the feature
importance for the different two-class classifications yields different feature contributions
to the differential diagnosis. Indeed, out of the seven deviance scores, only four appear to
really contribute to the two-class classifications.

We will discuss the features not contributing to the differential diagnosis first.
The DevS Intelligibility showed almost no contribution to the classifications. This is

not overtly surprising, since the population included in this study is weakly impaired on
that dimension: only 19 out of the 60 speakers have a deviant intelligibility score larger
than one and they are distributed over the six MSD subtypes. This is probably due to the
fact that the population presents only mild or moderate MSDs.

The MPT score does not contribute to the differentiation of the MSDs either. Maximum
phonation time is a classical task for the characterization of pneumo-phonatory control and
is considered a non-speech task and a maximal performance task [49]. It is therefore not
directly characterizing the speech of a patient, but may contribute to its clinical profile, since
MPT can be reduced in the case of poor respiratory support as well as impaired phonatory
function, which can occur in some MSD. However, this performance task, consisting in the
production of a sustained /a/ vowel as long as possible, is inherently sensitive to intra- and
inter-speaker variation [49,50]. In our normative data on 404 neurotypical speakers, MPT
values did not show an age effect (consistent with previous reports [51,52]) and all speakers
were merged into one single age group reference, with the consequences of lowering the
average duration of MPT and of increasing the range of normal values. Therefore, the MPT
score rarely reaches deviance level in the patients we have assessed so far with MonPaGe-
2.0.s. Here, only one speaker with hypokinetic dysarthria in PD and two speakers with
mixed dysarthria, one with ALS and one with Wilson, have a DevS indicating impaired
MPT. In further development of the MonPaGe protocol, this feature may be discarded.

The Prosody score developed in MonPaGe-2.0.s is aimed to capture the linguistic
contrast between assertive and interrogative modality carried by f0 fluctuation. As such,
it is restricted to a very specific aspect of linguistic prosody. In our population, only four
speakers out of 60 present a deviance on this score. The mild severity of the patients
already discussed could be an explanation, but the elicitation task itself (asking participants
to transform an affirmative sentence into an interrogative one) may also be questioned.
Further work may be needed to design a feature capturing other dysprosodic features
linked to expressive or demarcative functions of prosody.

The four remaining scores are found to be much more informative in the differential
diagnosis of our MSD subgroups.

Oral DDK tests the ability to make alternating articulatory movements in quick suc-
cession. As such, it is a performance task [53] which cannot directly be related to speech-
specific impairments according to some authors [54] (but see [55]). Nonetheless, DDK rates
have proven efficient in distinguishing speakers with MSD versus neurotypical speakers
(among many others: in PD [56], as an early manifest in Huntington disease [57], in ataxic
dysarthria [58] and in AoS [55,59]). Our results show that the slow DDK rates contribute to
a large extent to the classification of patients with AoS, mixed dysarthria in ALS and ataxic
dysarthria in SCA versus patients with Kennedy disease, PD and Wilson disease. On the
other hand, DDK also contributes to the classification of these latter MSD groups who have
only minor DDK deviance scores. It should be recalled that the DDK score used here is a
combined index based on the DDK rate for AMRCV, AMRCCV, SMRCV and the difference
between the sequential motion rate and the alternating motion rate (SMRCV-AMRCV).
Further work is needed to explore whether these components considered individually
would improve the distinction among the MSDs showing altered DDK rates.
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Considering that slow, fast or irregular speech rate is one of the most commonly shared
characteristics of many MSDs, it was not expected to have much discriminative power
for differential diagnosis. In our population of mildly impaired patients, impaired (slow)
speech rate was found for most of the patients with post-stroke AoS, ataxic dysarthria in
SCA and mixed dysarthria in ALS (and two of the speakers with Kennedy disease). As
found in [60], deviance in speech rate was not always related to deviance in DDK rate (see
for instance the two patients in the Kennedy group who speak slowly but show normal
DDK rate, or most of the patients in the ALS group who have slow DDK but normal speech
rate). This brings a further argument to consider that these two dimensions need to be
considered in combination for differential diagnosis of the MSD subgroups. Indeed, while
DDK rate appears more informative than speech rate in most of the classifications, speech
rate DevS has equal contribution to DDK rate for the AoS/ALS classifications, and is more
informative than DDK rate for the AoS/Wilson classification.

The Articulation score is the main contributor of the discrimination between the groups
after DDK rate. It distinguishes the MSD groups with strong articulation disorders (AoS,
SLA, Wilson and Kennedy) compared to groups with less impaired articulation (PD and
SCA). As mentioned above, this feature could be refined to capture more subtle differences
between MSDs in the type of sound distortion and particularly to capture complexity effects
since the pseudowords used in MonPaGe-2.0.s are of varied complexities in terms of length
and syllable structure. We expect to refine our characterization of AoS-specific patterns this
way [61,62].

The voice quality score, which combines several features linked to alteration of voice
quality, never ranks as the main contributor in our classifications except for the ALS/Wilson
classification, where it is as informative as DDK rate. However, this feature does contribute
to many of the two-class classifications: ALS vs. AoS, Kennedy, Wilson, SCA; PD vs. ALS,
Kennedy, Wilson; Wilson vs. SCA. Components of this composite score will be individually
explored in the future to investigate whether they provide a better discrimination of voice
impairments in specific populations (for instance mono-pitch in PD group as captured by
f0 standard deviation on the sentence).

5. Conclusions

The use of automatic classification techniques has usually been applied to tease apart
MSD from neurotypical speech; when applied to distinguish MSD subtypes, it is either re-
stricted to a few subtypes and/or to a limited number of speech dimensions. Here, we show
that discrimination between speakers from six subtypes of mild to moderate MSD is rela-
tively performant with a set of seven features characterizing multiple speech dimensions,
when these features are clinically informed in terms of deviance from neurotypical speech.

Further directions to this work will involve seeking refinement of some of the present
features in terms of granularity, and the addition of other features in order to improve the
characterization of the fined-grained specificities of the speech impairments in the various
MSDs considered and in other MSD subtypes.
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