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DIFFERENTIATION OF REAL-VALUED FUNCTIONS
AND CONTINUITY OF METRIC PROJECTIONS

SIMON FITZPATRICK

ABSTRACT. We characterize the Freenet differentiability of real-valued func-

tions on certain real Banach spaces in terms of a directional derivative being

equal to a modified version of the local Lipschitz constant. This yields the

continuity of metric projections onto closed sets whose distance functions have

directional derivatives equal to 1, provided the Banach space and its dual have

Fréchet differentiable norms.

1. Introduction. Let F be a real Banach space and let M be a closed subset

of E. We define the distance function

<pM(x) = inf{||y-x||:y G M}

and the metric projection

PM{x) = {y G M: ||y - x|| = <pM(x)},

which assigns to each x G E the set of nearest points in M to x. We call a sequence

(yn) from M a minimizing sequence for x provided \\x — yn\\ —y ¡pm(x) as n —» oo

and we say that Pm is continuous at x provided yn —> yo whenever yn G Pm(xti)

for all n > 0 and xn —> xq. If every minimizing sequence for x converges then Pm is

continuous at x; the converse holds in Banach spaces whose norms are sufficiently

well behaved (see [2]).

For a real-valued function / on E, a point x of E and u G S(E) = {y G F: \\y\\ =

1} define the directional derivative

(1.1) Duf(x) = lim t'1[f(x +tu)-f(x)}

if it exists. If the limit in (1.1) exists uniformly for u G S(E) we say that / is

Fréchet differentiable at x; that is equivalent to existence of x* G E* (the Fréchet

derivative of / at x) such that

(1.2) ,im   /(« + ,)-/(»)-*•(,)_„

and we write /'(x) = x* and note that /'(x)(u) = Duf(x) for u G S(E).

In §2 we will show that a real-valued function / is Fréchet differentiable at a point

x whenever there exists u G S(E) such that the norm is Fréchet differentiable at u

and Duf(x) equals a number we define and call Nj(x); it is dominated by the local

Lipschitz constant of / at x. For reflexive Banach spaces whose norms are Fréchet

differentiable (except at 0, of course) this characterizes the Fréchet derivative of a

real-valued function.
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Applying this in §3 we show that if Du>pm(x) = 1 for some u G S(E) and the

norm of E has Fréchet derivative u* at the point u then <pm is Fréchet differentiable

at x and ¡p'M(x) = u*. If, in addition, the norm of E* is Fréchet differentiable at

u* then the corresponding metric projection Pm is continuous at x. This uses and

improves on results from [2].

This continuity result when combined with a result of Vlasov [6] shows that if

E and E* have Fréchet differentiable norms and <pm has a directional derivative

equal to 1 at each point outside M, then M is convex.

2. Differentiability of real-valued functions. Suppose / is a real-valued

function on a Banach space E and x G E. We define the local Lipschitz constant of

/ at x by

Lf(x) —   lim (jjr(x,6),

where

ujf(x,6) = sup{|/(y)-/(z)|/||y-z||:||y-x|| < 6, \\z - x|| < b,yfz).

Similarly we define

where

Nf(x)= slim+Vf (x, 6),

„f{x,6) = sup{\f(y) - f(z)\/\\y - z\\:2\\z - x\\ < \\y -x\\<6,y¿ z).

EXAMPLE. To see that L¡ and N¡ are not always equal, consider f(x) —

x2 sin^"1) for x G R\{0}, taking /(0) = 0. Then Lf(0) = 1 while Nf(0) = 0 and
/'(0) = 0. This suggests that Nf has more to do with the derivative than L¡ has.

We will need the following trivial lemma.

2.1 LEMMA. Nf(x) < Lj(x) and Nf(x) is the least number N such that for

each e > 0 there is 6 > 0 with \f(y) - f(z)\ < (N + e)\\y - z\\ whenever 2\\z - x\\ <

\\y-x\\<6.

Now we show why Nf(x) is a good bound on the derivatives.

2.2 THEOREM,   (i) IfuG S(E) and Duf(x) exists then Duf(x) < Nf(x).
(ii) /// is Fréchet differentiable at x then ||/'(x)|| = Nf(x).

PROOF, (i) For í > 0 we have

rx(f(x + tu) - f(x)) = (f(x + tu) - /(¡r))/||tu|| < vf{x,t),

so in the limit as t —> 0+ we obtain Duf(x) < Nf(x).

(ii) Since ||/'(x)|| = sup{/'(x)(u):u G S(E)} and /'(x)(u) = Duf(x) < Nf(x)

for all u G S(E), we have ||/'(x)|| < A^/(x). Write x* = f'(x) and for each e > 0

choose S > 0 such that \\y — x|| < 6 implies that

|/(2/)-/(x)-x*(y-x)|<£||j/-x||.

Then for 2\\z — x\\ < \\y — x|| < 6 we have

1/(2/) - fix) - x*(y - x) - f(z) + f(x) + x'(z-x)\< e\\y - x|| + e\\z - x\\

so that

1/(2/) - f(z)\ < \x*(y -z)\+ e(\\y - x\\ + \\z - x\\).
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Now \x*(y — z) < ||/'(x)|| • \\y - z\\ and 2\\z - x|| < \\y - x|| implies by the triangle

inequality that \\z - x\\ < \\y - z\\ and that \\y - x\\ < 2\\y - z\\. Thus

\f(y)-f(z)\<\\fAx)\\A\y-4 + ̂ \\y-4

so that Nf(x) < ||/'(x)|| by Lemma 2.1, which completes the proof.

2.3 COROLLARY. If E is reflexive and f is Fréchet differentiable at x then

there is u G S(E) with Nf(x) = Duf(x).

PROOF. We have Nf(x) = ||/'(x)|| and since E is reflexive there is u G S(E)

such that f'(x)(u) = ||/'(x)||. Thus Duf(x) = /'(x)(w) = Nf(x).

From the definiton we easily see that if Nf(x) = 0 then / is Fréchet differentiable

at x and /'(x) = 0. Our main result is a partial converse to Corollary 2.3.

2.4 THEOREM. Let E be a real Banach space and f a real-valued function on

E. Suppose that Duf(x) — Nf(x) for some x G E and u G S(E). If the norm of E

is Fréchet differentiable at u with derivative u*, then f is Fréchet differentiable at

x and fAx) = Nf(x)u*.

PROOF. Let 0 < e < \ and choose 0 < -7 < e such that ||u + z\\ - \\u\\ <

u*(z) + e\\z\\ whenever ||z|| < 7. Now let é > 0 be such that |/(x + tu) — f(x) -

tDuf(x)\ < 72|t| whenever |f| < 6 and \f(y)-f(z)\ < (iV/(x) + 72)||2/-2|| whenever

0<2||z-x|| < \\y-x\\ <6.
Suppose 0 < ||u>|| < 7¿ and let t = 7-1||w||. Thus 0 < t < 6, ||i_1w;|| = 7 and

2||u;|| = 27Í < t = ||iu||. Hence ||tt ± ¿~1w|| - ||u|| < ±u*{t-1w) + ¿H^HI and

|/(i + w)- f(x ± tu)\ < (Nf(x) + 72)||u; T iu||- Now

f{x + w)- f(x) = {f(x + w)- f(x - tu)} + {f(x - tu) - f(x)}

< (Nf(x) + 72)||«; + iu|| - Duf(x)t + 72i

= Nf(x)(\\w + tu\\ -t) + 72(||w + tu|| + i)

<í7V/(x)(||tx + r1W||-||u||)+372í

< tNf(x)(u*(t-1w) + e\\rxw||) + 372i

< Nf(x)u*(w) + eAT/(a:)||u>|| + 3-y||w||

< Nf(x)u*(w) + e(Nf(x) + 3)\\w\\.

For the reverse inequality

f(x + w)- f(x) = {f{x + w) - fix + tu)} + {fix + tu) - fix)}

> -iNfix) + 72)||iu - w|| + Dufix)t - 72i

= -tNfix)i\\u - r^ll - ||u||) - 72(i + ||i« - iu||)

> -tNf(x)(u*(-t-*w) + eWr^W) - 372i

= Nfix)u*iw) - Nfix)e\\w\\ - 3-)\\w\\

> Nfix)u*iw) - eiNfix) + 3)\\w\\.

Therefore \f{x + w)-f(x)-Nf(x)u*(w)\ < (Nf(x)+ 3)e\\w\\ whenever ||w|| < -yr5

and hence /'(x) = Nf(x)u*.
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2.5 COROLLARY. Let E be a reflexive Banach space with Fréchet differentiable

norm. A real valued function f on E is Fréchet differentiable at a point x if and

only if there is u G S(E) such that Duf(x) exists and equals Nf(x).

PROOF. If such a vector u exists then Theorem 2.4 shows that /'(x) exists.

Conversely if /'(x) exists then Corollary 2.3 shows that there is such a vector u.

Since Lf(x) > N/(x) > Duf(x) (if this exists) for all u G S(E) we have the

following result.

2.6 COROLLARY. If Duf(x) = Lf(x) for some x G E and u G S(E) such that
the norm of E is Fréchet differentiable at u with derivative u*, then f is Fréchet

differentiable at x and /'(x) = Lf(x)u*.

3. Continuity of metric projections. In this section we apply the results of

the previous section to the distance function ¡p = <pm from a closed subset M of

the real Banach space E to get continuity results for the metric projection P = Pm-

Recall that u* G E* strongly exposes a subset C of E at a point z of C provided

\\yn — ̂ || —s- 0 whenever yn G C and u*(yn) —> u*(z). The following basic result

dates back to Smulian [5]; see also [3, §3.4 or 4]. Let B(E) denote the closed unit

ball of E.

3.1 PROPOSITION. The norm of E* is Fréchet differentiable at a point u* of

E* if and only ifu* strongly exposes B(E). The norm of E is Fréchet differentiable

at a point u with derivative u* if and only if B(E*) is strongly exposed at u* by

u G E C E**.

We will need the following result from [2].

3.2 PROPOSITION. If x G E\M is a point of Fréchet differentiability off then
||<p'(x)|| = 1. If ipAx) strongly exposes the unit ball of E at a point z then every

minimizing sequence for x converges to x — <p(x)z.

The following result improves Theorem 2.4(a) of [2|.

3.3 THEOREM. Suppose that x G E and u G S(E) with Du<p(x) = 1. If u*
strongly exposes B(E) at u and u strongly exposes B(E*) at u*, then <p is Fréchet

differentiable at x with derivative u* and every minimizing sequence for x in M

converges to x — <p(x)u.

PROOF. Since \<p(y) — f(z)\ < \\y — z\\ for all y and z we have 1 = Dutp(x) <

Npix) < Lyp(x) < 1 so Du<p[x) = Lvix) = 1 and the norm of E is Fréchet

differentiable at u with derivative u* by Proposition 3.1. Now Corollary 2.6 shows

that tp is Fréchet differentiable at x with derivative u* and the other statement

follows from Proposition 3.2.

3.4 COROLLARY. Suppose that the norms of E and E* are Fréchet differen-

tiable. If Du<fix) = 1 for some u G SiE) then P is continuous at x.

PROOF. By Proposition 3.1, u strongly exposes ß(£'*) at a point u* and u*

strongly exposes -B(-E), necessarily at the point u. Now Theorem 3.3 shows that

every minimizing sequence for x converges to x — ̂ (x)u so P is continuous at x and

P(x) = x — <fix)u.
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A Banach space E is strictly convex if SiE) contains no line segments and M

is a Cebysev set in E provided every x G E has a unique nearest point in M. We

need the following result of Vlasov [6]; see also [3, §4.2].

3.5 PROPOSITION. If E* is strictly convex, then every Cebysev set in E with

continuous metric projection is convex.

Our final result improves Theorem 4.2 of [2].

3.6 THEOREM. Let M be a closed subset of E such that for each x G E\M

there exists u G SiE) such that Du<pix) — 1. If the norms of E and E* are Fréchet

differentiable, then M is convex.

PROOF. From Corollary 3.4 we see that M is a Cebysev set and P is continuous

at each x G E\M. Also E is reflexive [1, p. 34, Corollary 1] and E* is strictly

convex [1, p. 24, Corollary 1]. Applying Proposition 3.5 we find that M is convex.
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