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1. Introduction 
 
A financial firm assesses that €10bn is sufficient to absorb losses with 99.5% probability. 
By the end of the year, the firm has lost €20bn. Many things have gone wrong at once, 
including the following: 
 

 A large fall in equity markets. Although equity returns had been modelled using a 
distribution fitted to historic data, that distribution is no longer compatible with the 
data once the latest year’s observation is included, and so the original model is now 
considered inappropriate. 

 

 A complex change in yield curve shape, where very short and medium term rates 
rose, while short and long rates fell. The yield curve model was based on three 
factors, and the firm had taken care to hedge these. However, the actual outcome 
exposed a potential for loss that had not been captured within the scenario tests on 
which the liability forecast distribution was based. 

 

 Some new risks had emerged that had not previously been modelled explicitly. 
Specifically, a loss on derivative positions arose from the widening of spreads 
between swaps based on LIBOR and overnight index swaps. A euro government 
defaulted on its bonds, and the annuity portfolio took a one-off hit because of a mis-
estimation of proportion married. 

 

 A change in the shape of the credit spread curve meant that the existing market 
consistent ESG could not calibrate the year end market conditions exactly. A new 
ESG from a different provider was put in place, but for reasons that are still unclear, 
this led to a doubling of the stated time value of liability options. 

 

 Early in the year, the firm participated in some securitised AAA investments which 
exploited market anomalies to provide yields closer to those on junk bonds. The 
capital model had been based on the portfolio prior to this participation. The 
participation turned out to be disastrous, and virtually all the investment had to be 
written off following an avalanche of unforeseen defaults in the underlying assets. 

 

 A problem arose with a set of policies that, for calculation convenience, had been 
modelled together. It turned out that within a group of policies assumed to be 
homogenous, there was in fact a variety of investment choices; as a result, a subset 
of these policies had guarantees that came into the money. Policyholders selectively 
took advantage of these guarantees, producing costs far beyond those projected 
from the capital model. 

 

 Losses from a March earthquake in the Middle East were substantially greater than 
the maximum possible loss derived from a third party expert model. The reasons for 
this seem to be a combination of a disproportionate number of January policy 
inceptions (the model assumed uniformity over the year), inadequate coverage of the 
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region in the external catastrophe model, and poor claims management exacerbated 
by political instability and corruption. 

 

 Many life insurance claims became due following an industrial accident. The insurer 
was confident that a proportion would be recovered from reinsurers as assumed 
within the capital model. However, the reinsurance contract contained a clause not 
captured in the capital model, which limited payouts in the event of large losses from 
a single event. 

 

 A clarification in the regulatory calculation of the illiquidity premium meant that the 
insurer could no longer use the yield on certain illiquid assets to discount the 
liabilities. The liabilities rose as a result of this change, leading to an accounting loss. 
At the same time, a change in tax rules meant that a deferred tax asset previously 
considered recoverable had to be written off. 

 
Although our example is hypothetical, there are real examples of firms who proclaimed they 
held economic capital to withstand a loss equivalent to a 1-in-2000 year event (or rarer) 
before losing a multiple of that amount and being rescued in state bail-outs. 
  
The chart below show the published economic capital figures for AIG and Fortis, with the 
actual loss in 2008. We have also calculated the confidence level associated with those 
losses, assuming normal distributions. 

 
 
It is theoretically possible that such an outcome was a case of exceptionally bad luck, but 
with hindsight we have seen how risks that ultimately proved to be important were either 
overlooked or deliberately scoped out of the capital models. 
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Capital Model Scope 
 
Our thought experiment highlights many possible sources of loss. Some of these may be 
captured within a stochastic internal model, but many will not.  While perhaps more of the 
risks could be modelled stochastically than is currently common practice, other losses are 
attributed to lack of knowledge rather than anything explicitly stochastic. It is debatable 
whether probability theory is the right tool to address such risks. 
 
If the non-stochastic risks are simply disregarded, then firms are likely to see frequent 
exceptions, that is, experienced losses worse than the previously claimed 1-in-200 event. 
Mounting evidence of such exceptions could undermine firm’s claims of financial strength, 
and call into question the advertised degree of protection (for example, 1-in-200) that a 
supervisory regime offers. Furthermore, the firm’s internal models may themselves be 
discredited in the eyes of the market, likely leading to significant loss of investor confidence. 
 
It is therefore desirable that risks are identified and some attempt is made at quantification, 
even if a variety of techniques are needed to address different elements. A less satisfactory 
solution is to assert that some risks are out of scope. Then, the case has to be made for not 
including the corresponding losses towards the exception count. This case is more 
persuasive if the out-scoping has been signalled in advance of the losses occurring. 
 
 
The Remainder of this Paper 
In the remainder of this paper, we focus on three specific types of error 

 Error in statistically estimated model structures and parameters 

 Errors due to human judgement 

 Fitting error in liability models 
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2. Error in Statistically Estimated Models 
 
With a correct model and, accurate assumptions, we can justify statements such as “with 
€100m of available capital, there is a 99.5% probability of sufficiency one year from now”. 
This paper considers how such a statement may be modified if a firms has concerns about 
the correctness of models or accuracy of parameter estimates 
  
We examine three special cases, as follows: 

 Case G (Green): Models and parameters are known to be correct 

 Case A (Amber): Past and future observations are samples from a given model, for 
example normal distributions, but the model parameters are uncertain. 

 Case R (Red): Both the applicable model and the parameters are uncertain. For 
example, there may be some dependence between observations and the 
observations may be drawn from one of a family of fatter tailed distributions. In each 
case, limited data is available to test the model or fit the parameters. 

 
Possible Statements: Case A 
In case A (amber), with uncertain parameters, we can still use the concept of a “true” model, 
with an associated “true” 99.5%-ile, but we do not know what that true model  is. We take as 
an example the prediction of a future observation from a normal distribution, given a set of 
past observations from the same distribution. 
 
We can make statements as follows: 
 
A1. We estimated the parameters using the [method of moments]. If these estimates are 
exact then €100m of capital is 99.5% certain to be sufficient. This calculation ignores the 
possibility of parameter estimation error. 
 
A2. We estimated the 99.5%-ile using the [method of moments]. If this method had been 
applied on many alternative historic scenarios, then on average the estimated 99.5%-ile is 
equal to the true 99.5%-ile (this is Fisher’s concept of an unbiased estimate). 
 
A3. As A2, but in addition, our chosen method produces an estimate whose variance is 
lower than other methods (Fisher’s concept of an efficient estimate) 
 
A4. We estimated the 99.5%-ile using the [method of moments]. We used the finite data 
available, but if we had unlimited data then our method would produce estimates that 
converge to the true 99.5%-ile (Fisher’s concept of a consistent estimate) 
 
A5. We estimated upper and lower bounds for the 99.5%-ile using [chosen method]. In a 
large number of trials of alternative historic scenarios, this interval contains the true 99.5%-
ile in 95% of the time, regardless of what the true parameters are. (a classical 95% 
confidence interval for the 99.5%-ile) 
 
A6. We generated values for the parameters according to a prior distribution, and generated 
historic scenarios. We kept only those combined scenarios where the simulated data was 
close to our own history. Out of those scenarios, the average true 99.5%-ile was €100m and 
the most likely 99.5%-ile was €90m. (Bayesian mean or modal prediction) 
 
A7. We generated values for the parameters according to a prior distribution, and generated 
historic scenarios. We kept only those combined scenarios where the simulated data was 
close to our own history. Restricting attention to those close historic outcomes, the true 
99.5%-ile was between €65m and €150m for 95% of cases. (Bayesian confidence interval) 
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A8. We estimated the 99.5%ile using [chosen method]. Using our method, and regenerating 
both past and future data, our estimated percentile exceeds the next observation 99.5% of 
the time, regardless of the true parameters. (Geissner’s prediction interval) 
 
A9. As A8, but in addition our chosen method, on average, produces lower estimated 
percentiles than other methods. (efficient prediction interval) 
 
A10. We generated values for the parameters according to a prior distribution, and 
generated linked historic and future scenarios. In each scenario we used  [chosen method] 
to estimate the 99.5%-ile of the next observation. We kept only those combined scenarios 
where the simulated data was close to our own history, and out of those scenarios, our 
estimated percentile exceeds the next observation 99.5% of the time. [Bayesian prediction 
interval]. 
 
We note the following about these different statements: 
 

 We believe that market practice is currently closest to A1, in that a single, validated, 
model is used for estimating capital. 

 

 While A1 is a statement of the process that has been followed, statements A2 to A10 
describe properties of the outcome. The claimed properties can be checked, for 
example, by Monte Carlo, and robustness to model mis-specification investigated. 

 

 Statements embedded in existing legislation (such as Solvency 2 directive or Basel 
3) make sense under case G (Green) of model and parameter certainty. All the 
statements A1-A10 are possible generalisations to case A (amber). Thus, statements 
A1-A10 are all answers to different question – the appropriate answer requires an 
interpretation of which question is being asked. 

 

 When talking about probabilities, care needs to be taken in respect to the set over 
which averages are calculated. All statements from A1-A10 average over possible 
future outcomes. The Bayesian statements A6, A7 and A10 average over possible 
alternative parameter sets but not over counter-factual past data sets. The frequentist 
statements allow mixing of the given past data with alternative counter-factual 
histories to construct probabilities, while requiring that the resulting inference is 
uniformly valid across all possible parameters. 

 

 The Bayesian methods appear to require a prior distribution, and so require more 
judgement than the other (frequentist) methods. However, all of this is in the 
unrealistic context of a known model family. 

 

 One limiting case of the Bayesian framework is the uninformative prior. This 
produces the same numerical output as the classical intervals for parameters 
(confidence intervals) or the next observation (prediction intervals). However, the 
corresponding statements remain different, and in the Bayesian case have now 
become untestable as a test would require generation of random parameters from a 
non-integrable density. This does not mean that the Bayesian and frequentist 
approaches agree, but rather we have found two problems whose solutions coincide 
in this special case of independent normal observations. 
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Possible Statements: Case R (Red) 
 
We now consider the case where both the model and the parameters are uncertain. 
We suppose a set of possible models has been constructed. We call this the “robustness 
set”. We can expect that this set could be very large, consisting of a wide variety of different 
model types and parameters. However, there may be some restrictions, for example on how 
fat the tails can be, or to exclude “hopeless” cases where the future observation is drawn 
from a distribution unconnected with the past. The robustness set is a judgementally 
specified range of models under which we might reasonably require statistical techniques to 
work. In some applications, the robustness set may be infinite dimensional (for example, 
allowing random samples from any distribution whose kurtosis does not exceed 4). In other 
cases, it might be a union of several finite dimensional sets (for example, several model 
families each of which has four parameters). 
 
In Case R (Red) we see a greater divergence between the Bayesian and classical 
approaches.  
 
The Bayesian approaches require a prior distribution over the robustness class. This may be 
more difficult to specify than a prior parameter distribution; in particular, specification as a 
probability density makes sense only if the robustness class is finite dimensional. However, 
having chosen the prior distribution, the wordings are the same as in case A (amber). 
 
For the frequentist approaches, a large robustness set may longer allow us to achieve 
exactly the required degree of confidence. Instead, we use bounds on the probability. In the 
red case, it is clear that both the Bayesian and frequentist approaches require a large 
degree of judgement, in the selection of the robustness set and (in the Bayesian case) the 
prior distribution. 
 
Red statements corresponding to the amber cases are as follows (same numbering) 
 
R1. We estimated the parameters using the [method of moments] and chose the model 
family within the robustness set based on [least Kolmogorov Smirnov difference]. If these 
estimates are exact then €100m of capital is 99.5% certain to be sufficient. This calculation 
ignores the possibility of parameter estimation error or model mis-specification error. 
 
R2. We estimated the 99.5%-ile using the [method of moments] and chose the model family 
within the robustness set based on [least Kolmogorov Smirnov difference]. If this method 
had been applied on many alternative historic scenarios, then on average the estimated 
99.5%-ile is equal to, or greater than, the true 99.5%-ile depending on which model applies 
from the robustness set. 
 
R3. As A2, but in addition, other methods produce more extreme percentiles than our 
method for some models in the robustness set. 
 
R4. We estimated the 99.5%-ile using the [method of moments] and chose the model family 
within the robustness set based on [least Kolmogorov Smirnov difference]. We used the 
finite data available, but if we had unlimited data then our method would produce estimates 
that converge to the true 99.5%-ile, for any model in the robustness set and any parameters. 
 
R5. We estimated upper and lower bounds for the 99.5%-ile using [chosen method]. In a 
large number of trials of alternative historic scenarios, this interval contains the true 99.5%-
ile at least 95% of the time, depending on the model from the robustness set. (a classical 
95% confidence interval for the 99.5%-ile) 
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R6. We generated models according to a prior distribution over the robustness set, and 
generated historic scenarios. We kept only those combined scenarios where the simulated 
data was close to our own history. Out of those scenarios, the average true 99.5%-ile was 
€100m and the most likely 99.5%-ile was €90m.  
 
R7. We generated models according to a prior distribution over the robustness set, and 
generated historic scenarios. We kept only those combined scenarios where the simulated 
data was close to our own history. Restricting attention to those close historic outcomes, the 
true 99.5%-ile was between €65m and €150m for 95% of cases.  
 
R8. We estimated the 99.5%ile using [chosen method]. Using our method, and regenerating 
both past and future data, our estimated percentile exceeds the next observation at least 
99.5% of the time, depending on the model from the robustness set. 
 
R9. As A8, but in addition our chosen method, on average, produces lower estimated 
percentiles than other methods for specified models in the robustness set. 
 
R10. We generated models according to a prior distribution over the robustness set, and 
generated linked historic and future scenarios. In each scenario we used  [chosen method] 
to estimate the 99.5%-ile of the next observation. We kept only those combined scenarios 
where the simulated data was close to our own history, and out of those scenarios, our 
estimated percentile exceeds the next observation 99.5% of the time.  
 
We now see the clear distinction between the Bayesian statements that work on average 
across parameters and models, compared to the frequentist statements that are exact for 
some of the robustness set and are prudent elsewhere. The numerical values from Bayesian 
and frequentist have diverged so we can no longer  argue that choice between Bayesian 
and frequentist approaches is moot. 
 
It may appear that frequentist approaches are inherently more prudent, as Bayesian 
approaches achieve the stated confidence level on average over the robustness set, while 
frequentists achieve at least the stated confidence level. However, this comparison 
supposes that the same robustness set would apply in each case. It might alternatively be 
reasonable to use a smaller robustness set for frequentist methods than for Bayesian 
methods, in order to equate the perceived strength of either method. 
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3. Errors in Judgement: 
 
Manifestations of Judgment 
 
Firstly, it is important to acknowledge that judgment is a necessary part of Actuarial 
modelling, and it is very difficult (in fact, one could argue impossible with the exception of 
pathological examples) to simply avoid the use of any human judgement.  
 
A model is necessarily a simplified representation of the real world, and as such needs to be 
stripped down to its most relevant components, such that the representation is a useful 
analogy of the real world for the specific purpose that we have in mind. The process of 
stripping down to the bare useful components and ‘calibrating’ the resultant model 
(necessarily) has a large amount of judgement associated with it. 
 
This judgement can manifest itself in various different ways. Broadly speaking, some of the 
ways we encounter judgement over the process of modelling (in the more limited context of 
Actuarial modelling) are: 
 

 Choice of overall framework for the model 

 Choosing individual parts of the model 

 Choice of calibration methodology 

 Choice of parameters, overriding certain parameters if necessary 
 
One can imagine that these have (broadly) decreasing levels of significance to the end 
results. However, the industry appears to have the greatest focus on the final (and perhaps 
second to last) elements of parameter choice and calibration methodology, often to the 
detriment of the overall choice of framework and model fitting. For example, companies may 
focus most of the documentation and rationale of expert judgment in the final two categories, 
potentially at the expense of reduced oversight and attention paid to the substantial implied 
judgments involved in the first two categories. 
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Case Study – Manifestation within a life insurance context 
 
The next few sections aim to illustrate the different broad areas where judgments are used. 
These are primarily in the context of a life insurance company, although the key results could 
easily generalise into different areas. 
 
 
Choice of overall framework: 
 
This is quite possibly the single most significant judgement to be made within a (capital) 
modelling context, although it is not always appreciated as such. Of course, the materiality of 
the different choices depends on the particular problem at hand. We try to illustrate using a 
very simple case study with two risks (described as two products): 
 

 Each individual risk to be akin to a simple product with a guaranteed £100m liability. Not 
all the risks are hedge-able, so there is a residual 1 in 200 risk that the assets (and 
capital) would lose half their value. Thus the extra capital required at time 0 such that the 
product has a 99.5% chance of meeting its guarantees at time 1 is (an extra) £200m 
(£100m for each product). 

 The two products are assumed to be uncorrelated 
 
Let us now consider two common methods of calculating the joint capital requirement: 
 
1. Using an “external correlation matrix” approach, the answer is relatively simple. The joint 

capital requirement can be calculated as
2 2

A BCapital Capital , which is £141.6m in total 

and £70.8m per product. 
 
2. Use an alternative approach of simulating the two products such that the risk of loss is 

lognormal (again, a popular choice amongst practitioners) with the same 1 in 200 
probabilities on an individual basis. This produces a different number of £121m in total 
and £60.5m per product! 

 

Thus, a simple product with two different commonly used “aggregation” methods produces 
significantly different answers, amounting to 20% of the liabilities. This example is not 
special in any sense, in that the two products could represent pretty much any two risk 
factors. Moreover, most companies have a significantly larger number of risk factors so the 
‘framework’ judgement would be used multiple times. 
 
One can appreciate that there are already multiple choices in simply aggregating different 
risk factors, even before delving into more exotic copula structures, non-linearities, etc. 
Finally, this example only touches on a very specific aspect of framework choice; there are 
many other implicit judgements necessitated by trying to create a simplified representation of 
the real world. 
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Choosing individual models 
 
For example, previous work done by this working party showed that fitting different models to 
the same historical data can have a range of different results, even when using very long 
term data. 
 

 
 

“Even after settling on a single data set, the fitted curves for U.K. produce a wide range of 
values for the 1-in-200 fall. The most extreme results are from a Pearson Type IV, applied to 
simple returns, which implies a fall of 75% at the 1-in-200 probability level. At the other 
extreme is the lognormal distribution, with a fit implying that even a 35% fall would be more 
extreme than 1-in-200 event. Other distributions produce intermediate results.” 
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The next two sections describe the more documented aspects of human judgement, 
including the choice of calibration methodology and / or parameters. 
 
Choice of calibration methodology 
 
There are other, more commonly acknowledged calibration choices that should be noted in 
the same context – for example, the choice of data period is crucial. Very simply, if we are 
using x years of data, then the model would accept the worst event within this data window 
as being a 1 in x event. Thus the choice of data window makes an important contribution to 
the results, and it is important to note that even picking any available dataset comes with a 
default assumption regarding the data period. 
 
This context results in an obvious place where one may want to exercise judgement i.e. one 
may want to impose some views on the extremity of actual events observed. An obvious 
example can be constructed by using very short data series that included the recent credit 
crisis, which would naively overestimate the resulting extreme percentile calculated by 
assuming such an extreme event would occur regularly within such a short time period. Of 
course, it goes without saying that the reverse would also have been true when looking at 
short term data prior to the recent financial crisis! 
 
 
 
Choice of parameters, overriding certain parameters if necessary 
 
Judgement in the form of choice of parameters can be explicit or implicit. For example, at the 
most explicit level, one may override the 1 in 200 stress itself, by super-imposing the views 
of investment experts. In many cases, the paucity of data makes this a necessary and 
important part of the capital calculation exercise. One advantage of explicit judgement is that 
it is extremely transparent, and openly recognises that models and data can only go so far in 
terms of predicting future distributions. 
 
Alternatively, judgement can be more implicit in the structure of the model. For example, 
conditional on the form of the model, one may have prior views on the certain parameters. 
(e.g. we may have a prior view on the sigma parameter of a lognormal distribution).  
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4. Errors in Proxy Liability Models 

 
This section describes some simplified insurance assets and liabilities for the purpose of 
testing proxy models in capital aggregation calculations. 
 
Proxy Models  
Insurers’ assets and liabilities are complicated functions of millions of inputs whose future 
values are uncertain. The inputs include market prices of assets and financial instruments, 
incidence of events giving rise to insured losses, as well as vast tables of experienced and 
projected actuarial decrements such as mortality or attrition. Insurers use “heavy models” to 
compute assets and liabilities as functions of the long list of inputs. 
 
In theory, insurers are supposed to perform full stochastic projection in order to demonstrate 
a sufficiently high probability that, in future, assets will exceed the value of liabilities. This 
means: simulate millions of joint scenarios, in each of which the asset and liability functions 
are evaluated using a heavy model fed from the millions of jointly simulated input variables.  
 
Despite the advances in computer calculation speed and storage capacity over the last few 
decades, a full stochastic projection remains beyond the reach of most insurers. Instead, 
there is a widespread use of simplified “proxy” models. These are simple functions of a small 
number of variables intended to approximate the heavy model output, usually expressed as 
a sum of terms whose coefficients are estimated by fitting to heavy models. While running 
the heavy model millions of times is costly, this number of proxy model evaluations is easily 
feasible. 
 
Spanning Error 
The method of proxy functions assumes that the true assets and liability functions are of the 
chosen form, or can be approximated sufficiently accurately by functions of that form. The 
assumption could fail severely, for example if: 
 

- Assets and liabilities depend on inputs that have been excluded in the dimension 
reduction and are not substantially explained by the retained inputs 

- The true function has a “cliff-edge” (i.e. a discontinuity) but all the basis functions are 
continuous. 

- The assets and liabilities have “sink holes” that is, regions of parameter values where 
assets collapse or liabilities explode, while none of the basis functions exhibit this 
behaviour. 

 
These are all examples of “spanning failure”, where the true asset and liabilities are not in 
the linear span of a proposed set of basis functions. The “spanning error” is any mis-
statement in the required capital that arises from spanning failure. 
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Selected Test Models 
We construct test valuation formulas based on three risky asset classes: government and 
corporate bonds, equities and a risk-free cash asset. We consider three lines of business: 
regular premium term assurance, a life annuity and a single premium guaranteed equity 
bond. We use simplified policy models so that exact valuation is possible with closed 
formulas.  
 

Risk driver Term 
Assurance 

Annuity Guaranteed 
Equity 

Government 
bond 

Corp 
Bond 

Equity 

Risk free 
discount rate 

X X X X X  

Equity price   X   X 

Equity volatility   X    

Corp bond 
portfolio 
spread 

    X  

Liquidity 
premium 

 X     

Mortality(Term) X      

Mortality 
(annuity) 

 X     

Lapses (term)  X      

Lapses 
(Guaranteed 
equity) 

  X    

 
This is a simplified set of risk drivers, for ease of calculation. We use a single discount rate 
for risk-free cash flows of all maturities. The equity volatility is required for valuing the 
guarantee according to option pricing theory. We assume that annuities cash flow will be 
discounted at a discount rate that includes a return premium for holding illiquid assets. This 
is assumed to be assessed with respect to the observed yield spread on a class of illiquid 
asset subject to credit rating criteria. 
 
Our firm also holds corporate bonds as investments. The change in value of those bonds is 
driven by changes in bond spreads, but in this case we need to follow the fate of a fixed 
portfolio of bonds rather than tracking typical spreads for a particular grade. This distinction 
implies that a portfolio of bonds cannot perfectly hedge the liquidity premium assessed in 
relation to a particular grade. 
 
Term assurance: Valuation Formula 
We assume lapses are a constant proportion of policies in force during the year, while 
mortality is a constant number of deaths each year (thus, the q-factor increases with age) 
We construct the policy count as follows between t-1 and t: 
 

In force at balance sheet t-1  (1 – Lapse)t-1 *(1 – Mort*(t-1)) 

Premiums collected   

Deaths from t-1 to t (1 – Lapse)t-1 * Mort  

In force after deaths  (1 – Lapse)t-1 *(1 – Mort*t) 

Lapses at time t Lapse * (1 – Lapse)t-1 *(1 – Mort*t)  

In force at balance sheet t  (1 – Lapse)t *(1 – Mort*(t)) 
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We can then calculate: 
 

































 





T

T

t
t

t

disc

lapse

lapsedisc

mortSA

disc

mortlapse
SAPVclaims

1

1
1

*

)1(

*)1(
*

1

1

 
 
And 
 

 

 








































 





Tmortlapsedisclapsemortlapsemortdisc
disc

lapse

lapsemortlapsemortdisc

lapsedisc

discannprem

disc

tmortlapse
annpremPVprems

T

T

t
t

t

**)(*
1

1

*

)(

)1(

)1(

)*1(*)1(
*

2

1

0

 
 
It is easy to find the break-even premium at which the value of claims is equal to the value of 
premiums; this occurs when: 
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We can consider two variants of the valuation formula.  
 

 Variant 1 permits negative provisions if premiums are sufficiently large: Technical 
provisions = PVclaims – Pvprems 
 

 Variant 2 assumes all policies immediately lapse if provisions were to become 
negative, so that: Technical provisions = max{0, PVclaims – Pvprems} 

 
In our example, in the base case, we assume the actual premium is less than the breakeven 
premium, so that the value of future benefits exceeds future premiums and the technical 
provisions are positive under Variant 1. This could reflect the situation of a seasoned policy 
in which mortality was previously higher. However, we make the inequality close enough so 
that, under the downward mortality stress, the value of benefits is now less than the 
premiums. This ensures we obtain different results with Variant 1 and Variant 2.  
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Annuities: Valuation Formula 
 
Assume a constant rate of mortality 1/T in each future year, expressed as a fraction of the 
initial number of lives, until all have died. The proportion of lives in force at time t is 
 

 







 0,1max

T

t
. All policyholders have died by time t=T. 

 
Thus, the cash flows are (with LCF – liability cash flow per annum before mortality): 
LCF * (1-1/T) at the end of year 1 
LCF * (1-2/T) at end of year 2 
 
We use discount rate = risk-free + liquidity premium. 
The liability (for unit annual cash flow) is: 
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Here, int(T) is the integer part of T, that is, the largest integer not exceeding T. 
 
Annuities are single premium products. As the premium has already been paid, we do not 
need to model it here. There is no lapse risk with annuities. 
 
Linked with Guarantee: Valuation Formula 
 
We consider a fund with initial value Unit_Fund, invested in risky assets but with a 
guaranteed amount Gtee_AMT at maturity. We assume that the annual management charge 
(AMC) is deducted annually in advance. Lapses occur during the year, after the AMC is 
deducted (with 0 < AMC < 1.00). The total technical provision is the unit fund minus the 
value of future charges, plus the guarantee. 
 
The value of charges is as follows (assuming an integer term T≥1) 
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The guarantee is assumed to apply only to policies that reach maturity, and is given by the 
formula: 
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Here, the Black-Scholes formula is: 
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As with the term assurance, we can consider whether the value of the guarantee is more or 
less than the value of charges. However, we have no simple formula for the breakeven rate 
of annual management charge. This because increasing the charge causes a rise in the 
value of charges (clearly) but also reduces PVpay in the option formula, leading to a rising 
guarantee cost because more is taken out of the fund before the guarantee is met. 
 
Indeed, in some cases, there is no break-even management charge, as attempts to increase 
the value of charges also increase the guarantee cost, with the value of charges never 
catching up. To avoid this, we have to insist that: 
 
Unit_fund > (1-lapse)T / (1+disc)T * Gtee_AMT 
 
Equivalently, expressing the guarantee as an annual return Gtee_AMT = (1+gtee_ret)T * 
Unit_Fund, a break-even management charge exists provided the guaranteed return is not 
too onerous; specifically 
 
1 + gtee_ret < (1+disc) / (1 –lapse) 
 
As with the term assurance, we can investigate this product on two bases: 
Variant 1 permits negative provisions if charges are sufficiently large: Technical provisions = 
guarantees - charges 
Variant 2 assumes all policies immediately lapse if provisions were to become negative, so 
that: Technical provisions = max{0, guarantees - charges} 
 
 
Assets 
Equities: Responds only to equity stress 
Cash: Unaffected by any stress 
Risk free bond (term): Affected only by risk free rate, assuming an annual coupon and term 
T. 
Corporate bond (term); affected by risk free rate plus credit spread, assuming an annual 
coupon and term T. 
 
The formula for the risk free bond and corporate bond is: 
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Curve Fitting Methodology 
 
We now develop tools for fitting curves to the actuarial formulas: 
 
We fit curves to a series of stress tests. The stress tests are constructed using median 
values for each risk driver, as well as high (α-quantile) and low (1-α quantile) values. For 
example if α = 0.995 then we would calibrate to the 0.5%-ile, median (50%-ile) and 99.5%-ile 
for each risk driver. 
 
We look at all combinations of high, median and low for each risk driver. That implies that 
with 9 risk drivers, we may have to examine 3^9 = 19 683 stress tests. Thankfully, this is an 
overestimate, as our example assets and liabilities depend individually on at most 4 risk 
drivers. The maximum number of stresses is then 3^4 = 81 risk drivers, in the case of the 
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guaranteed equity bond. The minimum number of stresses is 3, for the risk-free bond and 
the equity, which depend on only one risk driver. 
 
Having estimated constructed the stress tests, we then fit a polynomial. In each case we use 
ordinary least squares to fit the formula. In this note, we consider three fits: 

 Linear fit: We estimate assets or liabilities as a constant term plus linear terms in 
each risk driver. 

 Separable Quadratic Fit: We estimate assets or liabilities as a constant term, plus 
linear and squared terms in each risk driver. This formula is still separable, that is, 
basic own funds is a sum of functions each of which depends only on one risk driver. 
There is no mechanism for the level of one risk driver to affect the sensitivity of net 
assets to another driver. 

 Quadratic Fit with Cross Terms: Assets and liabilities are a constant term, plus linear 
and squared terms in each risk driver, and also products of risk drivers taken two at a 
time. 

 
We can consider extending these fits to cubic and higher order polynomials. However, at 
least in the one-dimensional cases (equities and government bonds), we have only three 
fitting points in which case an exact quadratic is uniquely defined and a cubic is not. 
 
 
Risk Driver Distribution 
 
For demonstration purposes we assume that risk drivers have shifted lognormal 
distributions. We construct these using formulas of the form: 
 

c

e
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Here, b is a positive coefficient; while c is positive or negative. If c = 0 we replace the fraction 

c

ecZ 1
  by its limiting value Z. This is readily calibrated to quantiles. For example, suppose 

for some k, the Φ(-k) quantile is median–α and the  Φ(k) quantile is median+β, we have to 
solve the equations: 
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From this, it immediately follows that: 
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Once again, there is a special case when α=β, where c = 0 and b = α/k. 
Within firm’s internal models, there is no general rule relating the opening (t=0) risk drive 
values to their future distribution. However, for simplicity in the current curve fitting tests, we 
assume that the opening values are equal to the median. 
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5. Appendix - Bayesian Methods 
 
This section discusses the use of Bayesian methods and how they might be used to provide 
a framework for Expert Judgement.  The Bayesian method is described and an example 
case study is worked through. 
 
General Description 
 
Bayesian and frequentist statistical inference take very different approaches to statistical 
decision making. 
 

- The frequentist view of probability, and thus of statistical inference, is based on the 
idea of an experiment that can be repeated many times 

- The Bayesian view of probability and of inference is based on a personal assessment 
of probability and on observations from a single performance of an experiment  

 
These different views lead to fundamentally different procedures of estimation, and the 
interpretations of the resulting estimates are also fundamentally different1.  
 
Bayes Theorem is the basis for Bayesian methods.  For an observed event E and a partition 
{A1,A2,…,Ak} of the sample space S, 
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       [Formula 1] 

The general version of Bayes Theorem involving data x and a parameter π is shown below: 
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     [Formula 2] 

A posterior distribution of π is found from the prior distribution of π and the distribution of the 
data x given π.  This is the basis for Bayesian methods.  An initial prior view, based typically 
on expert judgment is updated with some data to give a new view that allows for both the 
data and expert judgment.  Bayesian methods can be summarised as: 
 
Posterior distribution   Prior * Likelihood function   [Formula 3] 

 
  

                                                           
1
 "Introduction of Probability Simulation and Gibbs Sampling in R" E.A Suess and B.E. Trumbo Page 195 
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Bayesian methods and expert judgment 
 
Expert judgment in Bayesian methods arises when the prior distribution is defined by an 
expert.  There are a number of ways of doing this and typically it depends on eliciting 
meaningful information from the expert that can be used to derive a probability distribution. 
 
Case studies  
 
In this section an example case study is considered.  It considers how Bayesian methods 
might be used to calibrate a 1 in 200 equity stress calibration based on a specific data set. 
The data used is based on the Dimson Marsh & Staunton (DMS, 2002)2 study.  The data 
used includes updates to the original DMS data and covers the period 1900-2008.  The case 
study below is based on logarithmic annual returns of the UK DMS data set. 
 
Case Study 
 
In this case study the simple case where the data is assumed to have a Normal distribution 
and the variance of the data is unknown is considered.  These assumptions allow Formula 2 
to have an analytic solution.  More complex distributional assumptions mean that Formula 2 
produces an analytically insolvable integral.  Monte Carlo methods such as the Metropolis 
Hastings algorithm can be used in these cases.  This case study has three different 
elements.  
 
1.  Two different expert judgements are considered and compared.  These expert 
judgements are captured in two different prior distributions used.  This presents the 
reasonably likely scenario in a life insurance company where the risk function might have a 
different expert judgement from the capital management team.    
 
2. The posterior distribution is calculated for each of these expert judgements for a subset of 
the total data set (from 2008-1999); and secondly for the full data set (from 2008-1900).  The 
impact on the posterior distribution from different expert judgements using the two different 
data sets is contrasted.  
 
3. The calibration of the variance of the Normal distribution using Bayesian Methods is 
contrasted with the variance calculated using a frequentist method (the Maximum Likelihood 
Estimate).  
 
Conjugate prior for variance of Normal distribution 
 
In this case study the data i.e. the likelihood function, has a Normal distribution: 
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2 Dimson, E, Marsh, P & Staunton M (2002) Triumph of the Optimists, Princeton. 
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The conjugate prior for variance of the Normal distribution is the Inverse Gamma family, that 
is: 








 

y
yyp

 exp)( 1
, is the Inverse Gamma distribution with parameters α and β  

(i.e. y ~ invGam(α, β)) 
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Hence, 

Prior: )( 2p  ~ invGam(α, β) => 

Posterior: )¦( 2 xp   ~ invGam(α+n/2, β+ 2.2/ sn ) 

 

That is given a prior distribution, the posterior distribution can be found with just n and 
2s

from the data. 
 
Prior distributions 
 
In this case study two prior distributions are assumed for the calibration of a 1 in 200 year 
event.  Two different experts (one from the firm’s capital team and one from the risk team) 
are asked two questions about what they consider to be a 1 in 200 year event.  The 
questions are: 
 

1. What is your best estimate for a 1 in 200 year event for the firms equity risk 
2. Please give a percentile you are fairly sure (i.e., 95% sure) the 1 in 200 event is 

lower than 
 
As the 99.5th percentile is the object of interest in this case study, both experts agree that the 
expected equity return over the next year is 5% 
 
The answers the experts give for annual simple equity returns are: 

 Capital team expert Risk team expert 

Question 1 -40% -50% 

Question 2 -65% -75% 

Table A.1 
 
These answers can be used to calibrate prior Inverse Gamma distributions.  Converting 
these expert judgments to logarithmic returns (which the underlying data is based on) and 
calibrating α and β for each expert judgment gives: 
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Prior Capital team expert Risk team expert 

α 2.074 2.074 

β 0.051 0.089 

Table A.2 
 
Posterior distributions 
 
Using the UK DMS data set two periods of data were considered: 

 From 1900-2008 (109 annual non overlapping data points) 

 From 1999-2008 (10 annual non overlapping data points) 
 
The posterior distribution calibrated for the two different expert judgments and the two 
different data sets are shown in the table below: 
 

Posterior Capital team expert Risk team expert 

 1900-2008 1999-2008 1900-2008 1999-2008 

α 56.57 7.07 56.57 7.07 

β 1.89 0.25 1.93 0.29 

Table A.3 
 
Having calibrated the prior and posterior distributions for the variance, it is now possible to 
present: 

1. The best estimate of the 99.5th percentile using the mean of the distribution of the 

variance for the variance of the underlying data (i.e. using )( 2E as the variance).  

This is the best estimate 99.5th 
2. A 99.5th percentile calculated by taking the mean of the distribution of the variance 

plus two standard deviations of the variance as the variance of the underlying data 

(i.e. using )( 2E +2* )( 2Var as the variance).  This is the high estimate 99.5th. 

 
The aim of the second point is to show changes in the uncertainty that the use of data brings 
relative to just the prior expert judgments. 
 

 Capital team expert Risk team expert 

99.5th percentile 1900-2008 1999-2008 1900-2008 1999-2008 

Prior best estimate 99.5th  -40.0% -40.0% -50.0% -50.0% 

Prior high estimate 99.5th  -79.2% -79.2% -87.7% -87.7% 

Posterior best estimate 99.5th  -34.7% -37.8% -35.0% -40.2% 

Posterior high estimate 99.5th  -38.6% -48.9% -38.9% -51.5% 

Table A.4 
 
There are two main results in Table A.4 

 The impact of the differences between the two experts gets much smaller as more 
data is included.  This is compared by looking at the 99.5th percentiles.  The prior 
distributions have 40% vs 50% (a difference of 10%).  With just 10 data points, this 
moves to 37.8% vs 40.2% (a difference of 2.4%).  With 109 data points this moves to 
34.7% vs 35.0% (a difference of 0.3%). 

 

 The uncertainty around the estimate falls as more data is included in the analysis.  
For example, taking the capital team expert distributions, the prior difference between 
the best estimate 99.5th and high estimate 99.5th is 40% vs 79.2% (a difference of 
39.2%).  With 10 data points this moves to 37.8% vs 48.9% (a difference of 11.1%).  
With 109 data points this moves to 34.7% vs 38.6% (a difference of 3.9%) 
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Comparison to the Maximum Likelihood Estimate 
 
The above results can be compared to frequentist approaches of distribution fitting such as 
the Maximum Likelihood Estimate (MLE).  The two data sets above are calibrated to the 
Normal distribution using the MLE.   
 
The variance is calibrated using the MLE and the 99.5th percentile is calculated from a mean 
of 5% in line with the method taken in the Bayesian approach above.  This ensures the only 
difference between the two approaches is the calibration of the variance. 
 
The MLE gives estimates of standards errors for the estimate of each parameter which give 
an indication of the uncertainty in the parameter calibrations.  In the table below as similar 
approach as used in Table A.4 is given, with: 
 

 The best estimate 99.5th taken from the variance parameter calibrated using MLE 

 The high estimate 99.5th taken from the variance parameter plus two standard 
errors calibrated using MLE  

 

 1900-2008 1999-2008 

Best estimate 99.5th -34.6% -34.7% 

High estimate 99.5th -67.6% -72.3% 

Table A.5 
 
The results seen in table A.5 are somewhat similar to those in table A.4.  Looking at 109 
years of data the 34.6% from the MLE compares to 34.7% (capital team expert posterior) 
and 35.0% (risk team expert posterior) using the Bayesian approach.  The difference is 
larger with just 10 years of data, with 34.7% from the MLE compares to 37.8% (capital team 
expert posterior) and 40.2% (risk team expert posterior) using the Bayesian approach. 
 
The biggest difference between the two approaches is the uncertainty in the calibration of 
the 99.5th percentile.  For 109 years data the best estimate and high estimate for the MLE for 
the 99.5th percentiles is 34.6% vs 67.6% (a difference of 33.0%); compared to 34.7% vs 
38.6% (a difference of 3.9%) for the Bayesian approach with the capital team expert 
judgment.  This difference is less big for just 10 years data (i.e. 34.7% vs 72.3% (i.e. a 
difference of 37.6%) for MLE compared to 37.8% vs 48.9% (a difference of 11.1%) for the 
Bayesian approach.  The reduced uncertainty in the Bayesian approach relative to the MLE 
might be attributed to the addition of expert judgment included in the Bayesian approach, but 
not present in the MLE. 
 


