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Abstract: The intention of this study was to clarify students’ difficulties in solving context-based 

mathematics tasks as used in the Programme for International Student Assessment (PISA). The study 

was carried out with 362 Indonesian ninth- and tenth-grade students. In the study we used 34 released 

PISA mathematics tasks including three task types: reproduction, connection, and reflection. Students’ 

difficulties were identified by using Newman’s error categories, which were connected to the 

modeling process described by Blum and Leiss and to the PISA stages of mathematization, including 

(1) comprehending a task, (2) transforming the task into a mathematical problem, (3) processing 

mathematical procedures, and (4) interpreting or encoding the solution in terms of the real situation. 

Our data analysis revealed that students made most mistakes in the first two stages of the solution 

process. Out of the total amount of errors 38% of them has to do with understanding the meaning of 

the context-based tasks. These comprehension errors particularly include the selection of relevant 

information. In transforming a context-based task into a mathematical problem 42% of the errors were 

made. Less errors were made in mathematical processing and encoding the answers. These types of 

errors formed respectively 17% and 3% of the total amount of errors. Our study also revealed a 

significant relation between the error types and the task types. In reproduction tasks, mostly 

comprehension errors (37%) and transformation errors (34%) were made. Also in connection tasks 
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students made mostly comprehension errors (41%) and transformation errors (43%). However, in 

reflection tasks mostly transformation errors (66%) were made. Furthermore, we also found a relation 

between error types and student performance levels. Low performing students made a higher number 

of comprehension and transformation errors than high performing students. This finding indicates that 

low performing students might already get stuck in the early stages of the modeling process and are 

unable to arrive in the stage of carrying out mathematical procedures when solving a context-based 

task. 

Keywords: Context-based mathematics tasks; Mathematization; Modeling process; Newman error 

categories; Students’ difficulties. 

1. Introduction 

Employer dissatisfaction with school graduates’ inability to apply mathematics stimulated a 

movement favoring both the use of mathematics in everyday situations (Boaler, 1993a) and a 

practice-orientated mathematics education (Graumann, 2011). The main objective of this 

movement is to develop students’ ability to apply mathematics in everyday life (Graumann, 

2011) which is seen as a core goal of mathematics education (Biembengut, 2007; Greer, 

Verschaffel, & Mukhopadhyay, 2007). In addition, this innovation was also motivated by 

theoretical developments in educational psychology such as situated cognition theory (Henning, 

2004; Nunez, Edwards, & Matos, 1999) and socio-cultural theory (Henning, 2004). Finally, this 

context-connected approach to mathematics education emerged from studies of mathematics in 

out-of-school settings such as supermarkets (Lave, 1988) and street markets (Nunes, Schliemann, 

& Carraher, 1993). 

In line with this emphasis on application in mathematics education, the utilitarian purpose 

of mathematics in everyday life has also become a concern of the Programme for International 

Student Assessment (PISA) which is organized by the Organisation for Economic Co-operation 

and Development (OECD). PISA is a large-scale assessment which aims to determine whether 

students can apply mathematics in a variety of situations. For this purpose, PISA uses real world 

problems which require quantitative reasoning, spatial reasoning or problem solving (OECD, 

2003b). An analysis of PISA results showed that the competencies measured in PISA surveys are 

better predictors for 15 year-old students’ later success than the qualifications reflected in school 

marks (Schleicher, 2007). Therefore, the PISA survey has become an influential factor in 
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reforming educational practices (Liang, 2010) and making decisions about educational policy 

(Grek, 2009; Yore, Anderson, & Hung Chiu, 2010). 

Despite the importance of contexts for learning mathematics, several studies (Cummins, 

Kintsch, Reusser, & Weimer, 1988; Palm, 2008; Verschaffel, Greer, & De Corte, 2000) indicate 

that contexts can also be problematic for students when they are used in mathematics tasks. 

Students often miscomprehend the meaning of context-based tasks (Cummins et al., 1988) and 

give solutions that are not relevant to the situation described in the tasks (Palm, 2008). Considering 

these findings, the intention of this study was to clarify students’ obstacles or difficulties when 

solving context-based tasks. 

As a focus we chose the difficulties students in Indonesia have with context-based 

problems. The PISA 2009 study (OECD, 2010) showed that only one third of the Indonesian 

students could answer the types of mathematics tasks involving familiar contexts including all 

information necessary to solve the tasks and having clearly defined questions. Furthermore, less 

than one percent of the Indonesian students could work with tasks situated in complex situations 

which require mathematical modeling, and well-developed thinking and reasoning skills. These 

poor results ask for further research because the characteristics of PISA tasks are relevant to the 

mathematics learning goals mandated in the Indonesian Curriculum 2004. For example, one of 

the goals is that students are able to solve problems that require students to understand the 

problem, and design and complete a mathematical model of it, and interpret the solution (Pusat 

Kurikulum, 2003). 

Although the Indonesian Curriculum 2004 takes the application aspect of mathematical 

concepts in daily life into account (Pusat Kurikulum, 2003), the PISA results clearly showed that 

this curriculum did not yet raise Indonesian students’ achievement in solving context-based 

mathematics tasks. This finding was the main reason to set up the ‘Context-based Mathematics 

Tasks Indonesia’ project, or in short the CoMTI project. The general goal of this project is to 

contribute to the improvement of the Indonesian students’ performance on context-based 

mathematics tasks. The present study is the first part of this project and aimed at clarifying 

Indonesian students’ difficulties or obstacles when solving context-based mathematics tasks. 

Having insight in where students get stuck will provide us with a key to improve their 

achievement. Moreover, this insight can contribute to the theoretical knowledge about the 

teaching and learning of mathematics in context. 
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2. Theoretical background 

2.1. Learning mathematics in context 

Contexts are recognized as important levers for mathematics learning because they offer various 

opportunities for students to learn mathematics. The use of contexts reduces students’ perception of 

mathematics as a remote body of knowledge (Boaler, 1993b), and by means of contexts students can 

develop a better insight about the usefulness of mathematics for solving daily-life problems (De 

Lange, 1987). Another benefit of contexts is that they provide students with strategies to solve 

mathematical problems (Van den Heuvel-Panhuizen, 1996). When solving a context-based problem, 

students might connect the situation of the problem to their experiences. As a result, students might 

use not only formal mathematical procedures, but also informal strategies, such as using repeated 

subtraction instead of a formal digit-based long division. In the teaching and learning process, 

students’ daily experiences and informal strategies can also be used as a starting point to introduce 

mathematics concepts. For example, covering a floor with squared tiles can be used as the starting 

point to discuss the formula for the area of a rectangle. In this way, contexts support the development 

of students’ mathematical understanding (De Lange, 1987; Gravemeijer & Doorman, 1999; Van den 

Heuvel-Panhuizen, 1996). 

In mathematics education, the use of contexts can imply different types of contexts. 

According to Van den Heuvel-Panhuizen (2005) contexts may refer to real-world settings, 

fantasy situations or even to the formal world of mathematics. This is a wide interpretation of 

context in which contexts are not restricted to real-world settings. What important is that 

contexts create situations for students that are experienced as real and related to their common-

sense understanding. In addition, a crucial characteristic of a context for learning mathematics is 

that there are possibilities for mathematization. A context should provide information that can be 

organized mathematically and should offer opportunities for students to work within the context 

by using their pre-existing knowledge and experiences (Van den Heuvel-Panhuizen, 2005). 

The PISA study also uses a broad interpretation of context, defining it as a specific setting 

within a ‘situation’ which includes all detailed elements used to formulate the problem (OECD, 

2003b, p. 32). In this definition, ‘situation’ refers to the part of the students’ world in which the 

tasks are placed. This includes personal, educational/occupational, public, and scientific situation 

types. As well as Van den Heuvel-Panhuizen (2005), the PISA researchers also see that a formal 

mathematics setting can be seen as a context. Such context is called an ‘intra-mathematical 
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context’ (OECD, 2003b, p. 33) and refers only to mathematical objects, symbols, or structures 

without any reference to the real world. However, PISA only uses a limited number of such 

contexts in its surveys and places most value on real-world contexts, which are called ‘extra-

mathematical contexts’ (OECD, 2003b, p. 33). To solve tasks which use extra-mathematical 

contexts, students need to translate the contexts into a mathematical form through the process of 

mathematization (OECD, 2003b). 

The extra-mathematical contexts defined by PISA are similar to Roth’s (1996) definition of 

contexts, which also focuses on the modeling perspective. Roth (1996, p. 491) defined context as “a 

real-world phenomenon that can be modeled by mathematical form.” In comparison to Van den 

Heuvel-Panhuizen and the PISA researchers, Roth takes a narrower perspective on contexts, because 

he restricts contexts only to real-world phenomena. However, despite this restriction, Roth’s focus on 

the mathematical modeling of the context is close to the idea of mathematization as used in PISA. 

Based on the aforementioned definitions of context, in our study we restricted contexts to 

situations which provide opportunities for mathematization and are connected to daily life. This 

restriction is in line with the aim of PISA to assess students’ abilities to apply mathematics in 

everyday life. In conclusion, we defined context-based mathematics tasks as tasks situated in real-

world settings which provide elements or information that need to be organized and modeled 

mathematically. 

2.2. Solving context-based mathematics tasks 

Solving context-based mathematics tasks requires an interplay between the real world and 

mathematics (Schwarzkopf, 2007), which is often described as a modeling process (Maass, 2010) 

or mathematization (OECD, 2003b). The process of modeling begins with a real-world problem, 

ends with a real-world solution (Maass, 2010) and is considered to be carried out in seven steps 

(Blum & Leiss, as cited in Maass, 2010). As the first step, a solver needs to establish a ‘situation 

model’ to understand the real-world problem. The situation model is then developed into a ‘real 

model’ through the process of simplifying and structuring. In the next step, the solver needs to 

construct a ‘mathematical model’ by mathematizing the real model. After the mathematical model 

is established, the solver can carry out mathematical procedures to get a mathematical solution of 

the problem. Then, the mathematical solution has to be interpreted and validated in terms of the 

real-world problem. As the final step, the real-world solution has to be presented in terms of the 

real-world situation of the problem. 
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In PISA, the process required to solve a real-world problem is called ‘mathematization’ 

(OECD, 2003b). This process involves: understanding the problem situated in reality; organizing 

the real-world problem according to mathematical concepts and identifying the relevant 

mathematics; transforming the real-world problem into a mathematical problem which represents 

the situation; solving the mathematical problem; and interpreting the mathematical solution in 

terms of the real situation (OECD, 2003b). In general, the stages of PISA’s mathematization are 

similar to those of the modeling process. To successfully perform mathematization, a student 

needs to possess mathematical competences which are related to the cognitive demands of 

context-based tasks (OECD, 2003b). Concerning the cognitive demands of a context-based task, 

PISA defines three types of tasks: 

a. Reproduction tasks 

These tasks require recalling mathematical objects and properties, performing routine 

procedures, applying standard algorithms, and applying technical skills. 

b. Connection tasks 

These tasks require the integration and connection from different mathematical curriculum 

strands, or the linking of different representations of a problem. The tasks are non-routine and 

ask for transformation between the context and the mathematical world. 

c. Reflection tasks 

These tasks include complex problem situations in which it is not obvious in advance which 

mathematical procedures have to be carried out. 

 

Regarding students’ performance on context-based tasks, PISA (OECD, 2009a) found 

that cognitive demands are crucial aspects of context-based tasks because they are – among other 

task characteristics, such as the length of text, the item format, the mathematical content, and the 

contexts – the most important factors influencing item difficulty. 

2.3. Analyzing students’ errors in solving context-based mathematics tasks 

To analyze students’ difficulties when solving mathematical word problems, Newman (1977, 

1983) developed a model which is known as Newman Error Analysis (see also Clarkson, 1991; 

Clements, 1980). Newman proposed five categories of errors based on the process of solving 

mathematical word problems, namely errors of reading, comprehension, transformation, process 

skills, and encoding. To figure out whether Newman’s error categories are also suitable for 
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analyzing students’ errors in solving context-based tasks which provide information that needs to 

be organized and modeled mathematically, we compared Newman’s error categories with the 

stages of Blum and Leiss’ modeling process (as cited in Maass, 2010) and the PISA’s 

mathematization stages (OECD, 2003b). 

Table 1. Newman’s error categories and stages in solving context-based mathematics tasks 

Newman’s error categoriesa 
 Stages in solving context-based mathematics tasks 
 Stages in Blum and Leiss’ Modelingb Stages in PISA’s 

Mathematizationc 

Reading: Error in simple 
recognition of words and 
symbols 

 -- 
 

-- 
 

Comprehension: Error in 
understanding the meaning of a 
problem 

 Understanding problem by establishing 
situational model 
 

Understanding 
problem situated in 
reality 

--  Establishing real model by simplifying 
situational model 

-- 

--  -- Organizing real-world 
problems according to 
mathematical concepts 
and identifying 
relevant mathematics 

Transformation: Error in 
transforming a word problem 
into an appropriate 
mathematical problem 
 

 Constructing mathematical model by 
mathematizing real model 

Transforming real-
world problem into 
mathematical problem 
which represents the 
problem situation 

Process skills: Error in 
performing mathematical 
procedures 

 Working mathematically to get 
mathematical solution 

Solving mathematical 
problems 

Encoding: Error in 
representing the mathematical 
solution into acceptable 
written form 
 

 Interpreting mathematical solution in 
relation to original problem situation 
Validating interpreted mathematical 
solution by checking whether this is 
appropriate and reasonable for its purpose 

Interpreting 
mathematical solution 
in terms of real 
situation 

--  Communicating the real-world solution -- 
a (Newman, 1977, 1983; Clarkson, 1991; Clements, 1980); b (as cited in Maass, 2010); c (OECD, 2003b) 
 

Table 1 shows that of Newman’s five error categories, only the first category that refers to the 

technical aspect of reading cannot be matched to a modeling or mathematization stage of the 
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solution process. The category comprehension errors, which focuses on students’ inability to 

understand a problem, corresponds to the first stage of the modeling process (“understanding 

problem by establishing situational model”) and to the first phase of the mathematization process 

(“understanding problem situated in reality”). The transformation errors refer to errors in 

constructing a mathematical problem or mathematical model of a real-world problem, which is 

also a stage in the modeling process and in mathematization. Newman’s category of errors in 

mathematical procedures relates to the modeling stage of working mathematically and the 

mathematization stage of solving mathematical problems. Lastly, Newman’s encoding errors 

correspond to the final stage of modeling process and mathematization at which the mathematical 

solution is interpreted in terms of the real-world problem situation. Considering these similarities, 

Newman’s error categories can be used to analyze students’ errors in solving context-based 

mathematics tasks. 

2.4. Research questions 

The CoMTI project aims at improving Indonesian students’ performance in solving context-

based mathematics tasks. To find indications of how to improve this performance, the first 

CoMTI study looked for explanations for the low scores in the PISA surveys by investigating, on 

the basis of Newman’s error categories, the difficulties students have when solving context-based 

mathematics tasks such as used in the PISA surveys.  

Generally expressed our first research question was: 

1. What errors do Indonesian students make when solving context-based mathematics tasks? 

A further goal of this study was to investigate the students’ errors in connection with the 

cognitive demands of the tasks and the student performance level. Therefore, our second 

research question was: 

2. What is the relation between the types of errors, the types of context-based tasks (in the 

sense of cognitive demands), and the student performance level? 

3. Method 

3.1. Mathematics tasks 

A so-called ‘CoMTI test’ was administered to collect data about students’ errors when solving 

context-based mathematics tasks. The test was based on the released ‘mathematics units’1 from PISA 

(OECD, 2009b) and included only those units which were situated in extra-mathematical context. 
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Furthermore, to get a broad view of the kinds of difficulties Indonesian students encounter, units 

were selected in which Indonesian students in the PISA 2003 survey (OECD, 2009b) had either a 

notably low or high percentage of correct answer. In total we arrived at 19 mathematics units 

consisting of 34 questions. Hereafter, we will call these questions ‘tasks’, because they are not just 

additional questions to a main problem but complete problems on their own, which can be solved 

independently of each other. Based on the PISA qualification of the tasks we included 

15 reproduction, 15 connection and 4 reflection tasks. The tasks were equally distributed over four 

different booklets according to their difficulty level, as reflected in the percentage correct answers 

found in the PISA 2003 survey (OECD, 2009b). Six of the tasks were used as anchor tasks and were 

included in all booklets. Every student took one booklet consisting of 12 to 14 tasks. 

The CoMTI test was administered in the period from 16 May to 2 July, 2011, which is in 

agreement with the testing period of PISA (which is generally between March 1 and August 31) 

(OECD, 2005). In the CoMTI test the students were asked to show how they solved each task, 

while in the PISA survey this was only asked for the open constructed-response tasks. 

Consequently, the time allocated for solving the tasks in the CoMTI test was longer (50 minutes 

for 12 to 14 tasks) than in the PISA surveys (35 minutes for 16 tasks) (OECD, 2005). 

3.2. Participants 

The total sample in this CoMTI study included 362 students recruited from eleven schools 

located in rural and urban areas in the province of Yogyakarta, Indonesia. Although this selection 

might have as a consequence that the students in our sample were at a higher academic level than 

the national average2, we chose this province for carrying out our study for reasons of 

convenience (the first author originates from this province). 

To have the sample in our study close to the age range of 15 years and 3 months to 16 years 

and 2 months, which is taken in the PISA surveys as the operationalization of fifteen-year-olds 

(OECD, 2005), and which also applies to the Indonesian sample in the PISA surveys, we did our 

study with Grade 9 and Grade 10 students who generally are of this age. However, it turned out 

that in our sample the students were in the age range from 14 years and 2 months to 18 years and 6 

months (see Table 2), which means that our sample had younger and older students than in the 

PISA sample. 
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Table 2. Composition of the sample 

Grade Boys Girls Total Min. age Max. age Mean age (SD) 

Grade 9 85 148 233 14 y; 2 m 16 y; 7 m 15 y; 3 m (5 m)a 

Grade 10 59   70 129 14 y; 10 m 18 y; 6 m 16 y; 4 m (7 m) 

Total 144 218 362    
a y= year; m = month 

 

Before analyzing students’ errors, we also checked whether the ability level of the students in our 

sample was comparable to the level of the Indonesian students who participated in the PISA 

surveys. For this purpose, we compared the percentages of correct answers of 17 tasks included 

in the 2003 PISA survey (OECD, 2009b), with the scores we found in our sample. 

To obtain the percentages of correct answers in our sample, we scored the students’ 

responses according to the PISA marking scheme, which uses three categories: full credit, partial 

credit, and no credit (OECD, 2009b). The interrater reliability of this scoring was checked by 

conducting a second scoring by an external judge for approximately 15% of students’ responses 

to the open constructed-response tasks. The multiple-choice and closed constructed-response 

tasks were not included in the check of the interrater reliability, because the scoring for these 

tasks was straightforward. We obtained a Cohen’s Kappa of .76, which indicates that the scoring 

was reliable (Landis & Koch, 1977).  

The calculation of the Pearson correlation coefficient between the percentages correct 

answers of the 17 tasks in the PISA 2003 survey and in the CoMTI sample revealed a significant 

correlation, r (15) =  .83, p <  .05. This result indicates that the tasks which were difficult for 

Indonesian students in the PISA 2003 survey were also difficult for the students participating in the 

CoMTI study (see Figure 1). However, the students in the CoMTI study performed better than the 

Indonesian students in the PISA 2003 survey. The mean percentage of correct answers in our study 

was 61%, which is a remarkably higher result than the 29% correct answers of the Indonesian 

students in the PISA survey. We assume that this result was due to the higher academic 

performance of students in the province of Yogyakarta compared to the performance of Indonesian 

students in general (see Note 2). 
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Figure 1. Percentage correct answers in the CoMTI sample and the Indonesian PISA 2003 sample 

3.3. Procedure of coding the errors 

To investigate the errors, only the students’ incorrect responses, i.e., the responses with no credit 

or partial credit, were coded. Missing responses which were also categorized as no credit, were 

not coded and were excluded from the analysis because students’ errors cannot be identified 

from a blank response. 

The scheme used to code the errors (see Table 3) was based on Newman’s error categories 

and in agreement with Blum and Leiss’ modeling process and PISA’s mathematization stages. 

However, we included in this coding scheme only four of Newman’s error categories, namely 

‘comprehension’, ‘transformation’, ‘mathematical processing’, and ‘encoding’ errors. Instead of 

Newman’s error category of ‘process skills’, we used the term ‘mathematical processing’, 

because in this way it is more clear that errors in process skills concern errors in processing 

mathematical procedures. The technical error type of ‘reading’ was left out because this type of 

error does not refer to understanding the meaning of a task. Moreover, the code ‘unknown’ was 

added in the coding scheme because in about 8% of the incorrect responses, the written 

responses did not provide enough information for coding the errors. These responses with the 

code ‘unknown’ were not included in the analysis. 
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Table 3. Coding Scheme for error types when solving context-based mathematics tasks 

Error type Sub-type Explanation 
Comprehension Misunderstanding the instruction Student incorrectly interpreted what they were asked to do. 

Misunderstanding a keyword Student misunderstood a keyword, which was usually a mathematical term. 
Error in selecting information Student was unable to distinguish between relevant and irrelevant information (e.g. 

using all information provided in a task or neglecting relevant information) or was 
unable to gather required information which was not provided in the task. 

Transformation Procedural tendency Student tended to use directly a mathematical procedure (such as formula, algorithm) 
without analyzing whether or not it was needed. 

Taking too much account of the context Student’s answer only referred to the context/real world situation without taking the 
perspective of the mathematics. 

Wrong mathematical operation/concept Student used mathematical procedure/concepts which are not relevant to the tasks. 
Treating a graph as a picture Student treated a graph as a literal picture of a situation. Student interpreted and 

focused on the shape of the graph, instead of on the properties of the graph. 
Mathematical 
Processing 

Algebraic error Error in solving algebraic expression or function. 
Arithmetical error Error in calculation. 
Error in mathematical interpretation of graph:  

- Point-interval confusion Student mistakenly focused on a single point rather than on an interval. 
- Slope-height confusion Student did not use the slope of the graph but only focused on the vertical distances. 

Measurement error Student could not convert between standard units (from m/minute to km/h) or from 
non-standard units to standard units (from step/minute to m/minute). 

Improper use of scale Student could not select and use the scale of a map properly. 
Unfinished answer Student used a correct formula or procedure, but they did not finish it. 

Encoding  Student was unable to correctly interpret and validate the mathematical solution in 
terms of the real world problem. This error was reflected by an impossible or not 
realistic answer. 

Unknown  Type of error could not be identified due to limited information from student’s work. 
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To make the coding more fine-grained we specified the four error types into a number of sub-

types (see Table 3), which were established on the basis of a first exploration of the data and a 

further literature review. For example, the study of Leinhardt, Zaslavsky, and Stein (1990) was 

used to establish sub-types related to the use of graphs, which resulted in three sub-types: 

‘treating a graph as a picture’, ‘point-interval confusion’, and ‘slope-height confusion’. The last 

two sub-types belonged clearly to the error type of mathematical processing. The sub-type 

‘treating a graph as a picture’ was classified under the error type of transformation because it 

indicates that the students do not think about the mathematical properties of a graph. Because 

students can make more than one error when solving a task, a multiple coding was applied in 

which a response could be coded with more than one code. 

The coding was carried out by the first author and afterwards the reliability of the coding 

was checked through an additional coding by an external coder. This extra coding was done on 

the basis of 22% of students’ incorrect responses which were randomly selected from all 

mathematics units. In agreement with the multiple coding procedure, we calculated the interrater 

reliability for each error type and the code unknown, which resulted in Cohen’s Kappa of .72 for 

comprehension errors, .73 for transformation errors, .79 for errors in mathematical processing, 

.89 for encoding errors, and .80 for unknown errors, which indicate that the coding was reliable 

(Landis & Koch, 1977). 

3.4. Statistical analyses 

To investigate the relationship between error types and task types, a chi-square test of 

independence was conducted on the basis of the students’ responses. Because these responses are 

nested within students, a chi-square with a Rao-Scott adjustment for clustered data in the R 

survey package was used (Lumley, 2004, 2012). 

For studying the relationship of student performance and error type, we applied a Rasch 

analysis to obtain scale scores of the students’ performance. The reason for choosing this analysis is 

that it can take into account an incomplete test design (different students got different test booklets 

with a different set of tasks). A partial credit model was specified in ConQuest (Wu, Adams, Wilson, 

& Haldane, 2007). The scale scores were estimated within this item response model by weighted 

likelihood estimates (Warm, 1989) and were categorized into four almost equally distributed 

performance levels where Level 1 indicates the lowest performance and Level 4 the highest 

performance. To test whether the frequency of a specific error type differed between performance 
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levels, we applied an analysis of variance based on linear mixed models (Bates, Maechler, & Bolker, 

2011). This analysis was based on all responses where an error could be coded and treated the 

nesting of task responses within students by specifying a random effect for students. 

4. Results 

4.1. Overview of the observed types of errors 

In total, we had 4707 possible responses (number of tasks done by all students in total) which 

included 2472 correct responses (53%), 1532 incorrect responses (33%), i.e., no credit or partial 

credit, and 703 missing responses (15%). The error analysis was carried out for the 1532 

incorrect responses. The analysis of these responses, based on the multiple coding, revealed that 

1718 errors were made of which 38% were comprehension errors and 42% were transformation 

errors. Mathematical processing errors were less frequently made (17%) and encoding errors 

only occurred a few times (3%) (see Table 4). 

 

Table 4. Frequencies of error types 

Type of error N % 

Comprehension (C)  653  38 

Transformation (T)  723  42 

Mathematical processing (M)  291  17 

Encoding (E)  51  3 

Total of observed errors 1718a  100 
a Because of multiple coding, the total of observed errors exceeds the number of incorrect responses (i.e. n = 1532). In 

total we had 13 coding categories (including combinations of error types); the six most frequently coded categories 

were C, CM, CT, M, ME, and T. 

4.1.1. Observed comprehension errors 

When making comprehension errors, students had problems with understanding the meaning of a 

task. This was because they misunderstood the instruction or a particular keyword, or they had 

difficulties in using the correct information. Errors in selecting information included half of the 

653 comprehension errors and indicate that students had difficulty in distinguishing between 

relevant and irrelevant information provided in the task or in gathering required information 
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which was not provided in the task (see Table 5). 

 

Table 5. Frequencies of sub-types of comprehension errors 

Sub-type of comprehension error n % 

Misunderstanding the instruction 227 35 

Misunderstanding a keyword 100 15 

Error in selecting information 326 50 

Total of observed errors  653  100 

 

Figure 2 shows an example of student work which contains an error in selecting information. The 

student had to solve the Staircase task, which was about finding the height of each step of a 

staircase consisting of 14 steps. 

 

Figure 2. Example of comprehension error 
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The student seemed to have deduced correctly that the height covered by the staircase had to be 

divided by the number of steps. However, he did not divide the total height 252 (cm) by 14. 

Instead, he took the 400 and subtracted 252 from it and then he divided the result of it, which is 

148, by 14. So, the student made a calculation with the given total depth of the staircase, though 

this was irrelevant for solving the task. 

4.1.2. Observed transformation errors 

Within the transformation errors, the most dominant sub-type was using a wrong mathematical 

operation or concept. Of the 723 transformation errors, two thirds belonged to this sub-type (see 

Table 6). 

 

Table 6. Frequencies of sub-types of transformation errors 

Sub-type of transformation error  n  % 

Procedural tendency  90  12 

Taking too much account of the context  56  8 

Wrong mathematical operation/concept  489  68 

Treating a graph as a picture  88  12 

Total of observed errors  723  100 

 

Figure 3 shows the response of a student who made a transformation error. The task was about 

the concept of direct proportion situated in the context of money exchange. The student was 

asked to change 3900 ZAR to Singapore dollars with an exchange rate of 1 SGD = 4.0 ZAR and 

chose the wrong mathematical procedure for solving this task. Instead of dividing 3900 by 4.0, 

the student multiplied 3900 by 4.0. 
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Figure 3. Example of transformation error 

4.1.3. Observed mathematical processing errors 

Mathematical processing errors correspond to students’ failure in carrying out mathematical 

procedures (for an overview of these errors, see Table 3). This type of errors is mostly dependent 

on the mathematical topic addressed in a task. For example, errors in interpreting a graph do not 

occur when there is no graph in the task. Consequently, we calculated the frequencies of the sub-

types of mathematical processing errors only for the related tasks, i.e. tasks in which such errors 

may occur (see Table 7). 
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Table 7. Frequencies of sub-types of mathematical processing errors 

Sub-type of 

mathematical processing error 

Related tasks 
All errors in 

related tasks 

Mathematical 

processing errors in 

related tasks 

n n n % 

Algebraic error  8  243  33  14 

Arithmetical error  20  956  94  10 

Error in interpreting graph  6  155  43  28 

Measurement error  1  74  15  20 

Error related to improper use of scale  1  177  49  28 

Unfinished answer  26  1125  79  7 

 

An example of a mathematical processing error is shown in Figure 4. The task is about finding a 

man’s pace length (P) by using the formula 140=
P
n  in which n, the number of steps per minute, 

is given. The student correctly substituted the given information into the formula and came to 

14070
=

P
. However, he took 140 and subtracted 70 instead of dividing 70 by 140. This response 

indicates that the student had difficulty to work with an equation in which the unknown value 

was the divisor and the dividend is smaller than the quotient. 

4.1.4. Observed encoding errors 

Encoding errors were not divided in sub-types. They comprise all errors that have to do with the 

students’ inability to interpret a mathematical answer as a solution that fits to the real-world context 

of a task. As said only 3% of the total errors belonged to this category. The response of the student in 

Figure 4, discussed in the previous section, also contains an encoding error. His answer of 70 is, 

within the context of this task, an answer that does not make sense. A human’s pace length of 70 

meter is a rather unrealistic answer. 
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Figure 4. Example of mathematical processing error and encoding error 

4.2. The relation between the types of errors and the types of tasks 

In agreement with the PISA findings (OECD, 2009a), we found that the reproduction tasks were 

the easiest for the students, whereas the tasks with a higher cognitive demand, the connection 

and the reflection tasks, had a higher percentage of completely wrong answers (which means no 

credit) (see Figure 5). 
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Figure 5. Percentage of full credit, partial credit, no credit, and missing response per task type 

 

To investigate the relation between the error types and the tasks types we performed a chi-square 

test of independence based on the six most frequently coded error categories (see the note in 

Table 4). The test showed that there was a significant relation (χ2 (10, N = 1393) = 91.385, 

p < .001). Furthermore, we found a moderate association between the error types and the types of 

tasks (Phi coefficient = .256; Cramer’s V = .181). 

When examining the proportion of error types within every task type, we found that in 

the reproduction tasks, mostly comprehension errors (37%) and transformation errors (34%) 

were made (see Table 8). Also in the connection tasks students made mostly comprehension 

errors (41%) and transformation errors (43%). However, in the reflection tasks mostly 

transformation errors (66%) were made. Furthermore, the analysis revealed that out of the three 

types of tasks the connection tasks had the highest average number of errors per task. 
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Table 8. Error types within task type 

Type of task 
Tasks 

n 

Incorrect 
responses 

  na 

Compre-
hension  

error 

Transfor-
mation 
error 

Mathem. 
Processing 

error 

Encoding 
error Total errors 

     n  %       n    %      n     %   n  %  n   %a 

average 
number 

of 
errors 

per task 
Reproduction  15  518  211  37 194 34  136  24  23  4 564 99 38 

Connection  15  852  404  41 424 43  140  14  28  3 996 101 66 

Reflection  4  162  38  24 105 66  15  9  0  0 158 99 40 

Total  34  1532  653  723   291   51  1718b   

a Because of rounding off, the total percentages are not equal to 100% 
b Because of multiple coding, the total errors exceeds the total number of incorrect responses  

4.3. The relation between the types of errors, the types of tasks, and the students’ 

performance level 

When testing whether students on different performance levels differed with respect to the error 

types they made, we found, for all task types together, that the low performing students (Level 1 

and Level 2) made more transformation errors than the high performing students (Level 3 and 

Level 4) (see Figure 6)3. For the mathematical processing errors the pattern was opposite. Here 

we found more errors in the high performing students than in the low performing students. With 

respect to the comprehension errors there was not such a difference. The low and high 

performing students made about the same amount of comprehension errors. 
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Figure 6. Types of error in all tasks for different performance levels 

 

A nearly similar pattern of error type and performance level was also observed when we zoomed 

in on the connection tasks (see Figure 7). 

 

Figure 7. Types of errors in connection tasks for different performance levels 

 

For the reproduction tasks (see Figure 8) the pattern was also quite comparable. The only difference 

was that the high performing students made less comprehension errors than the low performing 

students. 
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Figure 8. Types of errors in reproduction tasks for different performance levels 

 

For the reflection tasks we found that the high performing students made more mathematical 

processing errors than the low performing students (see Figure 9). For the other error types, we did 

not found remarkable differences across student performance levels. 

 
Figure 9. Types of errors in reflection tasks for different performance levels 

5. Conclusions and discussion 

The present was study aimed at getting a better understanding of students’ errors when solving 

context-based mathematics tasks. Figure 10 summarizes our findings regarding the types of errors 

Indonesian nine- and ten-graders made when solving these tasks. Out of the four types of errors 

that were derived from Newman (1977, 1983), we found that comprehension and transformation 

errors were most dominant and that students made less errors in mathematical processing and in 

the interpretation of the mathematical solution in terms of the original real-world situation. This 
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implies that the students in our sample mostly experienced difficulties in the early stages of solving 

context-based mathematics tasks as described by Blum and Leiss (cited in Maass, 2010) and PISA 

(OECD, 2003b), i.e. comprehending a real-world problem and transforming it into a mathematical 

problem. 

 
Figure 10. Summary of research findings 

 

Furthermore, within the category of comprehension errors our analysis revealed that most students 

were unable to select relevant information. Students tended to use all numbers given in the text 
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without considering their relevance to solving the task. This finding provides a new perspective on 

students’ errors in understanding real-world tasks because previous studies (Bernardo, 1999; 

Cummins et al., 1988) mainly concerned students’ errors in relation to the language used in the 

presentation of the task. For example, they found that students had difficulties to understand the 

mathematical connotation of particular words. 

The above findings suggest that focusing on the early stages of modeling process or 

mathematization might be an important key to improve students’ performance on context-based 

tasks. In particular for comprehending a real-world problem, much attention should be given to 

tasks with lacking or superfluous information in which students have to use their daily-life 

knowledge or have to select the information that is relevant to solve a particular task. 

A further focus of our study was the relation between the type of tasks and the types of 

students’ errors. In agreement with the PISA findings (OECD, 2009a) we found that the 

cognitive demands of the tasks are an important factor influencing the difficulty level of context-

based tasks. Because we did not only look at the correctness of the answers but also to the errors 

made by the students, we could reveal that most errors were not made in the reflection tasks, i.e. 

the tasks with the highest cognitive demand, but in the connection tasks. It seems as if these tasks 

are most vulnerable for mistakes. Furthermore, our analysis revealed that in the reflections tasks 

students made less comprehension errors than in the connection tasks and the reproduction tasks. 

One possible reason might be that most reflection tasks used in our study did not provide either 

more or less information than needed to solve the task. Consequently, students in our study did 

hardly have to deal with selecting relevant information. 

Regarding the relation between the types of errors and the student performance level, we 

found that generally the low performing students made more comprehension errors and 

transformation errors than the high performing students. For the mathematical processing errors 

the opposite was found. The high performing students made more mathematical processing 

errors than the low performing students. A possible explanation for this is that low performing 

students, in contrast to high performing students, might get stuck in the first two stages of 

solving context-based mathematics tasks and therefore are not arriving at the stage of carrying 

out mathematical procedures. These findings confirm Newman’s (1977) argument that the error 

types might have a hierarchical structure: failures on a particular step of solving a task prevents a 

student from progressing to the next step. 
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In sum, our study gave a better insight into the errors students make when solving context-

based tasks and provided us with indications for improving their achievement. Our results signify 

that paying more attention to comprehending a task, in particular selecting relevant data, and to 

transforming a task, which means identifying an adequate mathematical procedure, both might 

improve low performing students’ ability to solve context-based tasks. For the high performing 

students, our results show that they may benefit from paying more attention to performing 

mathematical procedures. 

However, when making use of the findings of our study this should be done with 

prudence, because our study clearly has some limitations that need to be taken into account. 

What we found in this Indonesian sample does not necessarily apply to students in other 

countries with different educational practices. In addition, the classification of task types – 

reproduction, connection and reflection – as determined in the PISA study might not always be 

experienced by the students in a similar way. For example, whether a reproduction task is a 

reproduction task for the students also depends on their prior knowledge and experiences. For 

instance, as described by Kolovou, Van den Heuvel-Panhuizen, and Bakker (2009), students who 

have not learned algebra cannot use a routine algebraic procedure to split a number into several 

successive numbers (such as splitting 51 into 16, 17, and 18). Instead, they might use an informal 

reasoning strategy with trial-and-error to solve it. In this case, for these students the task is a 

connection task, whereas for students who have learned algebra it might be a reproduction task.  

Notwithstanding the aforementioned limitations, the results of our study provide a basis 

for further research into the possible causes of students’ difficulties in solving context-based 

mathematics tasks. For finding causes of the difficulties that students encounter, in addition to 

analyzing students’ errors, it is also essential to examine what opportunities-to-learn students are 

offered in solving these kinds of tasks. Investigating these learning opportunities will be our next 

step in the CoMTI project. 

 

Notes 

1. In PISA (see OECD, 2003b, p. 52) a ‘mathematics unit’ consists of one or more questions 

which can be answered independently. These questions are based on the same context which is 

generally presented by a written description and a graphic or another representation. 
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2. For example, of the 33 provinces in Indonesia the province of Yogyakarta occupied the 6th 

place in the national examination in the academic year of 2007/2008 (Mardapi & Kartowagiran, 

2009). 

3. The diagram in Figure 6 (and similarly in Figure 7, Figure 8, and Figure 9) can be read as 

follows: the students at Level 1 gave in total 541 incorrect responses of which 45% contained 

comprehension errors, 47% transformation errors, 15% mathematical processing errors, and 5% 

encoding errors. Because of multiple coding, the total percentage exceeds 100%. 
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