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" .ABJSTRAICT o

A common type of observational study compares population rates in several

regions having differing policies in an effort to assess the effects of those

policies. In many studies, particularly in public health and epidemiology,

age-adjusted rates are regressed on predictor variables to obtain a covariance

adjusted estimate of effectl we show that this estimate is generally biased

for the appropriate regression coefficient. The analysis of crude rates with

age as a covariate can, under familiar models, lead to unbiased estimates, and

therefore can be preferrable. Several other regression methods are also

considered. ,-
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1.

DIFFICULTIES WITH REGRESSION ANALYSES OF AGE-ADJUSTED RATES

Paul R. Rosenbaum* and Donald B. Rubin**

1. Introduction: A Common Type of Observational Study

A common and inexpensive type of observational study uses previously

collected population data, such as census data, to assess the effects of

policies which are specific to certain counties, states or nations. An

example is the comparison of motor vehicle mortality rates in states with

and without required automobile inspection, (Fuchs and Leveson 19671

Colton and Buxbaum 1968). Note that in this example, all people living

in the same state are subject to the same law.

A related though distinct type of observational study involves an

exposure or treatment that is more prevalent in some states than in

otherst the relationship between the extent of exposure and the outcome

is studied in an effort to assess the effects of exposure. Examples

include (a) studies which examine site-specific cancer mortality rates in

various counties and their relationship to environmental factors in these

counties (e.g., Blair, Fraumeni, and Mason 1980) and (b) studies of the

socioeconomic correlates of mortality (e.g., Kitagawa and Hauser 1973).

Our discussion here is relevant to both types of studies, and

demonstrates that standard analyses, such as those in the above

references, are generally inappropriate. The problem arise, because the

*-Departments of Statistics and Human Oncology, University of Wisconsin-
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**Mathematics Research Center, University of Wisconsin-Madison.

Sponsored in part by the United States Army under Contract No. DAAG29-S0-C-
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outcome variables used in those analyses, such as death rates in various

states, have been age adjusted, whereas the predictor variables have not

been age adjusted. The use of crude state death rates as the outcome

variable with crude covariates and age as predictors can avoid the

problem, at least under some simple linear models. The use of age-

specific rates as the outcome variable is generally inappropriate unless

age-specific predictors are used.

2. & Motivating Simple Case: Age Adiustment By Regression

Suppose we wish to estimate the regression coefficient YXOX 2

of Y on XI in the multiple regression with two predictors, XI and

X2 • It is well known that the least squares estimate of this coefficient

may be found by, first, regressing Y on X2 and calculating the

residuals Y*X2 , then regressing X, on X2 and calculating the

residuals XsI X2' and finally calculating the estimate of Byx I 2  as

the estimated slope in the regression of the first set of residuals

YOX2 on the second X11X2. An example is given by Mosteller and Tukey

(1977, p.271)1 the formal argument is given by Seber (1977, p.65). This

process of Osweeping out" one variable at a time forms the basis for

several of the algorithms used for multiple regression, particularly the

Gaussian pivoting in Beaton's sweep operator (Dempster 1969, p.62).

We can now give a rough description of the difficulty with the

regression analysis of age-adjusted ratesi the argument is formalized in

the next section. Suppose that Y is an age and state specific

mortality rate, that X2 is the corresponding age, and that Xi is any

variable that varies with both age and state, say X, - per capita

personal income. Roughly speaking, Y.1 2  is the age-adjusted

_____ _l__......-2-



mortality. To find the least squares estimate of A we should

regress age-adjusted mortality Y*X2 on age-adjusted income X,1 oX2 .

However, that is not what is often mistakenly donel rather age-adjusted

mortality YoX 2 is regressed on income X1 , giving a biased estimate

unless income X, and age X2 are orthogonal. The point is: if we

adjust mortality for age, we must adjust the covariates for age as well.

Although age-adjusted mortality rates are commonly available, it is

uncommon to find covariates such as income that have been age adjusted

before tabulation. If the available data consist of adjusted mortality

rates and unadjusted per capita income for each state, we cannot

generally adjust income for age, and therefore cannot determine the

partial regression coefficient of mortality on income adjusting for age.

An alternative solution would be to regress adjusted mortality

Y.X2 on crude per capita income XI and crude age X2, when the age

information, X21 is available. It is easily shown that the coefficient

of income in this regression is the usual unbiased least squares estimate

of 0 Y .x2O Unfortunately this procedure is not generally applicable to

age-adjusted rates, for reasons described in 15 below.

3. Regression Analysis of Adjusted Rates

Let Yasi be the response of the ith person with age a in state

s, for i - 1,2 ,..°,nas. For purposes of this discussion, we assume the

following linear model for ¥asi which includes polynomial terms in age:

for i 1,2,...,nas, a 1,2,°..,A a 1,2,..(,)

-3- i



where

Zasi 1 if individual i was exposed to the treatment and

0 otherwise,

X is a vector of characteristics of state s (e.g., minimum

driving age in the state)

W ani is a vector of characteristics of the individual (eg, income,

marital status), excluding features of the state as a whole

since these are included in X, but possibly including

characteristics which are constant for all members of certain

counties (e.g.1 source of drinking waters city supplied vs.

private well),

001 02 ...'OJ' At £ are parameters, and D is short-hand for the

age information and all the Z's, XVs and Wts. The polynomial in age

can be replaced by other linear structures such as an indicator variable

for each age or age category, a polynomial in the logarithm or

exponential of age, or a combination of a polynomial in age and indicator

variables for extreme age categories.

If Yasi is binary, the linear logistic model (Cox 1970) is more

attractive than the linear model for most purposes; however, the logit

model does not lead to straightforward conclusions about the common

practice of linearly regressing adjusted rates on predictors, nor would

use of the logit model eliminate the problems that we describe which

result from the use of age-adjusted rates.

-4-
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The age and state specific mean response (or rate if Y 5 is s
n

I as
binary) is 4+ as* By (1), the expectation of Y9s+ is

i(s D )  a +  1 0Ja + 6  + TX + +  (2)
as+ ji-i j As ^% -+

where Zas +  and WAs +  are averages of the Zas i and the V ,

respectively. Clearly, the parameters of model (1) may be estimated from

a suitable weighted regression of the age and state specific rates Yas+

on the age and state specific averages in (2). For example, if the

conditional variances given D of the Yasi's are all equal to a common

value a2, and if the Yasi's are conditionaly uncorrelated, the

appropriate weight for Yas+ in regression model (2) is nas* Other

choices for weights are described by Pocock, Cook and Beresford (1981).

Now consider the crude unadjusted rates for state s, namely

Y +8+ na as as+)/( nas), with expectations
a a

J1

where Z ,, and W are averages of .asil si over all individuals

in state s, and mej - (I nasaj /(L nas) is the jth moment of age in
a a

state s. If the first J moments of the age distribution are available

from each state, then the parameters of model (1) may be estimated by a

suitable weighted regression of the crude rates i+,+ on the crude

predictors (m j I,..., 1 Z+.+,Xs , + for the states. For

example, under the simple assumption of the previous paragraph, the

weight for Y ++ would be the population of state s, namely I nas
a



In practice, the moment* msj of age distributions may be

approximated from frequency tabulations of age distributions for each

state, using, for example, the DI algorithm of Dempster, Laird and Rubin

(1977) to correct for grouping. If a linear structure other than a

polynomial is used for age in (1), then the corresponding averages would

appear in (3). For example, if indicators are used for each age

category, then the proportion of individuals in each age category in each

state, p na/I na.' would appear in (3).
a

Now consider the age-adjusted rates

Y+B+ a'as+

where fa is the fraction of the reference population with age a. Note

that the sam weights fa are applied in all states. For example, the

total population age distribution might be used as weights, so that

fa n a+/n ++ NoW, v

JT

MY ID) + 1 0 hf a + AIfe + T + If
++ J=1 a a aas o Z a a-aor

= a + I X 5n+ AZ + TX +I

J-1i +8+48

=- g+AZ + YX + I W 4
+8+ I' '-+(4

say, where at is the thmoment of age in the reference population,

and Z+B and W+, are the age-adjusted averages of Z and W for

state s. Note that the constant a includes the age component, E5 a ,
i J

which is the same for all statesi this would be true no matter what

linear structure is assumed in (1) for the regression on age.
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Equation (4) formally describes the difficulty, mentioned in the

last section, that is encountered when age-adjusted rates are regressed

on predictors. To estimate the parameters of the model (1), we must

regress the adjusted rates Y on the age-adjusted treatment indicator

Z+s+, the age-adjusted covariates N,+,+, and X . Note that there is

no difficulty when both (a) treatment, Zasi, is constant within a

state, as is the case when Z represents a state law, and (b) the only

covariates involved are the descriptors X of the state as a whole,

such as other state laws or policies. However, there is a difficulty if

there are covariates Vsi such as personal income that describe

individuals within a state, or when there are covariates such as

pollution levels that describe areas within a state, because in such

cases age-adjusted income or pollution levels are required to fit

equation (4), and these quantities are rarely tabulated in official

publications. Moreover, the difficulty also occurs if treatment,

Zasi, varies within a state, for in such cases, the age-adjusted rate

Y +*+ should be regressed on age-adjusted exposure Z+B+

Although age-specific death rates, Yas+' may be available, it is

often difficult to obtain age-specific predictors (Z as+' Xs Wgias+). ,*

a result, another common practice is to regress age-specific rates Yas+

on crude predictors ( X, i.+). An example is a study of the

association in 18 countries between wine consumption and cardiovascular

mortality among men and women aged 55 to 64 (St. Lager, Cochrane, and

Moore 1979). However, inspection of equation (2) shows that this

procedure is generally inappropriate, unless the age-specific predictors

(Z , s ,a.) equal the crude predictors (; , , [

as+ -s -as+. -,B , Es .... .- 7- .



4. An Zxample

This section presents an example to illustrate the problem described

in 3. The data used are a mixture of real and artificial data, because

the true values for the age-adjusted covariates were not available, and

we wished to dramatize possible effects. As a result, although the

studies from which the data were drawn may have been affected by the

problems we describe, our numerical results do not necessarily contradict

the qualitative conclusions of those studies.

Table 1 contains (a) age-adjusted motor vehicle accident mortality

rates (Y ) for white males in 1960 for the 48 contiguous states of
+8+

the United States, (b) a variable + indicating whether the state
+&+

requires motor vehicle inspections, (c) the percent of the state living

in urban areas W+s+ , and (d) the (artificial) age-adjusted percent of

urbanization, W+,+. Since the state law affects everyone in a state, the

inspection indicator is not altered by age-adjustment, i.e., Z ++ a - +"

Presumably, an individual's risk of accident mortality (e.g.,

prob(Yasi - 1), say), depends less on the statewide degree of

urbanization W+z+  than on whether the individual himself lives in an

urbanized area (i.e., whether Wasi - 1, say). For example, an

individual living outside Massena, New York, far from Manhattan, may be

no more affected by the high percent of urbanization in New York State

than are residents of, say, Vermont. If the age distributions in urban

and rural areas differ, then W+s+ and W+8+ will generally differ,

generally leading to a biased estimate of the coefficient of automobile

inspection z when adjusted mortality is regressed on Z

and crude urbanization WV--

.. ........- -4... II ..



TABLE 1. Data For The Example: Mortality and Motor Vehicle Inspections

State Age-adjusted Inspection Percent Age-adjusted
Motor Vehicle State* Urban** Percent

Mortality* (0 - yes) Urban***
.(0 =no)

Y+s+ Z+5+ " +8+ W+s+ W+5+

1 57.5 0. 26.7 26.7

2 57.7 0. 50.1 50.1

3 56.2 0. 13.4 13.4

4 47.7 0. 35.2 35.2

5 21.0 0. 34.4 34.4

6 40.9 0. 25.6 25.6

7 51.1 0. 24.1 24.1

8 52.6 0. .0 .0

9 31.3 0. 42.1 42.1

10 47.7 0. 30.0 30.0

11 43.0 0. 22.0 22.0

12 44.6 0. 17.2 17.2

13 53.8 0. 16.0 16.0

14 49.0 0. 32.5 32.5

15 30.3 0. 30.3 30.3

16 40.7 0. 32.9 32.9

17 41.2 0. 27.1 27.1

18 66.5 0. 6.6 6.6

19 47.9 0. 32.4 32.4

20 62.4 0. 16.0 16.0

21 39.8 0. 30.5 30.5

22 95.3 0. 40.6 40.6

23 53.0 0. 16.0 16.0

24 55.5 0. 7.4 7.4

25 38.0 0. 35.2 35.2

26 49.9 0. 27.8 27.8

27 50.3 0. 24.0 24.0

28 55.4 0. 9.6 9.6
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State Age-adjusted Inspection Percent Age-adjusted

Motor Vehicle State* Urban** Percent
Mortality* (1 - yes) Urban***

(0 -no)
yz -z w W

Y+s4 +8+ +8+ +3+ +8+

29 62.4 0. 9.6 9.6

30 45.0 0. 25.5 25.5

31 35.5 0. 31.1 31.1

32 47.6 0. 28.4 28.4

33 96.0 0. .0 .0

34 49.9 1. 37.4 67.4

35 37.5 1. 21.5 51.5

36 29.6 1. 14.2 44.2

37 21.0 1. 34.7 64.7

38 37.4 1. 14.5 44.5

39 20.9 1. 18.7 48.7

40 79.1 1. 21.2 51.2

41 23.2 1. 55.8 85.8

42 28.1 1. 31.1 61.1

43 13.4 1. 33.6 63.6

44 47.7 1. 46.3 76.3

45 42.4 1. 35.3 65.3

46 51.4 1. .0 30.0

47 35.7 1. 25.1 55.1

48 42.' 1. 13.5 42.5

Frcm Colton and Buxbaum (1968). Rate is for white males in 1960,

adjusted to the total population age distribution in 1960.

** From I itagawa and Hauser (1973)

Artificial. ,+ - +*+ + 30Z~s+"
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Table 2 sumarizes the results of (a) regressing Y+. on

and w+*+ and (b) regressing Y+,+ on n++ and W+,+. For purposes of

illustration only, no attention has been paid to the important questions

A of weighting the rates (Pocock, Cook and Beresford 1981) or to regression

diagnostics (Draper and Smith 1966, chapter 31 Seber 1977, section 6.6).

By construction of the age-adjusted urbanization variable, the two

estimates of the coefficient of inspection differ markedly: with age-

adjusted covariates, the coefficient is positivel with unadjusted

covariates, the coefficient is significantly negative.

-11- .



1?ABIZ 2. Results Of Two Regressions, least squaares estimate and 95%

confidence intervals

(a) Regression With (b) Regression with
Parameter Age-adjusted Covariates Unadjusted Covariates

a60.54 60.54

(50.77, 70.31) (50.77, 70.31)

A .27 -12.14

(-14.20, 14.74) (-21.38, -2.89)

-. 41 -. 41

(-.76, -. 07) (-.76, -. 07)



5. IRTCHNICAL ISSES

5.1 A Formal Zx~ression for the Bias of the Estimator of A.

we now obtain an expression for the bias that results from

regressing adjusted mortality Y+, on crude predictors Z,..

and W+,+ Let

I XT T i xT --T
-1 1 +1+ +1+ '-:+1 +'-41 I+

W;2 and xT I Z' +2+ !2 -+ +2+ -+2+ -;2+

-TT --T

L ++ W + Z+S+ '45;+ -;+

T a,& T T -T.

* andlet ~caA, ,&). Moreover, let mY +, +2 1 ' 5 +

For any full rank matrix 2. that will be used to weight the adjusted

mortality rates, the estimator a - (V 2W) VW thtrslsfo

regressing adjusted Y on adjusted covariates z X W, is
i+5+ +9 a +

unbiased for 0 since R(YID) - '70. However, the estimator

(-T -1-T that results from regressing adjusted Y + on crude

covariates X1+I Es has bias

E(!< ID) - -T - -1-T-

where is the identity matrix. Let tF (t 1 #.*to) be the second

T' - -1-T
row of (V W) X W the bias in the estimator of A from is

t T0 - A, and so, as we would expect, the bias in the estimator of A

is affected by all the variables.

if Zasi is constant within each state, as in the case of a state

law, then ti is the mean difference, in the it column of V,

-13-



between states with the law (Z+ 1) and states without the law

(Z 0) after covariance adjustment for x and i o

+8+ 
48+ Fo

instance, in the example in 14, t 3  is the mean difference between

inspection and noninspection states in age-adjusted urbanization after

covariance adjustment f or crude urbanization.

5.*2 Proportion of an Alternative Estimator

An alternative estimator, mentioned at the end of 12, involves

regressing adjusted mortality Y~4  on crude predictors Z 0 1  P

and age. Age may be represented either by moments of the age

distributins within the states, moor by the proportions as o

people in state s with age a. From (4) we have

3(1 8ID) CL+haZ + TX+ ?W- + a(Z - Z+6+ +5 S++5+ ++

(6)

-*5+'as+

where the p as's have zero coefficients since the expectation in (4),

which is conditional on all the age information in D, does not depend

on age. If the differences (Z + - Z 3 ) and (W,,, - w+,,) can be

written as linear functions of the ;as too- then (6) can be rewritten

BiCY ID) M + az+,+ I ^Xs+i++ + taa(7)

for some parameters a and #all a = 1*2,...,&g in this case, the

alternative estimator leads to unbiased estimates of A.

The differences (Z +* - Z ,+ and (.+,+5 - !++) will indeed be

linear functions of the proportions aI if the ages-specific regressors

-14-



ks+ and is+ can be written as the sun of an age and a state

component, i.e. if

Z " ma + r

and (8)

!as+ 2a Is

for some scalars ma and r., and some vectors and v , for all

a and a. if Was +  is average income in state s at age a, and (8)

is true, then the difference in average income between New York and

Virginia, say, is the same at all ages. To see that (8) implies the

required linear dependence, note that

i _~~ - . as €  - a)

z +* ( 8, As +  (f a Pas+ )  9a

(ma +r)(f. -p )s (9)4

a a a a+

since I fa I Pas+ e 1. As required, (9) is a linear function of the
a a

s. Analagous arguments apply to the i a.

The condition that (Z - z ) and ( + - - ) must be
+5+ +&+ t~s+ ,+t)mstb

linear functions of the proportions ;as+ is quite restrictive. Even

random deviations from linear dependence would constitute errors in the

predictor variables, leading to biased estimates by analogy with standard

arguments (e.g. Beber 1977, p.155; Johnston 1972, p.281).

-13-



6. Summary

We have considered the following seven procedures:

(a) Regression of the responses of individuals, Yasil on the age of

individuals and the predictors (Zasi, X s, W as ) describing

individuals.

(b) weighted regression of the age-specific response rates Yas+ on the

age-specific predictor averages (za X, W )

(c) Weighted regression of the crude response rates on the crude

predictor averages ( Z+s+ , WV++).

(d) weighted regression of the age-adjusted rates Y ++ on the age-

adjusted predictors (Z+ s + ' X wB, W-+).

(e) Weighted regression of age-adjusted rates + on age and crude
Y+8+

predictors ( i+a+f X+.+' is+ 1 "

(f) Weighted regression of age-adjusted rates Y ++ on crude predictors

(g) Weighted regression of age-specific rates Yas+ on crude predictors

Under the simple linear model for (a), that is equation (1), methods

(a) through (d) yield unbiased estimates of the parameters of the model;

however, the data required for methods (a), (b), and (d) are often

unavailable in official tabulations. The crude rates required for (c)

are available in some but not all official tabulations: for example,

homicide death rates are rarely age-adjusted, whereas, coronary disease

mortality rates are usually age-adjusted. Method (e) can yield unbiased

estimates under restrictive assumptions defined in 15.2. Methods (f) and

-16-



(9), although popular techniques in practice, do not generally lead to

unbiased estimates under the linear model for (a).
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