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Abstract. This paper consists of three parts. First, various types of 
Diffie-Hellman oracles for a cyclic group G and subgroups of G are de- 
fined and their equivalence is proved. In particular, the security of using a 
subgroup of G instead of G in the Diffie-Hellman protocol is investigated. 
Second, we derive several new conditions for the polynomial-time equiv- 
alence of breaking the Diffie-Hellman protocol and computing discrete 
logarithms in G which extend former results by den Boer and Maurer. 
Finally, efficient constructions of Diffie-Hellman groups with provable 
equivalence are described. 
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1 Introduction 

Let G be a cyclic group with generator g. The Diffie-Hellman (DH) problem [6] 
is, for given g' and g", to compute 9"'. A possible group for the DH protocol [6] 
is Z;, where p is a prime number, or an elliptic curve over a finite field [17],[9]. 

The DH problem is a t  most as difficult as  computing discrete logarithms (DL) 
in G with respect to the base g. By analyzing DH-oracles and their application 
for computing discrete logarithms we take a number of steps towards proving 
that the two problems are computationally equivalent. At CRYPTO '94, Maurer 
showed that a sufficient condition for such an equivalence is that for all large 
prime factors p of /GI, a cyclic elliptic curve over GF@) with smooth order 
can be constructed. In this paper the concept of general auxiliary groups is 
introduced and i t  is shown that non-cyclic elliptic curves over GF@) or over an 
extension field of G F ( p ) ,  certain subgroups of the multiplicative group of such 
an extension field, and the Jacobian of a hyperelliptic curve are also suitable 
auxiliary groups. We give an extended list of expressions in p ,  including for 
example all the cyclotomic polynomials of low degree in p (which include the 
known cases p -  1 due to den Boer [5] and p +  1 due to  Maurer [13]), such that, if 
for every large prime factor p of ]GI one of the expressions in the list is smooth, 
then breaking the Diffie-Hellman protocol and computing discrete logarithms 
are equivalent for G. 

N. Koblitz (Ed.): Advances in Cryptology - CRYPTO '96, LNCS 1109, pp. 268-282, 1996. 
0 Springer-Verlag Berlin Heidelberg 1996 
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2 
Equivalence 

Various Types of Diffie-Hellman Oracles and Their 

The natural definition of a DH-oracle is the following. 

Definition 1 A DH-oracle for a group G with respect to a given generator g 
takes as inputs two elements g' and g" and returns (without computational cost) 
the element g"". 

In the following we show that certain apparently weaker oracles are almost as 
strong as a DH-oracle. 

2.1 E-DH-Oracles 

Definition 2 For E > 0, an E-DH-oracle is a probabilistic oracle which returns 
for an input (g", g") the correct answer g"' with probability at  least E ,  provided 
the input is uniformly distributed over G x G. The error of the oracle's answer 
gt to  the input (gu ,gu )  is defined as t - uu (mod IGl). A frunslation-invariant 
E-DH-oracle is an E-DH-oracle whose distribution of the error is the same for 
every input (gu ,g " ) .  

We assume that the given 5-DH-oracle is time-invariant, i.e., the error distri- 
bution can only depend on the input but remains the same when the oracle is 
called several times. The following lemma states that any E-DH-oracle can be 
made translation-invariant. The proof idea is to randomize the input and was 
presented in [13]. 

Lemma 1 A71 E-DH-oracle for u cyclic group G can bc transformed into a 
translation-invariant E-DH-oracle.. One call of the latter requires one call t o  the 
former  and O(1og ]GI) group operations. 

Proof. Given the group elements a = g' and b = g" we can randomize the input 
by choosing T and s at random from [O, JGJ - 11, providing the oracle with a' = a,gT 
and b' = bg5 arid multiplying the oracle's answer g('+T)(w+5)+f = 9 uvfrzJ+su+rs+* 

with (cL-')' . ( b - l ) T  . g-" = g-(rv+su+rs) to  obtain guu f t .  Note that a' and b' 
are random group elements and statistically independent of a and b. The E-DH- 
oracle with randomized input is thus a translatiori-invariant E-DH-oracle. 0 

Remark: If IGl is unknown the input can also be randomized, where r and 
s are chosen at random from a larger interval. The resulting E-DH-oracle is then 
"almost translation-invariant" and applicable in the proof of Theorem 1 if the 
interval is of size at least 2 . lGl/(c2 . min{s,O.l}) (this is the reason for the 
great,er number of group operat,ions for this case in Theorem 1). 

The straight-forward approach to transforming a translation-invariant E-DH- 
oracle into a perfect DH-oracle appears to be to run it U ( ~ / E )  times until it pro- 
duces the correct, answer. However, because the Diffie-Hellman decision problem 
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(that is, for given gu ,  g", and gw, to decide whether g"" = .qw) is difficult, a 
more complicated approach must be used. In a first phase, which is independent 
of the actual input, the oracle's error distribution is determined. In the second 
phase, the oracle is used for a given input to compute the correct solution with 
overwhelming probability. In the case of a symmetric error distribution there can 
be several candidates, and the correct one can be determined similarly t o  the 
detection of the correct root in Lemma 2. A full proof of the following theorem 
is given in [14]. 

Theorem 1 For every cyclic group G with generator g and known order IGI 
and for every j? > 0 there exists a DH-oracle algorithm which makes calls to 
an E-DH-oracle and whose answer is correct with probability at least 1 - 13. The 
number of oracle calls is O ( l o g ( l / P ~ ) / ~ ~ ) .  If the order of G is unknown but all 
the prime factors of /GI are greater than (1 + S ) / E  for some s > 0 ,  then the 
number of required calls to the E-DH-oracle is O(log(l/j?E)/(E2 . min{s, 0.1})2). 
The number of required group operations is log [GI or log([GI/(E2 .min{s, 0.1))) 
times the number of oracle calls, respectively. 

Note that such an oracle is virtually equivalent to  a perfect DH-oracle for 
our application because the correctness of the output of a probabilistic discrete 
logarithm algorithm can be tested, and because only a polynomially bounded 
number of oracle calls is required for the computation of a discrete logarithm. 

Remark: Examples of E-DH-oracles which can not be transformed into per- 
fect oracles with our method when lGI is unknown are those which answer the 
input (gu,g")  by one of the values guV+i lGI /Z,  where 2 5 1 / ~  is a factor of lGl, 
and where all the values of z between 0 and z - 1 are equally likely. If JGI is known, 
the correct one of the z candidates can be found by O((1og 
group operations. 

+log 

2.2 The Squaring Oracle 

We call an oracle that answers the input g u  by g("2 )  (where u and u2 are in ZIG, )  
a squarzng-DH-oracle. Note that this is not an E-DH-oracle for any constant 
E > 0 because only one out of IGI inputs is answered correctly, and this fraction 
vanishes with increasing IGI. 

Let g" and gv be given. One can compute gzr+' = y" . y" and 

When given [GI, square roots in G can efficiently be computed. If IGI is odd, 
the square root is unique, but if [GI is even, there exist two square roots, 9"" 
and gu"+lG1/2, which can be computed by a method of Massey [12] (see also 
Lemma 2). In this case, the correct square root g"" is determined analogously to  
the detection of the correct root in the proof of Lemma 2 by computing u and 
u modulo the maximal power of 2 dividing /GI. Hence a squaring-DH-oracle is 
equally powerful as a perfect DH-oracle in a group G whose order is known. 
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A probabilistic squaring-DH-oracle for a group with known order that  an- 
swers correctly only with probability E (&-squaring-DH-oracle) can be trans- 
formed into a translation-invariant ~~-DH-orac le  by randomizing the inputs in 
(1). The required complexity is O((1og lG1)2) group operations per call. This 
proves the following theorem. 

Theorem 2 For every cyclic group G with generator g and known order /GI 
and for every ,B > 0 there exists a DH-oracle algorithm which makes calls t o  an  
E-squaring-DH-oracle and whose answer is correct with probability at least 1 - 0. 
The number of oracle calls is O ( l o g ( l / p ~ ~ ) / ~ ' ~ ) .  The number of required group 
operations is (log lG1)2 times the number of oracle calls. 

2.3 The Security of Subgroups 

In this section we assume that the order of G is known. We address the question 
whether a subgroup is more or less secure than the entire group with respect to 
the DH protocol. Although the statement of Corollary 5 below is very intuitive 
(and an analogous result holds trivially for the computation of discrete loga- 
rithms), the proofs of Theorems 3 and 4 are not trivial. First we state that a 
subgroup of G with smooth index is at most as secure as G. 

Theorem 3 Let G be a cyclic group with generator g ,  and let B be a smoothness 
bound, polynomial in log [GI. For every B-smooth divisor r of IGI there exists a 
DH-oracle algorithm for  the group (9') which makes one call to the DH-oracle 
for (9) and uses a polynomial number of g7r1up operations per call. 

We first prove the following lemma on the computation of roots in cyclic groups. 

Lemma 2 Let G be a cyclic group with generator g ,  and let p be a prime divisor 
of [GI. One of the p-th roots of a p-th power in G can be computed in time 
O((logIGl)2 fploglGI) .  

Proof. The square root algorithm of Massey [la] can be generalized as follows. 
Let /GI = pls  (where j 2 1 and ( p ,  s )  = l) ,  and let h be a p t h  power in G. By 
the method of Pohlig and Hellman [18] we can compute the remainder k of the 
discrete logarithm of h to the base g with respect to pl .  Note that k is a multiple 
of p because h is a p t h  power. Let d E -.c' (mod p ) .  The element 

is a p t h  root of h. This algorithm requires O((1og + plog IGl) operations 
in G. 0 

We can now prove the theorem. 

Proof of Theorem 3. Let T = n:==, p : ,  and let p:' be the maximal powers di- 
viding IG] for i = 1,. . . , s. The oracle for G answers the input ( g r a , g r b )  by 
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g r 2 a b  - - g p211 1 p?! 'ab IqJe obtain grab - - q P 1  p f ' u b  by computing p,-th roots and 
deciding immediately which of the p ,  different roots is the correct one. For fixed 
a and for some k = 2 jZ - 1 , 2  j ,  - 2, . . . , ft, assume that we have already computed 

21,+1 
g ~ { l  P::;' P:+' P,+,  

where c = y p  . .p;:;l -p:J;" . . . p i f %  I S  explicitly knoun. According to the above 
lemma we can compute the pz-th roots 

d " a b  = gcp:+'nb 
1 

Because a and b can be obtained modulo p:"" directly from gra  and grb  by 
the method of Pohlig and HelIman [18] and c is explicitly known, and because 
k 2 f 2 ,  we can compute cpfab modulo p:%. T47e have j . lGl/p, = 0 (mod pe t )  only 
for j = 0, and the correct root can be determined by computing the discrete log- 
arithms of the candidates modulo p:',  using the Pohlig-Hellman methcd. Finally, 
we obtain grab.  The running time is polynomial in log IG1 if r is B-smooth. 0 

Conversely, in many cases a DH-ora.cle for a subgroup of G or a set of such or- 
a,cles can be transformed into a DH-oracle for the entire group, and the following 
theorem gives a. criterion for when this is the case. The proof is an application of 
our concept of computing with implicit, representations introduced in Section 3.  
Theorem 4 Let G be a cyclic group with generator g and order \GI = n:zl pf', 
and let 13 be a smoothness bound which is polynomial in log /GI. If for certain 
s j  there exist DH-oracles for the subgroups G.7 := ( $ 3 )  ( j  = 1,. . . , t ) ,  and if 
f o r  all p ,  > B there exists j such that pi does not divide s j ,  then there exists 
a polynomial-time DH-oracle algorithm for G with respect to g which calls each 
subgroup oracle at most log /GI/ log B times. 

Proof. Let g" and g u  be given. We compute g"" by using the available oracles for 
subgroups. Let m., := p t ' ,  A[, := lGI/n~i and N, := M,-l (mod mi). For prime 
factors pi _< B? u and u ,  and hence also U I ? ,  can be computed in polynomial time 
modulo mi by the Pohlig-Hellman method [18]. For a prime factor p ,  > B let j 
be such that p ,  does not divide s3. We apply the oracle for G j  to (g'j)" = (g")s)  
and ( 9 " ~ ) ~  to obtain (g"1)" ", where u, I I  and T L .  a.re modulo IG(/s,. Because 
s j  divides A[,, we can compute 

where 11, . 'u is modulo m, . Finally, 9" '' is computable by Chinese remaindering 
with implicitly represented arguments by applying only group operations in G: 

2 

0 

Corollary 5 Consider a group G == (y) a n d  a subgroup H = ( g k )  of G with 
smooth. index k .  The DH problem for  H zs polynomial-time equivalent to the DH 
problem for  G.  
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3 
Problem and Computing Discrete Logarithms 

Conditions for Equivalence Between the Diffie-Hellman 

3.1 Computing with  Implicit Representat ions 

Let G be a cyclic group generated by g for which the prime factorization of 
the order /GI is known, and for which a DH-oracle is given. Let p be a prime 
factor of IGI. Every element y of the field GF(p) corresponds tlo an equivalence 
class of elements of G (consisting of those whose discrete logarithm is congruent 
to y modulo p ) .  Any member a of the equivalence class is called an zmpliczt 
representat ion of y and, conversely, y is called implicitly represented by a. We 
write y ”vf a. The following operations on elements of GF(p)  can be performed 
on their implicit representations, where the result is also obtained only in an 
implicit representation. Let y and z be elements of GF(p) ,  with y “vf a ,  z - b. 
Because y = z if and only if a l G l / p  = blGl/P, equality of two implicitly represented 
elements of GF(p) can be tested by O(log IGl) group operations. firtherrnore 
we have y + z ”vf a . b, yz ”vf DH(a, b ) ,  and -y - a-’ = aIGl-l, and these 
implicit operations in GF(p)  require a single group operation in G ,  a call to  the 
DH-oracle, and O(log /GI) group operations, respectively. 

In order to simplify the notation, we also introduce the notion of a power- 
DH-oracle (PDH,) that computes an implicit representation of the e-th power of 
an implicitly represented element. .4 possible implementation of a PDH,-oracle 
is to  use a (fixed) algorithm for computing powers in a group (e.g. ‘square and 
multiply’) for obtaining an implicit representation of ye,  denoted by PDH,(u), by 
O(1og e) calls to  a normal DH-oracle (remember that y “vf a ) .  In particular we can 
compute inverses of implicitly represented elements because y-l  “vf PDHP-2(a). 
Any computation in GF(p)  can be performed on implicit representations when- 
ever it makes use only of addition, subtraction, multiplication, division and 
equality testing. We call these operations algebraic. 

3.2 Auxiliary Groups 

The next theorem states that for a cyclic group G breaking the DH protocol and 
computing discrete logarithms are polynomial-time equivalent if an appropriate 
auxiliary group defined over the field GF(p) is given for each large prime factor 
p of IGI. First we define two properties of such auxiliary groups. 

Definit ion 3 Let P be a fixed expression, polynomial in logp ,  and let M be a 
fixed constant. A finite (additively written) group H is said to  be defined alge- 
braically over  G F ( p )  if, for some m 5 Ad,  the elements of H can be represented 
as m-tuples of elements of GF(p) and if the group operation in this representa- 
tion can be carried out by at most P algebraic operations in GF(p) .  We say that  
H has the algebraic embedding property if, when gi\-en x E G F ( p ) ,  an element 
c E H can be constructed by at most P algebraic operations in G F [ p )  such that  
z can be computed efficiently when given c. (Typically, 2 is a coordinate of c.) 
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Theorem 6 Let G be a cyclic group with generator g ,  and let B be a smooth- 
ness bound, polynomial in logIGI. Assume that IG/ and its factorization IGI = n:==, p,"' are known, that every prime factor p of IGI greater than B is single and 
that f o r  every such p ,  a finite abelian group H7, with rank r = O(l ) ,  algebraically 
defined over G F ( p )  and with the algebraic embedding property, is given whose 
order iHpl is B-smooth and known or computable an time polynomial in logp. 
Then  breaking the Difie-Hellman protocol for G with respect to g is polynomial- 
t ime equivalent to computing discrete logarithms i n  G to  the base g. 

The complexity of the computation of a discrete logarithm modulo p in G is 
O(M2B'  logplog /GI/ logB) group operations in G ,  O(M2(logp)2) operations i n  
H p  with implicitly represented elements, and O(M2(logp)2 + M logp. B'/ log B )  
explicit operations in H,. 

I n  case of a multiple prime factor p greater than B ,  that is if p' divides IGI 
for  some e > 1, the desired equivalence holds with respect to a DH-oracle f o r  
one of the subgroups ( g d ' p e - l )  (instead of the DH-oracle for  G )  where d . pe-' 
divides JGllp, or if a polynomial-time algorithm for  computing p-th roots in G 
is available. 

The complexities stated in the theorem can be reduced by a time-memory trade- 
off. The use of elliptic curves and subgroups of extension fields as auxiliary groups 
is discussed in the next sections. In [21] it is shown that Jacobians of hyperelliptic 
curves are also suitable auxiliary groups. 

Proof. Let a = ys be a given element of G for which the discrete logarithm s 
should be computed using a DH-oracle for G. MJe assume first that all the large 
prime factors of IGI are single. Let p be such a prime factor. We consider the 
problem of computing the element x of GF(p) such that s = x (mod p )  using 
the auxiliary group H = H,. The basic idea is to embed x into an implicitly 
represented element of H and to compute its explicit representation. 

Using the algebraic embedding property, the implicit representation of a 
group element c in H can be computed such that 5 can efficiently be obtained 
from the explicit coordinates of c. 14'e address the problem of finding c explicitly. 
In the special case where H is cyclic, the following method corresponds to the 
Pohlig-Hellman algorithm [18] with implicitly represented arguments. Let H be 
isomorphic to  Z,, x . . . x ZnP such that n23+1 divides nj for j = 1,. . . , r - 1, 
and let hl,  . . . , h, be such that, H is the internal product of the cyclic sub- 
groups ( h l ) ,  . . . , (hT) ,  i.e., H = (h,) x . . ' x (h,.). (If no generator set for H 
is known it can efficiently be computed by a method based on trial and error 
which is described in [14].) The element c E H has a unique representation 
c = 

We describe the first and second iteration step of an algorithm that computes 
kj modulo the highest power of a fixed prime factor q of IHI dividing n j  for all 
j = 1,. . . , r.  The algorithm uses '11~ ( j  = 1,.  . . , r )  as local variables (initialized 
by vJ t 0). 

For the first step, let a1 be the number of generators hj whose order contains 
the same number of factors q as 71.1. In other words, (n1 /q)hj  is different from 

kjhJ (0 5 kj < nj). 
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the unity e of H exactly for j = 1, . . . , QI.  Because H is algebraically defined 
over G F ( p ) ,  an implicit representation of ( n I / q ) c  can be computed from the 
implicit representation of c by U(1og IHI) operations in H with implicitly repre- 
sented elements. For all ( t l , .  . . , tOl )  E (0,. . . , q  - l }a l ,  we compute (explicitly) 
(nl/q)tlhl + . + (n1/4)talhal, transform the coordinates into implicit repre- 
sentations and compare the points with (n,l/q)c. Equality indicates that the t j  

are congruent to the coefficients k j  modulo q .  We set vj t t, for 1 5 j 5 ~ 1 .  

For the second step, let a2 be the number of points h, whose order contains 
a t  most one factor q less than 721, i.e., (n1/y2)h, # e for j = 1,. . . , a2. The 
(implicit representations of the) points 

are computed for all ( t l ,  ..., tn,) E { O , .  . . , q  - l}"' until equality with the 
implicitly represented point (n1/q2)c holds. Then assign vJ t wjq + t j  for 
j = 1,. . . ,a1 and vJ t t ,  for j = ~1 + l , . .  . ,a2. When this is done up 
to the maximal q-power dividing 721, k, is congruent to  v, modulo the high- 
est, power of q dividing n, for j = 1,. . . , T .  After running the algorithm for 
all primes q dividing IHI, one can compute the coefficients k, modulo nj by 
Chinese remaindering, and x can then be obtained by computing c explicitly. 
The complexity of the computation of 5 is U(m2(logp)2) operations in H with 
implicitly represented elements, O(rn2B' logp log IG~/(T log B ) )  operations in G 
and O(m2r(logp)2 +mlogp .  B'/ log B )  explicit operations in H .  (Note that pm 
is an upper bound for IH( because H is defined algebraically over GF(p).)  Again 
because H is defined algebraically over GF(p) ,  the running time is polynomial 
if B is polynomial in log IGl, and if T = O(1). The algorithm can be sped up 
by a time-memory t,radeoff similar to the baby-step giant-step tradeoff for the 
computation of discrete logarithms. 

We finally consider the case of multiple large prime factors of IGI. Ifpe divides 
/GI (with e > l), the discrete logarithm s must be computed explicitly modulo 
p e  instead of modulo p .  We write 3: xi-' xip* (mod p')  with xi E GF(p)  for 
i = 0, .  . . , e - 1. Let k 5 e - 1, assume that 2 0 , .  . . , xk-l are already computed 
(note that 50 can be computed as above), and consider the problem of computing 
xk. Let a' := a . g - - Z o - " ' - - Z l i - ~ P  . Then a' = ( g P k ) ) z k + P . L  for some 1. From a',  x k  
can be obtained in either of two ways: If a DH-oracle for one of the subgroups 
( g d . p e - ' ) ,  where d.pe-l  divides IGl/p, is available, then zk can be computed from 
( a ' ) d . p e - ' - k  = ( g d . p " - ' ) z k + p - '  by use of this oracle as described. Alternatively, 
assume that p t h  roots can be computed in G. If a'' := gZk+P.'' (for some E ' )  is 
computed first, 21; can be obtained as usual. In order to  get a", it suffices to 
compute any pk-th root ( k  times the p t h  root) of a' because p divides IGl/pk. 

From s modulo p e  for all the maximal powers of the large prime factors of 
/GI, s can be obtained by Chinese remaindering. This concludes the proof. 13 

I . - - 1  
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3.3 

Elliptic curves over GF(p)  or an extension field are suitable auxiliary groups 
when they have smooth order. (Note that, elliptic curves are abelian groups of 
rank at most 2.)  In [13] this was shown for cyclic elliptic curves over prime fields. 
It is proved there that, under an unproven number-theoretic conjecture about 
smooth numbers in small intervals, for every cyclic group G there exists a short 
side information string S (containing the parameters of a smooth elliptic curve 
for each large prime factor of [GI) such that given S ,  the DH and DL problems 
are equivalent for G. 

The group order of Jacobians of hyperelliptic curves of genus 2 varies in a 
larger interval of size [n - O(n3I4), n + O(n"/")],  but the more detailed results 
about the distribution of the orders which are proved in [l] are not sufficient to 
prove the existence of the side information string without unproven conjecture. 
The reason is that in [l] the existence of Jacobians with prime order is proved, 
whereas Jacobians with smooth order are required here. 

For certain expressions A(p), elliptic curves over F, with order A(p) can 
explicitly be constructed. The curve over F, defined by the equation y2 = x3 -Dx 
has order p +  1 if p = 3 (mod 41, and the curve y2 = z3 + D has also order p +  1 if 
p = 2 (mod 3). Thus if p $ 1 (mod 12), elliptic curves of order p +  1 are explicitly 
constructable. We will show later that the subgroup of order p + 1 of Fi2 is a 
useful auxiliary group for all p .  The following statements about the orders of 
curves defined by the equations above in the case they are not p + 1 are proved 
in [8]. 

If p G 1 (mod 4), then p can uniquely be represented as a product in the 
ring Z[i]  of Gaussian integers: p = 7rif = ( a  + & ) ( a  - b i )  = a2 + b2,  and 7r 

1 (mod 2 + 22). The curves y2 = z3 - Ox have the orders p + 1 f 2a or p +  1 f 2b, 
and the four orders occur equally often. 

Let w := (-1 + a ) / 2 .  If p G 1 (mod 3),  then p can uniquely be represented 
as a product in the ring Z[w]: p = 7rF = (a  + bw)(a - bw) = u2 - ab + b2 ,  and 
7r = 2 (mod 3 ) .  The curves y2 = x3 + D have the orders p+ 1 f 2a, p+ 1 f a  2b, 
or p + 1 k ( a  + b ) ,  and the six orders occur equally often. 

1 (mod 4) or p z 1 (mod 3 ) ,  curves with the above orders are explicitly 
constructable by varying D. The orders are computable in polynomial time [19]. 

Elliptic Curves as Auxiliary Groups 

If p 

3.4 

We refer to [16] for an introduction to finite fields. The group FEn and hence 
every subgroup is cyclic. The field FPn is an n-dimensional vector space over F, 
and its elements can be represented as n-tuples of F,-elements with respect to 
some basis. Let a be an element of Fpn. Let a, := a,' for i = 0,. . . , n - 1. Then 
{ao, . . . , aTL-l} is called a normal basis if i t  is lincarly independent in which case 
a is called a normal element. Let a := (DO,. . . ~a, - l ) .  The matrix T in ( F p ) n x n  
satisfying (1yoa = T a  is called the multiplication table of the basis. 

A normal basis can be found efficiently by trial and error, and its multipli- 
cation table can be determined by solving a system of linear equations over F,. 

Subgroups of Finite Fields as Auxiliary Groups 
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Let H be a subgroup of F;,, . The group operation in H is a multiplication in 
Fin and requires 0(n3)  multiplications in F,. 

Membership in H can be characterized by an equation over Fpn, Let p be an 
element of Fpn . Because F;. is cyclic, ,5’ belongs to  H if and only if plHl = 1. The 
element p can be represented by its coordinates (yo, y l , .  . . , y n V l )  (with yL E F,) 
in the normal basis, i.e., /3 = z:z: y z a i .  In this representation the chara.cteristic 
equation of H is equivalent to a system of n polynomial equa.t,ions in the yz.  The 
polynomials depend on the multiplication table. 

For some orders I HI,  the polynomials can easily be computed and have small 
degree, in particular if IHl is a sum of ppowers, multiplied with only small 
factors. The p”-th power of the sum Cy,cu,  is equal to the sum of the p’-th 
powers of the summands because Fpn has characteristic p. In addition we have 
yr = yi  and cuy = cui+l (where the index is reduced modulo n) .  Hence p P u  is 
represented by the coordinates (yn-”, yn-u+l,  . . . , yn, yo, . . . , Y ~ - ~ - I ) .  

We prove the algebraic embedding property by showing directly that, given 
an implicit representation of z, an implicit representation of a point ,L? of H can 
be computed such that z (or z + d for some d )  is one of the coordinates of p. 
To do this, fix some of the other coordinates (for example by assigning the value 
0) and solve the implicitly represented equations to get implicitly represented 
values for the remaining coordinates such that p belongs to H .  The number of 
unknowns over F, in this system depends on the cardinality of H .  If vie solve 
for k different F,-coordinates simultaneously, then t,he expect,ed number of trials 
until an element of H is found is pn-k  / I H I. 

It  is much easier to solve a univariate polynomial equation than to solve a 
system of multivariate polynomial equations. We show that it is sufficient to solve 
one equation for one unknown when the group H has order IHI = pn-k +pnP2‘ + 
. . .  + 1 for some divisor k < n of n. Let 1 := n/k, and let {cub,. . . , C Y ~ - ~ }  be a 
normal basis of FPn over F p k  . iln element p of Fprb, represented by (PA,. . . , 
with pi E F , k ,  belongs to H if and only if (~~~~ ,!3icui.)lHl = 1, or equivalently 

(where the indices are reduced modulo 1 ) .  Because ( / $ H l ) p L - l  = p P ” - l  = 1 
for all P,  PlHl is an element of F,L, and because cuo + cyl + . . -  + ( ~ 1 - 1  (the 
trace of L Y O ,  denoted by Tr(a0)) is an element of Fpi, all the coefficients are 
automatically equal, and it suffices to  solve one instead of 1 equations. Thus the 
characteristic equation of the subgroup H with this order leads to an 1-degree 
polynomial in PA, . . . , PI-, over F,L . We assign the (implicitly represented) 2 to 
one of the k coordinates of PA) and 0 to Pi , .  . . , pi-2 (for example) to get an 
l-degree polynomial for pi- with implicitly represented coefficients. The order 
of H is such that this polynomial has one expected solution. (If no solution is 
found one can vary the coefficients p i , .  . . , pip2.) 

The roots of a polynomial f(7) over a finite field F,L can be computed by 
the following randomized algorithm due to  Berlekamp. The key idea is to factor 
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the polynomial f ( - y )  into 

for some b E Fpk. This is repeated with different b and leads to the linear factors 

The computation of polynomial gcd’s, and thus the entire root-finding algo- 
rithm, require only algebraic operations in Fpl, and the latter can be reduced to  
algebraic operations (and equality tests) in F, (with respect to a normal basis 
representation). The implicit representations of the roots of an implicitly repre- 
sented polynomial are thus efficiently computable. The complexity of computing 
one root is O(nl log I logp. ( k 2  +log IGl)) group operations and O(n2k log I )  calls 
to the DH-oracle We conclude that H with order pnPk + p n - 2 k  +. . . + 1 (where 
n is polynomial in logp) fulfills the requirements of Theorem 6 if its order is 
smooth. 

If IHI is not of this form, but a sum of ppowers (with small coefficients), 
a system of multivariate polynomial equations with several unknowns must be 
solved. Let F ( z )  be a polynomial of positive degree which divides xn - 1. By 
@,L we denote the n-th cyclotomic polynomial. Because cyclotomic polynomials 
are irreducible and xn - 1 = nd,,@d(z),  a t  least one cyclotomic polynomial 
@ divides F, and smoothness of F ( p )  implies smoothness of G@). Therefore, 
we can assume without loss of generality that F is a cyclotomic polynomial 
and, again without loss of generality, that F ( x )  = Gn(z) = CTz’ c.,xJ. Let H 
be the (unique) subgroup of F;,. with order IHI = Gn(P). In a normal basis 
representation any /3 = Crzi yZo2 (with yz E F p )  is an element of H if and only 
if (CrI: y z c y 2 ) ~ c ~ p 3  = 1, which is equivalent to 

of f (Y). 

and leads to a system of n polynomials in the yz over F, of degree at most 
p(n) .max{ Ic3 I : j = 0, .  . . , ( ~ ( n ) } .  Because /HI E p”(”)  we have to  solve the (im- 
plicitly represented) polynomial equations for n - cp(n) unknowns. Grobner bases 
are a tool for solving systems of polynomial equations. They lead to equivalent 
systems of equations which have triangular form, such that a method for solv- 
ing univariate equations (as Berlekamp’s algorithm) suffices to solve the whole 
system. For an introduction to Grobner bases see [7], and for a detailed descrip- 
tion of the computations see [21]. The idea is to compute the polynomials (with 
implicitly represented coefficients) of a Grobner basis of the polynomial ideal 
generated by the polynomials of the equations. The algorithm for the Grobner 
basis computation, due to  Buchberger, requires only algebraic polynomial arith- 
metic and can therefore be executed on implicitly represented arguments. The 
second step is to solve the separated system of implicitly represented polynomi- 
als by Berlekamp’s method for univariate polynomials. The complexity of the 
computations is polynomial if n = O(1). 
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We conclude that the subgroup H of Fin of order G n ( p ) ,  n = O(1), is 
applicable in Theorem 6 if it has smooth order. For example, smoothness of 
& ( p )  = p2 - p + 1: @ps(p) = p4 + 1, or Gg(p) = p6 + p 3  + 1 implies that an 
appropriate group H p  over GF(p)  is constructable. As mentioned, this is now 
proved for F ( p )  for any non-trivial polynomial F ( z )  dividing zn - 1 if n = O(1). 
Other examples are the alternating sums p2' -p2'- l  + - . . . -p+l when 1 = O(1). 

3.5 The M a i n  Equivalence Result 

Corollary 7 Let G be a cyclic group with generator g ,  and let B be a smooth- 
ness bound, polynomial in log IGI. Then there exists a list of expressions A ( p )  in 
p with the following property: if for every prime factor p of /GI greater than B ,  at 
least one of the expressions A(p)  is B-smooth, then breaking the Dafie-Hellman 
protocol in G with respect to g is polynomial-time equivalent t o  computing dis- 
crete logarithms in G to the base g .  ( I n  the case of a multiple large prime factor 
p of [GI, the equivalence holds with respect to breaking the DHprotocol in one of 
a certain subset of subgroups of G,  or if an algorithm for computing p- th  roots 
in G is given.) The list contains the following expressions: 

P -  1, P +  1, 

y + l f 2 u ,  p + l f 2 b ,  

z f p  G 1 (mod 4), where p = a2 + b2 and a + bi s 1 (mod 2 + 2 4 ,  

p + 1 f 2a, p +  1 F a  f 2b, p s  1 z t  (a + b ) ,  

if p = 1 (mod 3), where p = a2 - ab + b2 and a -t bw E 2 (mod 3)) 

(p")' - 1 
pk - 1 

where I c ,  1 = O((logp)c) and c = 
n-th cyclotomic polynomial. 

O(1), and Gn(P) ,  where n = O(1) and @,, is the 
U 

4 Construction of Secure Diffie-Hellman Groups 

It appears desirable to  use a group G in the DH protocol for which the equiva- 
lence to  computing discrete logarithms can be proved. However, such reasoning 
should be used with care because it is conceivable that knowledge of the auxil- 
iary groups makes computing discrete logarithms easier. There are three possible 
scenarios for such an equivalence: 

1. When given G it is easy (also for an opponent) to find suitable auxiliary 

2. The designer of the group G knows suitable auxiliary groups but they are 
groups. 

difficult to find for an opponent. 
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3. The designer of the group G knows t,hat suitable auxiliary groups exist, 

In the first case the equivalence holds, whereas in the other two cases breaking 
the DH protocol is at  least as difficult as computing discrete logarithms when the 
auxiliary groups are known. Note that the second case can always be transformed 
into the first by publishing the suitable auxiliary groups. Of course, because this 
information can only help an opponent in breaking the Diffie-Hellman protocol, 
there is no reason for the designer of the group to make it public. 

Constructing a group G of the third type is trivial: choose a (secret) arbitrary 
large smooth number m and search for a prime p in the interval [rn - 2 6  + 
1, m + 2 6  + 11. A group G whose order contains only such large prime factors 
satisfies the third property. Note that it is easy to construct, for a given n, a 
DH-group G whose order is a multiple of n. One possibility is to find a multiple 
I of n (where 1 / 7 1  is small) such that I + 1 is prime and to  use G = GF(Z + l)*. 
An alternative, which may be more secure, is to use the construction of Lay and 
Zimmer [lo] for finding an elliptic curve of order n. 

The second case is somewhat more involved. Such a group G can be obtained 
by choosing a large smooth number rn and using the method of Lay and Zimmer 
[lo] for constructing a prime p together with an elliptic curve of order m. 

We now consider efficient constructions for the first case. We generalize a 
method, presented in [20] by Vanstone and Zucchera.to, for constructing a large 
prime p such that either a quarter of the curves y2 = x3 - Dx or every sixth 
curve of the form y2 = x3 + D have smooth order. We show how to  construct 
primes p = a2 + ( k  i (for a fixed k with I digits) such that a2 + k2, which is 
then one of the possible orders of the curves y2 = x3 - D x  over F, (see Section 
3.3), is smooth. First, Z’-digit numbers x1, 52, y1, and y2 are chosen a t  random. 
Define u + vi  := (x1 + yli)(zz + yzi), that is = 51x2 - y1y2, v = sly2 + z2y1. 
‘u. and u have approximately 21’ digits. If gcd(u,v) divides k (otherwise choose 
again), one can compute numbers c and d (of at  most 21‘ + 1 digits) such that 
cv + du = k .  Define a := cu - dv, and restart tho process if a is even. Then 
a + kz = ( c  + dz)(u + v i )  = (c  + & ) ( X I  + yli)(xz + y2i ) .  The process is repeated 
until a2 + k 2  = (c2 + d2)(z :  +yy)(x; + y$‘) is s-digit-smooth, which happens with 
probability approximately ((41’ + Z ~ ) / S ) - [ ~ ” + “ ) / ‘  . (Z~ ’ /S ) -~ ‘ ‘ / “  . (Z~’ /S)” ’ ’ /~ .  
This follows from the fact that for every fixed u,  $(n,,nl/u)/n = u-(’+”(”))”, 
where $(n,y) denotes the number of integers 5 n with no prime divisor 2 y 
(see [4]). Smoothness can be tested with the elliptic curve factoring algorithm 
[ll]. Because a and k are odd, exactly one of the expressions a + (k f 1)i is 
congruent to  1 modulo 2 + 22. Let cy := a + (k f l)i, respectively. Repeat the 
computations until p := a E  = a2 + (k* 1)’ is prime. According to Section 3.3, a 
quarter of the curves y2 = x3 - D x  over F, have smooth order a2 + k 2 .  Hence p 
is an (Sl’ + 21)-digit prime such that an elliptic curve with s-digit-smooth order 
is constructable over F,. The expected number of trials is 

without knowing them. 
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In a similar way, primes can be constructed such that curves of type y2 = 
z3 + D have smooth order (see [21] for a detailed description). More precisely, 
we generateprimesp = a 2 - a ( k k l ) + ( k & 1 ) 2  (where a + ( k & l ) w  = 2 (mod 3)) 
such that a2 - a k  + k2, which is one of the orders of the curves y2 = x3 + D over 
F,, is s-digit-smooth. The expected number of repetitions is again given by (2). 

In case of a small k, an L-digit prime p such that an s-digit-smooth curve is 
constructable over F, can be found by O ( ( L l ( J 8 .  s ) ) ~ / ”  . L )  trials instlead of 
O ( ( L / S ) ~ / ~ . L )  trials when varyingp among L-digit numbers until p is prime and 
one of the considered curves is s-digit-smooth. For example, a 100-digit prime 
p such that a 10-digit-smooth curve over F, is efficiently constructable can be 
found by approximately 3 . lo6 trials (instead of about 10’l trials when using 
the straightforward strategy). 

5 Concluding Remarks 

Our results imply that the DH problem is a t  least as difficult as the DL problem 
with knowledge of suitable auxiliary groups. Although it appears unlikely, it is 
possible that this knowledge helps computing discrete logarithms. 

Throughout this paper, we have assumed that the group order and its factor- 
ization are known. This is the case in most known applications. It is conceivable 
that knowledge of [GI could be of some help in computing discrete logarithms. 
For example, the algorithm of Pollard (see [15]) requires knowledge of the group 
order. For the case of unknown factorization of the group order, note t,hat in 
some cases the parameters of a smooth auxiliary group H, allow to compute p .  
If an appropriate multiplicative subgroup of an extension field of F, has smooth 
order, then p can be found efficiently as a factor of /GI (see [2]). The parameters 
A and B of a smooth elliptic curve over F, defined by y2 = x3 + Az + B do 
generally not allow to find p efficiently by the method of [ l l ] ,  because no point 
can be generated on the curve modulo IGI. 

In [14] a method is described, presented initially in [21] and independently 
considered in [3], for obtaining stronger results under the assumption of efficient 
DH-oracle algorithms using algebraic operations for certain groups. For example, 
a cyclic auxiliary group H, whose order contains a large prime factor q and a 
smooth auxiliary group H ,  over F, are sufficient under the assumption of a 
polynomial-time DH-oracle algorithm for H,, using algebraic operations in F,. 
The idea is to execute the oracle algorithm on implicitly represented arguments. 
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