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S U M M A R Y

Source–receiver interferometry (SRI) refers to a technique to construct the Green’s function

between a source and a receiver using only energy that has travelled from and to surrounding

boundaries of sources and receivers. If a background medium is perturbed, the corresponding

interferometric equation can be expressed as the sum of eight terms, which result from the

separation of the total wavefield into an unperturbed background field and the perturbed

scattered field. Here, the contribution of each individual term is identified for singly diffracted

waves using the methods of stationary phase analysis and waveform modelling. When the data

acquisition boundary requirements for seismic interferometry are violated, non-physical energy

is introduced into Green’s function estimates. Our results show that four terms produce purely

non-physical, non-stationary energy and that these can be suppressed, and that a combination

of only two terms can be used to estimate diffracted wavefields robustly. One of the two terms

is precisely that used in geophysical imaging schemes. A key result is that this term also

produces non-physical energy, except when the integration boundaries are truncated to span

only part of the medium’s free surface: we thus show that in this sense, partial boundaries can

be seen as a positive advantage for migration or imaging methods. The other term produces

non-physical energy which nevertheless emulates physical energy; such energy is therefore

called pseudo-physical. We present for the first time a complete mathematical derivation of

this new category of energy complemented with illustrative examples. Overall, this work

significantly enhances our understanding of how scattered wave SRI works.

Key words: Interferometry; Theoretical seismology; Wave scattering and diffraction;

Acoustic properties.

I N T RO D U C T I O N

Seismic or wavefield interferometry commonly refers to the use of

wavefields from a boundary of sources recorded at two receivers

to construct the signal that would have been obtained at one of the

two receivers if the other receiver had instead been an impulsive

source (Lobkis & Weaver 2001; Campillo & Paul 2003; Derode

et al. 2003; Wapenaar 2004; van Manen et al. 2005, 2006; Wape-

naar et al. 2005). This signal is referred to as the Green’s function of

the medium and is estimated by cross-correlation, convolution, or

deconvolution of the wavefields measured at the two receiver posi-

tions. This technique is known as interreceiver interferometry since

it yields the Green’s function between two receivers, turning one re-

ceiver into a so-called ‘virtual’ (imagined) source. Further types of

interferometry are referred to as either intersource (Hong & Menke

2006; Curtis et al. 2009) or source–receiver interferometry, also

referred to as SRI (Curtis & Halliday 2010). These construct ei-

ther the Green’s function between two sources from the wavefield

recorded at an enclosing boundary of receivers, or the Green’s func-

tion between a source and a receiver using only the energy that has

propagated to surrounding receivers or from surrounding sources.

Example canonical geometries for these three types of interferom-

etry are shown in Fig. 1, and reviews and tutorials on the various

methods are given in Curtis et al. (2006), Wapenaar et al. (2010a,b)

and Galetti & Curtis (2012).

Recently, Halliday & Curtis (2010) derived an explicit link be-

tween scattered-wave SRI and seismic imaging or migration, a com-

mon technique used in exploration geophysics to map reflecting

and diffracting discontinuities in the subsurface (Claerbout 1985;

Oristaglio 1989). As has been shown by Halliday & Curtis (2010),

Vasconcelos et al. (2010), and Ravasi & Curtis (2013), seismic in-

terferometry has the potential to improve current migration schemes

since it can circumvent the need for the single-scattering Born

approximation and is in principle able to account for all possi-

ble nonlinearities, such as those due to multiply scattered waves.

Other potential applications of SRI are ground-roll removal (Duguid
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
9
6
/2

/1
0
4
3
/5

7
6
8
6
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

mailto:katrin.loer@ed.ac.uk


1044 K. Löer et al.

Figure 1. Three example canonical configurations used in wavefield inter-

ferometry to construct the Green’s function between locations x1 and x2.

Triangles indicate receivers, stars indicate sources, and S and S′ denote a

source and a receiver boundary, respectively. (a) Interreceiver interferome-

try: the receiver at either x1 or x2 is turned into a virtual source using the

wavefields generated by the surrounding sources on S. (b) Intersource inter-

ferometry: the source at either x1 or x2 is turned into a virtual receiver using

the wavefield response recorded on the receiver boundary S′. (c) Source–

receiver interferometry (SRI): the Green’s function between a real source

and a real receiver can be constructed using the energy travelling from and to

the surrounding boundaries S and S′ of sources and receivers, respectively.

et al. 2011) or reflection imaging from below or above the reflector

(Poliannikov 2011; Poliannikov et al. 2012).

Scattering occurs in all regimes of energy propagation (acous-

tic, elastic, electromagnetic, etc.) when the propagating wavefield

interacts with perturbations inside the medium. In general, one dis-

tinguishes between reflected energy which originates from struc-

tures such as interstrata interfaces, and diffracted energy which

originates from structures of small spatial extent compared to the

wavelength, such as angular boundaries, voids, faults, or fractures.

Although standard industrial seismic imaging procedures were orig-

inally developed based on diffracted energy (Miller et al. 1987),

they are principally designed to image reflecting interfaces rather

than diffracting structures. However, understanding and imaging

diffractions is a topic of ongoing research (Khaidukov et al. 2004;

Berkovitch et al. 2009; Faccipieri et al. 2013), as it helps to interpret

recorded data and to enhance the resolution of seismic images. In

this study, we use SRI to construct the diffracted wavefield associ-

ated with a single isotropic point diffractor, also referred to here as

scatterer, in an otherwise homogeneous medium. The simplicity of

this medium allows us to illuminate the internal workings of SRI

for diffracted energy.

The principles of seismic interferometry can be illustrated using

the method of stationary phase (see Appendix A). Although mainly

applicable for relatively simple media it provides a means to under-

stand the underlying physics and the generation of so-called spuri-

ous or non-physical energy in estimated Green’s functions (Snieder

et al. 2006, 2008; Halliday & Curtis 2009; Mikesell et al. 2009; King

& Curtis 2012). Using stationary phase analysis, Snieder (2004a,b)

showed that the main contribution to the constructed Green’s func-

tion in coda-wave interferometry comes from so-called stationary

points (Appendix A). Waves radiated from sources in regions near

these points interfere constructively, whereas waves coming from

sources in non-stationary regions destructively cancel each other

when summing or integrating over a complete source boundary.

In theory, interferometry requires complete, closed boundaries of

sources or receivers that surround a portion of the medium of inter-

est. In practice, however, this can seldom be realized (for example,

it is usually impossible to place a complete boundary of sources in

the interior of solid bodies) so often only partial boundaries, usually

spatially limited arrays on the Earth’s surface, are available. In ad-

dition the spatial sampling density of sources or receivers along the

surface may not fulfil the usual Nyquist requirements of wavefield

sampling. In such cases, spurious or non-physical energy appears in

the interferometric results giving errors in the Green’s function es-

timates due, for example, to incomplete destructive interference of

energy from non-stationary regions or to the omission of sources or

receivers at or around stationary points. These non-physical events

are not per se unfavourable: it has been shown (Mikesell et al. 2009;

King & Curtis 2011, 2012; King et al. 2011; Harmankaya et al.

2013; Meles & Curtis 2013) that non-physical energy can in fact be

used to extract physical information about the medium. However,

our ability to use such energy originates from our understanding of

how it relates to physical properties and recording geometries.

In this work we contribute to a deeper understanding of SRI in

a scattering medium. We expand the kinematic analysis of Meles

& Curtis (2013) by considering also dynamic waveforms of events

constructed from SRI, and analyse the effect of limited integra-

tion boundaries represented by linear source and receiver arrays on

one side of the medium. We examine the origin of non-physical

diffracted energy by invoking the method of stationary phase, and

focus on a new category of non-physical energy which emulates

physical energy and is therefore referred to as ‘pseudo-physical’.

We present a new mathematical derivation that explains the origin of

pseudo-physical energy, and use a numerical model to demonstrate

the construction of physical, non-physical, and pseudo-physical en-

ergy in the Green’s function estimates. In the supporting informa-

tion, we provide a detailed parametric study of each term of the

interferometric equation in SRI, illustrating the sensitivity of differ-

ent terms to changes in the model parameters and in the data pro-

cessing, and showing how this can be used to suppress undesired

non-physical and non-stationary arrivals. As a result, this paper

shows how non-physical energy can be suppressed, how pseudo-

physical energy is related to physical energy, and how all these

types of energy can be used to interrogate the interior of a solid

medium such as the Earth.

S O U RC E – R E C E I V E R

I N T E R F E RO M E T RY I N

A S C AT T E R I N G M E D I U M

SRI constructs the signal between a source and a receiver us-

ing the energy travelling from and to surrounding boundaries of

sources and receivers. It can be thought of as a combination of

interreceiver and intersource interferometry, performed sequen-

tially. In the following we focus on the specific geometry shown

in Fig. 2, where the outer boundary, S, is the source boundary and

the inner boundary, S ′, is a receiver boundary (these may be inter-

changed without loss of generality). The first step of SRI comprises

the construction of the so-called homogeneous Green’s functions

Gh (x′, x2) = G (x′, x2) + G∗ (x′, x2) between the receiver at x2 and

any receiver at x′ on boundary S ′ using

G
(

x′, x2

)

+ G∗ (

x′, x2

)

=
−1

jωρ

∫

S

{

G(x2, x)∂i G
∗(x′, x)

− [∂i G(x2, x)]G∗(x′, x)
}

ni dS, (1)

(Wapenaar & Fokkema 2006) where j =
√

−1, ω denotes the angu-

lar frequency, ρ denotes the density of the medium (assumed to be

constant herein), G(x′, x) is the Green’s function between a source at

x and a receiver at x′, ni∂i G is a Green’s function’s derivative in di-

rection i , the star ∗ denotes complex conjugation, and the integration

is over variable x. The Einstein summation convention applies to re-

peated indices. Note that the explicit dependency on frequency in the
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Diffracted waves from SRI 1045

Figure 2. Geometry for source–receiver interferometry with complete

boundaries. Stars are sources, triangles are receivers, and the black dot

marks the location of an isotropic point scatterer. x denotes any source on

source boundary S, x′ denotes any receiver on receiver boundary S′.

Green’s functions has been dropped for notational convenience only,

and all expressions herein are in the frequency domain. For each

receiver pair this is equivalent to standard interreceiver interferom-

etry: the wavefields from each source on x recorded at one receiver

pair at x′ and x2 are cross-correlated and summed (integrated) over

source positions. This turns one of the receivers, here the central

receiver at x2, into a virtual source, as can be seen in terms G(x′, x2)

on the left-hand side. In the second step we construct the homoge-

neous Green’s function Gh (x2, x1) = G (x2, x1) + G∗ (x2, x1) be-

tween the real source at x1 and the virtual source at x2, using the

recorded wavefields between x1 and points on S ′, and the inter-

receiver wavefields between x2 and points on S ′ obtained in the first

step. This corresponds to intersource interferometry and is given

by

G (x2, x1) + G∗ (x2, x1) =
−1

jωρ

∫

S′

{

G∗(x′, x2)∂ ′
i G(x′, x1)

− [∂ ′
i G

∗(x′, x2)]G(x′, x1)
}

n′
i dS′ (2)

(Hong & Menke 2006). The Green’s function G∗(x′, x2) required

in eq. (2) can be obtained from the homogeneous Green’s function

Gh (x′, x2) (eq. 1) by windowing the acausal part of the time-domain

signal then transforming back to the frequency domain. Assuming

that the Sommerfeld radiation conditions (Born & Wolf 1999) apply,

we can write the Green’s functions’ derivatives in eqs (1) and (2) as

ni∂i G = ∓ j(ω/c)G, where c is velocity and ‘−’ and ‘+’ indicate

outgoing or incoming waves, respectively (Wapenaar & Fokkema

2006). This reduces the integrals to the simpler forms

G
(

x′, x2

)

+ G∗ (

x′, x2

)

≈
2

ρc

∫

S

G (x2, x) G∗ (

x′, x
)

dS, (3)

G (x2, x1) + G∗ (x2, x1) ≈
2

ρc

∫

S′

G∗(x′, x2

)

G
(

x′, x1

)

dS′ (4)

(Curtis et al. 2012). We will refer to eqs (3) and (4) as the ‘monopole

approximation’ because the dipole sources and receivers indicated

by the Green’s functions’ derivatives in eqs (1) and (2), are ap-

proximated by monopole sources and receivers in eqs (3) and (4).

Sommerfeld’s radiation conditions assume that all ray paths are nor-

mal to the boundaries. Eqs (3) and (4) can be combined to a more

applicable form,

G (x2, x1) + G∗ (x2, x1) ≈
4

(ρc)2

∫

S

∫

S′

G
(

x′, x1

)

G (x2, x)

× G∗ (

x′, x
)

dS′dS −
2

ρc

∫

S′

G
(

x′, x1

)

G
(

x′, x2

)

dS′ (5)

≈
4

(ρc)2

∫

S

∫

S′

G
(

x′, x1

)

G (x2, x) G∗ (

x′, x
)

dS′dS, (6)

(Curtis & Halliday 2010), where the second integral in eq. (5) goes

to zero if the radiation condition applies, that is, if the boundaries

are in the far-field and are perpendicular to the out-going wavefield.

This expression allows a clear understanding of the problem that is

presented in the following.

As shown in Fig. 2 we assume a scattering medium and herein we

consider only the case of a single scatterer or diffractor. In this case it

is useful to separate the full wavefield G into the unperturbed back-

ground field G0, which would be obtained if the scatterer was not

present, and the perturbed or scattered field GS defined according

to

G = G0 + GS, (7)

where G is any Green’s function measured in the perturbed medium.

Substituting eq. (7) for each Green’s function in eq. (6) gives a

double-surface integral over the sum of eight terms:

G(x2, x1) + G∗(x2, x1) = [G0(x2, x1) + GS(x2, x1)]

+ [G0(x2, x1) + GS(x2, x1)]∗

≈
4

(ρc)2

∫

S

∫

S′

[G0(x′, x1)G0(x2, x)G∗
S(x′, x)

+ GS(x′, x1)GS(x2, x)G∗
S(x′, x)

+ G0(x′, x1)GS(x2, x)G∗
S(x′, x)

+ GS(x′, x1)G0(x2, x)G∗
S(x′, x)

+ G0(x′, x1)G0(x2, x)G∗
0(x′, x)

+ GS(x′, x1)GS(x2, x)G∗
0(x′, x)

+ G0(x′, x1)GS(x2, x)G∗
0(x′, x)

+ GS(x′, x1)G0(x2, x)G∗
0(x′, x)] dS′dS, (8)

where subscript 0 refers to a direct wave and subscript S refers to a

scattered wave (Vasconcelos et al. 2009). A similar decomposition is

presented by Vasconcelos (2013), which includes all of the gradient

terms at both source and receiver locations similarly to eqs (1) and

(2), rather than invoking the monopole approximation in eqs (3) and

(4) as above.

The double integral on the right-hand side of eq. (8) can be eval-

uated using stationary phase analysis. This method has been used

in standard interferometry (Snieder et al. 2006, 2008; Halliday &

Curtis 2009; Snieder & Fleury 2010) to analyse interferometric in-

tegrals assuming that the main contribution to the integrand comes

from so-called stationary points (Appendix A). Recently, Meles &

Curtis (2013) have performed stationary phase analysis for the kine-

matics of SRI. Due to the double boundary the stationary points of

interreceiver interferometry become stationary point-pairs (or just
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1046 K. Löer et al.

Table 1. Stationary point pairs for different terms in eq. (8) (see Fig. 3;

Meles & Curtis 2013). x refers to a source and x′ to a receiver location.

The events constructed occur at traveltimes associated with the causal direct

wave (blue), the acausal direct wave (blue, underlined), the causal scattered

wave (green), and the acausal scattered wave (green, underlined). Events

constructed from stationary points marked red do not relate to physical

arrivals.

Figure 3. Stationary points (a to f) for source–receiver interferometry in a

homogeneous medium containing a single point scatterer. Symbol key as in

Fig. 2. The source and receiver boundary coincide and are represented by

the circular solid line. A stationary pair consists of a boundary source and

receiver at a pair of stationary points. The combination of stationary points

in this pair varies for each term. Points e and c are projections of points

e and c on to a horizontal surface (such as the Earth’s surface in seismic

interferometry in a vertical plane).

pairs) consisting of a stationary point x on source boundary S and a

stationary point x′ on receiver boundary S′ (Table 1, Fig. 3).

We invoke this method of analysis below and in the supporting

information.

N O N - P H Y S I C A L A N D

P S E U D O - P H Y S I C A L E N E RG Y

An event constructed from interferometry is referred to as ‘non-

physical’ if it does not correspond to a physical wave that would

propagate between the source and receiver locations x1 and x2, such

as a direct or scattered wave. Fig. 4(a) illustrates geometrically how

one such event is generated as an example. Snieder et al. (2008)

analysed the properties of non-physical events in interreceiver inter-

ferometry in a scattering medium. They showed the contributions

from different terms (in their case four terms rather than eight)

towards physical and non-physical energy, and how non-physical

Figure 4. Generation of non-physical and pseudo-physical energy from

different terms in eq. (8) and Table 1; symbol key as in Fig. 2. Solid ray

paths indicate traveltimes that are added to the phase of the result of eq. (8),

the dashed line indicates a traveltime that is subtracted from the phase:

hence, portions of solid and dashed lines that span the same path give phase

contributions that exactly cancel. (a) G0GS G∗
S : the stationary point e on S′

and any point x on S give rise to a stationary, but non-physical event with

a traveltime equal to t (x2, xS) − t (x1, xS), where t(x2, xs ) is the traveltime

from point xs to x2. (b) GS GS G∗
S : any source–receiver pair on the boundary

is stationary and gives rise to a non-physical event with a traveltime equal

to that of the physical diffracted wave. The kinematics of this energy thus

emulates that of physical energy, and hence, the event is called ‘pseudo-

physical’.

energy is cancelled out after the summation of all terms and inte-

gration over a closed boundary. If, however, the different terms of

the integrand are used separately, or if the boundary is not com-

plete, the non-physical energy does not cancel out but instead gives

spurious contributions to the interferometric estimate.

Geophysical seismic imaging as well requires integration over

boundaries. It is well known that artefacts in the image occur due

to limited boundaries: sources and receivers can usually only be

placed on the Earth’s surface and hence cannot be said to surround

any portion of the medium through which the energy propagates

and which we hope to image (the subsurface). From interferometry

we now understand that these artefacts correspond to non-physical

energy that is not cancelled out due to missing sources and receivers

in the subsurface.

In SRI, unlike in standard interferometry, we find that some non-

physical energy arrives at exactly the traveltime of the expected

scattered waves, thus approximately (or exactly) emulating physical

energy. Fig. 4(b) illustrates how such a pseudo-physical event is

constructed from SRI when using diffracted waves GS only, that

is, within the term GS GS G∗
S . For this term, any source–receiver

pair on the boundaries is stationary and is sufficient to construct

the event (Meles & Curtis 2013; Fig. 3 and Table 1). This property

makes the term GS GS G∗
S particularly useful when boundaries are

only partially available or are strongly decimated, as is often the

case in practical experiments. Note that the stationarity properties

of this term only apply to diffracted waves; for reflecting media the

behaviour is substantially different. As has been shown by Meles

& Curtis (2013), the traveltime of the constructed event equals the

traveltime of the causal scattered wave. They point out, however, that

the interferometric event is only proportional to the causal scattered

wave: its amplitude also depends on a real factor λ. Expanding

their analysis, we provide in the following a detailed mathematical

derivation explaining the origin of pseudo-physical energy in SRI

and the properties of λ for 2-D and 3-D Green’s functions. The

derivation below is complemented by an alternative derivation based

on the scattered wave representation theorems of Vasconcelos et al.

(2009) given in Appendix B.
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Diffracted waves from SRI 1047

We start by rewriting the diffracted wavefield as a concatenation

of direct waves according to

GS (x2, x1) = G0 (xS, x1) A (k2, −k1) G̃0 (x2, xS) , (9)

(Snieder et al. 2008; Wapenaar et al. 2010c) where xS is the location

of a point scatterer, A (k2,−k1) is the complex-valued scattering

matrix, −k1 is the direction of the incident wavefield, and k2 the

direction of the scattered wavefield. In the far field, the Green’s

function G0 (xS, x1) in 2-D is defined as

G0 (xS, x1) = −
ρω

4
e−i(k|xS−x1|)

√

2

πk |xS − x1|
, (10)

and the volume injection Green’s function G̃0 (x2, xS) is given by

G̃0 (x2, xS) =
1

ρω
G0 (x2, xS) = −

1

4
e−i(k|x2−xS|)

√

2

πk |x2 − xS|
.

(11)

For isotropic point scatterers the scattering matrix A (k2, −k1) in

eq. (9) does not depend on the direction of the incident wavefield,

and an equal amount of energy is scattered in any direction; hence

the scattering matrix can be abbreviated as a scalar A. Substituting

eq. (9) for each Green’s function in GS GS G∗
S , rearranging the terms,

and using eqs (10) and (11) gives

4

(ρc)2

∫

S

∫

S′

GS

(

x′, x1

)

GS (x2, x) G∗
S

(

x′, x
)

dS′dS

= G0 (x2, xS) AG̃0 (xS, x1)

×AA∗ 4

(ρc)2

∫

S

G0 (xS, x) G∗
0 (xS, x) d S

×
∫

S′

G̃0

(

x′, xS

)

G̃∗
0

(

x′, xS

)

dS′

= GS (x2, x1) × AA∗ 1

16π

∫

S

1

|xS − x|
d S

∫

S′

1

|x′ − xS|
dS′. (12)

Without loss of generality we assume that the scatterer is located

at the origin xS = [0, 0], so that the terms in the integrands simplify

to 1/|x| and 1/|x′|, respectively. In the case of circular boundaries it

is convenient to move to a polar coordinate system, such that |x| = r ,

|x′| = r ′, dS = rdφ, and dS′ = r ′dφ′. Integration over φ and φ′ from

0 to 2π shows that each surface integral reduces to a factor 2π (note

that when the boundaries are only partially available each surface

integral in eq. (9) will give a fraction of 2π depending on the portion

of the circle included in the boundaries). From the relationship

between real and imaginary parts of the scattering amplitude (optical

theorem) it follows that AA∗ = −4ℑ(A), with 0 ≥ ℑ (A) ≥ −4,

where ℑ(A) is the imaginary part of A (Groenenboom & Snieder

1995; Snieder 1999; Galetti et al. 2013). Consequently, eq. (12)

becomes

4

(ρc)2

∫

S

∫

S′

GS

(

x′, x1

)

GS (x2, x) G∗
S

(

x′, x
)

dS′dS

= GS (x2, x1) × [−ℑ (A)]. (13)

Eq. (13) shows that the contribution of the term GS GS G∗
S from

complete boundaries equals the causal scattered wave GS (x2, x1)

multiplied by a real-valued positive constant that is proportional to

Figure 5. Interferometric result of the cross-term GS GS G∗
S in eq. (8)

(solid line) compared to the modelled causal scattered wave GS(x2, x1)

(dashed line) using 2-D Green’s functions and complete circular bound-

aries. Amplitudes have been normalized with respect to the maximum of

the modelled trace. The imaginary part of the scattering matrix A has been

set to −2; hence, according to eq. (13), the interferometric result equals

2GS(x2, x1).

the imaginary part of the scattering matrix. This causes an amplitude

change but no shift in phase or traveltime compared to the mod-

elled arrival GS (x2, x1) (Fig. 5). For partial boundaries the overall

amplitude is reduced according to the portion of the circle included

in the boundaries. Thus we show that although the term GS GS G∗
S

is non-physical, in 2-D it provides the correct traveltime and wave-

form of the causal scattered wave, hence, it is pseudo-physical. If

the scatterer is non-isotropic the scattering matrix A (k2, −k1) can-

not be reduced to the scalar A and the analysis is more complicated.

The amplitude of the pseudo-physical arrival will then be a function

of the source and receiver positions relative to the scatterer. Never-

theless, the kinematic analysis applies just as well for non-isotropic

scatterers, which allows us to estimate the traveltime of the causal

scattered wave.

The above results are only valid for the 2-D case where the

2-D Green’s functions defined in eqs (10) and (11) are used.

Using 3-D Green’s functions and the corresponding relationship

AA∗ = − 4π

k
ℑ(A) (see Galetti et al. 2013), eq. (13) changes to

4

(ρc)2

∫

S

∫

S′

GS

(

x′, x1

)

GS (x2, x) G∗
S

(

x′, x
)

dS′dS

= GS (x2, x1) × (−kπ) ℑ (A) . (14)

Since k = ω

c
the result now depends on the frequency content and

therefore distorts the waveform (Fig. 6a). However, this effect can

be removed by dividing the result by k (in the frequency domain),

and thus the correct traveltime and waveform information can also

be obtained from the contribution of GS GS G∗
S in the 3-D case

(Fig. 6b).

Note that the non-physical energy provided by GS GS G∗
S would

be destructively cancelled out within an integration over complete

boundaries that included the summation over all terms in eq. (8). De-

structive cancellation occurs on account of other terms that provide

non-physical energy at the same traveltime but with opposite phase.

Following similar arguments as for GS GS G∗
S , it can be shown that

this cancelling energy is provided by the terms G0G0G∗
S , G0GS G∗

0,

G0GS G∗
S , GS G0G∗

S , and GS GS G∗
0 (cf. Table 1). Thus we can also

show that only the term GS G0G∗
0 constructs the physical causal

scattered wave (cf. eqs (B1) and (B2)), given that the integration

boundaries span the stationary point pair associated with that term

(x = d, x′ = c in Fig. 3).
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1048 K. Löer et al.

Figure 6. (a) Interferometric result of the term GS GS G∗
S in eq. (8) (solid

line) compared to the modelled causal scattered wave GS(x2, x1) (dashed

line) using 3-D Green’s functions and the geometry shown in Fig. 7. Am-

plitudes have been normalized with respect to the maximum of each trace.

(b) As in (a) but divided by the wavenumber k in the frequency domain (cf.

eq. (14)): the waveforms of the two curves are now identical.

N U M E R I C A L E X A M P L E S

In the numerical examples that follow, the integration boundaries

S and S′ are reduced to finite linear arrays above the scatterer, as

illustrated in Fig. 7. Compared to the ideal geometry in Figs 2 and 3,

this omits some of the stationary points: in fact, only two stationary

points e and c, equivalent to e and c (Table 1, Fig. 3), are populated

by sources and receivers. To model acoustic wavefields in a scatter-

ing medium we use a direct scattering matrix-based scheme that is

a variant of Foldy’s method (Foldy 1945; Groenenboom & Snieder

1995; Galetti et al. 2013). This method yields the full, non-linear

scattering response of multiple isotropic point scatterers embedded

in an otherwise homogeneous medium. In the modelling code of

Galetti et al. (2013), interreceiver and intersource interferometry

are performed sequentially using eqs (3) and (4) for the full wave-

field (monopoles and dipoles), or eqs (5) and (6) for the monopole

approximation. The background velocity and density of the model

Figure 7. Geometry used for numerical examples with incomplete bound-

aries represented by linear source and receiver arrays; symbol key as in

Fig. 2. Only every fifth source and receiver is plotted for clarity.

are here taken to be v = 1000 m s−1 and ρ = 1 g cm−3, respectively.

The scatterer at xS = [50, 0] is a point diffractor, the imaginary part

of the scattering amplitude is chosen to be −2 in accordance with

the conditions of the acoustic optical theorem (Groenenboom &

Snieder 1995). The maximum frequency is fmax = 80 Hz and the

central frequency of the applied Ricker wavelet is fc = 30 Hz. The

spatial sampling, that is, the intersource and interreceiver distance

within the arrays, is controlled by the Nyquist wavelength λNyq and

is given by multiples of this value. λNyq describes half the minimum

wavelength defined by the velocity v and the temporal Nyquist

frquency fNyq as

λNyq =
v

fNyq

=
v

2 fmax

= 6.25 m, (15)

given the signal’s maximum frequency fmax. The length of the

source array is set to 1000 m and the receiver array is 900 m long,

which gives a maximum of 161 sources and 144 receivers, re-

spectively. The receiver array is located 20 m below the source

array and 400 m above the diffractor. The single source is lo-

cated at x1 = [−75, 150] and the receiver at x2 = [75, 150]. The

interferometric results are studied in the time domain in a win-

dow between –0.8 and 0.8 s. Negative times are referred to as

the acausal part (in the frequency domain, the complex conjugate)

of the Green’s function and positive times represent the causal

part.

In the examples shown in Figs 8 and 9 a spatial tapering function

has been applied to the cross-correlated traces prior to the summa-

tion over sources and receivers. This means that the contributions

associated with sources or receivers towards the endpoints of the

arrays have been down weighted using half-cosine windowing func-

tions.

The solid trace in Fig. 8 gives the interferometric estimate of the

Green’s function between x1 and x2 using the geometry in Fig. 7

and the full wavefield (i.e. all of eq. 8, but with incomplete integra-

tion boundaries) and the dashed trace represents the true Green’s

function modelled directly between x1 and x2. Table 2 provides the

key to symbols used to denote parameter constellations employed

in Fig. 8 and other figures. Since amplitudes of the constructed trace

are expected to be incorrect due to the limited number of sources

and receivers along the boundaries, the maximum amplitude of each

trace has been normalized to one. Note that the normalization does

not change the phase or the waveform shapes and therefore does not

affect our analysis. Despite the incomplete boundaries, it appears

Figure 8. Source–receiver interferometric estimate of the Green’s function

between x1 and x2 using the full wavefield and the incomplete boundaries

in Fig. 7 (solid line), compared to the true Green’s function (dashed line).

Amplitudes of each waveform have normalized maximum values. For legend

key see Table 2.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
9
6
/2

/1
0
4
3
/5

7
6
8
6
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



Diffracted waves from SRI 1049

Figure 9. Interferometric result of integrating each term in eq. (8) separately (solid lines) compared to the true Green’s function between x1 and x2 (dashed

line). The term used in each case is noted beneath the plot. Model and processing parameters are defined according to the key symbols (Table 2). All maximum

amplitudes have been normalized to one.

that both the causal and the acausal scattered wave are constructed

surprisingly well from SRI. What is not apparent, however, is that

the arrival that looks like the causal scattered wave is in fact a

non-physical arrival, which has a physical traveltime, hence, is a

pseudo-physical arrival. Moreover, note that non-physical events

appear with differing amplitudes between zero time and the scat-

tered wave arrivals for both positive and negative times. The direct

wave is not recovered at all.
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1050 K. Löer et al.

Table 2. Key to symbols used to denote parameter constellations employed in each numerical example. λNyq

indicates the spatial wavelength of the Nyquist frequency of the wavefield.

Only monopole sources/receivers are used on the boundary

Monopole and dipole sources/receivers are used on the boundary

A spatial half-cosine tapering weight is applied to the integrand towards the ends of the boundaries

No spatial half-cosine tapering weight is applied

The distance between two sources/receivers on a boundary equals 1 ∗ λNyq

The distance between two sources/receivers on a boundary equals 3 ∗ λNyq

Fig. 9 displays the contribution of each individual term (solid

lines) of eq. (8), compared to the true Green’s function between

x1 and x2 (dashed line). The acausal scattered wave is solely con-

structed by the term G0G0G∗
S (Fig. 9a) and the term GS GS G∗

S

contributes the above mentioned pseudo-physical arrival at the trav-

eltime of the causal scattered wave (Fig. 9b). As has been demon-

strated in the previous section, the pseudo-physical energy associ-

ated with the term GS GS G∗
S can be used to estimate the waveforms

of arriving physical energy.

All other terms generate events that cannot be associated with

the expected Green’s function and therefore count as non-physical

events. The maximum amplitude in each trace has again been nor-

malized to one; this means that the spurious events from the end-

points of the boundaries have been magnified in Figs 9(e)–(h) due

to the normalization since they are the largest events on the trace.

In fact, they have very low amplitudes—for example, the event in

Fig. 9(f) does not show up at all in Fig. 8 because its amplitude is

too small to see compared to the maximum amplitude in the full

trace. In the supporting information we show systematically how

different events are effected by variations in the model parameters,

and by variations in the data processing.

To determine the origin of the constructed signals it is useful to

display the so-called correlation gathers (van Manen et al. 2005;

Mehta et al. 2008). In standard interreceiver interferometry the cor-

relation gather is simply the set of integrands that are integrated

in the interferometric equation. It provides the contribution of each

source on the boundary to the interferometric estimate between two

receivers, prior to the summation over sources. Zero-slope areas

(i.e. flat areas) in the correlation gather indicate stationary points:

the stationary phase approach assumes that the contributions from

the Fresnel zone around such points sum constructively, while the

contributions from all other source locations cancel each other out.

In intersource interferometry the correlation gather displays the

contribution for each specific receiver location. In source–receiver

interferometry, however, we must consider both one correlation

gather for each receiver pair in the first step (interreceiver interfer-

ometry), and the correlation gather of the (virtual) source pair in

the second step (intersource interferometry).

In Fig. 10 we show the correlation gather of one specific receiver

pair, namely the receiver at x2 and the leftmost receiver on boundary

S′ (location x′
l ), and the resulting correlation gather of the sources

(one virtual, one real) located at x1 and x2 for each individual

term. Some of the intersource correlation gathers exhibit zero traces

(‘gaps’) over a range of receiver locations (e.g. Fig. 10j). These

gaps occur when the interreceiver energy constructed in the first

step (eq. 3) has positive arrival times only. According to eq. (2) only

the acausal component G∗(x′, x2), which corresponds to negative

traveltimes, should be used in the second step. If this is zero, the

cross-correlation G∗ (x′, x2) G (x′, x1) (see eq. 4) yields a zero trace

and thus a gap in the correlation gather.

The correlation gathers reveal that the events—both physical

and non-physical—constructed from the terms G0G0G∗
S , GS GS G∗

S ,

G0GS G∗
S , and GS G0G∗

S (Figs 8a–h) originate from stationary

points. Non-stationary contributions from the endpoints of the ar-

rays are down-weighted by a cosine taper. The events constructed

from G0G0G∗
0, GS GS G∗

0, G0GS G∗
0, and GS G0G∗

0 (Figs 8i–p) are

non-physical and non-stationary without exception as they all origi-

nate from the endpoints of the arrays. As before, the traces related to

the endpoint sources and receivers, respectively, are down weighted

by a taper, however here the summed traces have been normalized to

one, which especially magnifies these non-physical, non-stationary

events.

D I S C U S S I O N

In interferometry, using incomplete boundaries of sources and re-

ceivers, such as linear arrays, causes non-physical arrivals in Green’s

function estimates (Fig. 8) due to both inadequate sampling of sta-

tionary points and abrupt truncation of the boundaries. In the sup-

porting information, we analyse the origin of physical, non-physical

and pseudo-physical energy from each term in eq. (8) in detail. In

this discussion we draw together the principal findings from above

and from this supporting information.

We first distinguish between stationary and non-stationary non-

physical events. Non-stationary events are associated with the con-

tributions from sources and receivers at the endpoints of the arrays.

They occur in every term, except for GS GS G∗
S where every source–

receiver pair is stationary and gives a pseudo-physical contribution

(Appendix B; also Meles & Curtis 2013). As has been demon-

strated in previous papers (e.g. Snieder et al. 2006) and throughout

this study, the amplitudes of such non-stationary events can all be

suppressed by down-weighting the contributions from the endpoints

of surface arrays with a taper.

We also find that non-physical energy associated with the direct

wave (non-scattered) Green’s function G∗
0(x′, x) can be reduced in

amplitude by using the exact interferometric representation (eqs 1

and 2) rather than the monopole approximation (eqs 3 and 4). This

is because G∗
0(x′, x) does not fulfil the far-field assumptions when
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Diffracted waves from SRI 1051

Figure 10. Correlation gathers for each term of eq. (8). The left-hand column displays the interreceiver interferometry results between the receiver at x2 and

the leftmost receiver x′
l on boundary S′ for each source on boundary S; the right-hand plot in the left-hand column gives the sum over all sources. The acausal

part of this trace G∗
IRI(x

′
l , x2) is then cross-correlated with GS(x′

l , x1), which gives the leftmost trace in the gather in the right-hand column. The right-hand

column displays the intersource interferometry results between the source at x1 and the virtual source at x2 for each receiver on boundary S′; the right-hand

plot in the right-hand column gives the sum over all receivers showing how results in Fig. 9 are constructed. G∗
IRI(x

′, x2) refers to the result of interreceiver

interferometry (IRI) carried out in the first step.
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1052 K. Löer et al.

Figure 10 (Continued.)

boundaries S and S′ are close to one-another (Fig. 7): the assumption

that all ray paths (including those between the source and receiver

boundaries) are normal to the boundaries is not valid in this case.

(Note that when using G∗
S(x′, x) instead of G∗

0(x′, x), the assump-

tion is more reasonable because the energy generated at the source

boundary travels towards the scatterer first before being recorded

at the receiver boundary: provided the boundaries are far from the

scatterer this leads to an ultimate propagation direction that is closer

to the normal to the boundary.) In fact, terms G0G0G∗
0, GS GS G∗

0,

G0GS G∗
0 and GS G0G∗

0 only contribute non-physical non-stationary
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Diffracted waves from SRI 1053

Figure 11. Source–receiver estimate of the Green’s function between x1

and x2 (solid line) constructed using the partial boundaries in Fig. 7, when

G∗
0

(

x′, x
)

is eliminated from the data prior to the cross-correlation. The

dashed black line represents the true Green’s function; the dashed red line

corresponds to the interferometric trace in Fig. 8. Maximum amplitudes

in each trace are normalized to one. The non-physical arrival before the

pseudo-physical causal scattered wave in Fig. 8 is completely suppressed,

resulting in a good estimate of the scattered wavefield.

energy. Since all of these terms, and only these terms, contain the di-

rect wave arrival G∗
0 (x′, x) between boundaries S and S′, eliminating

this direct wave component altogether from the interferometry (i.e.

setting it to zero prior to cross-correlating wavefields) reduces the

amount of non-physical energy without losing physical information

about the scattered wavefield (Fig. 11). In this way, the monopole

or far-field approximation can be used without causing significant

negative effects, even if the boundaries are close together or even if

they are collocated.

Stationary but non-physical events are constructed from the terms

G0GS G∗
S and GS G0G∗

S on account of the stationary pairs x′ = c, ∀x

and x = e, ∀x′ (Fig. 3). Usually these events would be cancelled out

by other non-physical events associated with the stationary points

at d and f. Using only partial boundaries, however, the linear arrays

omit the corresponding stationary points and thus preserve the non-

physical energy in the constructed trace. They are identified as the

first arrivals, with traveltimes corresponding to t (x2, xS) − t (x1, xS)

and t (x1, xS) − t (x2, xS), respectively, where t (x1, xS) is the trav-

eltime from xS to x1. Although their traveltimes do not relate to

physical ray paths they still contain information about the medium,

especially about the location of the scatterer. For example, if the

scatterer was located at the midpoint between source and receiver

the traveltimes of both events would be zero and they would co-

incide at zero lag-time. We can thus use the information from the

traveltimes of non-physical events to constrain the position of the

scatterer. Combining this information with the traveltime of a physi-

cal scattered wave, causal or acausal, given by t (xS, x1) + t (x2, xS)

or − [t (xS, x1) + t (x2, xS)], respectively, the position of a scatterer

located below the source–receiver pair is uniquely defined (Fig. 12).

Non-physical energy from standard interferometry has been well

studied and shown to be useful in velocity analysis (King & Cur-

tis 2011) and locating near-surface scatterers (Harmankaya et al.

2013). Similar applications appear feasible for non-physical energy

constructed from SRI. Further research could examine the potential

of using non-physical energy to constrain the scattering amplitude.

In the supporting information, we provide an analysis of differ-

ent parametrizations of the numerical model using, for example, a

larger spatial sampling interval while the lateral extents of S and S′

are held constant. When the sampling interval is increased the con-

tributions from neighbouring traces at non-stationary points may

not cancel out and may thus introduce non-physical energy (see

Figure 12. Pseudo-physical (black lines) and non-physical (red lines) events

constructed from GS GS G∗
S and G0GS G∗

S , respectively, for different hori-

zontal scatterer positions—moving the scatterer in Fig. 7 relative to x1 and

x2, while keeping the vertical location at 0 m. For any fixed scatterer position

relative to x1 and x2 the position of the scatterer can be estimated using the

combined traveltime information from both events.

Figs 13 and 14). Analysing each term of eq. (8) individually we

find that some terms contribute energy that is relatively robust to

changes of the sampling interval: the terms G0G0G∗
S and GS GS G∗

S

still provide good estimates of the acausal and causal scattered wave,

respectively, when the sampling interval equals six times the spatial

Nyquist wavelength λNyq (Fig. 15), which corresponds to a spacing

of 38 m. This is also true for the stationary non-physical events in

G0GS G∗
S and GS G0G∗

S . Thus, the additional non-physical energy

introduced by depopulating the boundaries appears solely on ac-

count of the terms G0G0G∗
0, GS GS G∗

0, G0GS G∗
0 and GS G0G∗

0, all

of which contain the direct wave arrival between the two bound-

aries, G0 (x′, x). Again, by eliminating this component prior to the

cross-correlation of wavefields we can therefore reduce the amount

of non-physical energy and apply a coarser source and receiver

spacing without loss of resolution of the scattered waves.

The differing behaviour with respect to the spacing on each

boundary can be understood by considering the correlation gathers:

for each term, the maximum allowable spacing is determined by the

slope of the traveltime curve in the correlation gather, which de-

pends on the choice of the Green’s functions in the cross-correlation.

When G0 (x′, x) is used rather than GS (x′, x) the traveltime curve

in the first correlation gather (corresponding to interreceiver in-

terferometry) has a much steeper slope (compare Figs 13 and 14,

for example) and therefore causes incomplete cancellations even

for a small increase of the sampling interval above the Nyquist

wavelength. In general, the traveltime slope depends on the veloc-

ity of the medium, the depth of the source–receiver pair, and the

depth of the scatterer (Mehta et al. 2008). Further, the behaviour

of the traveltime curves may be different for multiply scattered or

reflected waves. The maximum allowable spacing is thus defined by

the geometry and material properties of the problem at hand.

For the geometry used, only the term G0G0G∗
S gives the acausal

scattered wave (Figs 9a, 10a and b) on account of the stationary

pair x = e, x′ = c (Fig. 3). This term has also been used by Polian-

nikov (2011) to recover the reflection response of a layered medium

using SRI. Moreover, an estimate of the causal scattered wave is ob-

tained from the pseudo-physical event constructed from GS GS G∗
S

(Fig. 9b), for which every source-receiver pair is stationary (Figs 10c

and d). Note that in the geometry used herein, GS GS G∗
S is the only

term that contains information about the causal scattered wave. If

we therefore use only terms G0G0G∗
S and GS GS G∗

S , we obtain

a good estimate of the causal and acausal scattered field (Figs 15a
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1054 K. Löer et al.

Figure 13. Correlation gathers of G0G0G∗
S for different parameter constellations (for symbol key see Table 2). Panels (a) and (b) correspond to (a) and (b) in

Fig. 10. (c) As in (a) but with the source interval equal to 3 ∗ λNyq. (d) As in (b) but with the receiver interval equal to 3 ∗ λNyq. Figure layout as in Fig. 10. In

this example the coarser spatial sampling does not affect the interferometric result.

Figure 14. As in Fig. 13 but for G0G0G∗
0 . (a) and (b) above correspond to (i) and (j) in Fig. 10. When a coarser spatial sampling is applied (c and d) additional

non-physical energy is introduced in the interferometric estimate.
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Diffracted waves from SRI 1055

Figure 15. (Pseudo-)Physical scattered wave energy constructed using the terms G0G0G∗
S and GS GS G∗

S only (solid line) compared to the true scattered wave

(dashed line). The maximum amplitudes have been normalized to one. (a) Source and receiver spacing is equal to 1 ∗ λNyq. (b) Source and receiver spacing is

equal to 6 ∗ λNyq. (c) and (d) show the same results as (a) and (b), but causal and acausal (positive and negative time) sides have been normalized independently

to better illustrate the quality of the interferometric result. Despite the strongly depleted boundaries in (b) and (d) the scattered wavefield is well constructed

and no additional spurious energy is introduced.

and c) even if the boundary source and receiver sampling is depleted

(Figs 15b and d).

Considering the applicability of these results in an imaging con-

text, when the aim is to image the scatterer we have to consider

the following limitations: compared to the geometry used in SRI

(Fig. 7), in a seismic experiment the subsurface source at x1 and

the receiver at x2 are physically not available, so the wavefields

G (x′, x1) and G (x2, x) are not recorded. In imaging methods these

wavefields are modelled using a smooth background model, usually

obtained from velocity analysis and waveform inversion (Pratt 1999;

Yilmaz 2001). Under these conditions we find that G0G0G∗
S has a

crucial advantage over GS GS G∗
S : while modelling of GS (x′, x1) and

GS (x2, x) requires information about the scatterer (which is usually

not available from the background model), G0 (x′, x1) and G0 (x2, x)

are solely defined by the background model. In fact, G0G0G∗
S can

be compared directly to the imaging condition for a migrated image

(Claerbout 1985) given that source and receiver coincide on the im-

age point x1, since the explicit link between imaging and SRI was

provided by Halliday & Curtis (2010). They derive the scattered

wave components of SRI from reciprocity relations for perturbed

media, and show that under the Born approximation the scattering

potential f at a point x1 is given by

f (x1) =
−4

jc0

∞
∫

−∞

dω (− jω) ×
∫

S

[

∂i� (x1, x) G∗
0 (x1, x)

− � (x1, x) ∂i G
∗
0 (x1, x)

]

ni dS, (16)

where � (x1, x) represents the back propagated wavefield at x1

� (x1, x) =
−1

jωρ

∫

S′

[

∂i ′ GS

(

x′, x
)

G∗
0

(

x1, x′)

− GS

(

x′, x
)

∂i ′ G
∗
0

(

x1, x′)]ni ′ dS′. (17)

Note that G0 (x1, x) and G0 (x1, x′) are not measured quantities

but synthetic forward-propagating (from sources at x) and back-

propagating (from receivers at x′) Green’s functions, respectively,

calculated using the background model. As Halliday & Curtis

(2010) explain, eq. (16) is directly related to the imaging condi-

tion that Oristaglio (1989) derived using a double-focussing algo-

rithm. We find that eqs (16) and (17) show striking similarities to

eqs (2) and (1), respectively, assuming that x2 = x1, and setting

G (x′, x1) = G0 (x′, x1), G (x2, x) = G0 (x2, x), as if using the term

G0G0G∗
S only and invoking source–receiver reciprocity.

Note that Halliday & Curtis (2010) use a complete circular bound-

ary of sources and receivers. In their derivation they find that not

only the zero-offset scattering response is constructed but also its

time reverse, as well as two events similar to stationary but non-

physical arrivals in interferometry. This is consistent with the events

expected from the term G0G0G∗
S by stationary phase analysis when

using a full boundary (Table 1). When restricting the boundary to

the surface, however, only the acausal scattered wave is constructed

due to the lack of stationary points associated with the causal scat-

tered wave and the two stationary, non-physical events. Hence an
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1056 K. Löer et al.

Figure 16. Geometry used in multiple diffractors example. Symbol key as

in Fig. 2. The imaginary part of the scattering amplitude of the diffrac-

tors located at xA and xB is set to −1, for the scatterer at xC it is set

to −2.

imaging condition can be derived from SRI even if the boundaries

are only partially available on top of the scattering medium. Indeed

the suppression of the two non-physical events when using partial

boundaries can be seen as a positive advantage of using incom-

plete boundaries, since that non-physical energy will not disturb the

image.

As the interferometric approach does not make use of the Born

approximation it is in principle able to account for non-linearities

associated with multiple scatterers, which are currently not consid-

ered by standard migration schemes. When an initial estimate of

the scattered wavefield is included in the reference wavefield G0 it

also becomes possible to use additional interferometric terms for

non-linear imaging, and some work has already been done in this

area (Fleury & Vasconcelos 2012; Ravasi & Curtis 2013; Vascon-

celos 2013). The question of how our specific results generalize to

the case of a multiply scattering medium, and how this could be

used to enhance resolution in seismic images, will be addressed

in future research. An example for pseudo-physical energy con-

structed in a multiple scattering case is provided in Fig. 17. A full

boundary has been used (Fig. 16) to highlight the effect of the

scattering amplitude on the amplitude of the constructed events.

For first-order scattering the analysis provided for a single scatterer

applies just as well in the multiple-scattering case: the amplitude

of the constructed event is proportional to the imaginary part of

the scattering amplitude of the corresponding scatterer. Note that

the scatterers have different scattering amplitudes, which results

in different amplitudes of the primary events on the constructed

trace. In principle, scattering events of any order are constructed

using GS GS G∗
S only. For example, a secondary event can be seen

at around 0.7 s. For a kinematic analysis of higher order scatter-

ing see Meles & Curtis (2013). How the amplitude (and phase) is

affected by the scattering amplitudes of the individual diffractors

has to be clarified in future research. Moreover, non-physical events

are introduced from the correlation of cross-terms (e.g. at 0.2 s).

Note that those may superimpose pseudo-physical arrivals and af-

fect their amplitudes and waveforms. Nevertheless, this example

shows that the single-scattering analysis presented herein is use-

ful and applicable, at least in relatively simple multiple-scattering

scenarios.

Figure 17. Pseudo-physical events (solid line) constructed using GS GS G∗
S

only and the geometry shown in Fig. 16 containing three diffractors. The

dashed line represents the true scattered Green’s function. All first-order

scattering events (primaries) are constructed with the correct traveltime and

waveform. According to eq. (13) the primaries around 0.2 and 0.3 s have

exactly the amplitude of the true events, since the imaginary part of the

scattering amplitude of the corresponding scatterers (ℑ (AA) and ℑ (AB ),

respectively) equals −1. Analogously, the primary at 0.6 s is constructed

with twice the correct amplitude, since ℑ (AC ) = −2. Moreover, good esti-

mates of higher-order scattering events have been constructed, for example,

between 0.4 and 0.6 s and around 0.8 s. Note, however, that they appear to be

shifted in phase. The small amplitude events before 0.15 s are non-physical.

C O N C LU S I O N S

Using synthetic acoustic scattered waves we have illustrated the

ability of SRI to provide information about scatterers embedded in

a smooth background medium using a limited geometry of source

and receiver boundaries representing linear arrays used in indus-

trial geophysics. By separating the wavefield into a background

component and a scattered wave component and analysing individ-

ual cross-terms of the interferometric equation using the method

of stationary phase, we determine the origin of both physical and

non-physical energy in the resulting Green’s function estimates.

We identify a new category of non-physical energy, referred to as

pseudo-physical energy, which can be used to estimate physical

energy directly.

We show that the scattered wave is constructed by only one term

of the equation, referred to as G0G0G∗
S , which is directly linked to

the imaging condition used in standard seismic migration schemes.

We showed that for this term the partial boundary may be a positive

advantage as this suppresses non-physical energy in resulting im-

ages. The term GS GS G∗
S provides a pseudo-physical event, which is

naturally non-physical but can be used as an estimate of the causal

scattered wave. For the first time a complete mathematical derivation

for the generation of pseudo-physical energy is provided. Two other

terms contain stationary non-physical energy that is not cancelled

out when using incomplete boundaries; however, this energy was

shown to provide novel information about the location of scatter-

ers. Non-stationary, non-physical energy associated with the abrupt

truncation of the boundaries and the monopole approximation can

be reduced by using a spatial taper, the use of dipole sources, or

the elimination of the direct wave component between the bound-

aries, G0(x′, x), prior to the cross-correlation of wavefields. Con-

sidering source and receiver coverage along the boundaries, our

studies reveal four terms that permit deviations from theoretical

sampling requirements while still providing a reliable estimate of

stationary energy, and fortunately for practical applications, these

include the two terms G0G0G∗
S and GS GS G∗

S that construct the

(pseudo-)physical scattered waves.
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A P P E N D I X A : T H E M E T H O D

O F S TAT I O NA RY P H A S E

The method of stationary phase is a procedure that provides an

approximate evaluation of integrals of the form

I =
∞

∫

−∞

F (x) e[− jϕ(x)]dx, (A1)

where the function F(x) varies slowly with x compared to the phase

term ϕ(x) (Snieder 2004; Schuster 2009). As the exponential term

is rapidly oscillating over most of the range of integration it can be

shown that its contribution to the integral will be zero apart from

the so-called points of stationary phase xs , where ϕ
′
(xs) = 0. The

Taylor series expansion for ϕ(x) around the stationary point xs up

to second order is given by

ϕ (x) ≈ ϕ (xs) + ϕ′′ (xs)
(x − xs)2

2
. (A2)

Note that because ϕ′ (xs) = 0 it is omitted in eq. (A2). Because

the function F(x) is slowly varying with x , close to each stationary

phase point it can be replaced by its value at the stationary point,

F(xs), and taken outside of the integral. Substituting the Taylor

expansion into eq. (A2) this yields

I ≈ F (xs) e− jϕ(xs )

∞
∫

−∞

e− jϕ′′(xs )
(x−xs )2

2 dx

≈ F (xs) e− jϕ(xs )

√

2π

jϕ
′′

(xs)
. (A3)

There will be one such approximation for each stationary point xs ,

and the set of such approximations may be summed. eq. (A3) shows

that the main contribution to the integral in eq. (A1) comes from

the points xs where the phase is stationary, in short, the stationary

points.

A P P E N D I X B : P S E U D O - P H Y S I C A L

E N E RG Y

In this study we show that the term GS GS G∗
S constructs an event

that arrives at the traveltime of the causal scattered wave GS (x2, x1)

and—after normalization of amplitudes—perfectly matches the

waveform of the causal part of the modelled scattered Green’s

function (e.g. Figs 15c and d). This appendix provides an alternative

mathematical development that explains why, despite its physical

appearance, the event constructed from GS GS G∗
S is in fact non-

physical, and moreover why it can still be used as an estimate of a

physical event.

Figure B1. Sketch of ray paths constructing GS (x2, x1) from intersource

interferometry according to eq. (B1). Ray paths shown are 1: GS

(

x′, x1

)

and

2: G∗
0

(

x′, x2

)

. Symbol key as in Fig. 2. The dashed line indicates complex

conjugation, that is, solid and dashed lines that run parallel cancel each

other in phase. Since x2 is in fact a receiver location, G∗
0

(

x′, x2

)

needs to

be constructed from interreceiver interferometry (see Fig. B2 or B3), which

turns the receiver at x2 into a virtual source.

Figure B2. Sketch of ray paths constructing G∗
0

(

x′, x2

)

from interreceiver

interferometry according to eq. (B2). Ray paths shown are (1) G0 (x2, x)

and (2) G∗
0

(

x, x′). Symbol key as in Fig. B1.

The derivation is based on representations for scattered fields in-

troduced by Vasconcelos et al. (2009), for performing intersource

and thereafter interreceiver interferometry. Halliday & Curtis (2009)

and Vasconcelos et al. (2009) show that in intersource interfer-

ometry the causal scattered wave is provided by stationary point

contributions from the top boundary of receivers (S′
t ) according to

GS (x2, x1) =
2

ρc

∫

S′
t

GS

(

x′, x1

)

G∗
0

(

x′, x2

)

dS′
t . (B1)

A sketch of the corresponding ray paths is given in Fig. B1.

We now assume that, as before, x2 is a receiver location; hence,

G∗
0 (x′, x2) is not available and needs to be constructed from inter-

receiver interferometry using

G∗
0

(

x′, x2

)

=
2

ρc

∫

Sb

G0 (x2, x) G∗
0(x′, x)dSb, (B2)

where Sb denotes a bottom boundary of sources, as shown in

Fig. B2. However, if Sb is not available because the source loca-

tions are restricted to the surface, G∗
0 (x′, x2) cannot be constructed

and GS (x2, x1) in eq. (B1) is not retrieved.

Note that when substituting eq. (B2) into eq. (B1) we obtain a

double surface integral corresponding to the term GS G0G∗
0. Ac-

cording to Fig. 3 and Table 1 this term accounts for the construction

of the causal scattered wave; however, as the associated stationary

point pair (x = d, x′ = c in Fig. 3) is not included in the surface

boundaries this wave is not retrieved in our examples (Fig. 9h). In

this case we can still construct an event that looks like the required

direct wave by cross-correlating scattered fields according to

Ĝ∗
0

(

x′, x2

)

=
2

ρc

∫

St

GS (x2, x) G∗
S

(

x′, x
)

dSt . (B3)
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Diffracted waves from SRI 1059

Figure B3. Sketch of ray paths constructing Ĝ∗
0

(

x′, x2

)

from interreceiver

interferometry according to eq. (B3). Ray paths shown are (1) GS (x2, x)

and (2) G∗
S

(

x′, x
)

. Symbol key as in Fig. B1.

Fig. B3 shows a sketch of the corresponding ray paths. However,

the Green’s functions on the right-hand side of eq. (B3) interact

with the scatterer and hence carry information about the scattering

matrix. Therefore the left-hand side of eq. (B3) is not equal to a direct

wave since it must also contain information about the scatterer.

Snieder et al. (2006) apply a similar argument for waves reflected

at an interface: the apparent direct wave constructed from cross-

correlation of reflected wavefields contains a factor proportional to

the reflection coefficient. Inserting eq. (B3) into eq. (B1) gives the

double surface integral representing the term GS GS G∗
S .

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online ver-

sion of this article:

Figure C1. Interferometric result of the full integral GGG∗ of eq. (8)

(solid line) compared to the true Green’s function between x1 and

x2 (dashed line) for different parameter constellations (see Table 2).

Maximum Amplitudes have been normalized to one.

Figure C2. Example set of ray paths used in G0G0G∗
S , symbol

key as in Fig. 2. The dashed line represents the ray of the complex

conjugated term. Faded symbols are used to make ray paths visible.

Rays shown are 1: G0(x′, x1), 2: G0(x2, x), 3: G∗
S(x′, x).

Figure C3. Interferometric result of the cross-term G0G0G∗
S in

eq. (8) (solid line) compared to the true Green’s function between

x1 and x2 (dashed line) for different parameter constellations (see

Table 2). Traces have amplitudes that are normalized relative to case

(a). Number labels are referred to in the text.

Figure C4. Example set of ray paths used in GS GS G∗
S , symbol

key as in Fig. C2. Rays shown are 1: GS(x′, x1), 2: GS(x2, x), 3:

G∗
S(x′, x).

Figure C5. Interferometric result of the cross-term GS GS G∗
S in

eq. (8) (solid line) compared to the true Green’s function between

x1 and x2 (dashed line) for different parameter constellations (see

Table 2). Traces have amplitudes that are normalized relative to case

(a).

Figure C6. Example set of ray paths used in G0GS G∗
S , symbol

key as in Fig. C2. Rays shown are 1: G0(x′, x1), 2: GS(x2, x), 3:

G∗
S(x′, x).

Figure C7. G0GS G∗
S for different apertures (length ls) of both

source (ls) and receiver (ls–100) boundary showing a stationary

(–0.05 s) and a non-stationary (between 0.1 and 0.2 s) non-physical

arrival.

Figure C8. Interferometric result of the cross-term G0GS G∗
S in

eq. (8) (solid line) compared to the true Green’s function be-

tween x1 and x2 (dashed line) for different parameter constellations

(see Table 2). Traces have amplitudes that are normalized relative

to case (a).

Figure C9. Example set of ray paths used in GS G0G∗
S , symbol

key as in Fig. C2. Rays shown are 1: GS(x′, x1), 2: G0(x2, x), 3:

G∗
S(x′, x).

Figure C10. Interferometric result of the cross-term GS G0G∗
S in

eq. (8) (solid line) compared to the true Green’s function between

x1 and x2 (dashed line) for different parameter constellations (see

Table 2). Traces have amplitudes that are normalized relative to

case (a).

Figure C11. Example set of ray paths used in G0G0G∗
0, symbol

key as in Fig. C2. Rays shown are 1: G0(x′, x1), 2: G0(x2, x), 3:

G∗
0(x′, x).

Figure C12. G0G0G∗
0 for different depths d2 showing the moveout

of non-stationary events.

Figure C13. Interferometric result of the cross-term G0G0G∗
0 in

eq. (8) (solid line) compared to the true Green’s function between

x1 and x2 (dashed line) for different parameter constellations (see

Table 2). Traces have amplitudes that are normalized relative to

case (a).

Figure C14. Example set of ray paths used in GS GS G∗
0, symbol

key as in Fig. C2. Rays shown are 1: GS(x′, x1), 2: GS(x2, x), 3:

G∗
0(x′, x).

Figure C15. Interferometric result of the cross-term GS GS G∗
0 in

eq. (8) (solid line) compared to the true Green’s function between

x1 and x2 (dashed line) for different parameter constellations (see

Table 2). Traces have amplitudes that are normalized relative to

case (a).

Figure C16. Example set of ray paths used in G0GS G∗
0, symbol

key as in Fig. C2. Rays shown are 1: G0(x′, x1), 2: GS(x2, x), 3:

G∗
0(x′, x).

Figure C17. Interferometric result of the cross-term G0GS G∗
0 in

eq. (8) (solid line) compared to the true Green’s function between

x1 and x2 (dashed line) for different parameter constellations (see

Table 2). Traces have amplitudes that are normalized relative to

case (a).

Figure C18. Example set of ray paths used in GS G0G∗
0, symbol

key as in Fig. C2. Rays shown are 1: GS(x′, x1), 2: G0(x2, x), 3:

G∗
0(x′, x).

Figure C19. Interferometric result of the cross-term GS G0G∗
0

in eq. (8) (solid line) compared to the true Green’s func-

tion between x1 and x2 (dashed line) for different parameter

constellations (see Table 2). Traces have amplitudes that are

normalized relative to case (a). Inset in (d) shows detail

(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/ggt435

/-/DC1).

Please note: Oxford University Press are not responsible for the

content or functionality of any supporting materials supplied by

the authors. Any queries (other than missing material) should be

directed to the corresponding author for the article.
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