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Chapter 1

Introduction

1.1 General introduction

Stress plays a significant role in material behavior. In the absence of external loading,

most materials experience internal stresses, termed residual stress, which is often the result

of the thermomechanical history (e.g. processing and forming). In many cases, residual

stress leads to undesirable effects, significantly influencing the yield and fatigue strength

of machined parts. Stress (and stress gradients) in parts can lead to cracking, pealing, or

distortion of components. However, at times, a residual stress (gradient) can improve the

quality and the lifetime of such parts. An example of this is the introduction of surface

hardening (such as via shot-peening or chemical treatments such as nitriding) of materials

such as steel, where the induced compressive stress on the surface provides resistance to

cracking. It can be concluded that understanding the stress in a polycrystalline material

is important for the analysis of the properties and the behavior of the material.

As the magnitude and state of stress in a material are very important, numerous

methods exist for measuring and predicting stress yielding in a material based on its

material properties (e.g. Young’s modulus, yield strength, etc.). Various methods are also

available for the modeling (or predicting) the stress and strain in a body as a function of

thermomechanical processing or environmental conditions.

In most cases, the individual crystallites in an aggregate are intrinsically elastically

anisotropic; however, in the absence of texture (i.e. grains are randomly oriented in

the bulk), the grains form an elastically, macroscopically isotropic body. This means a

polycrystalline aggregate will macroscopically comply isotropically under external elastic

loading. Such a body is termed “quasi-isotropic” [1]. Yet it should be recognized that

the behavior of each grain is dependent on its orientation with respect to the applied

load. The interaction of grains in the loaded aggregate leads to distributions of stress and

strain [2]; each individual crystallite is confined by its neighbors, not allowing it to freely

deform. Therefore, knowledge of the strain variation in a loaded body can be crucial for

understanding material properties.

The single-crystal elastic constants can be used to define the degree of anisotropy of the

1
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material’s elastic behavior defined by the parameter A (known as the Zener’s anisotropy

ratio), meaning the compliance of a single grain is strongly dependent on the direction of

the applied loading:

A =
2 (s11 − s12)

s44
=

2 · c44
c11 − c12

(1.1)

where sij and cij are the single-crystal elastic constants for compliance and stiffness, re-

spectively. If the elastic response of an isolated grain for a specific material is independent

of its orientation with respect to the (anisotropic) state of loading, which holds for tung-

sten, the material is called intrinsically elastically isotropic (A = 1). For such materials,

all grains experiencing the same imposed stress state will exhibit identical (average) lattice

strains, independent of grain orientation.

1.2 Stress analysis using diffraction

X-ray diffraction (XRD) is a common non-destructive technique for analyzing the stress

in a material from the lattice strain. When the X-ray beam hits a specimen, the beam

is diffracted in a manner unique to the crystallographic structure of the material. This

method can be used to extract the (average) spacing of lattice planes in a crystalline

material and the fitting of the unit cell [3]. The measured diffraction line is the result

of numerous contributing factors. The angle between the diffraction and the incident

beam 2θ can be related to the lattice spacing dHKL of a specific reflection HKL as a

function of the radiation wavelength λ:

λ = 2dHKL sin θ. (1.2)

This relationship is termed Braggs law [4]. The lattice spacing for a cubic material is

calculated as a function of the HKL describing the lattice planes and the lattice parame-

ter a:

dHKL = a ·
√
H2 +K2 + L2. (1.3)

The measured lattice spacing d is a function of the HKL reflection and the orientation of

the diffraction vector, defined by φ and ψ.

Any variation from the perfect diffraction conditions can cause the measured peaks

to both broaden and shift in 2θ [3]. Grains that are less than infinitely large (especially

nanocrystals), defect structures in the crystals, non-ideal instrumental conditions, and

variation of strain (lattice spacing) within the diffraction volume can all contribute to an

increased width of the diffraction lines.

Measuring the lattice spacing as a function of applied load provides information about

strain on the granular level. A strain distribution in the aggregate induces a variation

in lattice-plane spacing, which results in broadening and possibly a shift in 2θ of the

measured x-ray diffraction (XRD) lines [3]. An average strain for grains sharing a specified

diffraction vector will result in a shift of the diffraction line. The induced peak shift is
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Figure 1.1: Schematic of single grain diffraction within a polycrystalline aggregate, also
demonstrating the degree of grain rotational freedom, in a diffraction experiment, given

as the angle χ, defining the rotation about the HKL diffraction vector, which is
perpendicular to a set of (hkl) planes.

well understood and can be described using Bragg’s law (Equation 1.2) and by expressing

the elastic strain in terms of the average lattice strain of the diffracting crystallites [2,

5, 6]. Studies have been performed to relate the (average) lattice strain to macroscopic

(residual) stress in a specimen using x-ray diffraction (XRD) techniques [7, 8]. The local

stress variation in macroscopically elastically loaded polycrystalline bodies (consisting of

elastically anisotropic grains) can affect diffraction-line broadening.

Diffraction-line broadening has been a topic of great interest since the discovery of x-ray

diffraction by crystal. The broadening of diffraction lines occurs in different manners (e.g.

symmetrically versus asymmetrically, change in shape, etc.) due to (and depending on) a

number of causes, e.g. smallness of crystallite size and microstrain. Much of the research

focusing on diffraction-line broadening works to separate the numerous contributions and

then draw conclusions about the microstructure of a specimen. The measured diffraction

line h(2θ) can be thought of as a convolution of the intrinsically broadened diffraction

line f(2θ) with the instrumental broadening contribution g(2θ) [9]:

h(2θ) = g(2θ)⊗ f(2θ). (1.4)

Identifying and extracting the individual intrinsic profile contributions is non-trivial. The

intrinsic broadening is also thought of as a convolution of several broadening contribu-

tions which result from the microstructure of the specimen. Much work in the field of

strain variation (namely that which occurs within individual grains) approximates the

microstrain contribution as a Gaussian-shaped line profile. However, realistically, a com-

binations of both Gaussian- and Lorentzian-shaped profiles have been observed [10]. For

a rigorous discussion on (also line-profile shape of) micro-(lattice-)strain broadening, see

Reference [11].
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1.2.1 The sin2 ψ method

Strain induced by elastic loading is generally defined as a change in length over the

initial length. The (average) change in interatomic spacing along the diffraction vector

will be used to define (average) lattice strain:

ǫHKL

φ,ψ =
dHKL

φ,ψ − dHKL
o

dHKL
o

, (1.5)

where dHKL
o is the lattice-place spacing in the absence of stress, which is dependent, among

other things, on the material, HKL, and temperature. The lattice-plane spacing is directly

calculated from the diffraction-line position, as indicated in Equation 1.2. In addition to

depending on the applied loading (magnitude and state), the lattice spacing dHKL

φ,ψ is

dependent on the HKL reflection, as well as the measurement angles ψ and φ, the tilting

and rotation of the sample, respectively [6].

In terms of the diffraction geometry, the average lattice strain along the diffraction

vector can be expressed as:

ǫHKL

φ,ψ = FHKL

ij (φ, ψ) · 〈σij〉. (1.6)

where FHKL
ij (φ, ψ) are the x-ray diffraction stress factors and 〈σij〉 describes the loading-

induced state of mechanical stress. For a proof of this relationship, see Reference [5].

This relationship remains valid also for macroscopically elastically anisotropic bodies (e.g.

textured). If a material is untextured, and found to behave macroscopically isotropically,

the following relationship can be derived by relating the XRD measurement geometry to

the average lattice strain ǫHKL

φ,ψ along the diffraction vector for a planar state of stress:

ǫHKL

φ,ψ =
1

2
SHKL

2

[

cos2 φ · σ11 + sin(2φ)σ12 + sin2 φ · σ22
]

sin2 ψ + SHKL

1
(σ11 + σ22) , (1.7)

where SHKL
1

, 1

2
SHKL
2

are the (x-ray) diffraction elastic constants and σ11, σ12, σ22 define

the planar macroscopic stress state in the body [12].

For a uniaxial (σ11 6= 0, σ12 = σ22 = 0) or a biaxially, rotationally symmetric state of

stress (σ‖ ≡ σ11 = σ22 6= 0, σ12 = 0), which are the two stress states investigated in this

thesis, the expression given in Equation 1.7 can be significantly simplified. A linear fit of

the strain data ǫHKL

φ,ψ , for a fixed angle φ, plotted as a function of sin2 ψ can be used to

calculate the stress in the material. The uniaxial and biaxially, rotationally symmetric

states of stress will be applied and discussed further in the experiments and calculations

discussed in Chapters 2-4.

1.2.2 Specimen curvature from rocking curves

Residual stress in a substrate-bound thin film will cause the substrate-film system to

bend. For a thin film (thin being relative in comparison to the substrate thickness), the
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strain ǫ due to curvature is given by [13]:

ǫ =
H2

6h
·
(

1

R

)

, (1.8)

where h is the thickness of the film, H is the thickness of the substrate, and R is the

radius of curvature, assuming a flat substrate when the magnitude of stress is null [14].

Of course, stress calculated using specimen curvature is always a relative value. Even a

completely strain-free substrate will have some characteristic curvature, which will change

as soon as the film is deposited due to residual stress. A complimentary method for

measuring stress (or information about the pre-deposition curvature of the substrate)

is therefore always necessary to know the absolute value found using curvature. Using

Hooke’s law, the change in stress which causes a change in curvature (from R1 to R2) is

defined as:

∆σ =M · ǫ =M · H
2

6h
·
(

1

R2

− 1

R1

)

, (1.9)

where M is the biaxial modulus of the substrate (defined from the Young’s modulus E

and Poisson’s ratio v).

Curvature can be investigated by making rocking curve scans of an HKL reflection (i.e.

the detector position is fixed at 2θ and the specimen is rocked in a small range of ω angles

for ω ≈ 2θ
2
) while transversing the film. The shift in peak position ∆ω, when combined

with the distance between measurement locations on the specimen ∆x, can be used to

assess the curvature R [15]:

R =
∆x

2 sin(∆ω
2
)
. (1.10)

This method can be used for both crystalline and amorphous films deposited on (usually

single-crystal) substrates.

1.3 Mechanical grain interaction

1.3.1 Grain-interaction models

Several elastic grain-interaction models (described in the following section) can be

used to calculate that the average lattice strain (or stress factors and diffraction elastic

constants) for polycrystalline specimens under macroscopic loading. Each model uses

a set of constitutive assumptions which enforce certain conditions within the aggregate

in order to calculate the stress and strain of a crystallite based on its orientation and

the macroscopic loading state. The validity of each model is highly dependent on the

specimen characteristics (e.g. surface effects, non-spherical grain shape, etc.). Models

can be classified into two separate categories: isotropic (equality of grain interactions in

all directions) and anisotropic (direction dependent grain interactions). A summary of

the commonly applied models can be found in Table 2.1 (Chapter 2). These models vary
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greatly in their complexity and in their applicability.

The Voigt [16] and Reuss [17] models represent the extreme cases for (isotropic) grain

interactions, providing the lower and upper bounds in strain, respectively. The Voigt

assumptions follow that all crystallites in the body are tightly connected, meaning they

must deform together. This results in all grains being under identical state of strain

(isostrain) in the specimen frame of reference. The opposite approach is taken for the

Reuss model. The crystallites in the aggregate are assumed to deform freely, resulting in

all grains under identical state of stress (isostress) in the specimen frame of reference. A

major advantage to these models is that they can be solved analytically.

The effective grain-interaction models use linear combinations of the results found

according to the extreme Voigt and Reuss models in an attempt to more accurately match

experimental values. The Neerfeld-Hill [18, 19] model is an isotropic model, which uses

the arithmetic averages of the Voigt and Reuss bounds. Both the Vook-Witt [20,21] and

inverse Vook-Witt [22] imply different grain-interaction assumptions for directions parallel

and perpendicular to the specimen surface, making them anisotropic grain-interaction

models. For the Vook-Witt model, the isostress conditions are enforced perpendicular

to the surface (i.e. Reuss) and isostrain restrictions are made parallel to the surface

(i.e. Voigt). The inverse Vook-Witt model enforces exactly the opposite conditions (i.e.

isostrain perpendicular to the surface and isostress parallel to the surface).

Each of the above discussed models does not enforce continuity between the grains.

The Eshelby-Kröner [23,24] model, however, enforces continuity between each crystallite

and the aggregate, taken as a representative effective medium, i.e. an homogeneous body

with its properties being defined as averages over all grains in the aggregate. All of

the grains of identical orientation are treated as one. A grain shape factor η can be

introduced to deal with non-spherical grains (morphological texture) [25]. The solutions

from the Eshelby-Kröner model are much more representative of the average lattice strain

observed experimentally (in comparison to models such as the Voigt and Reuss, but not

better than the results from the Neerfeld-Hill model), but the calculation process is rather

computationally intensive.

Similar models also exist to describe grain interaction during plastic deformation. The

Taylor model (based on the same isostrain assumptions as the Voigt models) is the true

upper bound [26]. The Sachs model is comparable to the Reuss model, acting as the lower

bound, as grains are assumed to have equivalent stress states (in the specimen frame of

reference). More complex models also exist which have additional assumptions to provide

more accurate approximations of the plastic deformation. Such models integrate slip and

dislocation movement within the grains, as well as enforcing continuity the individual

grains and the aggregate. These models, however, much like the elastic grain-interaction

models, do not incorporate local heterogeneity of the neighborhood of each grain in a

quasi-isotropic aggregate.

Constricting the discussion to elastic loading only, through the application of one
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of the elastic grain-interaction models, the average lattice strain as a function of grain

orientation with respect to the aggregate (in the specimen frame of reference) can be

calculated for all possible grain orientations. The calculated information for lattice strain

can also be applied to predict the expected diffraction-line broadening by convoluting

diffraction peaks with a function describing the strain distribution within a set of grains

sharing a common diffraction vector. (Refer to Section 1.6.2.)

1.3.2 X-ray diffraction-line broadening induced by external

mechanical elastic loading

A diffraction line includes information about all (hkl) lattice planes lying perpendicular

to the diffraction vector. As shown in Figure 1.1, this leaves a degree of freedom, indicated

by the angle χ. Variation in the lattice parameter for grains sharing the same diffraction

vector, within the diffraction volume, will result in diffraction-line broadening. Therefore,

diffraction lines will broaden due to the strain distribution induced by external mechanical

loading. This broadening is a result of the anisotropic behavior of the individual grains.

The broadening is fully reversible upon the unloading of the specimen.

Theoretical calculations of the strain variation in a quasi-isotropic polycrystalline ag-

gregate provide support that diffraction-line broadening results from elastic loading [27].

The calculated broadening (according to the isotropic elastic grain-interaction models)

have been compared directly with experimentally measurable diffraction-line broadening

during in situ loading experiments [28, 29].

It has been shown computationally that only the deviatoric stress (not hydrostatic

stress) will contribute to the induced diffraction-line broadening, when isotropic grain

interaction is considered [28]. The broadening (and lattice strain variation) is strongly

dependent on HKL [27–29].) Reflections which satisfy H00 or HHH, for cubic materials, do

not broaden under applied elastic loading when grain interactions are isotropic. Texture is

also an important factor in diffraction-line broadening (for both isotropic and anisotropic

grain interaction), as a grain’s anisotropic behavior is clearly dependent on the orientation

of the grains in the aggregate. (This discussion is presented in Chapters 2 and 3.)

The broadening of diffraction lines, i.e. by a comparison of calculations and experi-

ments, can be used to gain fundamental insight into the intergranular (and even intra-

granular) mechanics in an aggregate.

1.4 Effect of stress on phase transformations:

equiatomic NiTi

Shape memory properties are characteristic of a unique set of materials which can un-

dergo seemingly severe and permanent deformation, yet still return to their original state

through a load and temperature induced phase transformation. This special behavior was

first documented for an Au-Cd alloy in 1951 [30]. Additional shape memory materials
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were discovered in the following years, including equiatomic NiTi in 1963 [31]. The high

work output to volume ratio and the more or less perfect reversibility makes NiTi an ideal

candidate for an ever-growing number of applications, e.g. see References [32–35]. Near

equiatomic compositions of NiTi are one of the of the most widely researched and applied

shape memory materials due to its high strength and relatively simple composition. More-

over, the functioning temperature range can be tuned by thermomechanical treatments,

making the application in a wide range of environments possible. This material is used in

the aeronautical field as well as for medical applications. Recently, there is a large interest

in small scale components made from NiTi for the construction of microelectromechanical

systems (MEMS). Figure 1.2 shows some specialized applications of NiTi shape memory

alloys.

(a) Stent used to keep
arteries open after a
heart attack. Image

taken from
Reference [34].

(b) Microtweezers made from NiTi-based alloy
where components move and mechanically

function with thermal variation. Image taken
from Reference [35].

Figure 1.2: Examples of the implementation of NiTi shape memory alloys

1.4.1 Martensitic transformation in shape memory NiTi

There are two prominent phases of interest in near equiatomic NiTi alloys: austenite

and martensite [36]. NiTi shape memory alloys undergo a martensitic transformation

between the austenite and martensite phases. Both thermal and mechanical loading can

be imposed on the material to induce the phase transformation [37]. The massive, first-
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order martensitic transformation is known to be diffusionless and athermal [38].

Austenite, the high temperature phase, has a cubic structure; the martensitic phase

has a monoclinic crystalline structure and occurs at low temperatures. During cooling, it

is possible for an intermediate phase, coined R-phase due to its rhombohedral unit cell, to

form before martensite does. The appearance of this intermediate phase complicates the

transformation and it will not be discussed in this work. Full crystallographic character-

ization of the austenite, martensite, and intermediate R-phase (and some of the common

precipitates such as Ti2Ni) have been performed in numerous studies [39–41].

The martensitic phase transformation in NiTi is realized through a shear and a ro-

tation of the cubic (austenite) unit cell [36]. As the transformation is diffusionless, the

displacement of individual atoms is minimal, not exceeding the atomic distance. The for-

ward transformation is realized, in a sense, by a stretching of the cubic (austenite) lattice

along the z-axis (lengthening of c) and a shearing of the unit cell to slightly increase the

angle β. Twelve unique variants of martensite can form during the cubic to monoclinic

phase transformation. These variants form in such a manner as to reduce the overall

stress of the material, giving it the title self-accommodating. Often, multiple twin bands

are formed within a single cubic austenite phase. This process leads to martensite being

referred to as self-accommodating, also providing the mechanism for shape memory. The

martensitic transformation in NiTi shape memory alloys is heavily influenced by the stress

state (and temperature) of the material [36].

1.4.2 The shape memory effect and psuedoelasticity

Martensitic shape memory materials exhibit two unique behaviors: pseudoelasticity

(also called super elasticity) and shape memory effect [37]. These characteristic behaviors

of near-equiatomic NiTi alloys are driven by the (forward or reverse) martensitic transfor-

mation of the material. A schematic of the understanding of the microstructural changes

for these two phenomena is shown in Figure 1.3.

Pseudoelasticity can be observed when austenite (high temperature phase) is loaded.

Instead of resulting in permanent deformation of the material, applied loading induces

the formation of a single variant of martensite [37]. This phase is, of course, unstable at

high temperatures in the absence of loading. So, upon unloading, the material transforms

entirely back to its undeformed parents phase (austenite). Permanent deformation can

be induced in the martensite phase if loading exceeds the elastic loading limit. How-

ever, in both the SME and PSE, induced macroscopic strain up to 8-10% are still fully

reversible [37].

The shape memory effect occurs at low temperatures, i.e. characteristic behavior of

the martensite phase. During deformation, the material detwins to the most favorable

monoclinic variant with respect to the applied load [36]. When the external loading is re-

moved, the material will remain in this deformed state. The material must then be heated

to induce the reverse martensitic transformation. This erases the deformation, resulting
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Figure 1.3: Schematic of martensitic transformation in NiTi due to thermal and
mechanical loading. Shape memory effect is indicated by open arrows: (1) loading from
self-accommodated martensite to a single variant martensite, (2) heating above the

austenite finish temperature Af to transform entirely to austenite, and (3) cooling from
austenite to below the martensite finish temperature Mf returns material to original

shape. The solid arrows indicate the path taken for pseudoelasticity: (a) the material is
mechanically loaded in the austenite phase, inducing a strained aggregate which
transforms to a single variant of martensite and (b) upon unloading, the material
returns to the austenite phase, as the martensite phase is unstable at temperatures

above the austenite finish temperature. Figure drawn from Reference [36].

in the parent austenite phase. Upon cooling, the material returns to the undeformed,

multi-variant martensite. In this sense, the material has remembered its original state,

hence the name shape memory effect.

These behaviors (and phases) are of great interest to industrial and biomedical appli-

cations, especially those where components on the microscale are needed [32–35]. Scien-

tifically, the unique transformation behavior is rather complex and remains a prevalent

research focus in materials science. The effect of thermal cycling on the material and the

interplay of stress and transformation temperatures are yet to be fully understood, e.g.

see References [42–45]. The influence thermal cycling on the stress during the reverse

martensitic transformation is the focus of the investigation discussed in Chapter 4.

1.4.3 Diffraction studies of equiatomic NiTi

Due to the dramatic structural transition associated with the phase transformation, the

material lends itself very well to investigation via XRD. Diffraction-line analysis of phase

content and stress during in situ experiments is a powerful tool, especially to the extent
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where Rietveld analysis techniques can be utilized. Examples of diffraction patterns for

austenite (cubic) and martensite (monoclinic) are shown for a thin film specimen measured

in Figure 1.4.

Figure 1.4: Diffraction patterns taken using synchrotron radiation (λ = 1.5307 Å) of a
NiTi thin film specimen containing Ti2Ni precipitates (cubic phase) in the austenite
state (shown in red; 120◦C) and the martensite state (shown in blue; 20◦C). The
martensite and austenite reflections are indicated with the letters M and A. The

additional reflections from the Ti2Ni precipitates are only visible when the material is in
the austenite phase. These are indicated with stars (∗).

1.5 Focus of thesis

The general theme of this thesis is the investigation of the influence of stress on ma-

terials during in situ experiments (such as mechanical loading or thermal cycling) using

X-ray diffraction techniques. Various methods have been applied for obtaining stress and

strain information: sin2 ψ-method, curvature measurements via ω-rocking curves, and

loading-induced peak broadening to extract essential knowledge about the strain distri-

bution. These established measurement methods have been applied in such a manner as

to deduce information about stress and strain during mechanical, thermal, and structural

changes in the material. Both substrate-bound thin films and bulk material have been in-

vestigated. The majority of reported data has been collected using synchrotron radiation

for XRD experiments.

1.6 Methodology

This section provides information about the main calculation and analysis techniques

used in the research discussed in this thesis.
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1.6.1 Thin film preparation

All of the films presented in this work were grown by sputter deposition from single-

element targets. Prior to sputtering, the deposition chamber was evacuated and a bake-

out process was performed to clear the chamber of any impurities. The single-crystal

substrates were rotated during the deposition, which occurred in a high purity argon

atmosphere.

Argon ions were directed at the target(s), which resulted in the ejection of target atoms.

As these atoms reached the stage, they started to cover the substrate surface, eventually

forming a closed layer. The rate of film growth is dependent on the power applied to the

target(s) and the argon pressure in the chamber. When co-sputtering (using two targets

of different materials), the ratio between the power applied to the targets is indicative

of the composition in the deposited film. Depending on the substrate material and the

desired film properties, the substrate can be heated during deposition. All of the discussed

parameters can be tuned to affect the microstructure and residual stress of the deposited

film.

1.6.2 Computational application of grain-interaction models

In order to calculate the variation in lattice spacing, a model is selected, and the

loading conditions are applied to the aggregate. The stress-strain state of the single

grain is solved based on its orientation (elastic constants) and boundary conditions. This

calculation method, when applied to each grain in the aggregate, provides information

which can be used directly to predict the (average) lattice strain in each grain as a function

of grain orientation. From this, both the average strain and the strain distribution can

be calculated. Broadening of diffraction peaks depends on the strain variation in a body.

The strain variation about the diffraction vector is heavily dependent on selected grain-

interaction model, as shown in Figure 1.5 for a fixed diffraction geometry (and loading

conditions). Due to the isostrain condition for the Voigt model (shown in black), a solution

results where all grains experience the same strain; this means that the strain will be

homogeneous throughout the entire body, resulting in a peak shift but no peak broadening.

For other grain-interaction models, the strain calculated in each grain is dependent on its

orientation with respect to the aggregate, and the strain variation through the aggregate

can be used to predict diffraction-line broadening (and shift).

The strain variation in quasi-isotropic materials is dependent on the orientation of

the grains considered and is defined as ǫHKL

φ,ψ (χ). (This parameter is fully defined in

Chapter 2.) The angle χ defines the orientation of a grain with respect to the diffraction

vector, as shown in Figure 1.1. The grain-interaction models are applied to calculate

the strain for all possible orientations. Next, the diffraction geometry (HKL or 2θ and

specimen orientation, φ and ψ) need to be defined. Using this information, the set of

grains sharing a fixed diffraction vector orientation are complied to compose ǫHKL

φ,ψ (χ).

It is the magnitude of variation in the function ǫHKL

φ,ψ (χ) that determines the degree of



CHAPTER 1. 13

Figure 1.5: ǫHKL

φ,ψ as a function of χ for the 331 reflection with the orientation of the
diffraction vector given by φ = 0◦ and ψ = 25◦ for an untextured specimen according to

all of the isotropic and anisotropic elastic grain-interaction models discussed in
Section 1.3.1 and Table 2.1

broadening. The average, i.e. ǫHKL

φ,ψ , provides information about the diffraction-line shift.

Further details on these calculations can be found in Chapter 2.

The calculated elastic strain variation about the diffraction vector ǫHKL

φ,ψ (χ) is used to

predict the broadened x-ray line broadening by convoluting the strain variation contribu-

tion with the diffraction line of an unstrained specimen.

1.6.3 XRD experiments

All diffraction patterns, unless otherwise mentioned (e.g. rocking curves), were mea-

sured in reflection according to the Bragg-Brentano geometry, where θ-2θ scans were

made. The presented data were all measured at the MPI surface diffraction beam line

at the ANKA light source (KIT, Karlsruhe, Germany) using a NaI point detector. The

experimental set-up at the beamline is shown in Figure 1.6(a). The diffraction experi-

ments discussed in this thesis were performed using energies between 8 and 10 keV. The

measurement wavelength for each experiment was calculated by performing calibration

scans on an LaB6 (NIST Standard Reference Material SRM-660) powder specimen.

Individual HKL diffraction lines were always fitted with a Pearson VII shape function,

with an exception for the NiTi thin film measurements discussed in Chapter 4. Rietveld

analysis was performed on this data, which will be discussed in the next section. Fitting

parameters for the single diffraction lines include integral area, full width at half maximum

(FWHM), and asymmetry. The peak position was always taken to be the position of the

greatest intensity for the calculated fit.

Numerous in situ experiments were performed at the MPI beamline, including both

thermal and mechanical loading specimens. The in situ heating and cooling was imposed

using a chamber (Figure 1.6(b); MRI Physikalische Geräte GmbH, Karlsruhe, Germany)

equipped with a Be-dome, transparent to x-rays, and mounted on a six-circle Eulerian

cradle. The specimens were fixed with metal clamps on the surface of the heating stage.

During heating and cooling, a vacuum of approximately 10−3 Pa was maintained in the

chamber. The temperature was controlled with an accuracy of ±1◦C. The mechanical
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(a) MPI surface diffraction beamline located at ANKA light source (Karlsruhe
Institute of Technology), Karlsruhe, Germany

(b) Heating and cooling chamber (MRI
Physikalische Geräte GmbH, Karlsruhe,

Germany)

(c) Tensile machine (Kammrath & Weiss
GmbH, Dortmund, Germany)

Figure 1.6: Experimental set-up for synchrotron diffraction measurements

loading was achieved through the used of a tensile machine (Kammrath & Weiss GmbH,

Dortmund, Germany) mounted on an Eulerian cradle. So-called “dog-bone” specimens

were uniaxially loaded during diffraction measurements.

1.6.4 Rietveld analysis

One method for extracting a wealth of (micro)structural information from the entire

diffraction pattern is Rietveld analysis [46]. This technique refines the parameters of

a known crystal structure (or multiple crystal structures in the case for a mixed phase

material) and/or of the microstructure of a polycrystalline specimen to provide the best

fit with data.
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Diffraction peaks are not fitted individually. Instead, the diffraction pattern is cal-

culated using various realistic (and user-definable) parameters. Contributions such as

instrument broadening and effects of the optics on the measurement are included in this

calculation [46]. Numerous models for considering the intrinsic broadening parameters

can be integrated in the computation scheme. Depending on the quantity and quality

of the diffraction data, several parameters describing both the specimen and diffraction

experiment (often termed global parameters) can be refined in parallel [46]. The Rietveld

method allows for pattern decomposition. The willingness of H. Rietveld to share his

code with others helped helped establish Rietveld refinement as one of the most com-

monly applied methods for profile analysis used today. Even time of flight (TOF) and

energy-dispersive data can be processed using this method.

The best fit between measurement and calculation is that which has the lowest point-

by-point difference, defined as

Sy =
∑

i

1

yi
(yi − yci )

2 (1.11)

where i is the number of data points, yi is the set of measured intensities, and yci is the

calculated function. The solution yc is solved in an iterative manner by a least-squares

refinement. As the least-squares function is nonlinear, the initial input for parameters

must be relatively close to the actual solutions. If this is not the case, the iteration may

converge to a false local minimum or diverge. Most importantly, the routine attempts to

improve each parameter (e.g. phase content, texture, and grain size) independently.

The Rietveld analysis performed in this work was done using a software package de-

veloped as Los Alamos National Laboratory (LANL) called General Structure Analysis

System or GSAS [47, 48]. An example of a refinement using this software can be seen

in Figure 1.7, where the typical final crystallographic residuals Rwp were between 6 and

15% for all XRD patterns refined. (See Chapter 4 for further discussion about Rietveld

refinement procedures.)

1.7 Outline of Thesis

This thesis is divided into two sections. The first section (Chapters 2 and 3) focuses

on the behavior of intrinsically elastically anisotropic grains in polycrystalline specimens

under elastic loading. The second section provides an account of the investigation of

the thermally-induced reverse martensitic phase transformation in equiatomic NiTi shape

memory thin films and related stress development.

X-ray diffraction (XRD) has been used to observe changes in lattice spacing ∆d due

to either macroscopically applied external or internal residual stresses in bulk materials.

These variations in spacing correspond to shifts in measured 2θ diffraction peak positions,

as described by Bragg’s law. The diffraction lines are also seen to broaden when stresses

are applied to a material due to inhomogeneous stress and broadening in the aggregate.
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Figure 1.7: Typical pattern from Rietveld analysis using the GSAS software package; for
NiTi09-02 thin film specimen, 20th heating cycle, T = 75◦C, Rwp = 9.8% (more details

about thin film measurements and analysis method give in Chapter 4).

This is caused by the dependence of a grain’s elastic behavior on its orientation, resulting

in elastic grain interactions which scale with the elastic anisotropy of the material.

Elastic grain-interaction models have been used to varying degree of accuracy to de-

scribe the average elastic properties and stress-strain behavior in massive, polycrystalline

materials. By applying such grain-interaction models, as demonstrated in Chapter 2, it

is also possible to describe the variation in stress and strain within the aggregate. The

distribution in (average) lattice strain provides contributes to the diffraction-line broaden-

ing of an elastically loaded specimen. However, a portion of broadening is also caused by

local variations in the lattice strain (such as within a single grain). These additional types

of strain variation (not accounted for by the elastic grain-interaction models) have been

calculated through the used of finite element analysis. By considering the contributions

from both the average lattice-strain variation and the local variation in lattice strain, the

diffraction-line broadening due to elastic grain-interactions is discussed.

Both isotropic and anisotropic materials have been studied experimentally to measure

the diffraction-line broadening induced by elastic loading. As discussed in Chapter 3, a

major pitfall of the above elastic grain-interaction models is that the local heterogeneity

of an quasi-isotropic aggregate is not considered. The absence of local variations in strain

means that the predicted diffraction-line broadening from the discussed grain-interactions

models only provides a lower bound to the experimentally observed diffraction-line broad-

ening.

In Chapter 4, the overall effect of thermal cycling on NiTi substrate-bound films has

also been investigated. The function of phase content as it depends on temperature

throughout the transformation has been characterized. The change in magnitude of stress
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at room temperature, as well as the shift in transformation temperatures, has been ob-

served. Parameters for macroscopic stress, stress of individual phases, grain size, and

texture have been studied as a function of the transformed fraction using diffraction tech-

niques.
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Chapter 2

Elastic mechanical grain interactions

in polycrystalline materials; analysis

by diffraction-line broadening

M. K. A. Koker, U. Welzel, and E. J. Mittemeijer

Abstract

Experimental investigations have revealed that the Neerfeld-Hill and Eshelby-Kröner mod-

els, for grain interactions in massive, bulk (in particular, macroscopically isotropic) poly-

crystals, and a recently proposed effective grain-interaction model for macroscopically

anisotropic polycrystals, as thin films, provide good estimates for the macroscopic (me-

chanical and) x-ray elastic constants and stress factors of such polycrystalline aggregates.

These models can also be used to calculate the strain variation among the diffracting crys-

tallites, i.e. the diffraction-line broadening induced by elastic grain interactions can thus

be predicted. This work provides an assessment of diffraction-line broadening induced

by elastic loading of polycrystalline specimens according to the various grain-interaction

models. It is shown that the variety of environment, and thus the heterogeneity of

the stress-strain states experienced by each of the individual grains exhibiting the same

crystallographic orientation in a real polycrystal, cannot be accounted for by traditional

grain-interaction models, where all grains of the same crystallographic orientation in the

specimen frame of reference are considered to experience the same stress-strain state. A

significant degree of broadening which is induced by the heterogeneity of the environments

of the individual crystallites is calculated on the basis of a finite element algorithm. The

obtained results have vast implication for diffraction-line broadening analysis and model-

ing of the elastic behavior of massive polycrystals.
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2.1 Introduction

In a massive polycrystalline aggregate, each of the generally anisotropic grains cannot

deform freely to comply with an imposed state of mechanical stress; instead, each grain

must adapt its mechanical response to its surroundings. For the case of elastic loading,

various grain-interaction models have been proposed to describe the (overall) stress and

strain behavior of the individual grains within an aggregate. These models can be em-

ployed for calculating mechanical and so-called diffraction (x-ray) elastic constants (in the

case of macroscopic elastic isotropy) and stress factors (in the case of macroscopic elastic

anisotropy) of polycrystalline specimens from single-crystal elastic data [1].

A number of grain-interaction models to describe the strain and stress of individual

crystallites, recognizing their orientations within the aggregate, in a massive polycrys-

talline body subjected to a specific state of elastic loading have been reviewed in Refer-

ence [2]. Such models are used to calculate the effective, macroscopic elastic constants

of a material, from single-crystal elastic data, employing the crystallographic orientation

distribution function (ODF) to account for the occurrence of crystallographic texture [3].

Such models yield very good agreement of the thus calculated macroscopic and diffraction

elastic constants/stress factors with experimentally determined values (e.g. see Refer-

ence [4]). The following discussion presents a comparison of the known grain-interaction

models proposed [5–14], considering both direction-independent (here termed isotropic)

and direction-dependent (here termed anisotropic) grain-interaction models and the role

of crystallographic texture.

The behavior of individual grains within a massive, polycrystalline material under

elastic loading is quite complicated. Grain-interaction models seek to provide a “simpli-

fied” description of the (overall) stress and strain in each grain dependent on its orientation

with respect to the aggregate (and thus the elastic behavior of the body as a whole). In

this work, the strain variation among the diffracting crystallites will be calculated accord-

ing to six different elastic grain-interaction models (see Section 2.4) for the purpose of

theoretically determining the elastic loading-induced diffraction-line broadening.

Due to elastic grain interactions, a polycrystalline aggregate under elastic loading ex-

hibits a strain and stress distribution which varies through the body dependent especially

on the grain-orientation distribution and the intrinsic, anisotropic elasticity of the indi-

vidual grains. This will be the case even when the macroscopic elastic properties are

isotropic (i.e. the polycrystal is “quasi-isotropic” [15]) and the imposed stress state of

the body is homogeneous. A strain distribution in the aggregate induces a variation in

lattice-plane spacing, which results in broadening and possibly a shift of the measured

x-ray diffraction (XRD) lines [16]. The induced peak shift is well understood and can

be described using Bragg’s law and by expressing strain in terms of the average lattice

strain of the diffracting crystallites [1]. Here the effect of the lattice-strain variation on

diffraction-line broadening is considered.
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The measured diffraction line h is the convolution of the individual diffraction profiles

pertaining to the instrumental line broadening g and the different specimen-related, struc-

tural sources of diffraction-line broadening f , such as grain interactions, finite crystallite

size, dislocations, etc. [17, 18, and references therein]:

h(2θ) = g(2θ)⊗ fsize(2θ)⊗ fgrain interactions(2θ)⊗ f... (2.1)

where 2θ is the diffraction angle. If the individual profiles in Equation 2.1 are known, the

convoluted profile can be calculated straightforwardly. The reverse calculation (i.e. the

extractions of the f profiles from the g and h profiles) is not generally straight-forward,

and various methods for the separation of the different structural contributions to the

overall diffraction-line shape have been developed [17].

Loading-induced broadening of diffraction peaks depends on the strain distribution

(or variation of the lattice spacing) throughout the polycrystalline aggregate. Consider

the measurement geometry shown in Figure 2.1. Both the average lattice spacing in the

direction of the diffraction vector and the distribution of lattice spacing in this direction

(caused by elastic loading) can be calculated through the use of grain-interaction models

for analyzing the contribution of all grains with hkl planes perpendicular to the HKL

diffraction vector. The strain variation which occurs as a function of rotation about the

diffraction vector (rotation angle χ; Figure 2.1) can be used to predict the diffraction-line

broadening by convoluting the calculated strain distribution function with the diffraction

peak recorded for the same diffraction vector from the unloaded polycrystalline aggregate.

Figure 2.1: Schematic to demonstrate the degree of grain rotational freedom, in a
diffraction experiment, given as the angle χ, defining the rotation about the HKL

diffraction vector, which is perpendicular to a set of (hkl) planes.

The overall extent of the variation in lattice strain as a function of the angle of rotation

about the diffraction vector χ is not dependent on the overall compliance of the material,

but, instead, on the degree of elastic anisotropy of the material [19], which can be given as

a ratio of intrinsic elastic constants. For cubic materials, the elastic anisotropy parameter
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A (also known as the Zener’s anisotropy ratio) is defined as [20]:

A =
2 (s11 − s12)

s44
=

2 · c44
c11 − c12

, (2.2)

where sij and cij are the single-crystal elastic constants for compliance and stiffness, re-

spectively. If the elastic response of an isolated grain for a specific material is independent

of its orientation with respect to the (anisotropic) state of loading, which holds for tung-

sten, the material is called intrinsically elastically isotropic (A = 1). For such materials,

all grains experiencing the same imposed stress state will exhibit identical (average) lattice

strains, independent of grain orientation, i.e. the (average) lattice strain will not depend

on the angle χ.

Diffraction-line broadening has been studied extensively in order to understand and

separate contributions due to factors such as finite crystallite/domain size and micros-

train [17]. Few studies have focused on the lattice-strain variation induced broadening as

a result of isotropic and anisotropic elastic grain interactions. Preliminary work consists

of theoretical lattice-strain distribution calculations made according to classical, isotropic

grain-interaction models (see Section 2.2) for polycrystalline cubic material under uniaxial

elastic loading [16].

Simulated lattice-strain distributions using the Reuss model demonstrated that line

broadening is only induced by deviatoric components of the applied mechanical stress [21],

which means that, for this case, hydrostatic stress (often termed pressure) does not influ-

ence the measurable diffraction-line broadening. A simplified analytical expression was

derived for the variance of strain in elastically loaded specimens, using the Voigt and

Reuss models as lower and upper bounds [22]. For a given HKL reflection and a fixed

diffraction geometry, the strain variance was found to scale with the square of the mag-

nitude of the applied load σ2 and with the elastic anisotropy parameter A. An empirical

scaling factor was introduced into the expression in order to provide agreement with the

experimental data.

The work presented here provides a comprehensive and in depth investigation into

lattice-strain variation and the resulting diffraction-line broadening induced by elastic

loading. Several grain-interaction models and finite element calculation of strain dis-

tributions are employed. The observed trends, i.e. those found in previous works and

those exposed for the first time, will be discussed providing fundamental understanding

of diffraction-line broadening induced by elastic loading. The effects of both crystallo-

graphic and morphological textures are considered as well [4, 11].

2.2 Grain-interaction models

Elastic grain-interaction models provide a framework for the calculation of stress and

strain as a function of crystallographic orientation of a crystal within a macroscopically
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elastically loaded specimen. Such models can be applied to calculate the (average) lattice

strain or the macroscopic elastic constants and the diffraction elastic constants (or stress

factors) of a material. Either isotropic grain interaction (in all directions within the body,

the grain interaction is treated identically) or anisotropic grain interaction (e.g. due to

the presence of surface and/or as caused by non-equiaxed grain shape) are adopted in

such models.

The Voigt [5] and Reuss [6] grain-interaction models are the classical, extreme ap-

proaches for describing the isotropic elastic behavior of grains within a polycrystal under

applied elastic loading. Neither of the models portrays a realistic picture of the stress-

strain variation within actual polycrystalline aggregates, since both imply discontinuities

of either the stress (Voigt) or the strain (Reuss) at the grain boundaries. These models are

often used to assess the (supposedly; see [14]) lower and upper bounds of macroscopic elas-

tic behavior of a polycrystalline material. The Voigt and Reuss models are often applied

because their solutions can be found analytically. To approach reality, effective grain-

interaction models, such as the Neerfeld-Hill [7,8] model, use a linear combination of the

solutions from the extreme Voigt and Reuss models, and thus yield results for the average

lattice strain and macroscopic elastic constants which compare well with experimental

measurements. Grain shape is not explicitly considered in the isotropic grain-interaction

models, but as all directions are taken as equivalent for the grain interaction in the spec-

imen frame of reference, the isotropic models are incompatible with the occurrence of a

grain-shape texture [11].

In the Eshelby-Kröner [9,10] model, instead of making an assumption about the state

of stress or strain in the individual crystallites (as with the Voigt and Reuss models),

continuity in stress and strain at the interface of a grain and the aggregate is enforced:

all grains of identical crystallographic orientation in the specimen are taken together as a

single inclusion in a homogeneous aggregate, which thus functions as an effective medium,

meaning that each of its properties is an average over all grains in the specimen. The

stress and strain which satisfy continuity at the interface between the grain and this

effective medium are then calculated in a computationally intensive way. Additionally,

the Eshelby-Kröner [9–11] model allows for the incorporation of grain shape through a

parameter η, the grain-aspect ratio, where η = 1 represents spherical grains.

Models for anisotropic grain interaction, e.g. due to surface anisotropy, are the Vook-

Witt model [12,13], in particular, see Reference [23], and the inverse Vook-Witt model [14],

which imply different grain-interaction assumptions for directions parallel and perpendic-

ular to the specimen surface.

An overview of these isotropic and anisotropic elastic grain-interaction models, all of

which will be applied in this paper for the analysis of the corresponding diffraction-line

broadening, is provided by Table 2.1.
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Table 2.1: Grain-interaction models, where c is the single-crystal elasticity tensor for
stiffness, C is the macroscopic elastic stiffness tensor, and S is the macroscopic elastic

compliance tensor for the polycrystal. (Color corresponds to models used for the
calculations shown in Figures 2.5-2.16.) Models can be classified into two separate
categories: isotropic (equality of grain interactions in all directions) and anisotropic

(direction dependent grain interactions).

Model Basics

Is
ot
ro
p
ic

m
o
d
el
s

Voigt [5]

Crystallites tightly con-
nected, deforming together;
all grains under identical
state of strain

ǫ = 〈ǫ〉,
σ = c〈ǫ〉 = cS〈σ〉

Reuss [6]
Crystallites deform freely;
all grain under identical
state of stress

σ = 〈σ〉

Neerfeld-Hill [7, 8]

Strain and stress distri-
butions, as well as elas-
tic constants, taken as the
arithmetic averages of the
Voigt (V ) and Reuss (R)
bounds

C = 1

2
{CV +CR}

(S
h
ap

e
d
ep

en
d
en
t)

Eshelby-Kröner [9–11]

Continuity of stress and
strain at interface between
inclusion and homogeneous
aggregate; inclusion: all
grains of identical orienta-
tions and/or shape (shape
factor, η); aggregate: effec-
tive medium

η = 1: spherical
η → ∞: needle-like
η → 0: disc-shaped

A
n
is
ot
ro
p
ic

m
o
d
el
s Vook-Witt [12, 13]

All grains under same
stress perpendicular to
the surface, experiencing
identical strains parallel to
the surface

ǫij = 〈ǫij〉, i, j 6= 3
σij = 〈σij〉, i, j = 3

Inverse Vook-Witt [14]

All grains under same
stresses parallel to the
surface, and experiencing
identical strain perpendic-
ular to the surface

ǫij = 〈ǫij〉, i, j = 3
σij = 〈σij〉, i, j 6= 3
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2.3 Calculation of diffraction-line broadening induced

by external loading

2.3.1 Procedure

It is convenient to introduce the following three Cartesian frames of reference as shown

in Figure 4.2(b):

• The crystal frame of reference (C): The conventional definition of an orthonormal

crystal system, such as the one given in [20] (for a detailed treatment, see also [24]),

is adopted. For cubic crystal symmetry, the axes coincide with the a, b, and c axes

of the crystal lattice, with the C1 axis along the 100 direction, the C2 axis along the

010 direction, and the C3 axis along the 001 direction.

• The specimen frame of reference (S): The S3 axis is orientated perpendicular to the

specimen surface, and the S1 and S2 axes are in the surface plane.

• The laboratory frame of reference (L): This frame is chosen in such a way that the

L3 axis coincides with the diffraction vector in the (x-ray) diffraction experiment.

The relative orientation of the laboratory frame of reference with respect to the spec-

imen frame of reference is specified by the angles φ and ψ, where ψ is the inclination

angle of the sample surface normal (i.e. the S3 axis) with respect to the diffraction vector

(i.e. the L3 axis) and φ denotes the rotation of the sample around the sample surface

normal (Figure 4.2(a)). The angle χ is defined as a rotation of the laboratory frame

about the L3 axis, where, for φ = ψ = χ = 0◦, the L frame of reference coincides with

the S frame of reference. The direction of the diffraction vector is especially important as

this is the direction along which lattice strain is measured in XRD experiments. In the

following, a superscript (C, S, or L) is used for indicating the reference frame adopted for

the representation of a tensor.

The orientation of each crystallite in the S system can be identified by three Euler

angles: α, β, and γ [25]. These angles represent consecutive rotations of the C frame,

with respect to the S frame. The C frame is first rotated by α about C3, then by β

about C1, and finally by γ about C2 (following the Bunge convention; see [26, 27] and

Figure 2.20). It is usual to associate a set of Euler angles with a vector g = (α, β, γ)

in the three-dimensional orientation (Euler) space G [28]. In this way, each point in the

orientation space G represents a possible orientation of the C frame of reference with

respect to the S frame of reference. Only in the absence of texture does it hold that the

volume fraction of crystallites, which have an orientation in the infinitesimal orientation

range d3g = sin(β)dαdβdγ around g, is independent of g. Texture can be quantified by

introducing the ODF, F(α, β, γ), which is a function of the Euler angles, specifying the

volume fraction of crystallites having an orientation in the infinitesimal orientation range
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(a) Laboratory frame (L) defined with
respect to the specimen frame (S) by
the diffraction angles φ, ψ, and χ

(b) Orientation of reference frames defined by the orientation of the diffraction vector
(for a fixed HKL, φ, ψ, and χ)

Figure 2.2: Introduction of the three standard coordinate systems and the corresponding
orientation angles necessary for the discussion of diffraction experiments.

d3g = sin(β)dαdβdγ around g:

dV (g)

V
=

F(g)

8π2
d3g =

F(α, β, γ)

8π2
sin(β)dαdβdγ (2.3)

The ODF is normalized:
∫ ∫ ∫

G

F(g)

8π2
d3g = 1.

In the following, angular brackets 〈...〉 denote volume-weighted averages for all crys-

tallites in the volume considered (i.e. mechanical averages) where as braces {...} denote

volume-weighted averages for diffracting crystallites only (i.e. diffraction averages). In
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the context of diffraction analysis, the analyzed volume is generally only a fraction of the

volume of the polycrystalline specimen.

Mechanical averages of a tensor Ω can be calculated by integration over all Euler

angles, using the ODF F(g) as a weighting factor:

〈Ω〉 =
1

8π2

∫ ∫ ∫

G

F(g)d3g

=
1

8π2

∫

2π

γ=0

∫

2π

β=0

∫

2π

α=0

Ω(α, β, γ)F(α, β, γ) sin(β)dαdβdγ (2.4)

A diffraction line contains data pertaining to only the subset of crystallites for which the

diffraction planes are perpendicular to the chosen measurement direction. Since only the

measurement direction (i.e. the direction of the diffraction vector) is defined, a degree

of freedom occurs for the diffracting crystallites: the rotation about the diffraction vec-

tor (denoted by the angle χ in the following). For a HKL diffraction line, the group of

diffracting crystallites is selected by specifying the HKL of the reflection and the orienta-

tion of the diffraction vector with respect to the specimen reference frame S, which can

be identified by the angles φ and ψ. Therefore the sub- (φ,ψ) and superscripts (HKL) are

attached to the corresponding average:

{Ω}HKL

φ,ψ =

∫

2π

0
Ω(HKL, χ, φ, ψ)F∗(HKL, χ, φ, ψ)dχ

∫

2π

0
F∗(HKL, χ, φ, ψ)dχ

. (2.5)

F∗(HKL, χ, φ, ψ)dχ is the representation of the ODF in terms of the measurement param-

eters and the rotation angle χ. The ODF as defined in Equation 2.3 cannot be directly

used in Equation 2.5, in analogy to Equation 2.4, since the angles χ, φ, and ψ are not

Euler angles representing a rotation of the C system with respect to the S system. (They

provide the rotation of the system L with respect to the system S.) However, the values

of α, β, and γ, and thus the F(α, β, γ) and thereby F∗(HKL, χ, φ, ψ) at every χ, can be

calculated from HKL, χ, φ, and ψ. (For a more detailed treatment, see [14].)

Using the above approach, for a fixed diffraction vector (i.e. HKL, φ, and ψ have been

specified), the average lattice strain ǫHKL

φ,ψ and the lattice-strain distribution by rotation

about the diffraction vector ǫL
33
(HKL, φ, ψ, χ) are related according to:

ǫHKL

φ,ψ = {ǫL
33
}HKL

φ,ψ =

∫

2π

0
ǫL
33
(HKL, χ, φ, ψ)F∗(HKL, χ, φ, ψ)dχ
∫

2π

0
F∗(HKL, χ, φ, ψ)dχ

. (2.6)

In order to compute the strain-broadened diffraction line, both the average lattice strain

ǫHKL

φ,ψ (directly related to peak position upon loading) and the strain distribution ǫHKL

φ,ψ (χ)

(ǫL
33
(χ) at fixed HKL, φ, and ψ) are required.

The strain distribution ǫHKL

φ,ψ (χ) can be converted into a frequency function f(ǫ) which

describes the fraction of grains in the considered diffraction volume sharing the same

diffraction vector and which experience the same (average) strain. Using Bragg’s law
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(for a specified radiation wavelength and the material’s strain-free lattice parameter do

corresponding to ǫ = 0), the frequency function f(ǫ) can be converted to the 2θ scale.

This transformation results in the strain-induced broadening contribution function f(2θ).

The function f(2θ), when convoluted with the diffraction profile corresponding to the

diffraction line contribution for the unloaded state g(2θ), yields the “measured” diffraction

peak h(2θ) (see Equation 2.1). It is important to note that here g(2θ) incorporates all

broadening contributions (such as grain size and instrumental broadening) other than

that induced by the external mechanical loading. Upon unloading, the diffraction line

h(2θ) relaxes to g(2θ), as all broadening induced by elastic loading is fully reversible.

2.3.2 Preliminary notes on lattice strain induced broadening in

the case of isotropic grain interaction

The general expression for the measurable average lattice strain along the diffraction

vector obeys (for proof, see [1]):

ǫHKL

φ,ψ = {ǫL
33
}HKL

φ,ψ = FHKL

ij (φ, ψ) · 〈σij〉. (2.7)

where FHKL
ij (φ, ψ) are the x-ray stress factors and 〈σij〉 describes the loading-induced

state of mechanical stress. Equation 2.7 is valid even in the case of highly textured or

macroscopically elastically anisotropic specimens.

For a quasi-isotropic aggregate (i.e. in the case of macroscopic elastic isotropy), the

stress factors can be replaced by the x-ray elastic constants, SHKL
1

and 1

2
SHKL
2

[1,2]. Then,

in the case of uniaxial (i.e. σij = 0 for all i, j except for ij = 11) and biaxially, rotationally

symmetric (σ11 = σ22 6= 0; σij = 0, for ij 6= 11 6= 22) stress states, Equation 2.7 simplifies

to a linear relationship between the measured average lattice strain ǫHKL

φ,ψ and sin2 ψ. The

sign of the slope of the straight line obtained by plotting the average lattice strain ǫHKL

φ,ψ

versus sin2 ψ will be positive for tensile uniaxial loading and negative for compressive

(uniaxial and biaxially, rotationally symmetric) loading [2].

(a) Uniaxial stress state, φ = 0◦ (b) Biaxial stress state

Figure 2.3: Alignment of the loading axis of symmetry with the diffraction vector for
two (simple) states of stress as a function of the specimen inclination angle ψ.
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Within the context of isotropic grain interaction, in a quasi-isotropic aggregate for

cubic materials, some straight-forward consequences for the lattice-strain distribution

induced broadening can be given. The Voigt model implies that the strain components of

all grains (in the specimen frame of reference) are identical, i.e. no strain variation and

thus no strain-variation induced diffraction-line broadening is predicted by this model.

All other isotropic grain-interaction models predict strain variation as a function of grain

orientation (in the specimen frame of reference), also as a function of χ, which results in

diffraction-line broadening.

If an isotropic model can be applied for grain interaction, the sign of the uniaxial

loading stress σ does not play a role in the magnitude of |ǫHKL

φ,ψ (χ)|. Additionally, no strain
distribution occurs for the diffracting grains (and hence, no diffraction-line broadening is

induced), i.e. ǫHKL

φ,ψ (χ) = const. for variable χ, at (i) ψ = 90◦ with φ = 0◦ for uniaxial

loading along S1 [16,21,22] and at (ii) ψ = 0◦, independent of φ for biaxially rotationally

symmetric loading in the S1, S2 plane. (See Figures 2.3(a) and 2.3(b).) Also, no lattice-

strain variation ǫHKL

φ,ψ (χ) is expected at fixed φ and ψ angles for H00 and HHH reflections

according to isotropic grain-interaction models for an untextured aggregate of material of

cubic crystal symmetry [16,21,22]

The lattice-strain distribution ǫHKL

φ,ψ (χ) depends strongly on on both stress state and

diffraction geometry (HKL, ψ, φ). This can be made clear for the case of isotropic grain

interaction by identifying the symmetry axis of the loading state; see Figure 2.3. When the

diffraction vector is aligned with the axis of loading symmetry (S1 for uniaxial loading, S3

for biaxially, rotationally symmetric loading), all diffracting grains, independent of their

orientations about the diffraction vector, as indicated by the angle χ, will experience

the same stress state, resulting in no variation in lattice strain in this set of diffracting

crystallites. This explain why, at ψ = 90◦, φ = 0◦ (for uniaxial loading along S1) and

at ψ = 0◦ (independent of φ) for biaxially rotationally symmetric loading (in the S1, S2

plane), no lattice-strain variation is expected. A special case is a hydrostatic stress state,

where any direction represents a loading axis of symmetry, implying, according to the

above reasoning, that no line broadening is expected for any orientation of the diffraction

vector.

2.3.3 Material and model parameters

The strain distribution ǫHKL

φ,ψ (χ), which can be extracted from the grain-interaction

models, is dependent on the orientation of the diffraction vector (which is defined by

the diffraction planes hkl, and thus by HKL, sample rotation φ, and sample inclination

ψ), specimen texture (crystallographic and morphological [11]), loading magnitude and

state, the type of grain interaction, and the intrinsic elastic single-crystal anisotropy.

This work focuses on the diffraction-line broadening induced by mechanical loading of

materials of cubic crystal symmetry. The “unloaded” peak width/shape is incorporated
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upon convolution with the strain variation profile. Calculations have been made for

untextured and (predominantly) 111-fiber textured gold Au (ao =4.0786 �A [29]) and for

Cu-Kα1 radiation (λ = 1.54056 �A [30]).

Chosen values for the full width at half maximum (FWHM) of reflections for the

“unloaded” case are presented in Table 2.2; a Pearson VII profile-shape function, with a

shape factor of 1.5 [31], was used for the “unloaded” peak of all reflections. These width

values and the shape factor are realistic representations of what could be measured for

an Au specimen using synchrotron radiation with a wavelength equal to that of Cu-Kα1.

Table 2.2: FWHM values for various reflections, g(2θ), of Au in unloaded state,
representative of synchrotron radiation with a wavelength equal to that of Cu-Kα1. The
peaks are described with a Pearson VII profile-shape function with a shape factor of 1.5.

Reflection 111 200 220 311 331
FWHM (◦ 2θ) 0.08 0.11 0.23 0.29 0.43

The peak parameters for the diffraction lines of the “loaded” condition h(2θ) were

determined by fitting the calculated peaks h(2θ) (also) with a Pearson VII profile-shape

function (see above). The width of each diffraction line is represented by the integral

breadth β, which is the integral area of the peak A divided by the maximum peak inten-

sity I:

β =
A

I
, (2.8)

The loading-induced contribution to the total diffraction-line broadening was then taken

as the corresponding change in integral breadth:

∆β = βloaded − βunloaded. (2.9)

The integral breadth was chosen (as opposed to the FWHM) to define the width of the

diffraction peaks as it is less sensitive to the peak shape.
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2.4 Lattice-strain distributions predicted by grain-

interaction models

The results from the grain-interaction model calculations will be displayed as a function

of sin2 ψ (at fixed HKL and φ) in three forms: (i) lattice-strain distribution ǫHKL

φ,ψ (χ) =

ǫL
33
(χ) at fixed HKL, φ, and ψ, where the strain of each diffracting grain is plotted sep-

arately on an ǫ-sin2 ψ plot, implying that at fixed (HKL, φ, and) ψ, a range of ǫHKL

φ,ψ (χ)

values occurs, (ii) the average lattice strain ǫHKL

φ,ψ = {ǫL
33
}HKL

φ,ψ (this corresponds with the

diffraction peak position), and (iii) the diffraction-line broadening ∆β induced by the

elastic loading as corresponding with the lattice-strain distribution ǫL
33
(χ).

The consequences of the type of grain interaction are investigated by varying the load-

ing conditions (stress state and magnitude), HKL reflection, and texture (both morpho-

logical and crystallographic).

Calculation method

As an example, the lattice-strain variation ǫHKL

φ,ψ (χ), with 0 ≤ χ ≤ 2π, as induced by

uniaxial tensile loading with loading axis along S1 (see Figure 2.2), and as observed at

φ = 0◦, ψ = 25◦ (φ and ψ determine the direction of the diffraction vector) for the 331

reflection, as calculated by applying the Reuss model for an untextured Au aggregate (i.e.

F is constant for all χ; see Section 2.3.1), is shown in Figure 2.4(a). The strain-induced

broadening contribution function f(ǫ) (or f(2θ) after transformation to the 2θ scale by

application of Bragg’s law) is shown in Figure 2.4(b) and is calculated by mathematically

binning the lattice-strain distribution ǫHKL

φ,ψ (χ). This function f(ǫ) (or f(2θ)) represents,

for this specific diffraction vector, the fraction of diffracting grains which exhibit a given

strain (and give rise to a diffraction peak at a corresponding value of 2θ). Upon the con-

volution of f(2θ) with g(2θ), the measurable function h(2θ) is obtained; see Figure 2.4(c).

In the case of a textured specimen, the role of texture is incorporated upon the cal-

culation of f(ǫ), f(2θ), where F∗ is used as a weighting factor. This will be discussed in

more detail in Section 2.4.6.

Finally, the average lattice strain ǫHKL

φ,ψ and the induced broadening ∆β are extracted

from the diffraction lines g(2θ) (“unloaded” ) and h(2θ) (“loaded” ) by determining profile

parameters by fitting a Pearson VII profile-shape function. For a fixed HKL and φ (for a

specified ODF, loading state, etc.), the algorithm is executed as a function of ψ.
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(a) ǫHKL

φ,ψ as a function of χ for the 331 reflection
with the orientation of the diffraction vector given
by φ = 0◦ and ψ = 25◦ for an untextured specimen

(F∗ = const.); the strain-distribution function
shown here corresponds with the strain variation

at sin2 ψ = 0.18 in Figure 2.10(b)

(b) The strain-induced broadening
contribution function f(2θ) calculated
from the strain distribution shown in

Figure 2.4(a); the “unloaded” diffraction
line g(2θ) is shown in gray

(c) “Loaded” peak h(2θ), where the
“unloaded” diffraction line g(2θ) is shown

in gray

Figure 2.4: Steps of the calculation of the strain variation ǫHKL

φ,ψ (χ) (= ǫL
33
(χ) at fixed

HKL, φ, and ψ) and the associated diffraction-line broadening as performed for the
isotropic, Reuss grain-interaction model for the 331 reflection with the orientation of the
diffraction vector given by φ = 0◦ and ψ = 25◦ for an untextured Au specimen (F∗ =

const.). Uniaxial loading along the S1 axis (see Figure 2.2) with σ11 = 100 MPa.
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2.4.1 Tensile vs. compressive states of stress; scaling of line broad-

ening

Results obtained for the states of tensile and compressive uniaxial loading along the S1-

axis (Figure 2.2) are shown in Figure 2.5 for the 311 reflection (φ = 0◦) of an untextured Au

aggregate, using the Reuss model for grain interaction. From Figure 2.5(d), it can be seen

that even though the sign of the average strain ǫHKL

φ,ψ at each ψ differs for the two loading

conditions (Figure 2.5(c)), the magnitude of line broadening is identical for both cases

because the broadening scales with the width of the strain distribution (Figures 2.5(a)

and 2.5(b)), i.e. the range of the strain-induced broadening contribution function f(2θ),

which is equal for both types of loading. This is a result of linear elasticity.

(a) Strain variation, ǫHKL

φ,ψ (χ) as a function

of sin2 ψ: Uniaxial tension

(b) Strain variation, ǫHKL

φ,ψ (χ) as a function

of sin2 ψ: Uniaxial compression

(c) Average strain, ǫHKL

φ,ψ = {ǫL
33
}HKL

φ,ψ (d) Diffraction-line broadening, ∆β (◦ 2θ)

Figure 2.5: Lattice strain and diffraction-line broadening for the cases of tensile and
compressive uniaxial loading along the S1-axis (|σ11| = 100 MPa) of an untextured Au

aggregate; results are shown for the 311 reflection, with the diffraction vector
orientations pertaining to φ = 0◦ and variable ψ, and adopting the Reuss model for

grain interaction.
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For the same loading axes and the same magnitude of load, a tensile or compressive

nature of the load has no effect on the lattice-strain variation ǫHKL

φ,ψ (χ), independent of

the type of state of stress and the type of isotropic grain interaction. Line broadening is

independent of the sign of the load. For the same state of stress, the induced diffraction-

line broadening ∆β is observed to scale roughly with σ2,1 only as long as the strain

broadening is small as compared to the instrumental broadening and for Gaussian shaped

instrumental and strain-broadened line profiles. This is approximately the case for the

example shown in Figure 2.6(b).

(a) Average strain, ǫHKL

φ,ψ = {ǫL
33
}HKL

φ,ψ (b) Diffraction-line broadening, ∆β (◦ 2θ)

Figure 2.6: Lattice strain and diffraction-line broadening for the case of uniaxial loading
along the S1-axis of various magnitudes (ranging from σ11 = 50 to 200 MPa) of an

untextured Au aggregate; results are shown for the 311 reflection, with the diffraction
vector orientations pertaining to φ = 0◦ and variable ψ, and adopting the Reuss model

for grain interaction.

1 Generally, the integral breadth of the only strain broadened profile is proportional to
the square root of the strain variance [17, 32–34]. If the strain broadening is small
as compared to the instrumental broadening, then, if a Gaussian-shape function is
adopted for the instrumental and the only strain-broadened profiles, upon convolution,
it follows that the additional broadening in the h profile as compared to the g profile
(see Equation 2.1) roughly scales with the strain variance, which, in turn, scales with σ2

for isotropic grain interaction [22]. Note, however, that if a Lorentzian (Cauchy) shape
function is adopted for the instrumental and the only strain-broadened profiles, then
the additional line broadening in the h profile as compared to the g profile would scale
with the square root of the strain variance, and thus with σ. For a rigorous discussion
on (also line-profile shape of) micro-(lattice-)strain broadening, see Reference [35].
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2.4.2 States of loading

The strain variation ǫHKL

φ,ψ (χ) for the 220 reflection of an untextured Au aggregate, under

uniaxial tensile loading (along S1, σ11 = 100 MPa) and biaxially rotationally symmetric

tensile loading (σ‖ = σ11 = σ22 = 100 MPa in the S1, S2 plane), pertaining to φ = 0◦ and

variable ψ, and adoption the Reuss model for grain interaction, is shown as a function

of sin2 ψ in Figures 2.7(a) and 2.7(b), respectively. (Note the striking difference with the

result for the 311 reflection in Figure 2.5(a), calculated for the same conditions.) Here,

for the case of uniaxial loading, clearly no strain variation is observed at ψ = 90◦, φ = 0◦,

whereas, for biaxial loading, the variation in lattice strain is zero at ψ = 0◦. When,

for the applied state of stress and in case of isotropic grain interaction, the loading axis

of symmetry (see Figure 2.3) and the diffraction vector are aligned, all grains sharing

this diffraction vector will experience the same loading state. Therefore, in such cases,

despite the intrinsic elastic anisotropy and as long as isotropic grain interaction holds, no

variation of the (average per grain) lattice strain occurs and no diffraction-line broadening

is induced. The specific orientation of the specimen (defined by the tilt angle ψ and the

rotation angle φ) establishing that the diffraction vector coincides with the loading axis

of symmetry depends on the specific loading state (uniaxial, biaxially symmetric, etc.).

For the uniaxial loading case, both the average lattice strain ǫHKL

φ,ψ and the diffraction-

line broadening ∆β, both at φ = 0◦, are sensitive to changes in ψ, whereas at φ = 90◦,

ǫHKL

φ,ψ and ∆β are independent of ψ (see Figure 2.8). Obviously, for the case of biaxially

rotationally symmetric loading, variation of φ does not have any effect on ǫHKL

φ,ψ and ∆β.

(See Section 2.3.2.)
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(a) Strain variation, ǫHKL

φ,ψ (χ) as a function

of sin2 ψ: Uniaxial tensile loading,
σ11 = 100 MPa

(b) Strain variation, ǫHKL

φ,ψ (χ) as a function

of sin2 ψ: Biaxially, rotationally symmetric
loading, σ‖ = 100 MPa

(c) Average strain, ǫHKL

φ,ψ (= {ǫL
33
}HKL

φ,ψ (d) Diffraction-line broadening, ∆β (◦ 2θ)

Figure 2.7: Lattice strain and diffraction-line broadening for the cases of tensile uniaxial
loading along the S1-axis (σ11 = 100 MPa) and biaxially, rotationally symmetric tensile
loading in the S1, S2 plane (σ‖ = 100 MPa) of an untextured Au aggregate. Results are
shown for the 220 reflection, with the diffraction vector orientations pertaining to φ = 0◦

and variable ψ, and adopting the Reuss model for grain interaction.



CHAPTER 2. 41

(a) Average strain, ǫHKL

φ,ψ = {ǫL
33
}HKL

φ,ψ (b) Diffraction-line broadening, ∆β (◦ 2θ)

Figure 2.8: Lattice strain and diffraction-line broadening for the case of tensile uniaxial
loading along the S1-axis (σ11 = 100 MPa) of an untextured Au aggregate; results are
shown for the 220 reflection, with the diffraction vector orientations pertaining to
multiple fixed values of φ and variable ψ, and adopting the Reuss model for grain

interaction.
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2.4.3 Degree of intrinsic elastic anisotropy

The magnitude of the loading-induced diffraction-line broadening will depend on the

degree of the intrinsic elastic anisotropy. The diffraction-line broadening according to the

Reuss grain-interaction model for three materials is shown in Figure 2.9: Au (A = 2.9),

Ni (A = 2.5), and W (A = 1).

Figure 2.9: Diffraction-line broadening ∆β (◦ 2θ) for the case of tensile uniaxial loading
along the S1-axis (σ11 = 100 MPa) of untextured aggregates of Au, Ni, and W. Results
are shown for the 220 reflection, with the diffraction vector orientations pertaining to

φ = 0◦ and variable ψ, and adopting the Reuss model for grain interaction.

2.4.4 Isotropic grain interactions

The lattice-strain variation ǫHKL

φ,ψ (χ) calculated for the 331 reflection at φ = 0◦ as a

function of ψ is shown in Figure 2.10 for an untextured Au aggregate under uniaxial

tensile loading (σ11 = 100 MPa loading along the S1-axis; see Figure 2.3) for the Voigt,

Reuss, Neerfeld-Hill, and Eshelby-Kröner (η = 1) grain-interaction models. The shading

of the plots represents the number of grains in the diffracting volume which experience a

given average lattice strain. The inset in Figure 2.10(b) illustrates the shading by showing

the strain distribution at a fixed ψ, which is the strain-induced broadening contribution

function f(ǫ) at this fixed value of ψ. (The calculations shown in Figure 2.4 correspond

to the strain variation in Figure 2.10(b) at sin2 ψ = 0.18.)

The Voigt model, obviously, reveals no strain variation, independent of ψ. The Reuss

model induces the most extreme degree of strain variation at each ψ, as compared to the

other isotropic grain-interaction models. The lattice-strain broadening calculated through

the implementation of the Neerfeld-Hill model is half of that obtained for the Reuss model.

The result for the Neerfeld-Hill model is quantitatively similar to the result obtained by

application of the Eshelby-Kröner (η = 1) model (see Figures 2.10(c) and 2.10(d)). This

similarity of the strain variations ǫHKL

φ,ψ (χ) (and also of the average lattice strains ǫHKL

φ,ψ )

is in line with the perception that the Eshelby-Kröner model is a compromise between
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the two extreme models of Voigt and Reuss [14], and the recognition that the Neerfeld-

Hill model is the simple arithmetic “average” of these extreme models. These results

thereby indicate that also for the prediction of lattice-strain distributions, the use of the

simple, analytical Neerfeld-Hill approach can be worthwhile as an alternative for the more

advanced, but cumbersome, Eshelby-Kröner approach.

(a) Strain variation, ǫHKL

φ,ψ (χ) as a function

of sin2 ψ: Voigt model

(b) Strain variation, ǫHKL

φ,ψ (χ) as a function

of sin2 ψ: Reuss model. Inset shows f(ǫ),
corresponding to f(2θ) given in Figure 2.4,

(at the value of ψ = 25◦)

(c) Strain variation, ǫHKL

φ,ψ (χ) as a function

of sin2 ψ: Neerfeld-Hill model

(d) Strain variation, ǫHKL

φ,ψ (χ) as a function

of sin2 ψ: Eshelby-Kröner model (spherical
grains, η = 1)

Figure 2.10: Strain variation, ǫHKL

φ,ψ (χ) at φ = 0◦ for variable ψ using various isotropic
grain-interaction models for the 331 reflection of an untextured Au aggregate under

uniaxial tensile loading along the S1 axis (σ11 = 100 MPa).
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2.4.5 Anisotropic grain interactions

Results for the direction-dependent grain-interaction models (the Vook-Witt model,

the inverse Vook-Witt model, and the Eshelby-Kröner model, with η = 0.01 and with

η = 100) are shown in Figure 2.11 for the same conditions as applied for the isotropic

grain-interaction models with results shown in Figure 2.10. As was demonstrated in

Reference [36] for the average lattice strain ǫHKL

φ,ψ , the Vook-Witt model approaches the

Eshelby-Kröner model for disk-shaped (η → 0) grains, which, as now shown here, ap-

parently also holds for the lattice-strain distribution ǫHKL

φ,ψ (χ); see Figures 2.11(a) and (b).

The inverse Vook-Witt model differs in a fundamental way with the Eshelby-Kröner model

for needle-like grains (i.e. η → ∞). This expresses that the Eshelby-Kröner model for

needle-like grains cannot satisfy equilibrium if all of the grains experience the same in-

plane stress [36]. Indeed, the solutions of both models for also the lattice-strain distribu-

tions ǫHKL

φ,ψ (χ) exhibit similarities but are not identical. (See Figures 2.11(c) and 2.11(d).)

The overall magnitude of the predicted strain variation differs only in a minor way for

the isotropic and anisotropic grain-interaction models (compare Figures 2.10 and 2.11).

However, the lattice-strain distribution at a fixed value of ψ, and thus the corresponding

diffraction-line broadening, depends strongly on the choice of the grain-interaction model

(see Figures 2.10 and 2.11). The measured diffraction-line broadening as a function of φ

and ψ (i.e. as a function of the orientation of the diffraction vector) can provide more

information on the operating type of grain interaction than possible by inspection of the

behavior of only the average lattice strain ǫHKL

φ,ψ as a function of φ and ψ.
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(a) Strain variation, ǫHKL

φ,ψ (χ) as a function

of sin2 ψ: Vook-Witt model

(b) Strain variation, ǫHKL

φ,ψ (χ) as a function

of sin2 ψ: Eshelby-Kröner model
(disk-shaped grains, η = 0.01)

(c) Strain variation, ǫHKL

φ,ψ (χ) as a function

of sin2 ψ: Inverse Vook-Witt model

(d) Strain variation, ǫHKL

φ,ψ (χ) as a function

of sin2 ψ: Eshelby-Kröner model (columnar
grains, η = 100)

Figure 2.11: Strain variation, ǫHKL

φ,ψ (χ) at φ = 0◦ for variable ψ using anisotropic
grain-interaction models for the 331 reflection of an untextured Au aggregate under

uniaxial tensile loading along the S1 axis (σ11 = 100 MPa).
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2.4.6 Preferred orientation

The alignment of crystallites along a preferred direction will noticeably affect the strain

variation in the case of a massive aggregate constituted of elastically anisotropic grains.

Therefore, the extent of diffraction-line broadening due to lattice-strain variation (induced

by grain interaction) is dependent on the crystallographic texture of the aggregate. As

already indicated in the beginning of Section 2.4, the ODF, i.e. F∗, is used as a weighting

function in the calculation of the strain-induced broadening contribution function f(ǫ),

and thus f(2θ): compare Figures 2.4(a) and 2.4(b) for an untextured specimen with

Figures 2.12(a) and 2.12(b) for a textured specimen. Evidently, for the textured specimen

pertaining to Figure 2.12(a), practically no grains are oriented such that they would

capture the maximum (or minimum) strain of the calculated strain variation ǫHKL

φ,ψ (χ). As

a result, the texture-free aggregate exhibits a higher degree of strain-variation induced

broadening than the strongly textured specimen.

The average lattice strain and the diffraction-line broadening for both an untextured

specimen and for a specimen with a (111)-fiber texture, for the same type of uniaxial

loading, and for all types of isotropic and anisotropic grain interaction considered in

this work, are shown in Figures 2.13 and 2.14. Evidently, texture reduces the overall

broadening for almost all sample inclinations ψ.

Thus, it can be concluded that texture acts as a suppressant of line broadening induced

by (external) loading, because the (random) distribution of grains about the diffraction

vector is reduced for a textured aggregate (see Figures 2.4(a) and 2.12(a)): a reduced

distribution of orientations means a reduced degree of lattice-strain variation and, conse-

quently, a reduced diffraction-line broadening.

The isotropic and anisotropic grain-interaction models result in comparable magnitudes

of diffraction line broadening in the absence of texture, as illustrated by Figures 2.13(c)

and 2.14(c). However, texture influences the strain variation much stronger when isotropic

grain interaction occurs. This can be understood because in the case of anisotropic grain

interaction, texture has a smaller relative contribution to the “anisotropic behavior” of

the specimen.
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(a) ǫHKL

φ,ψ as a function of χ for the 331 reflection
with the orientation of the diffraction vector given
by φ = 0◦ and ψ = 25◦ for an untextured specimen
(F∗ shown for a 111-fiber texture); compare with

Figure 2.4(a), where F∗ = const.

(b) Comparison of strain-induced
broadening contribution functions f(2θ)

(calculated from ǫHKL

φ,ψ (χ)) for an
untextured aggregate (F∗ = const.,

Figure 2.4(a)) shown in dark blue and a
111-fiber textured aggregate (F∗ 6= const.,

Figure 2.12(a)) shown in light blue

(c) “Loaded” diffraction lines h(2θ)
demonstrating the role of texture on

broadening and peak shift. The
“unloaded” diffraction line g(2θ) is not

shown. See Figure 2.4(a) for an
untextured aggregate (F∗ = const., shown
here in dark blue) and Figure 2.12(a) for a

111-fiber textured aggregates (F∗ 6=
const., shown here in light blue).

Figure 2.12: Steps of the calculation of the strain variation ǫHKL

φ,ψ (χ) (= ǫL
33
(χ) at fixed

HKL, φ, and ψ) and the associated diffraction-line broadening as performed for the
isotropic, Reuss grain-interaction model for the 331 reflection with the orientation of the
diffraction vector given by φ = 0◦ and ψ = 25◦ for a textured Au specimen (F∗ for a
111-fiber texture). Compare with Figure 2.4 for an untextured Au aggregate. Uniaxial

loading along the S1 axis (see Figure 2.2) with σ11 = 100 MPa.
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(a) Average lattice strain, ǫHKL

φ,ψ as a

function of sin2 ψ: Untextured aggregate

(b) Average lattice strain, ǫHKL

φ,ψ as a

function of sin2 ψ: 111-fiber textured
aggregate

(c) Diffraction-line broadening, ∆β (◦ 2θ):
Untextured aggregate

(d) Diffraction-line broadening, ∆β (◦ 2θ):
111-fiber textured aggregate

Figure 2.13: Average lattice strain ǫHKL

φ,ψ and diffraction-line broadening ∆β for the case
of tensile uniaxial loading along the S1-axis (σ11 = 100 MPa). Results are shown for the
331 reflection, with the diffraction vector orientations pertaining to φ = 0◦ and variable
ψ, and adopting the indicated isotropic grain-interaction models (see legend) for both an
untextured and a 111-fiber textured Au aggregate. These calculations correspond to

ǫHKL

φ,ψ (χ) given in Figure 2.10.
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(a) Average lattice strain, ǫHKL

φ,ψ as a

function of sin2 ψ: Untextured aggregate

(b) Average lattice strain, ǫHKL

φ,ψ as a

function of sin2 ψ: 111-fiber textured
aggregate

(c) Diffraction-line broadening, ∆β (◦ 2θ):
Untextured aggregate

(d) Diffraction-line broadening, ∆β (◦ 2θ):
111-fiber textured aggregate

Figure 2.14: Average lattice strain ǫHKL

φ,ψ and diffraction-line broadening ∆β for the case
of tensile uniaxial loading along the S1-axis (σ11 = 100 MPa). Results are shown for the
331 reflection, with the diffraction vector orientations pertaining to φ = 0◦ and variable
ψ, and adopting the indicated anisotropic grain-interaction models (see legend) for both
an untextured and a 111-fiber textured Au aggregate. These calculations correspond to

ǫHKL

φ,ψ (χ) given in Figure 2.11.
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2.4.7 H00 and HHH reflections

It is well known that, in the case of isotropic grain interaction, even in the presence of

texture, H00 and HHH reflections of an aggregate of material of cubic symmetry show

still straight lines in plots of ǫHKL

φ,ψ versus sin2 ψ (see Section 2.3.2), where curvature occurs

for HKL reflections in general. In the case of anisotropic grain interaction, it has been

shown that in plots of ǫHKL

φ,ψ versus sin2 ψ curvature does appear also for the H00 and

HHH reflections [37]. Against this background, it appears compulsory to investigate the

role of these reflections from cubic materials for the occurring strain-variation induced

broadening in the presence of texture.

As was remarked in Section 2.3.2, no lattice-strain variation ǫHKL

φ,ψ (χ) is expected at fixed

φ and ψ angles for H00 and HHH reflections according to isotropic grain-interaction

models for an untextured aggregate of material of cubic crystal symmetry. The line

broadening predicted for the 111 and 200 reflections of an elastically loaded Au aggregate,

considering anisotropic grain interactions is shown in Figures 2.15 and 2.16, respectively,

for untextured and 111-fiber textured aggregates.

(a) Diffraction-line broadening, ∆β (◦ 2θ):
Untextured aggregate

(b) Diffraction-line broadening, ∆β (◦ 2θ):
111-fiber textured aggregate

Figure 2.15: Diffraction-line broadening ∆β for the case of tensile uniaxial loading along
the S1-axis (σ11 = 100 MPa). Results are shown for the 111 reflection, with the

diffraction vector orientations pertaining to φ = 0◦ and variable ψ, and adopting the
indicated anisotropic grain-interaction models (see legend) for both an untextured and a

111-fiber textured Au aggregate.

Evidently, anisotropic grain interactions in cubic materials lead not only to deviation

of linearity in sin2 ψ plots (e.g. for a plane state of stress; see also discussion in [37]),

but also to distinct diffraction-line broadening which, moreover, is strongly dependent

on ψ (and φ), i.e. dependent on the orientation of the diffraction vector. It should be

emphasized that it is not the intrinsic elastic anisotropy of the grains that predominates

the extent of these effects, but these outcomes (see Section 2.5) are governed by the type

of operating grain interaction. (Note that, as discussed in Section 2.4.6, the extent of
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(a) Diffraction-line broadening, ∆β (◦ 2θ):
Untextured aggregate

(b) Diffraction-line broadening, ∆β (◦ 2θ):
111-fiber textured aggregate

Figure 2.16: Diffraction-line broadening ∆β for the case of tensile uniaxial loading along
the S1-axis (σ11 = 100 MPa). Results are shown for the 200 reflection, with the

diffraction vector orientations pertaining to φ = 0◦ and variable ψ, and adopting the
indicated anisotropic grain-interaction models (see legend) for both an untextured and a

111-fiber textured Au aggregate.

diffraction-line broadening is reduced in the presence of texture.)

2.5 Strain variation predictions by finite element

analysis

Three categories of strain variation may be present in an elastically loaded polycrys-

talline aggregate: (i) macro-, (ii) meso-, and (iii) microvariation in strain.

(i) Macrovariation in strain is the variation of the average lattice strain, taken for the

groups of diffracting grains, that occurs upon changing the orientation of the diffrac-

tion vector with respect to the specimen frame of reference. This macrovariation in

lattice strain is expressed in this paper by the variation of ǫHKL

φ,ψ (as a function of

sin2 ψ).

(ii) Mesovariation in strain is the variation of the average lattice strain, the average

now taken per diffracting grain, for the group of diffracting grains sharing a fixed

orientation of the diffraction vector. This mesovariation in lattice strain is expressed

in this paper by the variation of ǫHKL

φ,ψ (χ).

(iii) Microvariation in strain is the variation of lattice strain within an individual grain.

It is essential to recognize that all published grain-interaction models do not take into

account the above described microvariation of strain. It has been shown experimentally

that the variation of lattice spacing within a single grain in a polycrystal can be significant

(for an example, see Reference [38]).
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A second shortcoming of the grain-interaction models is that the (average) lattice strain

for a diffracting grain is considered to be only dependent on the angle of rotation around

the diffraction vector χ, i.e. the role of the immediately surrounding, neighboring grains,

in particular their crystallographic orientations and shapes, which can have pronounced

influence on the actually experienced grain interaction by the grain concerned, is not

considered.

Both of these shortcomings of the grain-interaction models lead to underestimates of

the strain variation, and thus the loading-induced diffraction-line broadening, occurring

in reality. Two types of mesovariation of lattice strain are distinguished in the following:

(a) mesovariation by variable χ (as considered in the grain-interaction models) and (b)

mesovariation at constant χ due to different local surroundings.

Even if grains of identical orientation and geometry within a completely untextured

aggregate are considered, the neighboring crystallites of those grains will statistically

differ in orientation. This will result in both mesovariation (type (b); see above) and

microvariation of lattice strain (ignored in all grain-interaction models). The actual, local

loading of every grain (including each of those grains with identical orientation in the S
frame) in a polycrystal will depend (additionally) on its nearest neighbors (immediate

surroundings), i.e. it does not solely depend on the macroscopically applied loading. The

analysis of such additional sources of strain variation can be examined by application of

finite element analysis (FEA). In the following, both the microvariation and the second

type of mesovariation of lattice strain are exhibited by the FEA calculations discussed

here.

Figure 2.17: Free body diagram for FEA computation consisting of a locally

heterogeneous aggregate and a surrounding homogeneous aggregate with the grain of
interest (GoI) at the center where uniaxial compressive lading along the S1 axis

(σ11 = −100 MPa) is applied.
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As the present FEA investigation is concerned with the role of the local environment

on the strain (distribution) for the diffracting grains, the devised model system consists

of two parts: (i) a locally heterogeneous aggregate (inclusion) composed of a number of

“columnar” grains (of identical shape and size) with different crystal orientations and (ii)

a surrounding homogeneous aggregate (matrix) characterized by the macroscopic (compa-

rable to the bulk material) elastic properties (Figure 2.17). At the center of the locally

heterogeneous aggregate lies a grain which will be termed the “grain of interest” (GoI). In

the following, the average strain and the strain distribution for the GoI, as a function of

variation is the local surroundings, are the focus of the attention.

Figure 2.18: Arrangement of “grains” in locally heterogeneous aggregates for FEA
computation where color is used to identify a specific crystallographic orientation of the
compliance tensor (representing a grain orientation); see the Appendix and Table 2.5.

The surrounding homogeneous aggregate represents the grains far from the GoI whose

individual orientations have little effect on the induced strain field in the GoI and can

be averaged together to act as a homogeneous body. (This resembles the “effective

medium” used in the Eshelby-Kröner model.) The locally heterogeneous aggregate is

comprised of individual grains as shown in Figures 2.17 and 2.18. Eight different config-

urations of the grains in the locally heterogeneous aggregate were constructed to properly

investigate the effect of the local heterogeneity on the strain in the GoI. The elastic

constants used to describe the compliance of the surrounding homogeneous aggregate,

the geometry of the “grains” (which make up the locally heterogeneous aggregate), and

the crystal orientation of the GoI remained unchanged for all eight aggregates; only the

crystal orientations of the individual, GoI-surrounding grains (represented by color in

Figure 2.18) in the locally heterogeneous aggregate were varied.

The single-crystal elasticity tensor C
C for Au can be rotated using the Bunge Euler

angles α, β, and γ in the reverse transformation tensor to solve for the compliance of

a grain in the S frame. (See discussion in Section 2.3.1 and Appendix 2.8.) Several

different “grain orientations” were computed: one selected for the GoI and six others to

populate the rest of the locally heterogeneous aggregate. In Figure 2.18, color corresponds
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to a unique set of Euler angles α, β, γ to fully define the grain orientation. The values

calculated for strain variation, by adopting (only) six different orientations of the GoI-

surrounding grains, can be thought of as a lower bound to those which could actually be

present in a realistic polycrystalline specimen under loading.

As specific lattice directions yield sooner than others (and therefore are more sensitive

to variations of local inhomogeneity), four different orientations of the crystal lattice and

thus the compliance tensor with respect to the orientation of the diffraction vector, which

is oriented perpendicular to the plane of drawing in Figures 2.17 and 2.18, were used for

the GoI, representing four HKL reflections: 111, 200, 220, and 311.

The hexagonal shape of the “columnar” grains mirrors the energetically favorable two-

dimensional grain shape (assuming isotropic grain-boundary stress [39]) and was chosen

in order to keep the geometry of the problem simple. The external shape of the sur-

rounding homogeneous aggregate was chosen to resemble the shape of the locally hetero-

geneous aggregate (inclusion). It is important that the values determined for the stress

and strain components along the external boundaries of the surrounding homogeneous ag-

gregate are independent of changes within the locally heterogeneous aggregate (as shown

in Figure 2.18). The size of the surrounding homogeneous aggregate was therefore chosen

large enough to be compatible with this requirement, as the whole system (the locally

heterogeneous surroundings of the GoI in the inclusion and the homogeneous matrix sur-

rounding the inclusion) must act as a unchanging effective medium for the GoI.

The body was loaded uniaxially (along the S1 axis as indicated in Figure 2.17) to

induce macroscopic elastic strains comparable to those discussed in Section 2.4. For the

discussion of strain variation, it is important to refer back to the three frames of reference

defined in Section 2.3.1. The average lattice strain measured using XRD is defined in

the laboratory frame of reference: {ǫL
33
}HKL

φ,ψ (= ǫHKL

φ,ψ ; Equation 2.6). The results of FEA

for the GoI are given in the specimen frame of reference: ǫS
11
, ǫS

22
, ǫS

33
with the S1 and

S2 axes oriented as indicated in Figure 2.17 and the S3 axis oriented perpendicularly to

the plane of drawing, i.e. parallel to the diffraction vector considered. Therefore, the

variation of the value of the calculated strain component ǫS
33

for the GoI in the various

aggregates should be compared with the variation of ǫL HKL

33 φ,ψ (χ) as calculated according

to the grain-interaction models.

The FEA was performed using the software COMSOL Multiphysics 4.0a®. The grains

were treated as continuous, elastically-deformable bodies, each with the same anisotropic

compliance tensor in the C frame. The calculations were carried out adopting the single-

crystal elastic constants for Au, where the compliance of each grain in the specimen frame

of reference is a function of the crystallite orientation, represented by Euler angles [24,

40–42]. (See Reference [36] and Section 2.3.1 for more details.)

The results of the FEA simulations are presented in Figure 2.19, by means of contour

plots of the ǫS
33

component of the strain tensor for the GoI in each of the eight simulated

aggregate configurations for four different orientations of the GoI, i.e. pertaining to the
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111, 200, 220, and 311 reflections (see Table 2.5). The corresponding minimum, maximum,

and average values of ǫS
33

for the GoI have been gathered in Table 2.3.

As a first conclusion, it is interesting to note, though, that whether an “isotropic” or

an “anisotropic” orientation of the GoI is investigated (i.e. whether an H00 or HHH re-

flection or a general HKL reflection is considered), both distinct micro- and mesovariation

in strain (see beginning of this section) are observed.

The distribution of strain, within the GoI, clearly depends on the arrangement of the

elastically anisotropic grains in the locally heterogeneous aggregate: the orientation of the

neighbor/adjacent grains noticeably affects the strain distribution within a grain. Also

the average strain of the GoI depends on the locally heterogeneous surroundings.

These results demonstrate that grains with identical orientations located throughout

a homogeneous aggregate subjected to macroscopic loading will not necessarily exhibit

the same average strain. This implies the occurrence of mesovariation of strain also for

diffraction grains with the same angle of rotation about the diffraction vector. Recall,

such strain variation is not considered in all grain-interaction models. Moreover, an

appreciable microvariation of strain, i.e. strain distribution within a grain, occurs, which

is also ignored in all grain-interaction models. The mesovariation of the strain for grains

of identical orientation and the microvariation of the strain within a grain contribute

essentially to the loading-induced diffraction-line broadening.
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Table 2.3: FEA results for the ǫS
33

strain component in the GoI (i.e. ǫL
33
(HKL, φ, ψ, χ) at

φ = 0◦, ψ = 0◦ and for χ = 0◦) for uniaxial compressive loading with σ11 = −100 MPa
(as indicated in Figure 2.17; see also text) for four orientations of the GoI (A: 111; B:

200; C: 220; D: 311) and for the eight different surroundings of the GoI. The
corresponding contour plots are presented in in Figure 2.19.

Aggregate Average Minimum Maximum
Microvariation

of strain

(1 · 10−3) (1 · 10−3) (1 · 10−3) (1 · 10−3)
GoI: A (111 reflection)

#1 0.96 0.86 1.05 0.19
#2 0.94 0.84 1.15 0.31
#3 0.92 0.84 1.01 0.18
#4 0.95 0.84 1.06 0.22
#5 0.97 0.87 1.10 0.23
#6 0.92 0.82 1.01 0.20
#7 0.94 0.83 1.12 0.29
#8 0.94 0.87 1.05 0.18

GoI: B (200 reflection)
#1 1.28 1.09 1.39 0.30
#2 1.25 1.07 1.57 0.49
#3 1.22 1.07 1.38 0.32
#4 1.26 1.06 1.45 0.39
#5 1.30 1.16 1.51 0.35
#6 1.23 1.08 1.35 0.27
#7 1.26 1.10 1.53 0.43
#8 1.24 1.11 1.38 0.26

GoI: C (220 reflection)
#1 1.09 0.97 1.20 0.23
#2 1.08 0.91 1.26 0.35
#3 1.04 0.94 1.19 0.25
#4 1.07 0.96 1.23 0.27
#5 1.11 0.95 1.23 0.27
#6 1.04 0.87 1.21 0.34
#7 1.08 0.89 1.25 0.37
#8 1.06 0.93 1.14 0.22

GoI: D (311 reflection)
#1 1.15 1.03 1.30 0.27
#2 1.12 0.96 1.32 0.36
#3 1.09 0.95 1.20 0.24
#4 1.13 1.00 1.30 0.30
#5 1.16 1.05 1.35 0.29
#6 1.10 0.96 1.21 0.24
#7 1.12 1.04 1.29 0.25
#8 1.11 0.97 1.30 0.33



CHAPTER 2. 57

(a) GoI: A (111 reflection)

(b) GoI: B (200 reflection)

(c) GoI: C (220 reflection)

(d) GoI: D (311 reflection)

Figure 2.19: Contour plots depicting the variation within the GoI of the ǫS
33

(i.e.
ǫL
33
(HKL, φ, ψ, χ) at φ = 0◦, ψ = 0◦ and for χ = 0◦) strain component for uniaxial

(vertical) compressive loading of σ11 = −100 MPa (as indicated in Figure 2.17; see also
text) for four orientations of the GoI (A: 111; B: 200; C: 220; D: 311) and for the eight

different surroundings of the GoI. Color scale for each GoI differs in order to best
represent the intragranular strain variation. Numerical results have been gathered in

Table 2.3.
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2.6 General discussion

The classical grain-interaction models were conceived to calculate the mechanical, elas-

tic constants for materials. They have also been applied in order to describe the diffraction

elastic constants and stress factors for calculating stress from lattice-strain measurements

by (x-ray) diffraction analysis. Such models have successfully predicted the dependence

of the average lattice strain on the direction of the diffraction vector in polycrystalline

aggregates under elastic loading. Therefore, it is only natural to apply such models for

predicting the strain variation and thus the diffraction-line broadening. This work has

shown that the grain-interaction models can only account for a part of the strain-variation

induced broadening of diffraction lines.

Table 2.4: Comparison of strain variation contributions induced by uniaxial elastic
loading for an untextured polycrystalline Au aggregate.

Strain variation Magnitude of variation Notes

Mesovariation by
variable χ

|∆ǫL HKL

33 φ,ψ (χ)|: ∼ 0.0008

(grain-interaction models)

Magnitude is dependent on
grain-interaction model, tex-
ture, and diffraction geometry
(HKL, ψ, and φ)

Mesovariation at
constant χ

|∆ǫS
33
|: ∼ 0.0001

(FEA)

Statistical variation of average
strain for GoI at fixed χ in
the various locally heteroge-
neous aggregate configurations
according to FEA

Microvariation |∆ǫS
33
|: ∼ 0.0005

(FEA)

Strain variation within GoI ac-
cording to FEA

On the basis of the present model calculations (i.e. both the grain-interaction models

and the FEA), the relative magnitudes of the contributions of (i) mesovariation of lattice

strain by variation of χ (i.e. |∆ǫL HKL

33 φ,ψ (χ)| as predicted by the grain-interaction models),

(ii) mesovariation of lattice strain at constant χ (i.e. ǫS
33

at constant χ for the various,

different surroundings for the same GoI, as predicted by the FEA calculations) and (iii)

microvariation of lattice strain, to the elastic loading-induced diffraction-line broaden-

ing, can be assessed and compared. Such results for an untextured Au aggregate under

uniaxial compressive loading (σ11 = −100 MPa; Figure 2.17) are provided by Table 2.4

and Figure 2.19. Evidently, all of these contributions to strain variation are expressed

simultaneously in the experimentally observed diffraction-line broadening. Therefore, ac-

cording to these calculations, the diffraction-line broadening observed in reality can be

50% larger than predicted by the grain-interaction models. In particular, also for the H00

and HHH reflections of (loaded) cubic materials, the occurrence of a strain variation, and

thus diffraction-line broadening, is predicted by the anisotropic grain-interaction models

and by FEA, in contrast with the classical isotropic grain-interaction models. Hence,

diffraction-line broadening is also expected for these reflections.
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2.7 Conclusions

In this work, three categories of strain variation present in an elastically loaded poly-

crystalline aggregate have been recognized:

(i) Macrovariation in strain is the variation of the average lattice strain, taken for the

groups of diffracting grains, that occurs upon changing the orientation of the diffrac-

tion vector with respect to the specimen frame of reference.

(ii) Mesovariation in strain is the variation of the average lattice strain, the average

now taken per diffracting grain, for the group of diffracting grains sharing a fixed

orientation of the diffraction vector.

(iii) Microvariation in strain is the variation of lattice strain within an individual grain.

• Both mesovariation and microvariation of strain will contribute to diffraction-line

broadening induced by elastic loading. Grain-interaction models, as presented in

the literature, are applied to calculate the strain distribution in a polycrystalline

aggregate as a function of grain orientation with respect to the body. Such models can

lead to reliable estimates for predicting the average lattice strain in polycrystalline

aggregates under elastic loading, as determined from the position of diffraction lines.

However, these grain-interaction models do not provide realistic estimates for the

lattice-strain variation as expressed in the observed diffraction-line broadening: this

broadening can be underestimated to the order of 50%.

• Not all sources of strain variation are captured by the grain-interaction models (see

above). In particular: (i) the variation of average strain of each diffraction grain due

to different surroundings of each of the diffracting grains (at fixed orientation of the

diffraction vector) and (ii) the strain variation within each diffracting grain are not

considered in the grain-interaction models.

• FEA calculations do provide estimates for all contributions to the lattice-strain vari-

ation.

• It has been claimed that H00 and HHH reflections do not exhibit broadening in

the case of loading cubic materials. However, this results only holds if an isotropic

grain-interaction model is applied. In general, as shown for the anisotropic grain-

interaction models and the FEA calculations, also the H00 and HHH reflections of

cubic materials exhibit broadening.

• Texture within a polycrystalline aggregate reduces (i) the overall diffraction-line

broadening induced by elastic loading (because many of the grains are aligned along

a preferred direction) and (ii) has a lesser influence on line broadening if anisotropic

(as compared to isotropic) grain interaction occurs.
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• The strain variation ǫL HKL

33 φ,ψ (χ) is nil, when the diffraction vector is aligned with

the loading axis of symmetry for a given state of stress, if the grain interaction is

isotropic.

• Only the magnitude of the stress and the type of stress state influence the strain

variation in the polycrystalline body; the character of the loading (tensile versus

compressive loading) does not play a role.

• Analysis of lattice-strain induced diffraction-line broadening can provide much more

direct and detailed information on the type of operating grain interactions than as

obtained from “standard” diffraction stress analysis on the basis of diffraction-line

positions, e.g. by the so-called sin2 ψ-method.
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2.8 Appendix: Definition of grain orientation for FEA

calculations

The single-crystal elastic constants used to define the material in the FEA simulation

as gold are C11 = 186 GPa, C12 = 157 GPa, C44 = 42 GPa [43]. The color of each grain

in Figure 2.18 corresponds to its orientation in the specimen frame of reference. This

orientation is defined by the Euler angles α, β, and γ (given in Table 2.5) according to

the Bunge convention [26,27]. These angles define the three rotations with respect to the

specimen (S) frame of reference to transform it into the crystallite (C) frame of reference,

as shown in steps in Figure 2.20, where the ei system of coordinates is the S frame of

reference and the e′′′i system of coordinates is the C frame of reference.

Figure 2.20: Transformation from the specimen frame of reference (S) to the crystal
frame of reference (C) defined with respect to the specimen frame (S) by the Bunge

Euler angles α, β, and γ; refer to [26, 27].

Table 2.5: Bunge convention Euler angles to define grain orientation in FEA
calculations; see section 2.3.1 and refer to [26, 27]; see Figure 2.18.

Grain Color α β γ
Dark blue 42◦ −31◦ 45◦

Light brown −48◦ 58◦ −55◦

Pink 51◦ −44◦ 68◦

Light purple 21◦ 74◦ 6◦

Dark green −61◦ 12◦ −62◦

Light orange 16◦ −75◦ −16◦

GoI

A : 111 18◦ 54.74◦ 45◦

B : 200 −84◦ 0◦ 0◦

C : 220 54◦ 45◦ 0◦

D : 311 −14◦ 25.24◦ 45◦
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Chapter 3

Measurement of x-ray diffraction-line

broadening induced by elastic

mechanical grain interaction

M. K. A. Koker, U. Welzel, and E. J. Mittemeijer

Abstract

Various grain-interaction models have been proposed in the literature to describe the

stress and strain behavior of individual grains within a massive aggregate. Diffraction lines

exhibit a response to the occurrence of a strain distribution in the diffracting crystallites,

selected by the direction of the diffraction vector with respect to the specimen frame

of reference, by correspondingly induced diffraction-line broadening. This work provides

a report of synchrotron diffraction investigations dedicated to the measurement of the

experimentally observable diffraction-line broadening induced by external elastic loading

of various polycrystalline specimens. The experimentally obtained broadening data have

been compared with those calculated adopting various grain-interaction models. Although

such grain-interaction models have been proven to accurately predict the average (x-

ray) diffraction measured lattice strain, as derived from the diffraction-peak position, the

present results have demonstrated that the extent of the diffraction-line broadening due

to grain interactions, as calculated by employing these grain-interaction models, is much

smaller than the experimentally determined broadening. The obtained results have vast

implication for diffraction-line broadening analysis and the understanding of the elastic

behavior of massive polycrystals.
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3.1 Introduction

The use of diffraction techniques to study lattice strain is not a new strategy (e.g. see [1]

and references therein). Elastic loading of a polycrystal results in a strain distribution

within the material. The elastically intrinsically anisotropic grains in a massive body

cannot deform freely to comply with an imposed state of mechanical stress; instead they

must adapt their mechanical response to their surroundings. A wide range of elastic grain-

interaction models have been developed to understand the strain within the individual

crystals of a massive polycrystalline specimen subjected to an external load [2–12]. These

models differ not only in their complexity (Reuss and Voigt models can often be solved

analytically, whereas already the Eshelby-Kröner model can be solved only numerically),

but also in their boundary conditions (anisotropic models, such as the Vook-Witt and

inverse Vook-Witt models [11], have been found to be valid in predicting the measured

strain in thin films under loading, whereas the classical, isotropic Neerfeld-Hill model

appears appropriate especially for bulk material with spherical, or equiaxed, grains in the

specimen). The more complex the model, the more versatilely applicable it may be. The

Eshelby-Kröner model [6,7], for example, can incorporate morphological (grain shape [13])

texture and crystallographic (orientation-distribution function) texture.

The elastic grain-interaction models, as listed above, have been applied to calculate

the macroscopic elastic constants of a material or to predict the average lattice strain as

measured along the diffraction vector {ǫL
33
}HKL

φ,ψ (see Section 3.2) in an x-ray diffraction

(XRD) experiment. Although not generally recognized, these models can also be used

to calculate the strain variation within an aggregate under loading, for the diffracting

crystallites, which strain variation results in diffraction-line broadening [14–17].

Diffraction-line broadening is induced when grains with hkl planes sharing the same

normal (parallel to the diffraction vector, as indicated in Figure 3.1) experience differ-

ent (average) strains in the direction of the diffraction vector due to their intrinsically

anisotropic elastic behavior. The average strain of a crystallite as a function of its ori-

entation with respect to the specimen frame of reference can be determined according

to elastic grain-interaction models [14, 17]. On this basis, the variation of this (average)

strain as a function of the angle of rotation, χ, about the diffraction vector ǫHKL

φ,ψ (χ) (see

Section 3.2), can be calculated for a fixed diffraction geometry (i.e. fixed HKL, ψ, φ).

Broadening contributions, such as instrumental and finite grain size, remain unchanged

during elastic loading and unloading experiments. Such sources of broadening are not

considered in this work. Here the focus of the attention is on the measurement of elas-

tic loading-induced (reversible) diffraction-line broadening. This is a rather unexplored

area (exceptions are the experimental observations reported in [15] and [16]) which is at

least partly due to the high resolution necessary to measure such a phenomenon. (First,

theoretical calculations of elastic loading-induced diffraction-line broadening have been

performed by [14] and [17].)
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Figure 3.1: Schematic to demonstrate the degree of grain rotational freedom, in a
diffraction experiment, given as the angle χ, defining the rotation about the HKL

diffraction vector, which is perpendicular to a set of (hkl) planes.

The work presented here consists of diffraction-line broadening measurements, on poly-

crystalline specimens of four different metals (Cu, Ni, Nb, W) under two different imposed

states of stress (uniaxial and biaxially rotationally symmetric), made using synchrotron

radiation. It will be shown that sources of strain variation by elastic grain interactions

not captured by the known elastic grain-interaction models bring about a substantial part

of the observed diffraction-line broadening.

3.2 Theoretical background

3.2.1 Reference frames and calculations of diffraction averages

Three Cartesian frames of reference, as shown in Figure 3.2, are defined:

• The crystal frame of reference (C): The conventional definition of an orthonormal

crystal system, such as the one given in [18] is adopted. A detailed treatment can

be found in [19]. For cubic crystal symmetry, the axes chosen coincide with the a, b,

and c axes of the crystal lattice.

• The specimen frame of reference (S): The S3 axis is orientated perpendicular to the

specimen surface, and the S1 and S2 axes are in the surface plane.

• The laboratory frame of reference (L): This frame is chosen in such a way that

the L3 axis coincides with the diffraction vector in the (x-ray) diffraction (XRD)

experiment.

The relative orientation of the laboratory frame of reference with respect to the speci-

men frame of reference is specified by the angles φ and ψ, where ψ is the inclination angle

of the sample surface normal (i.e. the S3 axis) with respect to the diffraction vector (i.e.

the L3 axis) and φ denotes the rotation of the sample around the sample surface normal.

The angle χ is defined as a rotation of the laboratory frame of reference about the L3

axis (the diffraction vector), where, for φ = ψ = χ = 0◦, the L frame of reference coin-
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cides with the S frame of reference. The direction of the diffraction vector is especially

important in XRD experiments as this is the direction along which lattice spacing (and

thus average lattice strain) is measured.

In the following, a superscript (C, S, or L) is used for indicating the reference frame

adopted for the representation of quantities which are orientation specific.

(a) Laboratory frame (L) defined with
respect to the specimen frame (S) by the

diffraction angles φ, ψ, and χ

(b) Orientation of reference frames defined by the orientation of the diffraction vector
(for a fixed HKL, φ, ψ, and χ)

Figure 3.2: Introduction of the three standard coordinate systems and the corresponding
orientation angles necessary for the discussion of diffraction experiments.

The orientation of each crystallite in the S system can be identified by three Euler

angles, according to Bunge convention [20, 21]. These angles will be called α, β, and

γ [22]. See, for example, [17] for a more in-depth discussion. It is usual to associate a set
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of Euler angles with a vector g = (α, β, γ) in the three-dimensional orientation (Euler)

space G [23]. In this way, each point in the orientation space G represents a possible

orientation of the C frame of reference with respect to the S frame of reference. Texture

can be quantified by introducing the orientation distribution function (ODF), F(α, β, γ),

which is a function of the Euler angles, specifying the volume fraction of crystallites having

an orientation in the infinitesimal orientation range d3g = sin(β)dαdβdγ around g.

In the context of diffraction analysis, the analyzed volume is generally only a fraction of

the volume of the polycrystalline specimen: braces {...} denote volume-weighted averages

for diffracting crystallites only (i.e. diffraction averages). A diffraction line contains data

on only a subset of the crystallites for which the diffraction planes are perpendicular

to the chosen measurement direction. Because only the measurement direction (i.e. the

direction of the diffraction vector) is defined, a degree of freedom occurs for the diffracting

crystallites: the rotation about the diffraction vector (denoted by the angle χ). For a

single HKL diffraction line, the group of diffracting crystallites is selected by specifying

the HKL of the reflection and the orientation of the diffraction vector with respect to the

specimen reference frame S, which can be identified by the angles (φ,ψ). Therefore the

sub- (φ,ψ) and superscripts (HKL) are attached to the corresponding average of a strain

tensor (element).

For a fixed diffraction vector (i.e. HKL, φ, and ψ have been specified), the average

lattice strain ǫHKL

φ,ψ = {ǫL
33
}HKL

φ,ψ and the lattice strain distribution ǫHKL

φ,ψ (χ) (where the strain

varies as a function of rotation χ about the diffraction vector) are related according to:

ǫHKL

φ,ψ = {ǫL
33
}HKL

φ,ψ =

∫

2π

0
ǫL
33
(HKL, χ, φ, ψ)F∗(HKL, χ, φ, ψ)dχ
∫

2π

0
F∗(HKL, χ, φ, ψ)dχ

. (3.1)

F∗(HKL, χ, φ, ψ)dχ is the representation of the ODF in terms of the measurement pa-

rameters and the rotation angle χ. The ODF is now expressed as F∗(HKL, χ, φ, ψ)dχ;

F(α, β, γ) cannot be directly used in Equation 3.1, since the angles χ, φ, and ψ are not

Euler angles representing a rotation of the C system with respect to the S system. (They

actually provide the rotation of the system L with respect to the system S.) However, the

values of α, β, and γ, and thus the F(α, β, γ) and thereby F∗(HKL, χ, φ, ψ) at every χ can

be calculated from HKL, χ, φ, and ψ. For a more detailed treatment, see Reference [24].

In order to compute the strain-broadened diffraction line, both the average lattice

strain ǫHKL

φ,ψ (directly related to peak position upon loading) and the strain distribution

ǫHKL

φ,ψ (χ) (ǫL
33
(χ) at fixed HKL, φ, and ψ) are required. The strain distribution ǫHKL

φ,ψ (χ)

can be converted into a frequency function f(ǫ) which describes the fraction of grains in

the considered diffraction volume sharing the same diffraction vector and which experi-

ence the same (average) strain. Using Bragg’s law (for a specified radiation wavelength

and the material’s strain-free lattice spacing do for the transition from ǫ to d), the fre-

quency function f(ǫ) can be converted to the 2θ scale. This transformation results in

the strain-induced broadening contribution function f(2θ). The function f(2θ), when
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convoluted with the diffraction profile corresponding to unloaded state g(2θ), yields the

“measured” diffraction peak h(2θ) for an elastically-loaded polycrystalline aggregate. It is

important here to note that g(2θ) incorporates all broadening contributions (such as grain

size and instrumental broadening) other than that induced by the external mechanical

loading. Upon unloading, the diffraction line h(2θ) relaxes to g(2θ), as all broadening

induced by elastic loading is fully reversible. For a more detailed discussion of such cal-

culations, see Reference [17].

3.2.2 Lattice strain vs. mechanical stress relationships

Two states of stress in the specimen frame of reference are induced in this study by

externally applied loading: biaxially rotationally symmetric and uniaxial. The general

expression for the measurable average lattice strain along the diffraction vector obeys:

ǫHKL

φ,ψ = {ǫL
33
}HKL

φ,ψ = FHKL

ij (φ, ψ) · 〈σS
ij〉. (3.2)

where FHKL
ij (φ, ψ) are the diffraction (x-ray) stress factors and 〈σS

ij〉 describes the loading-
induced state of mechanical stress in the specimen frame of reference. For proof, see [11].

The diffraction stress factors for a quasi-isotropic aggregate can be replaced by the diffrac-

tion elastic constants [11, 25]. Then, for the case of uniaxial (i.e. 〈σS
ij〉 = 0 for all i, j

except ij = 11) and biaxially and rotationally symmetric (〈σS
11
〉 = 〈σS

22
〉 6= 0; 〈σS

ij〉 = 0,

ij 6= 11 6= 22) stress states, and considering cubic crystal symmetry, Equation 3.2 simpli-

fies to a linear relationship between the XRD measured average lattice strain ǫHKL

φ,ψ and

sin2 ψ.

(i) Biaxially rotationally symmetric loading:

ǫHKL

φ,ψ =
1

2
· SHKL

2
sin2 ψ · σ‖ + 2 · SHKL

1
· σ‖, (3.3)

where SHKL
1

and 1

2
SHKL
2

are the (x-ray) diffraction elastic constants, σ‖ is the biax-

ially applied (and/or residual) stress (σ‖ = 〈σS
11
〉 = 〈σS

22
〉), and ψ is the specimen

inclination or tilt angle. As this state of stress is rotationally symmetric, ǫHKL

φ,ψ is

independent of rotation φ about the specimen surface normal.

(ii) Uniaxial loading:

ǫHKL

φ,ψ =
1

2
· SHKL

2
cos2 φ sin2 ψ · σ11 + SHKL

1
· σ11, (3.4)

where σ11 = 〈σS
11
〉 is the applied uniaxial load along the S1 axis. This state of stress

is not symmetric about the surface normal (S3), and thus ǫHKL

φ,ψ depends on the angle

of rotation φ about the specimen normal.
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3.2.3 Grain interaction and diffraction-line broadening

Grain-interaction models can be used to predict the elastic loading-induced average

lattice strain of and the lattice-strain variation in polycrystalline aggregates [17]. The

Reference [3] model (isotropic grain interaction), involving that all grains are in the same

state of stress in the specimen frame of reference, overestimates the strain variation in

the aggregate, and therefore supposedly provides a maximum value for the predicted

diffraction-line broadening. The Reference [2] model (isotropic grain interaction), involv-

ing that all grains are in the same state of strain in the specimen frame of reference, implies

the absence of strain variation in the aggregate and therefore would predict the absence

of diffraction-line broadening. The (other) isotropic grain-interaction models Neerfeld-

Hill [4, 5] and Eshelby-Kröner [6, 7] provide results which are more or less “averages” of

the Voigt and Reuss extremes.

Grain interactions within an aggregate can also be anisotropic, implying different types

and extents of grain interaction for directions parallel and perpendicular to the specimen

surface. For example, the Vook-Witt grain-interaction model [8,9] assumes that all grains

are under the same stress perpendicular to the surface and experience identical strains

parallel to the surface. The Eshelby-Kröner model has been shown to converge with the

Vook-Witt model for needle-shaped grains (η → ∞) [26].

While none of these models showed an ideal match with the data presented in this work,

the Reuss (isotropic) and Vook-Witt (anisotropic) models were used here, also recognizing

their computational simplicity, for discussion of the observed diffraction-line broadenings.

(For a comparison between the various grain-interaction models for predicting diffraction-

line broadening, see Reference [17].)

Texture decreases the effect of lattice-strain variation by anisotropic grain interaction

on the diffraction-line broadening [17]. Therefore, calculations for the effect of grain

interactions on diffraction-line broadening for a statistically untextured aggregate result

in an overestimate of the expected (grain-interaction induced) diffraction-line broadening.

In the presence of texture, the isotropic grain-interaction models (Voigt, Reuss, Neerfeld-

Hill, and Eshelby-Kröner with η = 1) for all H00 and HHH reflections of cubic mate-

rials still lead to straight lines in plots of lattice strain versus sin2 ψ, and predict zero

diffraction-line broadening. The anisotropic grain-interaction models do imply for (also

textured), cubic materials that distinct broadening also occurs for the H00 and HHH

reflections [17]. This is an important result having direct relevance for the diffraction-line

broadening observed in this work (Section 3.4).

3.3 Experimental procedures

Synchrotron X-ray diffraction stress measurements were conducted at the Max Planck

Institute for Intelligent Systems (formerly Metals Research) “surface diffraction beam

line” at ANKA, located at the Karlsruhe Institute of Technology (KIT), Germany. All of
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the measurements discussed in this work were made using radiation with photon energy

of 8.1 keV and a corresponding wavelength of λ = 1.52933 Å, with the exception of the

measurements for the uniaxially loaded W dog-bone specimens, which were performed

using an energy of 10 keV, λ = 1.2398 Å. Data were collected using a sodium iodine point

detector preceded by a set of soller slits. The counting statistics were kept constant by

monitoring the incoming beam current (as opposed to fixed time increments), since the

electron-beam current decays as a function of time after each injection.

An overview of the performed experiments is provided by Table 3.1: materials, loading

state, magnitude of loading, measured reflections. The measurable reflections and acces-

sible tilt angles were dictated by the texture and/or the geometry of the loading device

mounted on the Eulerian cradle. All diffraction lines discussed in this work were measured

in reflection diffraction geometry.

Table 3.1: Materials used, applied states of stress, values of the applied principal stress
components, and the diffraction lines recorded in the discussed experiments.

Metal Stress state Applied stress Measured diffraction lines

Cu biaxial σ‖ = 280 MPa 111, 200, 220, 311
Nb biaxial −350 MPa 110, 200, 211, 220, 310
W biaxial −1450 MPa 110, 200, 211, 220, 310, 321
Ni uniaxial σ11 = 100 MPa 111, 200, 220, 311, 331
W uniaxial 145 MPa 200, 211, 220, 310

3.3.1 Loading set-up

3.3.1.1 Biaxially rotationally symmetric loading

A heating/cooling chamber (MRI Physikalische Geräte GmbH, Karlsruhe, Germany) was

used for in situ XRD measurements. Heating and cooling rates were regulated by the

internal PID controller; measurements were made only at fixed temperatures, accurate

within ±1◦C. Temperature variation within the chamber was found to be negligible by

determining from measurements, at different locations at the surface of the film, the

strain-free lattice parameter ao [25], which depends strongly on temperature for the metals

concerned.

Thin films of various metals were sputter-deposited on single-crystal substrates (see

Section 3.3.2). Single crystals were chosen for the substrates so that elastic grain inter-

actions in the substrate do not occur. The selected substrates have thermal expansion

coefficients significantly different from those of the deposited metals. Heating or cooling

of the layer/substrate system led to the development of a biaxial symmetric state of stress

in the film and the substrate. As the (thick) substrate can be considered as rigid, the

thermal misfit is fully accommodated by the metal films. Then the thermal misfit strain
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in the film is given by:

ǫ‖(T ) =
[

αsub.(T )− αfilm(T )
]

· (T − Troom) , (3.5)

where α(T ) is the linear coefficient of thermal expansion which depends on temperature.

Using the biaxial elastic modulus of the film M , the corresponding induced stress σ‖(T )

in the film can be calculated according to:

σ‖(T ) =M · ǫ‖(T ). (3.6)

3.3.1.2 Uniaxial loading

So-called “dog-bone” specimens were uniaxially loaded through the use of a tensile ma-

chine (Kammrath & Weiss GmbH, Dortmund, Germany) mounted on an Eulerian cradle

for in situ XRD measurements.

The applied load F and the cross-sectional area A in the middle of the dog-bone

specimen can be used to calculated the applied stress σ11(F ) to the specimen,

σ11(F ) =
F

A
. (3.7)

The corresponding strain can be found using Hooke’s Law and the elastic (Young’s) mod-

ulus E of the material. The strain rate was kept constant during loading and unloading

of the specimens. During XRD measurements, the distance between the cross-heads was

kept fixed, i.e. the material was not allowed to creep, and thereby, the strain was kept

constant.

3.3.2 Materials

The intrinsic elastic anisotropy parameter A (also known as the Zener’s anisotropy

ratio) for a cubic material, follows from [18]:

A =
2 (s11 − s12)

s44
=

2 · c44
c11 − c12

, (3.8)

where cij are the components of the single crystal elastic stiffness tensor and sij are the

components of the single crystal elastic compliance tensor for the polycrystal. A = 1

represents isotropy, as practically holds for tungsten. The anisotropy parameters for the

materials investigated in this work are presented in Table 3.2. (Gold has been included in

this table, even though it is not experimentally investigated here, to facilitate comparison
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Table 3.2: The elastic anisotropy parameter A for cubic materials, as calculated using
the components of the single crystal elastic stiffness tensor cij, according to

Equation 3.8; elastic constants have been given in units of GPa [27]

Metal Structure c11 c12 c44 A

Copper, Cu FCC 171.0 124.0 75.6 3.22
Gold, Au FCC 186.0 157.0 42.0 2.90
Nickel, Ni FCC 251.2 157.1 121.3 2.58
Niobium, Nb BCC 192.0 134.0 56.8 1.96
Tungsten, W BCC 501.0 198.0 151.0 1.00

with previous line-broadening studies [15, 17].)

3.3.2.1 Biaxially rotationally symmetric loaded specimens

Copper

Copper was sputter-deposited to a thickness of 2 µm on a single-crystal silicon (100-

orientation) wafer (deposition conditions: pAr = 3 · 10−3 mbar, PCu = 200 W). The

conditions of deposition were tuned to produce little to no residual stress in the film at

room temperature. The microstructure of the Cu (imaged with a focused ion beam, FIB)

consists of many equiaxed grains, ranging in size from 0.1 to 2.0 µm. The films possessed

a 111-fiber texture (See the 111-pole figure section in Figure 3.3.)

Figure 3.3: Experimentally measured and ideal rotationally symmetric (calculated)
pole-figure sections for the 111 reflection for Cu (FCC) (111-fiber texture)

The film was loaded tensilely by cooling from room temperature (25◦C) to a minimum

temperature of -120◦C. This led to a biaxially rotationally symmetric state of stress with

σ‖ ≡ σ11 = σ22 of approximately 280 MPa, as experimentally determined in this work.

(Note the occurrence of material stiffening at low temperatures).
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Niobium

Niobium was sputter-deposited on an aluminum single-crystal substrate (100-orientation)

to a thickness of 2 µm (pAr = 5.8 · 10−3 mbar; PNb = 200 W). After deposition, a tensile

residual stress of σ‖ ≡ σ11 = σ22 = 350 MPa was measured at room temperature. The

film possessed a strong 110-fiber texture. The film was loaded compressively to achieve a

state of zero stress by cooling to -120◦C. Therefore, the “unloaded” measurements were

made in this cooled state; the “loaded” measurements were made at room temperature.

Tungsten

The tungsten film was also sputter-deposited to a thickness of 2 µm onto an Al single-

crystal (100-orientatation) substrate (pAr = 5.8 · 10−3 mbar; PW = 200 W). As with the

Nb (also BCC), a 110-fiber texture was present in the film. The residual stress in the

film at room temperature was σ‖ ≡ σ11 = σ22 = −1450 MPa. Cooling to -120◦C led to

a measured stress of σ‖ = −1260 MPa, i.e. approximately 200 MPa of tensile stress was

induced upon cooling.

3.3.2.2 Uniaxially loaded specimens

Nickel

Dog-bone specimens were made from 3.2 mm thick cold-rolled nickel sheet (purchased

from GoodFellow, 99.99 at.% purity). The texture which had developed during rolling was

neither sharp nor strong. The macroscopic (uniaxial) elastic limit of the Ni was measured

to be approximately 125 MPa; therefore, the maximum in situ applied uniaxial elastic

loading was σ11 = 100 MPa.

Tungsten

Dog-bone specimens were made from 3 mm thick cold-rolled tungsten sheet (purchased

fromGoodFellow, 99.95 at.% purity). A weak rolling texture was prevalent in the material.

The macroscopic (uniaxial) elastic limit was measured to be approximately 300 MPa. This

loading limit was measured for the material which had a significant residual stress of -

600 MPa (determined using XRD). The applied in situ uniaxial loading stress was limited

to a maximum of σ11 = 150 MPa.

3.3.3 Evaluation of diffraction data

Diffraction lines at multiple inclinations ψ at selected values of φ, for a uniaxial state

of applied stress and at φ = 0◦ for a biaxially rotationally symmetric state of stress, were
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measured in the loaded and unloaded states for each of the discussed materials. (See

Table 3.1.) A Pearson VII profile-shape function [28] was used to fit the peaks and thus

to extract values for the parameters (i) diffraction-line position (2θ position of the peak

maximum) and (ii) integral breadth β, which is the ratio of the maximum peak intensity

to the area under the peak. The integral breadth depends less on the precise shape of the

peak than the full width at half maximum FWHM. Therefore, the integral breadth was

adopted as the width parameter reflecting the magnitude of the lattice-strain variation in

the specimen.

The loading-induced broadening of the diffraction line was defined as the difference in

its integral breadth, ∆β, of the loaded and unloaded states (see Figure 3.4):

∆β = βloaded − βunloaded. (3.9)

In the following, the average lattice strain {ǫL
33
}HKL

φ,ψ , the integral breadth β, and the

loading-induced broadening ∆β have all been plotted as a function of sin2 ψ. If no error

bars have been indicated on a plot, then they are of the order of the symbol size.

Figure 3.4: The loading induced (peak shift and) broadening of the 311 reflection
recorded for a Cu thin film (at tilt angle of ψ = 45◦; radiation λ = 1.52933 Å). The state
of biaxially rotationally symmetric tensile stress (280 MPa) was imposed by cooling to
-120◦C. The inset reveals the difference in broadening for loaded and unloaded states by
scaling and shifting the peak maximum positions, such that the peak maxima coincide.

3.4 Results and discussion

XRD measurements were made of multiple HKL diffraction lines for the pure metal

specimens (films and dog-bone specimens, as introduced in Section 3.3.2) in the loaded

and unloaded states. Each specimen was measured before application of the load and after

removal of the load to ensure that the applied deformation by loading of the specimen
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was purely elastic: it was verified that peak position and peak width returned to their

original state upon unloading. As an example, the average lattice strain ǫHKL

φ,ψ and the

integral breadth β, as derived from the diffraction lines measured for a 111-fiber textured

Cu thin film, are shown in Figures 3.5 and 3.6, respectively. Similar measured diffraction-

line broadening results (for ∆β, Equation 3.9) have been obtained for all five specimens

(Table 3.1) and have been plotted in Figures 3.7-3.9.

Previously, it was thought that H00 and HHH reflections would not broaden upon

elastic loading as the the diffraction lattice planes are structurally (and therefore elas-

tically) symmetric with respect to the diffraction vector [14–16]. Thus, the isotropic

grain-interaction models predict that no strain distribution will be induced for H00 and

HHH reflections. However, the local inhomogeneity of the matrix (i.e. the different

surroundings for each diffracting grain) will induce a different loading for each of the

diffracting grains (also for the H00 and HHH reflections). Already, the anisotropic

grain-interaction models (while still neglecting the effect of the different surroundings for

the diffraction grains) do predict a loading-induced diffraction-line broadening for also

the H00 and HHH reflections from cubic materials. For example, see results for the

Vook-Witt grain-interaction model (open diamonds) in Figure 3.7.

As the Ni bulk material is significantly less textured than the Cu and Nb films, it

is therefore prone to additional diffraction-line broadening as a consequence of the local

heterogeneity within the aggregate, i.e. the different surrounding for each diffracting grain

(much more so than the Cu and Nb films, as was discussed in Section 3.2.3).

For the same loading axes and the same magnitude of load, a tensile or a compressive

nature of the load has no effect on the lattice-strain variation ǫHKL

φ,ψ (χ), independent of the

type of state of stress [17].

Generally, the integral breadth of the only strain broadened profile is proportional with

the square root of the strain variance [29–32]. If the strain broadening is small as compared

to the instrumental broadening, then, if a Gaussian-shape function is adopted for the

instrumental and the only strain-broadened profiles, upon convolution, it follows that the

additional broadening in the “loaded” h profile, as compared to the “unloaded” g profile

(where h = g ⊗ f), roughly scales with the strain variance, which, in turn, scales with

σ2, with σ as the magnitude of the applied stress (see further below), for isotropic grain

interaction [16]. However, if a Lorentzian (Cauchy) shape function is adopted for the

instrumental and the only strain-broadened profiles, then the additional line broadening

in the h profile, as compared to the g profile, would scale with the square root of the

strain variance, and thus with σ. Indeed, it has often been suggested that a microstrain

broadened line profile has a Gaussian shape (e.g. see Reference [32]), but this is not

generally true and Lorentzian (Cauchy) shaped strain broadened line profiles have also

been observed (e.g. see Reference [33]); for a rigorous discussion on (also line-profile shape

of) micro-(lattice-)strain broadening, see Reference [34].
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(a)

(b)

(c)

(d)

Figure 3.5: Measured lattice strain ǫ as a function of sin2 ψ for various reflections
recorded from a Cu thin film on a Si-wafer before the application of load (open circles)
and in the loaded state (filled circles). The loading was achieved by cooling from room
temperature to -120◦C, resulting in a biaxially rotationally symmetric stress state with
σ‖ ≡ σ11 = σ22 = 280 MPa. Error bars for the data are of the same order as the size of
the symbols. The dashed lines through these data points have been drawn to guide the
eye. Further, lattice-strain data as predicted according to the Reuss (open boxes) and
Vook-Witt (open diamonds) grain-interaction models, for the case of a 111-fiber texture
resembling the 111-fiber texture in the specimen (see Figure 3.3), have been plotted as

well.
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(a)

(b)

(c)

(d)

Figure 3.6: Measured integral breadth β as a function of sin2 ψ for a Cu thin film on a
Si-wafer before the application of load (open circles) and in the loaded state (filled
circles). The loading was achieved by cooling from room temperature to -120◦C,

resulting in a biaxially rotationally symmetric stress state σ‖ ≡ σ11 = σ22 = 280 MPa.
Error bars for the data are of the same order as the size of the symbols. The dashed

lines through these data points has been drawn to guide the eye.
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(a)

(b)

(c)

(d)

Figure 3.7: Measured diffraction-line broadening induced by loading (given as the
integral breadth broadening contribution ∆β, Equation 3.9) as a function of sin2 ψ for a
Cu thin film on a Si-wafer in the loaded state (filled circles), for reflections 111, 200,
220, and 311. The loading was achieved by cooling from room temperature to -120◦C,
resulting in a biaxially rotationally symmetric stress state σ‖ ≡ σ11 = σ22 = 280 MPa.
The broadening contribution as predicted according to the isotropic Reuss (open boxes)
and the anisotropic Vook-Witt (open diamonds) grain-interaction models, for the case of
a 111-fiber texture resembling the 111-fiber texture in the specimen (see Figure 3.3),

have been indicated as well.
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(a)

(b) (c)

(d) (e)

Figure 3.8: Measured diffraction-line broadening induced by loading (given as the
integral breadth broadening contribution ∆β, Equation 3.9) as a function of sin2 ψ for a
Nb thin film on an Al-wafer in the loaded state (filled circles), for reflections 110, 200,

211, 220, and 310. The loading was achieved by cooling from room temperature
(σres.‖ ≡ σres.

11
= σres.

22
= 350 MPa) to -120◦C, resulting in an applied compressive

rotationally symmetric biaxial stress state of approximately σ‖ ≡ σ11 = σ22 = −350 MPa
(i.e. σ‖ = 0 MPa at -120◦C). Further, the broadening contribution as predicted

according to the isotropic Reuss (open boxes) and the anisotropic Vook-Witt (open
diamonds) grain-interaction models, for the case of a 110-fiber texture resembling the

110-fiber texture in the specimen, have been indicated as well.
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(a)

(b) (c)

(d) (e)

Figure 3.9: Measured diffraction-line broadening induced by loading (given as the
integral breadth broadening contribution ∆β, Equation 3.9) as a function of sin2 ψ for a
Ni dog-bone specimen in the loaded state (filled circles), for reflections 111, 200, 220,
311, and 331. The loading was achieved by applying a uniaxial load of 100 MPa to the

specimen (σres.
11

= 125 MPa), resulting in an overall uniaxial stress state of
approximately σ11 = 225 MPa. The broadening contribution as predicted according to

the isotropic Reuss (open boxes) and the anisotropic Vook-Witt (open diamonds)
grain-interaction models, for the case of an untextured polycrystalline aggregate, have

been indicated as well.
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Within the restrictions indicated by the above discussion, to facilitate the comparison

of experiments with different magnitudes of loading, the parameter ∆β/σ2 is introduced

to normalize the loading-induced broadening with respect to the magnitude of the applied

stress (for the same type of state of stress), where the quantity σ is a scalar representing the

magnitude of applied principal stress component(s). (Thus, for the biaxially rotationally

symmetric stress states, σ = σ‖, and for the uniaxial stress states σ = σ11). Such results

for ∆β/σ2 are shown in Figure 3.10 for the biaxially rotationally symmetric applied states

of stress and in Figure 3.11 for the uniaxially applied states of stress.

The results for ∆β/σ2

‖ (Figure 3.10) and for ∆β/σ2
11

(Figure 3.11) clearly exhibit the

role of the degree of the intrinsic elastic anisotropy (see Table 3.2): the degree of loading-

induced broadening, in the case of biaxial loading, increases in the order W→Nb→Cu

and, in the case of uniaxial loading, is larger for Ni than for W. Obviously, the prac-

tically intrinsically elastically isotropic W does not exhibit (resolvable) loading-induced

broadening.

Calculations according to the isotropic Reuss and the anisotropic Vook-Witt grain-

interaction models, for each of the specimens investigated, were performed. The results

can be compared with the experimental data; see Figure 3.5 for the average lattice strain

(for Cu) and see Figures 3.7-3.9 for the diffraction-line broadening data of the Cu and

Nb thin film specimens and the Ni dog-bone specimen, respectively. (To calculate a

theoretical value for diffraction-line broadening, the strain-induced broadening contribu-

tion function f(2θ), as calculated for the experimental conditions according to a given

grain-interaction model, was convoluted with the measured diffraction peak for the spec-

imen in the “unloaded” state. The breadth of this convoluted, or “loaded,” function was

then compared to that of the “unloaded” peak to determine the predicted diffraction-line

broadening ∆β. See Reference [17] for description of such calculations.)

The predicted amounts of diffraction-line broadening according to the isotropic Reuss

model and the anisotropic Vook-Witt model are much less than the experimentally ob-

served diffraction-line broadening (Figures 3.7-3.9).

The variation in strain throughout the aggregate does not only depend on the ori-

entation of an individual grain, as implied by all grain-interaction models, but also on

the (shape, number/size, and) crystallographic orientation, with respect to the speci-

men frame of reference, of its nearest neighbors, which effects are not considered at all

in the grain-interaction models. Grains of identical orientation at different locations in

the aggregate will not have the same average lattice strain, and the same lattice-strain

distribution within the grains, due to these local variations in the microstructure. As a

consequence the strain variation predicted by the grain-interaction models is distinctly

smaller than the experimentally determined one (see Figures 3.7–3.9). Yet, the average

lattice strain (calculated as a function of peak position for various ψ tilts) is predicted

quite well: for example, see Figure 3.5.

The above discussed observations lead to the conclusion that the current grain-interaction



86 CHAPTER 3.

(a)

(b) (c)

Figure 3.10: Integral breadth broadening data scaled by the square of the applied load
magnitude ∆β/σ2

‖ for various reflections (HKL and corresponding color indicated in

legend) for (a) a Cu thin film on a Si-wafer cooled from room temperature to -120◦C,
resulting in biaxially rotationally symmetric stress state of σ‖ ≡ σ11 = σ22 = 280 MPa,
(b) a Nb thin film on an Al-wafer cooled from room temperature (σres.‖ = 350 MPa) to
-120◦C, resulting in an applied compressive rotationally symmetric biaxial stress state of
approximately σ‖ ≡ σ11 = σ22 = −350 MPa, and (c) a W thin film on an Al-wafer cooled

from room temperature (σres.‖ = 1460 MPa) to -120◦C, resulting in an additionally
applied compressive rotationally symmetric biaxial stress state of approximately

σ‖ ≡ σ11 = σ22 = −1260 MPa (i.e. σ‖ ≡ σ11 = σ22 = −2720 MPa)

models are unable to describe the complete strain distribution within an elastically loading

polycrystalline aggregate. Such models are over-simplifications of the grain interactions

occurring in reality; however, these simplifications do allow for fairly accurate predictions

of the average lattice strain to be made.

The discrepancies between the experimental data and the grain-interaction model pre-

dictions for the diffraction-line broadening can thus be explained by recognizing that sev-

eral types of strain variation occur within an elastically loaded polycrystalline aggregate:

(i) macro-, (ii) meso-, and (iii) microvariations in strain:

(i) Macrovariation in strain is the variation of the average lattice strain, the average
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(a) (b)

Figure 3.11: Integral breadth broadening data scaled by the square of the applied load
magnitude ∆β/σ2

11
for various reflections (HKL and corresponding color indicated in

legend) recorded from (a) a Ni dog-bone (σres.
11

= 125 MPa) loaded by 100 MPa, resulting
in a uniaxial stress state of σ11 = 225 MPa and (b) a W dog-bone (σres.

11
= −600 MPa)

loaded by 150 MPa, resulting in a uniaxial stress state of σ11 = −450 MPa

taken for the groups of diffracting grains, that occurs upon changing the orienta-

tion of the diffraction vector with respect to the specimen frame of reference. This

macrovariation in lattice strain is expressed in this paper by the variation of ǫHKL

φ,ψ

(as a function of sin2 ψ).

(ii) Mesovariation in strain is the variation of the average lattice strain, the average now

taken per diffracting grain, for the group of diffracting grains sharing a fixed orienta-

tion of the diffraction vector. This mesovariation in lattice strain is expressed in this

paper by the variation of ǫHKL

φ,ψ (χ). Two types of mesovariation of lattice strain are

distinguished: (a) mesovariation by variable χ (as considered in the grain-interaction

models) and (b) mesovariation at constant χ due to different local surroundings.

(iii) Microvariation in strain is the variation of lattice strain within an individual grain.

It is essential to recognize that all published grain-interaction models, i.e. including

those considered in this paper, do not take into account the above describedmicrovariation

nor the entire magnitude ofmesovariation (type (b) is ignored) in lattice strain. Therefore,

broadening of theH00 andHHH peaks was observed, although no broadening is predicted

by the isotropic grain-interaction models and the predicted broadening by the anisotropic

grain-interaction models is much too small.
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3.5 Conclusions

• The measured diffraction-line broadening induced by elastic loading is much larger

than that predicted by elastic grain-interaction models as proposed in the literature.

• Three sources of lattice-strain variation can be identified:

(i) macrovariation in lattice strain: the variation of the average lattice strain for

the groups of diffracting crystallites;

(ii) mesovariation in lattice strain: the variation of the average lattice strain per

grain for the group of diffracting crystallites;

(iii) microvariation in lattice strain: the variation of strain within a diffracting crys-

tallite.

• The grain-interaction models presented so far only consider the macrovariation and

a part of the mesovariation in lattice strain and ignore the microvariation in lat-

tice strain. In other words: the grain-interaction models do not take into account

the effects of the different surroundings in the specimen for each of the diffracting

grains (of even possibly identical crystallographic orientations with respect to the

specimen frame of reference). Hence, the current grain-interaction models severely

underestimate the diffraction-line broadening for general HKL reflections.

• Elastic grain interaction induces diffraction-line broadening for also the H00 and

HHH reflections recorded from cubic materials, in contrast with predictions from the

isotropic grain-interaction models and much larger than predicted by the anisotropic

grain-interaction models.

• The larger the degree of intrinsic elastic anisotropy of a material, the larger the

magnitude of strain variation, and thus diffraction-line broadening.

• Texture reduces the overall strain variation in, and thus the diffraction-line broad-

ening for, a polycrystalline aggregate due to the intrinsic elastic anisotropy of the

material, as the “range” of orientation variation of the grains within the material is

reduced in the presence of texture.

This work has demonstrated that distinct broadening of diffraction lines, observable

in XRD measurements made using synchrotron radiation, is induced by elastic loading

of a polycrystalline aggregate. An analysis as provided in this work, of diffraction-line

broadening induced by elastic loading of a polycrystalline aggregate, is a sensitive means

to reveal the essentials of the real grain interactions occurring in a specimen.
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Chapter 4

X-ray diffraction study of the

temperature-induced reverse

martensitic transformation in

near-equiatomic NiTi shape

memory thin films

M. K. A. Koker, J. Schaab, N. Zotov, and E. J. Mittemeijer

Abstract

The development of stresses, phase fraction, and the microstructure of thin equiatomic

NiTi substrate-bound films was investigated during the heating-induced transformation

from martensite to austenite. Synchrotron x-ray diffraction (XRD) experiments were per-

formed during (the heating portion of) thermal cycling applied to the thin films to cap-

ture, in particular, the reverse martensitic phase transformation (monoclinic martensite

→ cubic austenite). The phase fraction and microstructure, as a function of temperature

and thermal cycling, were analyzed through the application of Rietveld refinement to

the diffraction data. Further, using the XRD data, the overall macroscopic stress in the

film (derived from the curvature of the film/substrate system determined by XRD rocking

curve measurements) and the stress in the austenite phase (derived from the lattice strain)

during the transformation were tracked as a function of the degree of the transformation.

The state of the stress in the austenite was found to remain biaxially, rotationally sym-

metric, even in the two-phase (martensite and austenite) film. The developments of the

total stress in the film and the stresses in each of the two phases were discussed in terms of

the transformation-induced volume misfit and its accommodation by elastic deformation.
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4.1 Introduction; thermal cycling and stress

development

Shape-memory materials, in particular near-equiatomic NiTi alloys, are of high interest

for application in the field of microelectromechanical systems (MEMS) [1–3] due to their

unique pseudoelastic and shape-memory thermoelastic properties. These effects can be

utilized to construct sensors and actuators, which are highly effective due to the high

work output per unit volume [4]. Such materials exhibit a reversible martensitic phase

transformation between the austenite (A) and martensite (M) phases. The forward and

reverse transformation can be realized by applying stress or by changing the temperature.

Shape memory properties have been observed in films as thin as 100 nm [5].

Small variations in the chemical composition of about equiatomic NiTi [6], the thermo-

mechanical history [4], and the sputtering parameters during deposition [7–9] have a

significant effect on the shape-memory properties (e.g. transformation temperatures) and

the formation of precipitates in NiTi thin film systems.

The state of stress of the NiTi film also plays a crucial role for its effective application

in MEMS. Crystallization of sputter-deposited NiTi films must be performed at high

temperatures (either during deposition or as a post-processing step), forming a single-

phase austenite film. Upon initial cooling of the substrate-bound film, a residual, extrinsic

stress develops in the austenite phase due to the thermal misfit between the substrate and

the NiTi film. A high degree of residual stress in the film can, depending on the nature of

the stress, partially or completely suppress the shape-memory properties of the material.

Therefore, being able to “tune” the stress state of the substrate-bound film is important.

The development of residual stresses depends on the Ni-Ti composition (e.g. by the

formation of precipitates) and the deposition parameters [7]. Annealing of substrate-

bound NiTi films above 600◦C has been observed to reduce the residual stress in NiTi

thin films [7, 10].

The magnitude of stress in the film changes due to the forward and reverse martensitic

phase transformation induced by cooling and heating. The (absolute value of the) differ-

ence in the magnitude of stress prior to and after the (forward or reverse) transformation

is defined as the recovery stress (usually the stress contribution of the thermal misfit, as a

consequence of the temperature change during the transformation, is included) [10]. The

recovery stress can be used to characterize the magnitude of work which can be exerted

by the material upon transformation.

A thermal cycle is defined as heating from below the martensite finish temperature

Mf to above the austenite finish temperature Af , and then cooling again to below Mf .

Upon continued thermal cycling of bulk NiTi shape-memory materials, the phase trans-

formation shifts to lower temperatures [11, 12]. Similar observations have been made for

near-equiatomic substrate-bound NiTi thin films [13]. After a number of thermal cycles,

the material reaches a reproducible state, implying that the transformation temperatures
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(practically) no longer change upon further cycling. The transient behavior upon thermal

cycling has been attributed to the increase of the density of defects and dislocations, result-

ing in a higher degree of undercooling necessary for the forward transformation (A→M)

to proceed [11–14]. (See, for a similar phenomenon, results for the hcp-fcc transformation

in cobalt [15].)

Thermal cycling may influence the magnitude of the stresses in the film. Quantitative

data for the changes in the stress state, especially for substrate-bound NiTi thin films

during thermal cycling, are very scarce. This provided the motivation in this project for

determination of the stress in thin NiTi films after different numbers of cycles.

A common method for measuring the macroscopic stress in substrate-bound thin films

involves measuring the curvature of the substrate-bound film [16], where stress can be

directly related to curvature by the Stoney equation [17]. (See Section 4.3.2.2.) For

NiTi thin films, an abrupt change in curvature indicates the occurrence of the phase

transformation [4] and allows for determination of the recovery stress [10, 18].

The use of in situ high temperature x-ray diffraction (XRD) methods gives access to

the acquisition of detailed information on the state of stress and the microstructure in gen-

eral: the overall macroscopic film stress can be determined from curvature measurements

(employing XRD rocking curve measurements at different locations on the surface of the

specimen), stresses in the austenite and martensite phases can be determined separately

(from the average lattice strains), and also the phase fraction, the crystallographic texture,

and the average crystallite size (and microstrain) (by so-called full XRD pattern analysis)

can be determined. Thus, the versatility of the (in situ) XRD method provides a rather

complete characterization of the material during a single thermal cycle, thereby avoiding

the involvement of measurements by a range of different methods. The present project fo-

cuses on the evolution of stresses, phase fraction, and microstructure in substrate-bound

NiTi films, during the heating-induced reverse martensitic transformation (M→A), as

measured by in situ XRD methods at a synchrotron source.

The (forward and reverse) martensitic transformation in NiTi is supposed to be ather-

mal [19]. This means that for a fixed temperature, the phase transformation instanta-

neously reaches a certain transformed fraction, which is thus dependent on temperature

and not on time at a constant temperature. This facilitates XRD studies of the phase

transformation that require, even in the case of synchrotron sources, measurement times

of minutes at a given temperature.

4.2 Experimental procedures

4.2.1 Film preparation and characterization

An ATC 1500-F machine (AJA International Inc., Scituate, MA, U.S.A.) was used to

deposit NiTi films by co-sputtering from pure Ni (99.995 at.%) and pure Ti (99.995 at.%)

targets on pieces (14 mm by 14 mm, 0.5 mm thick) of 100-orientated Si single-crystal
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wafers [13]. The chamber was evacuated by mechanical and turbomolecular pumps to

obtain an ultra high vacuum (∼ 10−8 mbar). A bake-out process at 150◦C for 12 hours was

performed. The Ar (99.9999 at.%) pressure was regulated to be 1.3 · 10−3 mbar. Sputter

cleaning of both the single-crystal Si substrates (at 45 W for 3 min) and targets (also for

Ni at 45 W and for Ti at 140 W, both for 5 min) was conducted before the deposition.

After cleaning, the deposition was performed for 4.5 hours at room temperature with the

direct current (DC) powers of 45 W for Ni and 140 W for Ti. The NiTi films deposited at

room temperature were amorphous, as is generally found to be the case [20]. Therefore,

following deposition, the specimens were annealed in the vacuum chamber for 30 minutes

at 650◦C to crystallize the amorphous material into the austenite phase.

The thickness of the deposited thin films, as measured using a DekTak 8 profilometer

(Bruker AXS, Karlsruhe, Germany), is found to be 1.950(7) µm. The composition, as

determined by inductively coupled plasma optical emission spectroscopy (ICP-OES), is

given by 49.2(5) at.%Ni and 50.8(5) at.%Ti. The compositional homogeneity was veri-

fied at multiple locations by energy-dispersive X-ray spectroscopy (EDX). Two different

specimens (NiTi09-02 and NiTi09-03) from the same batch were investigated. The first

sample (NiTi09-02) was measured during the second thermal cycle, then thermally cycled

seventeen times within the heating and cooling chamber (see Section 4.2.2.2) and then

measured again during the twentieth cycle. The NiTi09-03 specimen was measured during

its first thermal cycle.

The austenite start temperature, As = 60◦C, and the austenite finish temperature,

Af = 85◦C, were determined with differential scanning calorimetry (using a PerkinElmer

DSC 8500 apparatus) prior to XRD measurements using pieces of film which were removed

from the substrate (by first breaking the substrate and then peeling portions of the film

off of the surface).

The NiTi films exhibit a columnar grain structure, typical for sputter-deposited ma-

terial [21], as revealed by scanning electron microscope (SEM; using a ULTRA 55, Zeiss

(a) (b)

Figure 4.1: SEM images of the surface of the NiTi films (taken at 50k magnification)
after completion of XRD experiments of (a) NiTi09-03 film, after the 1st cycle and (b)

NiTi09-02 film, after the 20th cycle
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SMT instrument) images recorded from a fractured cross-sectional surface at room tem-

perature after the completion of the XRD synchrotron measurements. SEM images taken

from the surface of the films showed that the columnar grains have an equiaxed morphol-

ogy (Figure 4.1) parallel to the surface, ranging between 10 and 50 nm in diameter. No

microstructural differences due to thermal cycling (by comparing the NiTi09-02 film after

20 cycles and the NiTi09-03 film after 1 cycle) were observed using SEM.

4.2.2 Diffraction experiments

4.2.2.1 Reference frames

Three Cartesian frames of reference, as shown in Figure 4.2, are necessary for the discus-

sion of the diffraction experiments performed [22, 23]: (i) the crystal frame of reference

(C): The conventional definition of an orthonormal crystal system, such as the one given

in References [23] and [24] is adopted; (ii) the specimen frame of reference (S): The S3

axis is orientated perpendicular to the specimen surface, and the S1 and S2 axes are in

the surface plane; and (iii) the laboratory frame of reference (L): This frame is chosen in

such a way that the L3 axis coincides with the diffraction vector.

The relative orientation of the laboratory frame of reference with respect to the speci-

men frame of reference is specified by the angles φ and ψ, where ψ is the inclination angle

of the sample surface normal (i.e. the S3 axis) with respect to the diffraction vector (i.e.

the L3 axis) and φ denotes the rotation of the sample around the sample surface normal.

The angle χ is defined as a rotation of the laboratory frame of reference about the L3 axis

(the diffraction vector), where, for φ = ψ = χ = 0◦, the L frame of reference coincides

with the S frame of reference.

In the following, angular brackets 〈...〉 denote volume-weighted averages for all crys-

tallites in the volume considered (i.e. mechanical averages). In the context of diffraction

analysis, the analyzed volume is generally only a fraction of the volume of the polycrys-

talline specimen.

4.2.2.2 XRD measurements

Synchrotron XRD measurements were conducted on two NiTi thin films NiTi09-02 and

NiTi09-03 at the Max Planck Institute for Intelligent Systems (formerly Metals Research)

“surface diffraction beam line” at ANKA, located at the Karlsruhe Institute of Technology

(KIT), Germany. All of the measurements were made using a photon energy of 8.1 keV

(corresponding wavelength of λ = 1.5307 Å1). At this energy, the penetration depth of

the measurement is approximately equal to the thickness of the film [25]. The beam

1 An LaB6 calibration powder (NIST Standard Reference Material SRM-660) was mea-
sured on a spinning specimens holder to accurately determine the measurement wave-
length and the instrumental broadening.
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(a)

(b)

Figure 4.2: Introduction of the three Cartesian coordinate systems and the
corresponding orientation angles necessary for the discussion of the diffraction

experiments. (a) Laboratory frame (L) orientation with respect to the specimen frame
(S) given by the angles φ, ψ, and χ. (b) Orientation of reference frames with respect to

the orientation of the diffraction vector (for a fixed HKL, φ, ψ, and χ).

size was measured to be approximately 1 mm by 1 mm. A set of two slits, i.e. one

at both ends of a 30 cm long evacuated tube, were placed in front of a sodium iodine

point detector to reduce the axial and vertical divergence of the scattered beam. The

slit openings were adjustable in the horizontal and vertical directions. The horizontal slit

opening was fixed at 5 mm throughout the entire experiments. The counting statistical

error was kept constant by monitoring the incoming beam current and correspondingly

adjusting the measurement time, recognizing that the incident beam current decays as a

function of time after each injection of electrons into the storage ring.
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Table 4.1: Temperatures at the measurement steps for each experiment. The specimen
was held at each temperature for 3 minutes before measurements were started.

NiTi09-03 NiTi09-02
1st cycle 2nd cycle 20th cycle
20◦C 20◦C 20◦C
30◦C 40◦C 30◦C
40◦C 60◦C 40◦C
50◦C 70◦C 45◦C
56◦C 75◦C 50◦C
62◦C 80◦C 55◦C
70◦C 85◦C 60◦C
74◦C 90◦C 63◦C
77◦C 100◦C 66◦C
80◦C 120◦C 69◦C
83◦C 72◦C
86◦C 75◦C
90◦C 78◦C
93◦C 81◦C
96◦C 84◦C
100◦C 87◦C
110◦C 90◦C
120◦C 95◦C

100◦C
110◦C
120◦C

Three separate experiments were performed at different stages of thermal cycling: the

film NiTi09-02 was measured during the second thermal cycle and the twentieth thermal

cycle (i.e. beyond the transient state of thermal cycling; see Section 4.3) and the film

NiTi09-03 was measured during the first thermal cycle.

Each XRD experiment consisted of multiple measurements for each specimen during

step-wise heating, i.e. the specimen was held at a constant temperature while XRD mea-

surements were made, before being heated to the next temperature. The measurement

temperatures for each of the experiments are given in Table 4.1. The heating rate was

5◦C/min. A delay of 3 minutes was used at each new temperature before starting the XRD

measurements to avoid possible temperature over-shooting effects. First, the specimens,

after preparation, were cooled down to -20◦C, well below the martensitic finish temper-

ature Mf , and then heated step-wise to, finally, above the austenitic finish temperature

Af . Scans of θ–2θ were recorded in the 2θ-range from 18◦ to 55◦ at a fixed specimen

orientation defined by ψ = 0◦ and φ = 0◦.

The in situ heating was performed using a heating and cooling chamber (MRI Physikalis-

che Geräte GmbH, Karlsruhe, Germany) equipped with a Be-dome, transparent to x-rays,

and mounted on a six-circle Eulerian cradle. The specimens, with dimensions 14 mm by
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14 mm, were fixed with metal clamps on the surface of the heating stage (see Figure 4.3).

During heating and cooling, a vacuum of approximately 10−3 Pa was maintained in the

chamber. The temperature was controlled by a K-type thermocouple with an accuracy

of ±1◦C. The specimen was first adjusted to lie in the center of the Eulerian cradle and

then the proper height was determined by moving the specimen upward and downward

in the primary beam.

Figure 4.3: Depiction of thin film specimen mounting, including approximate location of
measurement positions on the specimen and orientation of specimen frame of reference

At a few selected temperatures above As, the stress in the austenite phase was deter-

mined using the sin2 ψ-method [25] for the 110 (and in some cases also the 310) austenite

reflection(s). At low austenite-phase fractions, the intensity of the 110 (and 310) austenite

reflection(s) is very low. Therefore, the stress analysis using the sin2 ψ-method was only

performed at temperatures where a significant phase fraction of austenite was present

in the film. For the first experiment (i.e. on the NiTI09-02 film, 2nd heating cycle),

the full planar stress state (with σ11, σ12, σ22 as non-zero stress components) using this

method was measured using different φ angles. It follows that the planar state of stress

is practically rotationally symmetric (see Section 4.3.2.1). Therefore, for the following

two experiments (i.e. on the NiTi09-02 film, 20th cycle and the NiTi09-03 film, 1st cy-

cle), a biaxially rotationally symmetric planar state of stress was assumed, implying that

only measurements at φ = 0◦ were performed, thereby significantly reducing the total

measurement time.

The overall, macroscopic stress in the substrate-bound film was calculated from the

curvature of the specimen. To this end, rocking curves of the Si 400 reflection at different

locations on the specimen’s surface were performed to obtain the substrate curvature along
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the S1 direction. (See Section 4.3.2.2 and Figure 4.3.) The clamps holding the specimen

(see Figure 4.3) are thought to have a negligible effect because: (i) the stress state in

the austenite phase is found to be biaxially, rotationally symmetric (see Section 4.3.2.1)

and (ii) any influence on the bending by the clamps (along S2) would not significantly

affect the measured curvature (along S1). Other methods for measurement of the film

curvature, e.g. laser beam scattering, can be very precise for calculating the average

macroscopic stress in thin films, but require that the specimen size be relatively large

(usually a standard 4 inch wafer specimen is necessary). Another drawback is that such a

measurement must be performed ex situ from phase analysis, whereas the XRD curvature

experiments are made in situ.

4.3 Results and discussion

Thermal cycling revealed a fully reversible austenite-martensite phase transformation.

Upon cooling from the austenite-phase region, a two-stage transition occurred: (i) from

austenite to the so-called R-phase2 (A→R) and (ii) subsequently, the transition from R-

phase to martensite (R→M). Upon heating, no intermediate R-phase was observed during

the reverse transformation from martensite to austenite (M→A). In order to be able to

correlate directly the austenite-phase fraction with the stress in the thin film as a function

of temperature, only the reverse transformation (M→A) is considered in this paper.

The XRD patterns collected at each temperature step during heating of the NiTi

substrate-bound thin films are shown for the first and twentieth cycle in Figure 4.4.

At high temperatures (T > Af ), additional peaks of cubic Ti2Ni precipitates become

visible, in addition to the cubic austenite reflections. These precipitates, which developed

during crystallization of the initially amorphous films (see Section 4.2.1), are present at

all temperatures during the M→A transformation, but they are masked by the monoclinic

martensite reflections at lower temperatures and in any case represent only a very small

volume fraction of the film (as confirmed by Rietveld analysis discussed in Section 4.3.1).

No retained (non-transformed) martensite above the austenite finish temperature (T >

Af ) and no retained austenite below the martensite finish temperature (T < Mf ) were

observed. In total, there are 39 reflections belonging to the three identified phases (M ,

A, and Ti2Ni) in the 2θ range measured (18◦–55◦).

The reverse transformation does not begin to occur until approximately 40◦C and most

of the martensite has transformed to austenite at about 100◦C. Stress has a significant

effect on the NiTi martensitic transformation temperature range [26]. Thus, it is expected

that the transformation temperatures in the substrate-bound film, as indicated above,

differ from those measured for the free-standing film sections investigated by DSC.

2 The R-phase, whose name is derived from its crystallographic rhombohedral structure,
forms during the cooling-induced transformation if the martensite start temperature
is relatively low [4].
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(a)

(b)

Figure 4.4: θ–2θ scans of the films at different temperatures ranging from 20◦C to 120◦C
throughout the heating portion of the thermal cycle. (a) NiTi09-03 (1st cycle) and
(b) NiTi09-02 (20th cycle) (see Table 4.1). The reflections belonging to the austenite
(A) and martensite (M) phase have been indicated, as well as those of the Ti2Ni

precipitates (*) which can be observed only at high temperatures (see text in the first
part of Section 4.3). Note that smaller increments in temperature were taken in the

temperature range where the transformation occurs; all measurement temperatures can
be found in Table 4.1.
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4.3.1 Phase fraction, lattice parameters, crystallite size, and mi-

crostrain; Rietveld refinements

The θ–2θ scans were analyzed using the GSAS suite of programs [27, 28]. GSAS was

applied for this Rietveld refinement because a generalized spherical harmonic description

of the orientation distribution function [29] is implemented in it. This is especially impor-

tant for the analysis of XRD (and neutron) diffraction patterns of textured polycrystalline

materials, as is the case here. (See References [30–34].) A Thompson-Cox pseudo-Voigt

profile [35] function was used for fitting each of the diffraction lines. The breadths of all

peaks were fitted in reciprocal space, for description of the structural broadening, with

a constant isotropic (i.e. independent of HKL) Lorentzian size broadening term; for the

analysis of the martensite reflections only, an anisotropic (i.e. HKL dependent) Lorentzian

strain broadening term [36] was included. The structural broadening contained in the

two austenite reflections could be fully conceived due to smallness of the crystallite size.

The crystallographic texture in the martensite phase was described subject to cylindrical

specimen symmetry (i.e. fiber texture) using 4th order spherical harmonics. The weak

(see Section 4.3.2.1) texture in the austenite phase was modeled using the March-Dollase

preferential orientation function [37,38].

Figure 4.5: Measured XRD pattern and the result of its Rietveld refinement using the
GSAS software package; NiTi09-02 specimen, 20th heating cycle, T = 75◦C, Rwp = 9.8%

The phase-volume fractions, the background coefficients (the background was described

as a Chebyschev polynomial), the profile parameters, the texture parameters, and the

lattice parameters were refined simultaneously. The fractional coordinates of the Ni and

Ti atoms in the unit cell of the austenite phase (space group P m -3 m) are known and

were taken as fixed. The fractional coordinates of the B19′ martensite phase (space group

P 1 21/m 1) were taken from Reference [39], refined in the initial least-square cycles and
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then fixed. The fractional coordinates of the Ti2Ni phase in space group F d -3 m were

taken from Reference [40] and not refined. The isotropic thermal displacement parameters

Uiso for Ni and Ti were refined but constrained during the least-square refinements to be

equal in the martensite and the austenite phases. The isotropic thermal displacement

parameters for Ni and Ti in the Ti2Ni phase were taken equal and fixed at Uiso = 0.07 Å2.

The final residuals of the Rietveld refinement, Rwp, are between 6% and 15%. A typical

result of Rietveld refinement of an XRD pattern is shown in Figure 4.5. It can be seen

that the agreement between the measured and fitted patterns is good.

During heating, martensite and austenite coexist in the temperature range between As

and Af . The phase-volume fraction of martensite, ξM , and the complementary volume

fraction of austenite, ξA, follow from the Rietveld refinements. At temperatures just above

Af , the austenite fraction is very low, but the Rietveld refinements slightly overestimate

it due to a strong correlation of the austenite phase-volume fraction with other profile

parameters. The volume fraction of the Ti2Ni precipitates is very low (0.31±0.15 vol.%),

and constant as a function of temperature, so that it can be written: ξA = 1− ξM .

Figure 4.6: Volume fraction of austenite as a function of temperature during the heating
portion of the thermal cycle, as determined by Rietveld refinement. For comparison,
literature results from Reference [18] for a film with 50.1 at.%Ti are shown as well.

The austenite-volume fraction as a function of temperature is shown in Figure 4.6. At

temperatures just above As, the error in the austenite-phase fraction is about ±5 vol.%

(see above); at higher temperatures the error is ±2 vol.%. The transformation curves of

the NiTi09-02, 1st cycle and of the NiTi09-02, 2nd cycle are very similar, demonstrating

(i) the homogeneity of the samples from the same batch and (ii) the reproducibility of the

high-temperature XRD measurements. While the transformation curve for the NiTi09-02,
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20th cycle is similar in shape to those of the other two experiments (1st and 2nd cycles),

it is shifted to lower temperatures. This shift to lower transformation temperatures has

been observed before for bulk NiTi shape memory alloys [11] and substrate-bound NiTi

thin film [13]. See also Figure 4.7.

Figure 4.7: Volume fraction of austenite as a function of temperature upon repetitive
thermal cycling for film NiTi09-01 (same deposition batch as NiTi09-02 and NiTi09-03).

For the presentation in this figure with the purpose of illustrating the shift of the
temperature range for the transformation upon continued cycling, the volume fraction of
austenite has been assessed by the integrated intensity of the measured 110 austenite

diffraction line (after subtracting the background contribution).

A comparison of the results on austenite-phase fraction obtained in the present project

for the NiTi09 film containing 50.8(5) at.%Ti with those obtained for a film containing

50.1 at.%Ti (Reference [18]) can also be made by using Figure 4.6. While the transfor-

mation temperatures in the film from Reference [18] are slightly higher, a similar shape

is observed for the transformation curve. Note that it is not clear to which thermal cycle

the results presented in Reference [18] pertain.

Comparison of the lattice parameters, especially of the martensite phase, with pre-

viously published data for NiTi (for example, see [33]) is difficult because the lattice

parameters (as taken at ψ = φ = 0◦; i.e. Bragg-Brentano geometry) of NiTi depend

strongly on composition, thermomechanical history, and the state of stress. (It must be

noted here that the above described Rietveld refinements do not account for macroscopic

stress/strain in the specimen, which will results in an error in/shift of the calculated

lattice parameters.)
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The values obtained for the lattice parameters demonstrate that the volume of the

unit cells of the martensite phase and the austenite phase increase only slightly with

temperature. That said, knowledge of the (strain-free) lattice parameters allows for the

calculation of the volume misfit, and thus the transformation strains induced by the phase

transformation. (It is recognized that the deviatoric components of the transformation

strain tensor are the most important ones [41].) The volume of the monoclinic unit cell is

VM = aMbMcM sin β (with the lattice parameters of the B19′ unit cell defined as aM , bM ,

cM , and β); for the cubic unit cell, the volume is simply VA = a3A (with aM as the lattice

parameter of the B2 unit cell). The martensite unit cell transforms into the equivalent of

two austenite unit cells (V ∗
A = 2VA). Thus, the volume misfit strain corresponding with

the reverse transformation is given by:

ǫvol. =
V ∗
A − VM
VM

=
2a3A

aMbMcM sin β
− 1. (4.1)

The volumetric strain ǫvol. describes the unconstrained volume change upon the martensite

to austenite transformation. It follows ǫvol. is about -1%. Due to this volume misfit of the

two phases in the film, the austenite (product) phase will experience a tensile stress, while

the martensite (parent) phase will be compressively stressed. (Further, see Sections 4.3.2.1

and 4.3.2.2.)

Crystallite sizes can be derived from the isotropic Lorentzian broadening contribution

to the structurally broadened line profiles. The corresponding results derived from the

Rietveld refinements (adopting isotropic size broadening; see above) demonstrate that

the average crystallite size of the martensite phase practically remains constant as a

function of temperature (i.e. upon transformation) and equals 24±2 nm for all specimens

investigated, unaffected by thermal cycling. Also unaffected by thermal cycling, the

average crystallite size of the austenite phase increases from about 8±2 nm at 60◦C up

to about 500±200 nm as the temperature approaches the austenite finish temperature

(Af ), and then, upon further increase of temperature (max: 120◦C), it remains constant.

Since the total thickness of the NiTi thin film is 2 µm, the crystallite-grain growth is

not constrained by the total thin film thickness. The occurrence of increasing austenite-

volume fraction in association with increasing austenite-grain size is compatible with a

heterogeneous transformation from martensite to austenite by nucleation and growth of

austenite grains [42].

The anisotropic Lorentzian broadening contribution to the structurally broadened

line profiles (of the martensite phase) can be used to extract information about the

(anisotropic) microstrain (in the martensite phase). The magnitude of the microstrain

parallel to the long axis of the microstrain ellipsoid (〈010〉 direction) remains approxi-

mately constant at 1% until about 20% of the martensite has transformed to austenite,

at which point this microstrain component steadily increases and at ξM = ξA = 0.5, its

value has become approximately 2%. The microstrain in the 〈110〉 direction is an order



CHAPTER 4. 107

of of magnitude smaller.

The full orientation distribution function cannot be extracted from the XRD data,

since measurements were only performed at φ = ψ = 0◦. However, the strength of the

texture of the martensite phase can be indicated by the so-called texture index I, which

represents the sum of the refined spherical harmonic coefficients (see above): I = 1 for

an untextured, polycrystalline phase and I → ∞ for a strongly textured, polycrystalline

phase [29]. The value obtained for I by Rietveld refinements remains more or less constant

for the martensite phase over the entire transformation range (I = 1.6± 0.2). Just below

the austenite finish temperature Af , the texture index for the martensite phase appears

to increase: the presence of a state of stress in the film implies that certain variants of the

austenite/martensite orientation relationship can be preferred, which results in a reduc-

tion of the “randomness” of the orientation distribution, i.e. an increase of the texture

index. The texture in the austenite phase is represented by the March-Dollase preferential

orientation function (see above); Rietveld refinement of this function demonstrated little

effect on the austenite texture as a function of the transformed fraction.

4.3.2 Macrostresses

The internal stresses induced in substrate-bound thin films during a heating/cooling-

induced phase transformation in the film are the result of a superposition of several

strain contributions: (i) the thermal strain caused by the difference in thermal expansion

coefficients of the phases in the film and the substrate, (ii) the transformation strain

due to the volume difference of the product and parent phases in the film, and (iii) a

possible plastic strain due to plastic deformation, if the above described thermal and

transformation strains cannot be accommodated fully elastically. The transformation

induced change of the average, total stress in the film (an average over all phases in the

film) is the recovery stress as defined in Section 4.1.

The thermal stress resulting from the thermal strain in the substrate-bound NiTi thin

film is small: for a temperature change from 20◦C to 120◦C, the stress due to thermal

expansion differences of the film and and substrate is of the order of only 50 MPa, whereas

stress changes of the order of 300 MPa occur due to the transformation. (See results shown

in Section 4.3.2.2.)

4.3.2.1 Stress in austenite; diffraction analysis

The average lattice strain and the corresponding stress in each phase of the film can be

determined using the sin2 ψ-method [25]. The lattice strain along the HKL diffraction

vector derived from XRD experiments for a given phase is:

ǫHKL

φ,ψ = FHKL

ij (φ, ψ) · 〈σS
ij〉, (4.2)
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where FHKL
ij (φ, ψ) are the so-called x-ray stress factors and 〈σS

ij〉 describes the total average
stress acting on a given phase in the specimen frame of reference [22].

The position of the diffraction lines is used to determine the average lattice strain ǫHKL

φ,ψ .

The x-ray stress factors for a quasi-isotropic aggregate (i.e. macroscopically isotropic

despite anisotropic elastic behavior or texture on the microscale) can be replaced by the

x-ray diffraction elastic constants [22, 25].

For the thin films investigated in this work, a planar state of stress in the (S1, S2)

plane of the specimen frame of reference holds: 〈σS
13
〉 = 〈σS

23
〉 = 〈σS

33
〉 = 0 (see further

below). For a planar state of stress (〈σS
ij〉 = 0 for i or j = 3), and considering cubic

crystal symmetry (for austenite), Equation 4.2 simplifies to a linear relationship between

the XRD measured average lattice strain ǫHKL

φ,ψ and sin2 ψ:

ǫHKL

φ,ψ =
1

2
SHKL

2
·
[

cos2 φ · 〈σS
11
〉+ sin(2φ) · 〈σS

12
〉+ sin2 φ · 〈σS

22
〉
]

sin2 ψ

+ SHKL

1
·
[

〈σS
11
〉+ 〈σS

22
〉
]

. (4.3)

In order to experimentally calculate each of the components of the stress tensor, measure-

ments at different specimen orientations, i.e. the diffraction angles φ and ψ, are necessary.

If the planar state of stress in the material is known (or can be assumed) to be biaxially,

rotationally symmetric (〈σS
11
〉 = 〈σS

22
〉 = 〈σ‖〉 and 〈σS

12
〉 = 0), then the relationship be-

tween the stress 〈σ‖〉 (defined in the specimen frame of reference) and the average lattice

strain along the diffraction vector ǫHKL

φ,ψ simplifies to:

ǫHKL

φ,ψ =
1

2
SHKL

2
〈σ‖〉 · sin2 ψ + 2SHKL

1
〈σ‖〉. (4.4)

For thin films, it is often assumed or validated that the stress state is not only planar, but

also biaxially, rotationally symmetric (i.e. 〈σS
11
〉 = 〈σS

22
〉 6= 0; all other stress components

zero). In this work, no assumptions about the symmetry of the stress tensor in the S1,

S2 plane will be made initially.

In the present study, the lattice strain data were plotted as a function of sin2 ψ (for

fixed values of φ). Linear fits (Equation 4.3) were performed to extract a value for the

slope, which was in turn used to calculate a value for the average stress in the austenite

phase. The XRD elastic constants (SHKL
1

and 1

2
SHKL
2

) were calculated according to the

Eshelby-Kröner grain interaction model [43] using the single-crystal elastic constants for

austenite [44]. (The Eshelby-Kröner model was used because it has been demonstrated to

accurately match with experimental data for the overall mechanical elastic constants of

polycrystalline specimens [45].) The elastic constants were assumed to be independent of

thermal cycling. (It has been shown in Reference [46] that, in bulk NiTi specimens, the

austenite phase softens only slightly upon cycling.) The crystallographic texture (which

in any case is weak as the plots of strain versus sin2 ψ did not show strong curvature,

characteristic of highly textured material) was not considered in the calculation of the
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Table 4.2: Stress tensor components for the planar stress state for the austenite phase in
the NiTi09-02 film (2nd cycle) as determined using the sin2 ψ-method (employing the

110 austenite reflection) as a function of temperature.

T 〈σS
11
〉A 〈σS

12
〉A 〈σS

22
〉A

(◦C) (MPa) (MPa) (MPa)
80 146±13 11±11 156±12
85 215±12 2±10 223±17
120 256±16 2±4 247±23

diffraction elastic constants.

The individual diffraction lines for the austenite 110 and 310 reflections were fitted with

symmetric pseudo-Voigt shape functions, where the peak positions were identified with

the fitted peak maxima. The mixing factors of the Gaussian and Lorentzian components,

as well as the full width at half maximum (FWHM), of the peaks were not constrained

during fitting.

For the first experiment, on the NiTi09-02 film, 2nd cycle, the 110 diffraction line of

austenite was measured for a range of ψ angles between 0◦ and 65◦ at φ = 0◦, 45◦, and

90◦ in order to determine the full planar state of stress (〈σS
11
〉A, 〈σS

12
〉A, 〈σS

22
〉A). The

calculated values for the stress tensor components have been gathered in Table 4.2 as

a function of temperature. Since 〈σS
11
〉A ≈ 〈σS

22
〉A and 〈σ12〉A ≈ 0, it follows that the

stress state is biaxially, rotationally symmetric, also in the temperature range (between

70◦ and 90◦) where the thin film is a mixture of two phases. Therefore, for the (other)

experiments (NiTi09-02 film, 20th cycle and NiTi09-03 film, 1st cycle), the 110 and 310

austenite reflections were measured for a range of ψ angles (between 0◦ and 65◦) only at

φ = 0◦.

The calculated total stresses in the austenite phase, together with the austenite-phase

fraction, are shown in Figure 4.8 for all three experiments as a function of temperature

during heating. The stress in austenite increases with increasing temperature up to Af ,

above which the magnitude of the stress remains effectively constant (in the temperature

range investigated, i.e. up to 120◦C). The agreement between the value of stress 〈σ‖〉A
determined using the 110 and 310 reflections provides support for the validity of the

calculated XRD elastic constants (SHKL
1

and 1

2
SHKL
2

).

Evidently, the stress in the austenite phase is of tensile nature, which can be conceived

as a direct consequence of the specific volume difference of austenite and martensite: (i)

austenite has a smaller specific volume (see above), (ii) the film is attached to a rigid

substrate: a tensile residual state of stress depends upon the martensite to austenite

transformation (see also the discussion in Section 4.3.2.3).

The evolution of stress in the austenite phase appears to be related with the develop-

ment of austenite-phase fraction. This can be interpreted as a consequence of the transfor-

mation strain: upon proceeding transformation more and more volume misfit (austenite



110 CHAPTER 4.

(a) (b)

Figure 4.8: Total average stress in the austenite phase 〈σ‖〉A (of Equation 4.4) as a
function of temperature for the (a) NiTi09-03, 1st cycle (green triangles (110 reflection)

and diamonds (310 reflection)) and (b) NiTi09-02, 2nd cycle (blue circles (110
reflection)) and NiTi09-02, 20th cycle (red squares (110 reflection) and diamonds (310

reflection)) experiments. The solid lines are meant as a guide to the eye. The
corresponding volume fractions of austenite have been given as dashed lines (see

Figure 4.6).

vs. martensite) has to be accommodated. During the forward martensitic phase trans-

formation (A→M), the accumulation of transformation strains can be accommodated by

twinning processes in the martensite (product) phase (see discussion in Section 4.3.2.2).

Such a mechanism does not operate during the here considered reverse transformation

(M→A).

4.3.2.2 Overall macroscopic stress in the thin film; curvature
measurements

The overall, average macroscopic stress in the NiTi films can be determined from the

curvature of the film/substrate system. XRD rocking curves can be utilized to determine

the curvature of the thin film/Si single-crystal substrate system during thermal cycling,

as follows.

The curvature can be determined from the difference of the peak maximum positions

of the Si (substrate) 400 reflection as recorded in rocking curves performed at different

locations across the film (Figure 4.3) [47]. A major advantage of this method is that the

measurements can be made in parallel with other XRD techniques (such as those discussed

in Sections 4.3.1 and 4.3.2.1). The shift in the peak position, ∆ω, and the displacement

between two corresponding measurement locations on the film, ∆x, are related to the
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radius of curvature R by the following expression [47]:

R =
∆x

2 sin(∆ω
2
)
. (4.5)

The radii of curvature, before and after a certain treatment, R1 and R2 (both along the

direction of ∆x), respectively, are related to the corresponding difference of film stress

〈∆σ‖〉film = 〈σ‖〉film2
− 〈σ‖〉film1

, along the direction of ∆x, in the film by [17]:

〈∆σ‖〉film =M · H
2

6h
·
(

1

R2

− 1

R1

)

, (4.6)

where M is the biaxial modulus of the Si substrate, h is the thickness of the film, and H

is the thickness of the substrate. In the present study, R1 is taken as the curvature of the

film/substrate system at high temperature T > Af . The absolute value of the stress at

T < Af follows by taking the stress value in the austenite at T > Af (when the film is

fully austenitic) as determined by application of the sin2 ψ-method (see Section 4.3.2.1).

The macroscopic film stress, as a function of temperature, determined in this way, is

shown in Figure 4.9 for all three experiments, along with the corresponding austenite-

phase fraction (see Figure 4.6). Sigmoidal fits for each data set have been provided to

demonstrate the trend of the stress as a function of temperature.

(a) (b)

Figure 4.9: Overall, macroscopic stress in the thin NiTi films, 〈σ‖〉film, as derived from
the curvature of the film/substrate system as a function of temperature (see

Equation 4.6 and its discussion) for the: (a) NiTi09-03, 1st cycle (green triangles) and
(b) NiTi09-02, 2nd cycle (blue circles) and NiTi09-02, 20th cycle (red squares). The solid

lines are sigmoidal fits (y = a · (1 + e
x−b

c )−1 + d, with a, b, c, and d as fit parameters) of
the data only to demonstrate the trend in the stress behavior. The corresponding
volume fractions of austenite have been given as dashed lines (see Figure 4.6).

A “lag” in temperature between the developments of the magnitude of the macroscopic
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film stress and the transformed fraction of austenite is evident for the data shown in

Figure 4.9. It appears that the accommodation of the volume misfit associated with the

developing austenite-volume fraction (see Section 4.3.1) becomes more and more difficult

as a larger volume fraction of the film has transformed, i.e. the increment of stress per

increment of transformation becomes larger for progressing transformation. Note that

the martensite phase is more ductile than the austenite phase [48], making the film less

compliant upon progressive martensite to austenite transformation.

The magnitude of the recovery stress of about 240 MPa (for NiTi09-02, 20th cycle) is

smaller than the recovery stress measured in the substrate-bound NiTi thin films investi-

gated in References [10] and [18].

The two “early cycle” experiments (NiTi09-03, 1st cycle and NiTi09-02, 2nd cycle)

show a rather significant amount of macroscopic stress in the film at room temperature;

see Figure 4.9. This indicates that the accommodation process (twinning processes) in the

developed martensite (see discussion at the end of Section 4.3.2.1), in the first cycles, are

not capable of fully relaxing the misfit experienced by the film: the defect structure has

to adapt itself during the first cycles (see discussion of Figure 10 in Reference [15]). Upon

further thermal cycling, the (self-)accommodation in martensite is capable to realize a

zero film stress at room temperature.

Different phenomenological constitutive models for SMA have been proposed in the

literature [49,50]. They all predict that in the presence of external stresses, the transfor-

mation curve is shifted to higher temperatures. The observed increase of the tensile stress

in the film with temperature means that the reverse transformation is self-retarding. Con-

versely, this may explain the reduction in the transformation temperatures for the film,

after thermal cycling (see Figure 4.6).

4.3.2.3 Stress in martensite; mechanical equilibrium of the film

For the NiTi thin films as a two-phase system (ξA = 1− ξM), the average stress in the

martensite phase 〈σ‖〉M can be determined from the stress in the austenite phase 〈σ‖〉A
(as determined from the lattice strain using the sin2 ψ-method; see Section 4.3.2.1) and

the overall macroscopic film stress 〈σ‖〉film (as determined from the curvature using XRD

rocking curves; see Section 4.3.2.2) according to the mechanical equilibrium condition:

ξA · 〈σ‖〉A + ξM · 〈σ‖〉M = 〈σ‖〉film. (4.7)

The thus determined phase stress for martensite is shown in Figure 4.10. Note that the

data used for determination of 〈σ‖〉A and of 〈σ‖〉film are independent. Upon progressive

martensite to austenite transformation, the phase stress in the martensite increases from

zero to tensile values and then decreases thereafter.
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Figure 4.10: Total average stress in the martensite phase 〈σ‖〉M (see Equation 4.7) as a
function of temperature for NiTi09-03, 1st cycle (green triangles), NiTi09-02, 2nd cycle
(blue circles), and NiTi09-02, 20th cycle (red squares) experiments. The solid lines are
meant as a guide to the eye. The corresponding volume fractions of austenite have been

given as dashed lines (see Figure 4.6).

4.4 Conclusions

• The temperature range for the martensite to austenite transformation induced upon

heating near-equiatomic, substrate-bound NiTi thin films shifts to lower temper-

atures to become stable after about 10–20 thermal cycles (then As ≈ 40◦C and

Af ≈ 80◦C). This is ascribed to the defect structure having to adapt itself so that,

upon martensite formation upon cooling, the volume misfit experience can be accom-

modated fully. An analogous phenomenon is observed for the hcp-fcc transformation

in cobalt [15]. Indeed, the macroscopic stress in the fully martensitic film at room

temperature becomes nil only upon continued cycling.

• The crystallite size in the parent, martensite phase is small (24 nm) and does not

change upon the martensite to austenite transformation. The crystallite size in the

product, austenite phase increases from about 8 nm to about 500 nm upon completed

transformation, suggesting a heterogeneous transformation by nucleation and growth.

• The microstrain in the parent, martensite phase is strongly anisotropic: in the 〈010〉
direction it amount to 1% increasing to 2% at 50% transformation, whereas in the

〈110〉 the microstrain is an order of magnitude smaller.

• The state of macroscopic stress in the developing austenite phase in the film is biax-

ially, rotationally symmetric and of tensile nature as a consequence of the negative

specific volume difference of austenite and martensite (transformation strain).
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• The state of stress in the remaining, parent martensite phase in the film increases

from zero, i.e. it becomes tensile, and decreases thereafter.

• The evolutions of the overall macroscopic film stress and the volume fraction of

austenite do not match: the increment of film stress per increment of transformation

increases for progressing transformation.
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Chapter 5

Summary

Externally or internally applied stresses and strains can pronouncedly influence material

properties. Hence, the role of stress on material behavior is an important and developing

field of research. Variations in stress throughout a material can lead to either strength-

ening or weakening of a specimen or engineering component. A clear understanding of

stress and strain, and the ability to predict the magnitude of its variation, in a material

(as a function of material processing), in the absence and presence of external loading, is

of utmost importance to optimize material properties.

Lattice-strain variation upon elastic loading of polycrystals

Lattice-strain variation in massive, polycrystalline aggregates provides a wealth of infor-

mation about the grain interaction in an externally loaded specimen. Each grain within

the body is confined by its neighbors, and the compliance of these neighboring bodies

provides the extent to which a grain in a massive polycrystalline body may deform under

loading. As single crystals (with tungsten being an exception) are intrinsically elastically

anisotropic, the direction of the applied loading with respect to the grain’s crystallographic

orientation must also be considered.

Three categories of strain variation may be present in an elastically loaded polycrys-

talline aggregate: (i) macro-, (ii) meso-, and (iii) microvariation in strain.

(i) Macrovariation in strain is the variation of the average lattice strain, taken for the

groups of diffracting grains, that occurs upon changing the orientation of the diffrac-

tion vector with respect to the specimen frame of reference.

(ii) Mesovariation in strain is the variation of the average lattice strain, the average

now taken per diffracting grain, for the group of diffracting grains sharing a fixed

orientation of the diffraction vector.

(iii) Microvariation in strain is the variation of lattice strain within an individual grain.

Various elastic grain-interaction models can be used to approximate the average lattice

strain within a crystallite based on its orientation with respect to the aggregate and
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the external loading. Each of these grain-interaction models is based on its own set of

assumptions for the grain interaction. (See Table 2.1 in Chapter 2 for details on each of

the discussed elastic grain-interaction models.) Two main categories of grain interaction

can be defined: (i) isotropic grain interaction, where the interactions of the grains in all

directions adhere to the same assumptions, and (ii) anisotropic grain interaction, where,

conversely, the interactions of the grains do not adhere to the same assumptions in all

directions.

The applicability of each set of grain-interaction assumptions (e.g. the individual

grain-interaction model) is highly dependent on the specimen and the loading condi-

tions. One shortcoming of the elastic grain-interaction models is that all grains of the

same crystallographic orientation are considered to experience identical (average) lattice

strains. Also, the lattice-strain variation within an individual grain cannot be calculated

according to the models. Hence, these models only calculate approximate solutions for

the macrovariation of strain and a portion of the mesovariation of strain, not taking into

account any strain variation induced by local heterogeneities in the neighborhood around

the individual crystallites. Therefore, the elastic grain-interaction models provide only an

underestimate of the total strain variation in a loaded, polycrystalline body.

(a) Strain variation, ǫHKL

φ,ψ (χ), as a function

of sin2 ψ: Reuss model.

(b) Strain variation, ǫHKL

φ,ψ (χ), as a function

of sin2 ψ: Vook-Witt model

Figure 5.1: Strain variation, ǫHKL

φ,ψ (χ) at φ = 0◦ for variable ψ using the Reuss and
Vook-Witt grain-interaction models for the 331 reflection of an untextured Au aggregate
under uniaxial tensile loading along the S1 axis (σ11 = 100 MPa). The inset in (a) shows
the frequency of strain f(ǫ) within the set of grains sharing a common diffraction vector

orientation (e.g. fixed φ and ψ).

In Chapter 2, the lattice-strain variation according to several elastic grain-interaction

models is calculated. The influence of parameters such as the state of stress, the magni-

tude of applied stress, and the crystallographic texture, to name a few, are studied. The

lattice-strain variation for the 331 reflection of an untextured gold aggregate calculated

according to the Reuss and Vook-Witt models plotted as a function of specimen tilt angle

can be seen in Figure 5.1. While such models have been shown to be quite reliable for
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calculating the average lattice strain in polycrystalline aggregates under elastic loading,

it is concluded here that consideration of the local heterogeneity surrounding each indi-

vidual grain is necessary to approximate the full extent of lattice-strain variation in an

elastically loaded quasi-isotropic aggregate. According to finite element calculations used

to approximate the mesovariation of strain and microvariation of strain, the lattice-strain

variation according to the discussed grain-interaction models can underestimate the total

variation of strain to the order of 50%.

Whereas the position of diffraction lines is directly related to the average lattice spacing

of a set of hkl planes, variations in this lattice spacing (e.g. variation in the lattice strain)

will lead to broadening of measured diffraction lines for the elastically loaded polycrys-

talline aggregate. The strain variation calculated according to elastic grain-interaction

models can also be applied to approximate the diffraction-line broadening induced by the

applied load (and corresponding lattice-strain variation). Analysis of lattice-strain in-

duced diffraction-line broadening can provide much more direct and detailed information

on the type of operating grain interactions, than as obtained from “standard” diffraction

stress analysis on the basis of diffraction-line positions, e.g. by the so-called sin2 ψ-method.

Figure 5.2: The loading induced (peak shift and) broadening of the 311 reflection
recorded for a Cu thin film (at tilt angle of ψ = 45◦; radiation λ = 1.52933 Å). The state
of biaxially rotationally symmetric tensile stress (280 MPa) was imposed by cooling to
-120◦C. The inset reveals the difference in broadening for loaded and unloaded states by
scaling and shifting the peak maximum positions, such that the peak maxima coincide.

The investigation discussed in Chapter 3 provides a detailed account of synchrotron ex-

periments where the diffraction lines of various elastically loaded specimens were measured

as an indication of lattice-strain variation within the material, as shown in Figure 5.2.
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Comparisons between experimental data and elastic grain-interaction calculations pro-

vided information about the extent of applicability of the discussed models. The mea-

sured diffraction-line broadening induced by elastic loading greatly exceeds that predicted

by any of the discussed elastic grain-interaction models.

The experimental measurements further demonstrated that the strain variation (as

observed by the broadening of diffraction lines) induced by elastic loading of a polycrys-

talline aggregate cannot be fully accounted for by the elastic grain-interaction models.

In contrast to the predictions from the isotropic grain-interaction models (which calcu-

late no lattice-strain variation in cubic materials) for the H00 and HHH reflections,

diffraction-line broadening of such reflections was experimentally observed in the elasti-

cally loaded specimens. The discrepancy in the magnitude of broadening (and, in turn,

strain variation) is clearly an indication that the magnitude of mesovariation of strain

and microvariation of strain not calculated by the grain-interaction models is significant.

Thus, the experimental method also provides a sensitive means to study the actual grain

interactions (and magnitude of variation in strain) occurring in a specimen.

Stress development upon austenite-martensite phase transforma-

tion in equiatomic NiTi thin films

Near equiatomic compositions of NiTi are shape memory alloys, which are character-

ized by two unique behaviors: pseudoelasticity (also called super elasticity) and shape

memory effect. These material properties make NiTi thin films a prime candidate for

application in microelectromechanical systems (MEMS). The two prominent phases of

interest in near equiatomic NiTi are a high temperature (cubic) austenite and a low tem-

perature (monoclinic) martensite. Film deposition method, the stress state in the film,

and material composition are known to significantly influence the transformation behav-

ior of the material. Thermal loading (i.e. heating) can be used to induce the reverse

martensitic phase transformation (from martensite to austenite).

Due to the abrupt structural transition associated with the phase transformation, the

material lends itself well to investigation via x-ray diffraction (XRD) techniques. Diffrac-

tion line-profile analysis of XRD patterns during such in situ experiments is a powerful

tool. The study in Chapter 4 focuses on synchrotron XRD experiments of substrate-bound

NiTi thin films (49.2(5) at.%Ni) during in situ heating. Through in situ high temperature

XRD measurements, experiments have been performed to track the phase fraction, stress,

and crystallite size of the phases during the transformation. A combination of XRD tech-

niques were applied for the investigation to measure the phase fraction (Rietveld analysis,

Figure 5.3) and stresses (curvature and sin2 ψ methods) as a function of temperature.

Measurements of similar samples demonstrated good reproducibility.

Upon continued thermal cycling, the phase transformation temperatures of the material

change, shifting to lower values, which can be seen in Figure 5.3. This transient behavior
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Figure 5.3: Phase fraction of austenite as a function of temperature during heat cycling
determined from Rietveld analysis.

is thought to originate from an increase in the density of defects and dislocations. For

the forward transformation, this results in a higher degree of undercooling necessary for

the transformation to proceed. The stress state in the film is also affected by thermal

cycling. After numerous thermal cycles, the magnitude of the macroscopic stress in the

film at room temperature (single-phase film in martensite phase) reduces to (practically)

zero, demonstrating the “self-accommodating” nature of the martensite microstructure.

The macroscopic film stress was observed to increase with temperature. The stresses

pertaining to the individual phases were separated, demonstrating that the magnitude

of stress is highly dependent on the phase fraction of austenite in the substrate-bound

NiTi thin film. Despite increasing in magnitude, the stress in the austenite phase remains

biaxially, rotationally symmetric throughout the entire transformation.
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Chapter 6

Zusammenfassung

Die Beschreibung der Einflussfaktoren von mechanischen Spannungen auf das Material-

verhalten stellt einen wichtigen und sich rasant entwickelnden Bereich der Forschung dar.

Deren Auswirkungen bestimmen wesentlich sowohl grundlegende Materialeigenschaften

als auch Phänomene wie z.B. Phasenumwandlungen. Spannungsinhomogenitäten inner-

halb des Materials können entweder zur Stärkung oder aber Schwächung einer Probe oder

eines Bauteils führen. Einerseits ist es wichtig, Spannung und Dehnung im Material zu

verstehen, andererseits ist die Fähigkeit nötig, die genaue Amplitude der Variation der

Dehnung im Material vorherzusagen.

Variation der Gitterdehnung in massiven polykristallinen Probe-

körpern unter Belastungen

Kenntnis und Deutung der Variation der Gitterdehnung in massiven polykristallinen

Probekörpern beinhalten eine Fülle von Informationen über die Wechselwirkungen der

Körner. Jedes einzelne Korn inmitten eines Körpers wird durch die Beschaffenheit seiner

Nachbarkörner eingeschränkt und in seiner möglichen Verformung unter Belastung behin-

dert. Da Einkristalle, mit der Ausnahme von Wolfram, intrinsisch elastisch anisotrop sind,

ist die Richtung der angelegten Spannung hinsichtlich der kristallographischen Orient-

ierung der Körner zu berücksichtigen.

Drei Arten von Dehnungsvariation können in einem elastisch beanspruchten poly-

kristallinen Körper vorhanden sein:

(i) Makrovariation der Dehnung ist die Variation der durchschnittlichen Gitterdehnung

(von der Gruppe der an der Beugung beteiligten Körner), die beim Wechsel der

Ausrichtung des Beugungsvektors zum Specimen-Bezug entsteht.

(ii) Mesovariation der Dehnung ist die Variation der durchschnittlichen Gitterdehnung

(von dem an der Beugung beteilten Korn) in der Gruppe der an der Beugung be-

teilten Körner mit derselben Orientierung des Beugungsvektors.

(iii) Mikrovariation der Dehnung ist die Variation der Gitterdehnung innerhalb eines
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einzelnen Korns.

Verschiedene Modelle der elastischen Wechselwirkung zwischen den Körnern können

benutzt werden, um die durchschnittliche Gitterdehnung innerhalb der Kristallite zu be-

rechnen, basierend auf deren Orientierung in Bezug auf eine Gruppe von Körnern und

auch auf die äußere Belastung. Jedes dieser Modelle beruht auf einem individuellen Gerüst

von Annahmen für die Wechselwirkung zwischen den Körnern. (Siehe dazu Table 2.1

in Chapter 2 für Einzelheiten zu den diskutierten Modellen.) Zwei Hauptkategorien

der Wechselwirkungen können definiert werden: (i) isotrope Interaktion zwischen den

Körnern, in denen die Wechselwirkungen der Körner richtungsunabhängig denselben An-

nahmen entsprechen, und (ii) anisotrope Kornwechselwirkung, in denen die Wechsel-

wirkungen der Körner abhängig von der Richtung sind und somit nicht denselben An-

nahmen entsprechen.

Die Anwendbarkeit der jeweiligen Annahmen der Korn zu Korn Wechselbeziehung

(z.B. die individuellen Kornwechselwirkungsmodelle) ist stark abhängig von der Probe

und dem jeweiligen Belastungszustand. Eine Unzulänglichkeit der elastischen Korn-

wechselwirkungsmodelle ist die Annahme, dass alle Körner mit der gleichen Kristall-

orientierung identische (durchschnittliche) Gitterdehnungen erfahren. Außerdem kann die

Variation der Gitterdehnung eines individuellen Korns nicht mit den Modellen berech-

net werden. Das bedeutet, dass diese Modelle weder den gesamten Beitrag zur Meso-

variation der Gitterdehnung noch die Mikrovariation der Gitterdehnung berücksichtigen.

Deshalb geben diese Modelle eine zu geringe Dehnungsvariation in einem beanspruchten

polykristallinen Körper an.

(a) Reuss Modell: Dehnungsvariation,
ǫHKL

φ,ψ (χ), als eine Funktion von sin2 ψ.
(b) Vook-Witt Modell: Dehnungsvariation,
ǫHKL

φ,ψ (χ), als eine Funktion von sin2 ψ.

Figure 6.1: Dehnungsvariation, ǫHKL

φ,ψ (χ) bei φ = 0◦ für den Winkel ψ mit den Reuss and
Vook-Witt Kornwechselwirkungsmodellen für die 331 Reflexion eines polykristallinen Au

Köpers unter uniaxialer Zugbelastung entlang der S1 Achse (σ11 = 100 MPa). Das
eingeschobene Bild in (a) zeigt die Frequenz der Dehnung f(ǫ) innerhalb einer Gruppe
von Körnern, die den gleichen Beugungsvektor teilen (d.h. die Winkel φ und ψ sind

unveränderlich).
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In Chapter 2 ist die Variation der Gitterdehnung mittels mehreren elastischen Korn-

wechselwirkungsmodellen berechnet. Der Einfluss von Parametern wie dem Spannungs-

zustand, der Höhe der angelegten Spannung und der kristallographischen Struktur wur-

den untersucht. Die Gitterdehnungsvaritation, die mit den Reuss und Vook-Witt Korn-

wechselwirkungsmodellen berechnet ist, ist für die 331 Reflexion eines polykristallinen

Au Köpers in Figure 6.1 dargestellt. Während sich solche Modelle zur Berechnung der

durchschnittlichen Gitterdehnung in polykristallinen Proben bei elastischen Belastungen

als zuverlässig erwiesen haben, wird gefolgert, dass die lokale Heterogenität um jedes

einzelne Korn in Betracht gezogen werden muss, um die komplette Variation der Gitter-

dehnung in einem elastisch quasi-isotropen Material zu nähern. Finite-Elemente Berech-

nungen zeigen, dass die berechnete Variation der Gitterdehnung, die aus den Kornwechsel-

wirkungsmodellen stammen, um bis zu 50% unterschätzt wird.

Figure 6.2: Die aufgebrachte Belastung bewirkt (eine Verschiebung und) eine
Verbreiterung der 311-Reflektion für einen Cu-Dünnfilm (bei einem Kippwinkel von
ψ = 45◦; Strahlung λ = 1.52933 Å). Der Zustand der biaxial rotationssymmetrischen

Zugspannung (280 MPa) wurde durch Kühlung auf −120◦C auferlegt. Das
eingeschobene Bild zeigt den Unterschied in der Verbreiterung zwischen belasteten und

unbelasteten Zuständen durch Skalieren und Verschieben der Reflex-Maximum
Positionen, sodass die Maxima zusammenfallen.

Da sich die Lage der Beugungslinien direkt auf den Gitterabstand eines Satzes von hkl-

Ebenen bezieht, führen Variationen in diesem Gitterabstand (z.B. Variation der Gitter-

dehnung) zu einer Verbreiterung der gemessenen Beugungslinien der elastisch belasteten

polykristallinen Probe. Die Gitterdehnungsvariation, die nach dem elastischen Korn-

wechselwirkungsmodell berechnet ist, kann auch verwendet werden, um Verbreiterung

der Beugungslinien zu bestimmen, die von der induzierten Last (und der entsprechenden
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Variation der Gitterdehnung) abhängig ist. Die Analyse der von der Gitterbelastung

induzierten Verbreiterung der Beugungslinien kann mehr Informationen über die Art

der Kornwechselwirkungen liefern als die “Standard”-Beugungs-Belastungs-Analyse auf

Grundlage der Positionen der Beugungslinien, z.B. durch die sogenannte sin2 ψ-Methode.

Die Untersuchung, die in Chapter 3 diskutiert wird, liefert eine detaillierte Darstellung

der Synchroton-Experimente, wobei die Beugungslinien verschiedener elastisch beanspruchter

Proben gemessen wurden. Daraus ergeben sich Anzeichen für Gitterdehnungsvariationen

innerhalb des Materials, wie in Figure 6.2 gezeigt ist. Vergleiche zwischen experimentellen

Daten und Berechnungen für elastische Kornwechselwirkungen bieten Informationen zur

Anwendbarkeit der diskutierten Modelle. Die gemessene Verbreiterung der Beugungslin-

ien, induziert durch elastische Belastung, übertrifft bei weitem diejenige, die von den

Modellen prognostiziert wird.

Die experimentellen Messungen zeigten außerdem, dass die durch elastische Belastung

einer polykristallinen Probe induzierte Gitterdehnungsvariation (beobachtet durch die

Verbreiterung der Beugungslinien) nicht vollständig durch die elastischen Kornwechsel-

wirkungsmodelle beschrieben werden kann. Die experimentelle Methode ermöglicht eine

hochempfindliche Messung, um die im Korn einer realen Probe auftretenden Kornwechsel-

wirkungen zu untersuchen.

Die Funktion der Belastung in der Martensit-Austenit Transfor-

mation in äquiatomaren NiTi

Nah-äquiatomare Zusammensetzungen von NiTi sind Formgedächtnislegierungen, die

sich durch zwei einzigartige Verhalten auszeichnen: die Pseudoelastizität (auch Super-

elastizität genannt) und der Formgedächtniseffekt. Diese Materialeigenschaften machen

NiTi Dünnfilme einen potentiellen Kandidaten für die Anwendung in mikro-elektromechan-

ischen Systemen (MEMS). Die zwei interessanten Phasen von nah-äquiatomarem NiTi

sind der kubische Austenit bei hohen Temperaturen und der monokline Martensit bei

niedrigen Temperaturen. Abscheidungsverfahren für Dünnfilme, der Spannungszustand in

der Folie und die Materialzusammensetzung haben wesentlichen Einfluss auf das Umwand-

lungsverhalten des Werkstoffs. Thermische Belastung (d.h. Erhitzen) kann verwen-

det werden, um die umgekehrte martensitische Phasenumwandlung (von Martensit zu

Austenit) einzuleiten. Auch spielen mechanische Belastungen eine wichtige Rolle bei der

Phasenumwandlung.

Durch die abrupte Strukturänderung, die mit der Phasenumwandlung verbunden ist,

ist das Material prädestiniert für die Untersuchung mittels auf Röntgenbeugung basieren-

den Techniken. Durch die in situ Röntgenbeugung (XRD) wurden Experimente durch-

geführt, um Phasenanteil, Belastung und Kristallitgröße der Phasen während der Trans-

formation zu beobachten. Die Analyse der Beugungslinien der XRD-Muster bei diesen

in situ Experimenten ist eine mächtiges Methode. Die Untersuchung in Chapter 4 kon-
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zentriert sich auf Synchrotron XRD-Untersuchungen an Substrat-gebundenen NiTi Dünn-

schichten (49,2(5) at.%Ni.) während des in situ Aufheizens. Eine Kombination von XRD-

Techniken wurde für die Untersuchung des Phasenanteils (Rietveld Analyse, Figure 6.3)

und der Spannung (Krümmung und sin2 ψ-Methoden) als Funktion der Temperatur ver-

wendet. Die Messergebnisse von ähnlichen Proben zeigten eine gute Reproduzierbarkeit.

Figure 6.3: Anteil der Austenit-Phase als eine Funktion der Temperatur während der
Temperaturzyklen der Rietveld-Analyse.

Bei fortgesetzten Temperaturzyklen werden die Phasenumwandlungtemperaturen nie-

driger, wie es in Figure 6.3 gezeigt ist. Die Vermutung liegt nahe, dass dieses insta-

tionäre Verhalten in einer Erhöhung der Dichte sowohl der Defekte als auch der Ver-

setzungen begründet werden kann. Für die Vorwärtstransformation führt dies zu einer

höheren für die Umwandlung nötigen Unterkühlung. Auch der Spannungszustand in dem

Film wird durch Temperaturwechsel beeinflusst. Nach zahlreichen Termperaturzyklen

reduziert sich die Größe der makroskopischen Spannung in der Folie bei Raumtemper-

atur (einphasiger Martensit-Film) bis (praktisch) Null, was in dem Verhalten der “self-

accommodating” Martensit-Mikrostruktur begründet ist.

Die makroskopische Filmspannung steigt mit der Temperatur. Spannungsbeiträge wur-

den den jeweiligen Phasen (d.h. Martensit und Austenit) zugeordnet. Dies zeigt, dass die

Größe der Spannung in hohem Maße vom Anteil der austenitischen Phase im substrat-

gebundenen NiTi Dünnfilm abhängig ist. Trotz Erhöhung der Spannung bleibt diese im

Austenit durch die gesamte Transformation biaxial und rotationssymmetrisch .
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