
2 
 

Diffraction and single-crystal elastic constants of Inconel 625 at room and elevated 

temperatures determined by neutron diffraction 

 

Zhuqing Wang1, Alexandru D. Stoica2, Dong Ma2*, Allison M. Beese1*
 

1 Department of Materials Science and Engineering, Pennsylvania State University, University 

Park, PA, 16802, USA, *amb961@psu.edu 

2 Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge 

National Laboratory, Oak Ridge, Tennessee 37831, USA, *dongma@ornl.gov 

 

Abstract 

In this work, diffraction and single-crystal elastic constants of Inconel 625 have been 

determined by means of in situ loading at room and elevated temperatures using time-of-flight 

neutron diffraction.  Theoretical models proposed by Voigt, Reuss, and Kroner were used to 

determine single-crystal elastic constants from measured diffraction elastic constants, with the 

Kroner model having the best ability to capture experimental data.  The magnitude of single-

crystal elastic moduli, computed from single-crystal elastic constants, decreases and the single 

crystal anisotropy increases as temperature increases, indicating the importance of texture in 

affecting macroscopic stress at elevated temperatures.   The experimental data reported here are 

of great importance in understanding additive manufacturing of metallic components, in which 

diffraction elastic constants are required for computing residual stresses from residual lattice 

strains measured using neutron diffraction, which can be used to validate thermo-mechanical 

models of additive manufacturing, while single-crystal elastic constants can be used in crystal 

plasticity modeling, for example, to understand mechanical deformation behavior of additively 

manufactured components.  
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1. Introduction 

Nickel-base superalloys, such as Inconel 625, Inconel 718, and Waspaloy, have excellent 

mechanical properties and corrosion resistance, especially at high temperature [1–4].  The 

production of nickel-base superalloy components involves mechanical and thermal processing, 

which may introduce strain gradients or thermal gradients, which could in turn result in the 

development of residual stresses.  Mechanical processes that introduce residual stresses include 

traditional thermomechanical manufacturing like rolling and forging [5,6] and post processing 

methods like machining [7,8], grinding [7,9], and shot peening [10,11].  Thermal processes that 

introduce residual stresses include manufacturing processes that involve rapid solidification of 

materials such as welding [12–14] and additive manufacturing (AM) [15,16], as well as post 

processing heat treatment followed by quenching  [7,17].  Mechanically generated residual 

stresses result from non-uniform plastic deformation, wherein compressive or tensile residual 

stresses are introduced on the surface of component by local plastic deformation [7].  Thermally 

generated residual stresses result from non-uniform heating and cooling, or thermal treatments 

with mechanical constraints [7].  For example, in welding and AM, residual stresses build up 

from the contraction of melt pool during cooling [12–16].  For materials being subjected to heat 

treatment followed by quenching, the outer surface cools more rapidly than the inner core, 

resulting in compressive residual stresses on the surface, balanced by tensile stresses in the bulk 

of the component.  Residual stresses may lead to distortions of components, which result in 

geometries that deviate from their design, and may introduce micro-cracks and local yielding 

within the component, which will impact the component’s mechanical performance [15,18].   

Therefore, it is important to be able to accurately measure and predict residual stresses during 
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manufacturing and post processing of materials in order to combat them, or account for them in 

design.   

Here, we focus on nickel-base superalloys produced by AM.  AM can be used to fabricate 

complicated near-net shape nickel-base superalloy components that cannot be fabricated through 

traditional casting or subtractive machining methods; thus researchers are investigating the 

possibility of fabricating solid solution strengthened Inconel 625 through AM [19–21] .  Current 

obstacles in AM of Inconel 625 include the expense, due to the high initial cost of the powder 

feedstock and the fact that the number of times unused powder can be recycled is an open area of 

research [22–24].  Additionally, during AM, significant residual stresses are built up due to the 

complex thermal cycles – specifically, due to the material contraction as the melt pool solidifies 

and the additional contraction of the material during cooling [15,16].  In order to mitigate these 

stresses, thermomechanical modeling can be used to model the additive manufacturing process, 

predict the stress buildup and resulting distortion during fabrication, and modify the build 

process to minimize or counteract these stresses and distortion [16,18,25].  However, the 

prediction of residual stresses using thermomechanical models requires validation of these 

models.  One way to measure residual stresses is using neutron diffraction, which requires grain 

orientation dependent or hkl-specific diffraction elastic constants (DECs) to convert the 

measured hkl-specific lattice strains to macroscopic residual stresses [12,15,26,27].  

Diffraction elastic constants, such as Young’s modulus, Ehkl, and Poisson’s ratio, υhkl, 

describe the relationship between hkl-specific elastic lattice strains measured using neutron 

diffraction and applied macroscopic stress for a polycrystalline material.  DECs can be 

determined by uniaxially loading the material in the elastic regime, and measuring each hkl-

specific lattice strain responses to the applied macroscopic stresses in the loading and transverse 
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directions simultaneously using neutron diffraction.  For a highly anisotropic material like a 

nickel-base superalloy, at a given applied macroscopic stress, the stress and strain are distributed 

non-uniformly among differently oriented grains with respect to the loading direction.  The hkl-

specific orientated grains have their own intrinsic stiffness, single-crystal elastic moduli Ehkl, SC, 

defining the constitutive relationship between local stress and strain in a hkl-specific orientated 

grain or single crystal.  The direction dependent single-crystal elastic constants comprise a 4th 

order stiffness tensor, cijkl, or compliance tensor, sijkl; these tensors can be expressed as 6 x 6 

matrices, cij or sij, using Voigt notation.  Therefore, materials with strong texture, such as 

additively manufactured Inconel 625, have a different macroscopic Young’s modulus, meaning 

different macroscopic stress for a given applied elastic strain compared to isotropic or weakly 

textured materials, resulting in different diffraction elastic constants between textured and 

isotropic materials [28].  A study conducted by Tayon et al. [29] also showed macroscopic 

Young’s modulus depended on the orientation of highly textured Inconel 718 specimens made 

by AM.  They used electron backscatter diffraction (EBSD) data and an Orientation Imaging 

Microscopy (OIM) software to estimate macroscopic Young’s modulus in specimens with 

different orientations, in which single-crystal elastic constants were necessary inputs for the OIM 

software.  As such, knowing single-crystal elastic constants and elastic anisotropy is essential in 

understanding anisotropic deformation behaviors, especially at elevated temperatures where the 

anisotropic factor increases significantly.  In addition, single-crystal elastic constants are used to 

provide grain-level constitutive information in crystal plasticity modeling, to calculate elastic 

energy for understanding dislocation interactions, and to determine the stability of phases to 

understand the occurrence of phase transformation [30–32].   
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Single-crystal elastic constants can be measured by different methods.  Alers et al. and 

Kanrar et al. [33,34] determined cij in Fe-Ni alloys using acoustic methods, in which the speed of 

ultrasonic waves propagating through single crystals was measured.  However, this method is 

limited by the purity and size of single crystals, the difficulty in fabricating single crystals, and 

the availability and accuracy of sensors used to detect ultrasonic waves at high temperatures or 

pressures [35].  Single-crystal elastic constants can also be determined using in situ diffraction 

methods during mechanical loading of polycrystalline materials at prescribed temperatures or 

pressures.  Aba-Perea et al. [4] measured Ehkl and υhkl using neutron diffraction in Inconel 718 

and plotted 1/Ehkl and -υhkl/Ehkl versus direction cosines of (hkl) to determine the linear 

interpolation coefficients for single-crystal elastic constants, rather than cij.  Further, no literature 

has reported diffraction elastic constants or single-crystal elastic constants of nickel-base alloys, 

in particular, Inconel 625, at elevated temperatures. 

The present study focuses on measuring hkl-specific DECs and determining single-crystal 

elastic constants, cij, at room and high temperatures in Inconel 625 (IN625), a face-centered 

cubic (fcc) material that is widely used for additive manufacturing.  Macroscopic stress and hkl-

specific lattice strain measured by in situ neutron diffraction of IN625 upon elastic loading were 

used to determine the DECs, Ehkl and υhkl, which were then used to calculate cij and the single-

crystal elastic moduli, Ehkl, SC using a theoretical model proposed by Kroner [36].  The 

macroscopic elastic modulus, EM, which describes macroscopic stress and strain relationships in 

isotropic materials, was measured from the experiments and also computed from cij.  The 

comparison between the measured and computed EM can be used to assess the accuracy of the 

selected model. 
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2. Materials and Methods 

We investigated conventionally rolled and annealed IN625 and IN625 deposited using 

directed energy deposition (DED).  In powder-based, laser-based DED AM, powder is delivered 

through nozzles to a molten pool, on a substrate or layer below, produced by a laser beam [37–

40].  A 101 mm long, 28 mm tall, 7 mm thick IN625 wall was deposited, using pre-alloyed 

IN625 powder, onto an annealed IN625 (AN IN625) substrate (ASTM B-443 Grade 1 [41]).  A 

laser power of 2 kW, scanning speed of 10.6 mm/s, powder feed rate of 16 g/min, and argon gas 

flow rate of 9.4 L/min were used to deposit the IN625 wall by additive manufacturing (AM 

IN625) [16].  Energy dispersive spectroscopy (EDS) was used to determine the chemical 

composition of annealed and AM IN625, with the measured compositions given in Table 1.  

EDS analysis and scanning electron microscope (SEM) images indicated that AN IN625 

consisted of a small amount (<1 vol%) of carbides rich in Nb, Mo, and Ti distributed in an fcc γ 

matrix, and AM IN625 consisted of a small amount (<2 vol%) of Nb- and Mo- rich carbides and 

Laves phase distributed in an fcc γ matrix [42].  These primary and secondary phases in AN and 

rapidly solidified IN625 are consistent with the literature [19–21,43,44].  

Table 1. Elemental composition in wt.% of AN IN625 and AM IN625 measured by EDS. 
 Ni Cr Mo Fe Nb Co Mn Si Ti Al 

AN 
IN625 

59.2 22.3 9.5 4.7 3.5 0.4 0.3 0.3 0.1 0.2 

AM 
IN625 

60.2 23.5 8.7 4.6 2.3 0.1 0.4 0.4 0 0 

 

To measure mechanical behavior of IN625 under compression, 5 mm diameter and 10 mm 

long cylindrical specimens were extracted from both IN625 made by AM and the annealed 

substrate.  Compression tests at room temperature, 600 oC, and 700 oC at a strain rate of 3 x 10 -5 

were performed with in situ neutron diffraction using the VULCAN instrument at the Spallation 
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Neutron Source at Oak Ridge National Laboratory [45,46].  Two detector banks in VULCAN 

allowed for collecting diffraction spectra simultaneously from grains whose lattice planes (hkl) 

were perpendicular to two orthogonal scattering vectors, which were along and perpendicular to 

the loading axis [47].  The hkl-dependent lattice strains (εhkl) resulting from the applied 

compressive load were measured by in situ neutron diffraction as 0

0

hkl

hklhkl
hkl d

dd 
 , where dhkl is 

the lattice spacing of the (hkl) plane during deformation, and 0
hkld  the stress-free lattice spacing 

of the (hkl) plane.  The diffraction elastic moduli, Ehkl, define the constitutive relationship 

between the macroscopic true stress and the lattice strains under uniaxial loading, and the 

diffraction elastic Poisson’s ratios, υhkl, describe the ratio of the lattice strain expansion in the 

transverse direction with respect to the lattice strain compression in the loading direction.  

Single-crystal elastic constants can be homogenized into diffraction elastic constants and 

isotropic macroscopic elastic constants using theoretical models.  The most widely used models 

are those proposed by Voigt [48], Reuss [49], and Kroner [36].  The Voigt model assumes that a 

homogeneous strain is applied to all grains during loading, but fails to satisfy equilibrium at 

grain boundaries.  The Reuss model assumes a homogeneous stress is applied to all grains, but 

fails to satisfy continuity of strains at grain boundaries.  However, due to their simplicity, these 

two models are still used to estimate upper and lower bounds for the diffraction and isotropic 

macroscopic elastic constants [50].  In contrast to the Voigt and Reuss models, the Kroner model 

accounts for stress and strain variations among grains [51].  In all three models, the grain 

orientation dependent diffraction elastic constants, including Young’s moduli, Ehkl, Poisson’s 

ratios, υhkl, and shear moduli, Ghkl, are expressed as a function of cij or sij and the direction 
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cosines of <hkl>.  When all orientations are considered, the isotropic macroscopic elastic moduli 

can also be computed from cij or sij [52].   

In IN625, an fcc material, there are only three independent cij constants: c11, c12, and c44.  The 

diffraction shear moduli in Voigt’s model (GV) and Reuss’ model (GR) are defined as [52]: 

)32(
5

1  VG                                                                                                                    (1) 

])(3[ hkl
R A

G





                                                                                                          (2) 

where Ahkl defines the direction cosines of <hkl>, and is given as Ahkl = (h2k2 + k2l2 +l2h2)/(h2 + k2 

+ l2)2, which is equal to 1/5 if averaging over all orientations; μ and η are shear moduli expressed 

as μ = (c11 – c12)/2 and η = c44 , where  μ = η in isotropic materials.  

 In the Kroner model, the diffraction shear modulus, GK, is defined as [52]: 

023   KKK GGG                                                                                                      (3) 

where α, β, and γ are given as: 
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3
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4

3
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where K is the bulk modulus, which is equal to (c11 + 2c12)/3.  When Ahkl equals 1/5, the 

diffraction shear moduli in Eqn. (3) become the isotropic macroscopic shear modulus, GM.  

Then, the isotropic macroscopic Young’s modulus, EM, can be calculated as: 

KG

KG
E

M

M
M 3

9


                                                                                                                     (5) 

The hkl-specific reciprocal diffraction elastic constants 1/Ehkl and υhkl/Ehkl can be calculated 

from the following set of equations: 
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In the present study, 1/Ehkl and υhkl/Ehkl were measured using in situ neutron diffraction, 

which are fitted using the Kroner model [Eqn (6)]. Single crystal elastic constants, cij, were used 

as free parameters in the fitting and eventually determined by minimizing the value of a cost 

function, taken here to be: 

2
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i
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

         (7) 

where n is the number of (hkl) diffraction planes used to fit the models, ሺ1/ܧ௛௞௟ሻ௘௫௣ and 

ሺݒ௛௞௟/ܧ௛௞௟ሻ௘௫௣are determined experimentally from neutron diffraction, ݁ଵ and ݁ଶ are the 

corresponding experimental errors, and ሺ1/ܧ௛௞௟ሻ௠௢ௗ௘௟and ሺݒ௛௞௟/ܧ௛௞௟ሻ௠௢ௗ௘௟ are calculated using 

the Kroner model. 

 The single-crystal elastic moduli, Ehkl, SC, are calculated using: 
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3. Results and Discussion 

Neutron diffraction patterns from the axial (or loading) direction in annealed (AN) IN625 at 

increments of compressive load at room temperature are shown in Fig. 1, which shows that the 

peaks shift during loading, from which we can calculate lattice strain.  The strong texture in AM 

IN625 affects the macroscopic stress distribution at a given strain, which then affects the 

measured diffraction elastic constants, so data from isotropic AN IN625 are used to calculate cij.  

As the secondary phases in AN and AM IN625 were less than 2 vol. %, they did not have an 
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effect on the diffraction patterns and lattice strain measurements of the fcc γ matrix.  True stress 

as a function of axial and transverse lattice strains in AN IN625 is plotted to calculate the 

diffraction elastic constants Ehkl and υhkl at room and elevated temperatures as shown in Fig. 2.  

Single-crystal elastic constants, cij, were quantified using the Kroner model, by minimizing the 

cost function in Eqn. (7).  Using the computed values of cij and Eqns. (5) and (8), the theoretical 

values of EM   and Ehkl,SC were calculated.  Since the EM values were also measured from 

experiments, a comparison between the measured and theoretically computed EM values obtained 

from the Kroner model can ascertain the applicability of the model.  For example, at room 

temperature, EM was measured to be 207.5 GPa and calculated to be 209.3 GPa using the Kroner 

model, resulting in a 0.9% difference, indicating that the Kroner model works well for AN 

IN625.  All the measured Ehkl, υhkl, and EM, and computed Ehkl,SC, cij, and EM  at room and 

elevated temperatures are shown in Table 2.  The calculated cij values using the Kroner model at 

room temperature are in line with those reported in literature [53].  
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Fig. 1. Neutron diffraction patterns from the axial /loading direction (bank 1) for annealed IN625 

during compressive loading at room temperature.  The inset shows the shifting of (200) with 

applied load. 
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Fig. 2. Macroscopic true stress versus lattice strain in loading and transverse directions for 

annealed IN625 deformed at (a) room temperature, (b) 600 oC, and (c) 700 oC. 
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Table 2. Materials properties in AM IN625 and AN IN625. 

<hkl> Ahkl 
Ehkl, AN 

RT (GPa) 
(/E)hkl, AN 
RT (TPa-1) 

Ehkl, AM 
RT (GPa) 

Ehkl, SC 
RT(GPa) 

200 0.00 163.8 2.13 123.4 120.5 
311 0.16 193.8 1.57 156.3 166.6 
420 0.16 198.2 1.69 168.6 167.8 
220 0.25 221.6  209.9 215.3 
422 0.25 223.1 1.38  215.3 
331 0.27 240.2 1.25 219.1 233.0 
111 0.33 250.6 1.19 276.7 291.7 

EM 
Experiment 207.5  152.0  

Kroner 209.3    

<hkl> Ahkl 
Ehkl, AN 600C 

(GPa)  
(/E)hkl, AN 

600C (TPa-1) 
Ehkl, AM 

600C (GPa) 
Ehkl,SC 

600C (GPa) 
200 0.00 127.1 2.92 100.7 87.4 
311 0.16 156.1 2.14 127.7 126.5 
420 0.16 157.3  128.4 127.5 
220 0.25 183.1 1.72 161.2 172.0 
422 0.25 180.7   172.0 
331 0.27 194.5   189.4 
111 0.33 219.4 1.54  254.0 

EM 
Experiment 172.4  113.0  

Kroner 171.1    

<hkl> Ahkl 
Ehkl, AN 

700C (GPa) 
(/E)hkl, AN 

700C (TPa-1) 
 

Ehkl,SC 
700C (GPa) 

200 0.00 116.4 3.26  79.2 
311 0.16 154.6 2.20  116.4 
420 0.16 154.4 2.29  117.4 
220 0.25 177.4 1.69  161.3 
422 0.25 169.9   161.3 
331 0.27 174.4 1.98  179.3 
111 0.33 202.9 1.57  246.4 

EM 
Experiment 165.0    

Kroner 163.5    
SC constants c11 (GPa) c12 (GPa) c44 (GPa) Z  

RT [53]  234.6 145.4 126.2 2.8  
RT (Present) 243.3 156.7 117.8 2.7  

600 oC (Present) 214.8 153.1 101.1 3.3  

700 oC (Present) 205.2 149.3 99.3 3.6  

 Data not available due to weak peaks;  
RT-Room temperature;  
SC-Single crystal; 
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Reciprocal diffraction elastic constants 1/ Ehkl and υhkl /Ehkl calculated by Voigt, Reuss, and 

Kroner models are plotted as a function of Ahkl in Fig. 3, together with experimental data.  In all 

three models, reciprocal diffraction elastic constants were computed using cij from the Kroner 

model.  At room and elevated temperatures, the Kroner model fits the experimental data very 

well, which are significantly different from those predicted with the Voight and Reuss models.   

 

 
Fig. 3. Reciprocal diffraction elastic constants, υhkl/Ehkl and 1/Ehkl as a function of Ahkl.  The 

Kroner model is used to fit experimental data (symbols), in comparison with those predicted by 

the Reuss and Voigt models, and plotted as solid lines for annealed IN625 deformed at (a) room 

temperature, (b) 600 oC, and (c) 700 oC. 
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The surfaces of Ehkl,SC as a function of three orthogonal axes [001], [010], and [100] are 

plotted at room and elevated temperatures in Fig. 4.  The two plots have similar shapes, where 

<111> is the stiffest orientation, and <100> is the most compliant orientation.  As the 

temperature increases, the magnitude of Ehkl,SC decreases.  The Zener anisotropy ratio, Z, is 

defined for cubic systems as 2c44 / (c11 – c12), and it is equal to 1 in isotropic systems.  The 

anisotropy ratio is 2.7 at room temperature, increases to 3.3 at 600 oC and to 3.6 at 700 oC, 

indicating an increase in anisotropy with temperature, which is also illustrated in Fig. 4.  
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Fig. 4. Contours of single-crystal elastic modulus, Ehkl, SC, for AN IN625 at (a) room temperature, 

(b) 600oC, and (c) 700oC. 

 

4. Summary and Conclusions 

In summary, this work reports diffraction and single-crystal elastic constants, cij, of Inconel 

625 at room and elevated temperatures.  These are useful for understanding a variety of thermo-

mechanical properties of additively manufactured components and mechanical behaviors of 

conventional materials.  Diffraction elastic constants Ehkl and υhkl were measured using in situ 
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neutron diffraction, and the c11, c12, and c44 were determined using the Kroner model and 

measured Ehkl and υhkl.  The macroscopic elastic modulus, EM, and single-crystal elastic moduli, 

Ehkl, SC, were computed using the cij values.  The primary findings of this paper are as follows: 

 The computed cij are in line with those reported in literature at room temperature, while 

the cij at 600 oC and 700 oC reported herein are missing in current literature.  The values 

of the isotropic macroscopic modulus, EM, at different temperatures that are theoretically 

computed using Ehkl and υhkl measured from neutron diffraction are in good agreement 

with the experimentally measured values, indicating the applicability of the Kroner model 

for this material.  

 As the temperature increases, the magnitude of Ehkl, SC decreases and the Zener anisotropy 

ratio increases, indicating that texture plays an increasingly important role in affecting the 

macroscopic stress with increasing temperature.  Temperatures during AM processing 

fluctuate from above the melting temperature to room temperature during solidification 

and cooling, indicating the importance of incorporating texture in thermomechanical 

modeling of AM. 

 Thermomechanical models for additive manufacturing are used to describe the buildup of 

stresses during fabrication, and the resulting distortions in the final part; however, these 

models require experimental validation, which can be done using neutron diffraction 

measurements of residual strains.  The measured diffraction elastic moduli, Ehkl, by 

neutron diffraction are used to convert lattice strain to residual stress measurements.  

 Single-crystal elastic constants, cij, are used in crystal plasticity modeling, calculating 

orientation-dependent Young’s modulus to understand single-crystal anisotropy, 
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calculating elastic energy to understand dislocation interactions, and determining stability 

of certain phases. 
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