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Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Asymptotic results are derived for the travel times and amplitudes of 
waves diffracted by surfaces of discontinuity in the Earth's mantle. A 
canonical problem, defined to be that of diffraction by a uniform elastic 
or visco-elastic sphere in a uniform elastic medium, is first solved 
asymptotically and the result applied, by means of simple ray theory, to 
an Earth model which is spherically symmetric except for the diffracting 
discontinuity. Some calculations are carried out for comparison with the 
signals from the Bukhara explosion discussed by Douglas et al. and an 
attempt is made to identify their arrival PH, with a diffracted arrival from 
a mantle discontinuity. To explain the low amplitude of the direct wave a 
dissipative region in the mantle, which is avoided by the diffracted wave, is 
postulated and the approximate values of Q needed to equate the 
amplitudes of direct and diffracted waves are calculated. 

Introduction 

In a recent article concerning the analysis of the first few seconds of seismic records, 
Douglas et al. (1972) have stressed the importance of multiple paths for body waves 
from the source to the receiver. In that article the authors are concerned with p P  
arrivals which, after the initial reflection at the Earth's surface, travel to the receiver 
along a path close to that of P. In an earlier paper (Douglas, Marshall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Corbishley 
1971) evidence is given for arrivals which have paths markedly different from that 
of P (that is, they arrive with different angles of emergence) and yet cannot be classified 
as standard arrivals PP, PcP, p P  etc. Furthermore it is shown that the main pulse is 
sometimes greatly diminished so that the later arrivals, being relatively enhanced, give 
the seismogram apparent complexity. We examine in the present paper the possibility 
than an arrival following P might be a wave diffracted by a discontinuity in the mantle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lf, in addition, the direct P wave has been attenuated in passing through a dissipative 
region in the mantle, which is avoided by the diffracted wave, then discontinuities of 
sufficient size may produce waves of comparable amplitude at a given station. 

We wish to find the amplitudes of waves whose ray paths are shown in Fig. 1. 
For sufficiently short wavelengths ray theory (Jeffreys 1959; Karal & Keller 1959; 
Bullen 1963) may be applied along paths to and from the discontinuity, but this 
method fails to give the ' conversion factors ' for creeping waves around the inclusion 
so that a canonical problem must first be solved. This problem is defined to be that of 
finding the diffracted wave generated when a wave in a uniform elastic medium is 
incident on a spherical inclusion of different elastic and visco-elastic properties. 

Several authors (Scholte 1956; Duwalo & Jacobs 1959; Nussenzveig 1965, 1969; 
Nagase 1956; Ansell 1969) have examined the problem of diffraction by a sphere. 
The wave type and the boundary conditions applied have been various, but the 
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FIG. 1. A diffracted ray path through the mantle. 

diffraction of elastic waves by an elastic sphere of different material from that of the 
surrounding elastic medium zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas not yet beeninvestigated. The treatments given by the 
above authors follow the methods developed by Watson (1918) and van der Pol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Bremmer (1937) to obtain expressions valid at high frequencies for the diffracted 
waves in addition to terms corresponding to waves travelling by the ray paths of 
geometrical optics. A similar method for a pulse inside a liquid sphere with a free 
surface has been given by Jeffreys & Lapwood (1957), though in this case there is no 
ordinary diffracted wave. Diffraction by cylinders has been treated in a similar fashion 
(e.g. Gilbert & Knopoff 1959, who give further references). 

The diffraction of elastic waves by a liquid sphere in an unbounded solid has been 
investigated by Scholte (1956), Duwalo & Jacobs (1959) and Ansell (1969), the last 
paying special attention to the regions of the shadow boundaries, and our analysis 
and results are similar to those given by these authors. 

Sections 1 and 2 give an asymptotic solution to the canonical problem and Section 3 
gives the ray theory necessary to apply this solution to a spherically symmetric Earth 
model. Finally the results of a calculation for particular waves observed in the Earth 
are given. 

1. Formal solution of the canonical problem 

1 . 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEquations of motion and their solution in series 

be written in terms of the displacement u and in standard notation: 
The equations of motion for elastic waves in a homogeneous, isotropic medium may 

a 2  u 

a t 2  
( n + 2 p ) V ( V . U ) - p v A ( V A U )  = p -. 

For sufficiently regular solutions we may write (Morse & Feshbach 1953): 

U =  v c # J + v A ( r x ) + V A ( V A r l / ' )  

where r is the position vector of the field point and the potentials satisfy: 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA + 2 p / p ,  8' = p / p .  
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4 corresponds to a dilatational disturbance with associated wave speed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx to a 
rotational disturbance with associated wave speed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. When there is an axis of symmetry 
through the point r = 0 the potentials 4, $ give rise to displacements lying in planes 
passing through the axis and x gives displacements perpendicular to these planes, so 
that referred to a spherical surface centred at r = 0, the pair of potentials 4, $ 
represent a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP-SV system of waves and x represents the SH system. It will be shown, 
however, that even when there is no axis of symmetry the two-wave systems are 
independent, provided the boundary conditions are applied on surfaces Irl = constant. 

Assuming a time dependence 4 = 4o e-'"' (or alternatively, taking Fourier 
transforms in time) we obtain: 

( V 2 + h 2 ) 4 = 0  ) 
(V2 + k2)  $ = 0 

(V2+k2)x = 0 

with h = o /u ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = o/p. 

General solutions of these Helmholtz equations in terms of spherical polar co-ordinates 
r, 8, 4 may be written (Morse & Feshbach 1953) 

x = C d;, h,,(q)(kr) P ~ m l ( ~ ~ ~  0) elm4 
4'1.2 n = O m = - n  

with 

h,,(q)(x) =A(&) HIP:+ (x) ,q  = 1,2. (3) 

h?) are spherical Hankel functions of the first and second kinds and u:, 4, &', 4, dr, 
are constants. 

1.2 Stresses and strains 

Let us define the following operators: 

i a  a 1 a2 
L = - -  --sine-+-- 

sineae ae sin2ead2 

i a  
M = ( r5  - 1) 

K = ( r d r + l ) .  a 
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298 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. H. Woodhouse 

The stresses and strains derivable from the potentials zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ may be written: 

and hence : 

I 2'1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r2 ( )) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 r -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ L  $-2pML$ 

a 
sin 8 26 ao 7,+ = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 (2M4 + N$)  - rp - Mx. 

1 . 3  Geometry and boundary conditions 
A sphere of radius a centred at the origin of spherical polar co-ordinates r ,  8, 4 

contains an elastic (or linearly visco-elastic) material with parameters p', A', p' with 
A', p' possibly complex and frequency dependent. The sphere is in welded contact with 
an infinite elastic medium with parameters p, A, p. Although much of the analysis is 
more general we shall eventually consider a symmetric, harmonic point source of 
longitudinal waves, situated at the point r = r,, 8 = 0, and we shall be primarily 
coccerned with the diffracted wave observed in the deep shadow where do < fl < II and 

a a 

r r0 
eo = cos-1- + cos-l - . (See Fig. 2) 

We shall assume that the complete solution is given b y  the expansions (2)  outside 
the sphere (and near its surface) and by the corresponding expansions with coefficients 

bF'q, d:',, inside. We assume also that the incident wave is given by a similar 
series with coefficients A z q ,  BE q,  OF4, in the neighbourhood of the boundary. Since we 
anticipate a singularity in the incident field, different expansions will be valid at points 
far from the sphere. 
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I 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. 2. The geometry of the canonical problem. 

The boundary conditions to be applied at the surface of the sphere are that u is 
continuous and that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,, zr0, zr4 are continuous. Using these boundary conditions 
together with equations (4) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  it is easily shown to be necessary that L ( 4  + K$), 
Lx, pL(2M4 +N+) ,  pLMx be continuous, but since 4, X ,  $ are sums of eigenfunctions 
of L, and since L commutes with K ,  M, N this implies continuity of c#+Kt,b, 1, 
p(2M4 +N$) ,  ~ M x .  (In fact each of these quantities may have a constant discontinuity 
over the surface of the sphere since the eigenvalue of P,(cos 0) iszero. These constants, 
however, make no contribution to the stresses or strains and @, x may be so chosen that 
they are zero.) 

Thus the boundary conditions reduce to continuity of 

( ( 2 p + 4 V 2 -  $ ( 2 r ;  + L ) )  4 - 2 p M L ~  

P(2M4 + W )  

PMX. 
X 

It can now be seen that the boundary conditions on x are independent of 4 and I,$ so 
that the wave systems are completely independent. 

We make the following definitions: 
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and note that 

~ p , l ~ l ( c o s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe) eim4 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-n(n+ I) p,lml(cose) elm&. 

We may now use equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1 )  and (2 )  and the independence of the spherical harmonics 
to write the boundary conditions as follows: 

X,,(4) h,,(q)(ha) a t  + n(n + 1 )  /~ , , (~ ) (ka )  b$ 

= Xdq)' /~,,(~'(h'u) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa$q + n(n + 1 )  hd"(k'a) bE'q 

h>)(ha) a$ + (Y?)+ 1 )  h>)(ka) b$ 

= hd4)(h'a) q'q + ( Y>)' + 1 )  h,,("(k'a) b:, 

[k2 + 4Xd4)  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh ( n  + l ) ]  h>' (h~)  + 2 p 4 n  + 1 ) (  Y,,(') - 1 )  h,,("(ka) b$ 

= [k" a' + 4X,,(')'- 2n(n + l)] h,,("(h'~) a$', 

+ 2p'n(n + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1)( YJq)' - 1 )  h>)(k'a) b$'q 

2p(X,,(q)- 1 ) ~ ;  h,,("(ha)-p[k' a2-2{n(n+ 1 ) -  Y,Cq)- l}]h>'(ka)b?, 

= 2p'(X,(4)'- 1 )  h?)(h'a) 

- p'[k'' -2{n(n + 1 )  - Y,(')'- l } ]  h,,("(k'a) b;', 

(7) 

Primes denote quantities relating to the interior of the sphere and summation over 
q = 1 ,2  is understood. 

Now the functions k,,(q)(kr) are singular at r = 0 but the combination 

Ir,,(''(kr)+h/')(kr) 
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is finite there. Since we require the potentials to be finite at the origin we have the 
three relations: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

\ 
4 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A : ,  

b h ' = B $ 2  

d t  2 = D t z .  

) (10) 

1.4 Decomposition into partial solutions 

The solution found in Section 1.3 involves direct waves, diffracted waves, and 
multiply reflected and refracted waves which have passed through the inclusion. 
Scholte (1956), Duwalo & Jacobs (1959), and Nussenzveig (1969) show that in the 
cases they consider, the total wave may be split into these separate parts and that the 
parts may be examined separately in order to evaluate the different effects in different 
regions. The expansion obtained is more complex than those obtained previously 
since refracted and reflected P and S V  waves are produced each time a ray strikes the 
surface of the inclusion. 

We begin by defining vectors U,, V, which occur as columns in the determinants 
needed in the solution of equations (7)-(10): 

v, = 

We also impose the radiation condition that no additional incoming wave is generated 
outside the sphere. Since potentials containing h,")(hr), h,,@)(kr) represent incoming 
waves (cf. asymptotic expansions for large r )  this gives the three relations: 

We also impose the radiation condition that no additional incoming wave is generated 
outside the sphere. Since potentials containing h,")(hr), h,,@)(kr) represent incoming 
waves (cf. asymptotic expansions for large r )  this gives the three relations: 
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302 J. H. Woodhouse 

U,‘, V,‘ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare defined in the obvious way. Equations (7)-(10) may now be written: 

Aa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= b 

BC = d 
where: 

A = (Ul‘+U2’, -U1, Vi’+V2’, -Vi) 

B = ( h  ,,(I) ( k’a) + h,,(2)(k’a) - h,,(’)(ka) 
p’(Y,,(’)’- 1) h,,(1)(k’a)+p’(Y,,(2)’- 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh,,(’)(k’a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- p (  Y,,(’)- 1) 

We may solve the equations for a;, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: 

D(U1’ + UZ’, v2, V1’ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVZ’, ~- V,) 
D(U,’ + UZ’, u,, Vl’+V2’, V,) 

-B; 2 .  

where D denotes determinant. 
We now define refraction and reflection coefficients for each spherical harmonic 

by considering waves approaching and leaving the interface. Now in defining these 
coefficients we are concerned with the local interaction of an incident wave with the 
interface; therefore instead of the condition that the potentials should be finite at 
r = 0, we impose the boundary condition that only waves locally emanating from the 
boundary should be generated (cf. the definition of plane wave refraction and reflec- 
tion coefficients). Spherical Hankel functions of the first kind are associated with 
waves approaching the interface inside the sphere and with waves leaving the inter- 
face in the surrounding medium; those of the second kind are associated with waves 
leaving the interface inside the sphere and with waves approaching the interface in the 
surrounding medium. If, for example, a P wave with expansion coefficients A;,‘l is 
incident on the boundary from inside the sphere the S wave outside the sphere, when 
the above boundary condition is applied, is given by: 

where 
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We associate wave numbers h, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIt’ with dilatational (P) waves and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, k’ with shear (S) 
waves and thus U, is associated with outgoing P waves (outgoing with respect to the 
centre of the sphere), U2 with incoming P waves, V1 with outgoing S waves and V2 
with incoming S waves. U1’, U2’, V1’, V2‘ are similarly associated but outgoing waves 
inside the sphere are approaching the interface and incoming waves are leaving it. 
With these associations we see that (P’S),,,,, depends only upon the P wave 
approaching the interface inside the sphere (the incident wave) and upon the four 
waves emanating from the interface (cf. Scholte zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1956). The complete set of coef- 
ficients is as follows: 

1 
( P P )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - - D .D(UZ‘, U2, V2‘, V,) 

1 
( P S )  = - - D . D(Uz’, U1, V2‘, UJ 

1 
D 

1 

( P P ’ )  = - . D(U2, U1, Vz‘, V,) 

(PS’ )  = - D . D(U2’, U,, U2, V,) 

1 
(P‘P’) = - - D . D(U1’, U1, VZ’, V,) 

1 
D 

1 
D 

(S’P’) = - - .D(V,’,  U1, V2‘, V,) 

(PIS’) = - - . D(U2’, U,, U1’, V,) 

1 
(S’S) = - - D . D(U2’, U1, V1’, V,) 

1 
(P’P)  = - D . D(U2’, U1’. VZ’, V,) 

1 
D 

1 
D 

1 
D 

(P’S)  = - . D(U2’, U1, VZ’, U,’) 

(S’P)  = - . D(U2’, V1’, V2‘, V,) 

(S’S)  = - . D(U2’, U1, V2‘. Vl)  

where D = D(U2’, U1, V2’, V,) and dependence on n, m is understood. 
We assume, for the moment, that B;, = 0 (that is, that there is no incident 

S wave) since the analysis for the second term of (1 1) is exactly analogous to the 
treatment of the first term. We have 

D(U,’+UZ’, u2, V,’+V2’, V,) 
D(U,‘+U2‘, U1, V,’+V2’, Vr) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,,, = -A:, 2 .  ~ 
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and also 

Ul‘+UZ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [l-(p‘p‘)]u,’+(PP)u,-(P’S’)V~’+(P‘S)v, 

Vl’+V2’ = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(SP’) U,’+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(S’P) u1+ [ l -  (S’S’)] V,‘+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(S’s) v, 
uz = (P’P) U2’- (PP) u1+ (PS) V,’- (PS) v, 

so that (12) gives 

1 - (P’P’) (P’P) - (P’S’) 
(PP’) -(PP) (PS‘)  

- (SP’) (S’P)  1 - (S’S’) 

1 - (P’P‘) - ( P I S )  

- (S’P’) 1 - (SS’) 

(PP‘) [ 1 - (S’S)] (P’P) + (PP’)( P ’ S )  (S’ P) 

c, 1 = -4 2 

+ (PS’)[l- (Pp‘)](SP) + (PS) (S’P) (P’P)  

[I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P’P’)][I - (S’S’)]-  (P’S’)(S’P’) 
(PP) + = A t 2  i 

We may use tbe expansions 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- x  
= ~ + W + ~ Z + W ~ + W ~ + X ~ Z + ~ W ~ Z + . .  

(1-x)(l-w)-yz 

Z 
= 2 + wz + xz + w2z + wxz +yz2 +x22  + * . . 

(1 -x)(l -w) -yz  

to obtain 

-- I - (PP)+ (PP‘ ) [ l  + (P’p‘)+ (p‘S’ ) (SP‘)+  (P’P’)2+ (P’p‘)3 

4, 2 + (P’P‘)(P’S’)(S’P’)+ ...I( PP) 

+ (PP’>[ (P’S)  + (P’S’)(S‘S‘) + (PS)(S’S)~ + (PP‘)Z(PS‘)+.  ..](FP) 

+etc.. . . (13) 

Each term is seen to have a clear association with a wave which has been reflected 
from or refracted through the spherical boundary and suffered multiple reflections 
(with splitting into P and s) inside the sphere. The coefficients b:, may be treated 
in the same way. It is expected that further analysis along the lines of Scholte (1956) 
will confirm that by substituting equation (13) into (2) we get a series of terms which 
correspond to waves arriving by the ray paths indicated above. 

Since we are not primarily concerned with waves which have been refracted into 
the sphere we shall deal only with the first term of this expansion, so that for an incident 
P wave we have the partial solution: 

in the neighbourhood of the surface. 
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Diffraction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby anomalous regions in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe Earth's mantle 305 

1.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe point source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The incident wave will be taken to be that generated by a symmetric, harmonic 

point source of longitudinal waves, a distance ro from the centre of the inclusion 
(see Fig. 2) 

eihR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAihR 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARZ = r2 + roz - 2rr0 cos 8. We have the following expansion (Sommerfeld 1949) 
for $o:  

so that we may identify: 

Using (14) to (16) and (2) and (3) we may write the partial solution: 

i.e. 

where v = n++, ( P P ) ,  E (PP), and the summation over v is for v = 3, 3, *...a. 

2. The transformation of the solution 

2.1 The Watson transformation 

From this point the analysis is similar to that given by Scholte (1956), Duwalo & 
Jacobs (1959), Nussenzveig (1965, 1969) and Ansell (1969). We wish to find the 
diffracted wave at high frequencies and it is found that the series solution (17) converges 
very slowly in this domain. Numerical computations with such series have shown that 
the number of terms which must be retained is (Nussenzveig 1969) 

I - (ha) + c(ha)'I3 

with c > 3 and in our case we anticipate ha ( = 27ca/L where L is the wavelength) 
to be at least of the order of 100. Watson (1918) has given a method of transforming 
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306 J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWoodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. 3. The contour in the complex Y plane of the integration for the Watson 
transformation. 

such series which has been used by all the above authors, and we shall now apply it 
to the present problem. 

The method is based upon the formula zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(5, 

n = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C 

where C is the contour shown in Fig. 3. The summation on the left-hand side is 
recovered as the sum of contributions to the integral at the poles of sec zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnv on the 
positive real axis. It is assumed that f (v) has no poles on this axis. 

Using (1 7) and (1 8) we have: 

We may write 

with 

c, = 
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Di&actioa by anomalous regions in the Earth’s mantle 307 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X,,(q)’, PJ’q)’ are analogously defined, with arguments h‘a, k‘a respectively. 

2 .2  The analytic behaviour zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof I ,  

Y,,(*) as 
functions of v has been discussed by several authors (e.g. Nagase 1954; Nussenzveig 
1965; Ansell 1969) and we shall give a brief summary of their results which are 
applicable when ha zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%- 1, ka %- 1 .  

Firstly X,,(q), Y,,(q) are even functions of v and therefore we shall consider only the 
tight half of the complex v plane. The Debye asymptotic expansions of H,,(q)(ha) show 
that X,,(q) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa (v2 - h2 a’)* when ha $- 1 or v %- 1, provided v is not in the neighbourhood 
of the family of zeros of the Hankel functions and their derivatives. The constant 
of proportionality is different in different regions since the asymptotic expansions 
exhibit Stokes’ phenomenon across the regions in which the zeros of the Hankel 

We define I, as the integrand in (19). The analytic behaviour of 

FIG. 4. The poles and zeros of $:), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(t) in the right-hand half of the complex zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v plane. 
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308 J. H. Woodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
functions occur. These zeros are asymptotically close to the lines I, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1’ (see Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) 
defined by 

Re(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = (v’-h’a’)*-vlog ( - v + (v’-h’a’)*) 
ha ha 

The zeros of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH!”(ha) are in the upper half plane and those of H,,(’)(ha) in the lower 
half plane. Along these lines X!4) has zeros and poles placed alternately, corresponding 
to zeros of d/d(ha) H,,(4)(ha), H!4)(ha) respectively. 

Now we may write: 

c, = f, x:’)’-f’ 

where the functions fr may be evaluated from the determinant (21). We see that each 
of the functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX!’)’, X;’), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf;iy”)’, Y’’) has a region in which it is rapidly oscillatory 
and is slowly varying in the rest of the v plane (see Fig. 5). In regions (9, (6), (7) and 
(8) different asymptotic expansions (involving Airy functions) are valid for H!’)(ha), 
H!’’(h’a), H!’)(ka), H!”(k’a) respectively and these regions are given by: 

Iv-hal = O ( h ~ ) t  

Iv-h’al = O(h’a)+ 

Iv-kal = O(ka)* 

IV -Pk la l  = O(k’a)+. 

If the regions do not overlap C,, for instance, is given by (21 b) in region (5 )  and close 
to the line I, andf, and f4 are slowly varying here. In this case it is clear that the 
equation : 

will have solutions near the zero pole pairs of X!’) since X!’) takes any assigned value 
on some path joining the zero to the pole. Similarly (23) will have solutions in the 
regions of the poles and zeros of X!’)’, Y!’)’, Y;’). Hence there are pole of I, along 
the lines 11, 12‘, Z3, 14’ (see Fig. 5).  It will be shown that the first poles along the line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  
are in region (5 )  and that these poles give the principal contribution to the diffracted 
P-wave. In order that the regions ( 5 )  and (6) should not overlap we demand that 

c, = o  (23) 

2na * 
Iha-h’al B (ha)*, i.e. (d) B ILI 

u-u’ 

where L is the wavelength of the waves outside the sphere. 
C ,  may have other isolated zeros in regions where the Debye asymptotic expansions 

are valid for all the X, Yfunctions in the determinant; we shall not, however, consider 
these poles further. Ansell shows that the isolated poles for the liquid sphere give rise 
to negligible contributions far from the sphere. The first pole on each of the lines 
I,, Iz‘, 13, I,’ is a finite distance from the real v axis. The factor H,“)(ha) in the 
denominator of (20) does not give rise to poles since C,  has the same factor in the 
denominator; similarly Cz does not contribute poles when H,“)(ha), H!’)(h‘a), 
H!’)(k’a) or H!’)(ku) vanish, since for the first the pole is cancelled by the factor 
H!’)(ha) in the numerator (equation (20)) and for the remaining three C, posesses 
corresponding poles. The poles ofIv, the integrand in (19), are precisely those of I/C,. 

- -  
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Diffraction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby anomalous regions in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe Earth’s mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA309 

The asymptotic behaviour of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  as IvI+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco may be determined by means of the 
relations (Nussenzveig 1965): 

when 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 8 < R - - E  and ( V I E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB 1, together with the asymptotic expansions for the 
Hankel functions of large order. This behaviour is fully discussed by Ansell (1969) 
and since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACJC, behaves as an algebraic functions of v, away from the poles, his treat- 
ment needs very little modification. A similar treatment for an incident plane wave 
is given by Nussenzveig (1965). The conclusion is that I ,  is exponentially small as 
IvI 

2 . 3  The distortion of the contour and evaluation of potentials given by poles 

(a) The distortion of the contour. The contour C in Fig. 3 may be distorted as 
shown in Fig. 6 where the sections BC, DE, FG, GG’, G’F’, ED’, C’B are ‘at 
infinity’, and therefore give no contribution to the integral (19). Using the relations: 

co, except in the neighbourhood of the poles. 

Im Y 

I 

FIG. 5. Regions in the complex Y plane. 
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310 J. H. Woodhouse 

we see that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  is an odd function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv so that the integral along B’B also vanishes. 
(19) may now be written: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7T 
.2ni.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. R(pn) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ = 4ihJ(rro) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 

where R(pn) is the residue of  

at the zeros v = pn of Cl in the right half-plane. 

(b) Locution of poles. From the determinant (21) we can obtain 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr” 

I I 
I 

FIG. 6. The deformed contour for the Watson transformation. Isolated poles are 
representative of such poles which may exist but have not been located in the text. 
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Diffraction by anomalous regions in the Earth’s mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA311 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
with 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p-$. 

Hence 
- (XY(”+f,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH!”(ha) 

( P P ) ,  = 
(X!”+f,)  * H!”(ha) 

with 

-f4 f = - - - .  
,- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ; 

We intend to find the zeros of x,,(”+f, by using the fact thatf, is slowly varying 
and of the same order of magnitude as v. This is not true if regions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 )  and (6) overlap 
(see Fig. 5 and Section 2 . 2 )  so that we need the condition (24). It is interesting to 
note that if p‘ = p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjl’ = thenf, = -X!”’ and 

( P P ) ,  = - 

A U H , ! ~ ) ’ ( ~ U )  - h‘~H,’~)‘(h‘u) 

H/’)(ha)  H,,@)(h’a) 

haH ,,(‘)‘(ha) ~ ’ U H ! ~ ) ‘  (Ma) 
H / ’) (ha) H!2)(ha) 

- 

H!’)(ha) 

H,.(’)(hu)’ 
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312 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. H. Woodhouse 

The zeros of the denominator here, which give rise to the poles of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  have been 
thoroughly discussed by Streifer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Kodis (1963) in connexion with diffraction by a 
dielectric cylinder, and they include the case when ha, h'a are almost equal. It is clear 
that in this case the numerator becomes small and the denominator is proportional 
to the Wronskian, which has no zeros, so that there will be no diffracted wave when 
the two media are identical. The precise behaviour of the poles when ha -+ h'a is a 
matter of some difficulty, and Streifer and Kodis give a method for their calculation 
for real values of ha, h'a. On the other hand, for the case where (24) holds, we shall 
find that the diffracted wave is independent of the properties of the inner medium at 
sufficiently high frequencies. 

Now from (27) and (28): 

where 

(30) 
- 4i 

nhaH!')'(ha)a/av [ (ha/",) H! ')'(ha) +H/')(ha)] 
- - 

where we have used the value of the Wronskian: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x[H! ' ) ' (x)  H!z)(x)-H!')(x) H,,(2)'(x)] = 4i/a 

andalso that ( X ~ l ) + f v ) ~ v = p n  = 0. 
The poles with Iv-ha1 9 (ha)* may be found by the methods of Scholte (1956) 

and Ansell (1969) but these poles can be shown to give a negligible contribution to the 
field in the shadow zone and we shall not evaluate them here. The main contribution 
will arise from the poles in the region Iv-ha1 = O(ha)*. Using the asymptotic 
approximations valid in this region (Abramowitz & Stegun 1965): 

we may find approximations to the positions of the poles v, near ha. (While p .  can 
be any pole of I, in the right half-plane we reserve the name zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv, for the poles along the 
line I , ;  see Fig. 5).  

We have (x / f , ,>H!t~(x)+Hl t ) (x)  = 0 where x = ha; i.e. 

+2e-'"l3 (;)'Ai (e2"I3 (t)' (v,-x)) = O(x-'). 
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Diffraction by anomalous regions in the Earth's mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA313 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Since we seek poles with Iv,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ha1 = O(ha)* and since f v ,  v* are slowly varying functions 
in the neighbourhood of v = ha we have: 

Ai'(q,(X))+XAi(q,(x)) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo(x-+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX) 

where 

and v, = ~ + e - ~ ~ ~ / ~  (x/2)*qn(X)[1 +O(x-*)]. 

4 J X )  is defined as the nth solution of 

Ai'(4) + XAi(q)  = 0 

and for large X it has been shown that (Keller, Rubinow & Goldstein 1963): 

so that 

and q n ( a )  is the nth zero of Ai(q).  

(c) Evaluation of residues. Consider the form 

qn(X) = q n ( a ) - 1 / X + O ( X - 2 )  

v, = x+e-2"i/3(x/2)*(qn(co)- I / X )  

where 

Qvn = cAi'(b) - - - - b -  + - ( (a"Y (:) I i: i f l ) l v = v n  

where we have used (33) and the Airy equation: 

With 
Aiff(b)-bAi(b) = 0. 

we have 

To derive this we have used the fact that f v  = O(v) and it will be seen that the properties 
of the inner medium enter only into the variable X of this expression. It will also be 

5 
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314 J. H. Woodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
seen that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(x*) so that for very high frequencies X may be replaced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 and 
the properties of the inner medium disappear completely from the solution. From (30) 
we have 

The residues at poles with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIv, - XI % x* may be calculated in a similar way to those 
calculated above by using the asymptotic approximations to the Hankel functions 
valid in the neighbourhood of these poles. We quote the result from Ansell (1969), 
which is also true for our present problem: 

It will be shown that these poles give a negligible contribution to the potential in the 
shadow region. 

Using equation (31) and the relation (Olver 1954) 

Ai’(qn(rn)) - (- I)”-’ n-* - (n-3)  “2“ I’ 
it is clear that both (34) and (35) are slowly varying as n increases (i.e. as Imv, and 
1v.l increase). For small values of n, numerical values are given in Table 1 (Abramowitz 
& Stegun 1965). 

(d )  Evaluation ofpotenrial. Using the expansions given by Ansell (1969): 

together with expressions (25), (26) and (29), we find that: 

x exp (i([h2 roz -pn2]*+ [hz rz  -pnZ]~+pn[e-cos-’(p,/hro)-cos-’(pn/hr))} 

Table 1 

Zeros of the Airy function and its derivative at its zeros. qn(0) is included to show the 
range of variation of qn(X) as Xpasses from 0 to 00. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n q.(Q,) A i ’ ( d  Q, )) 4 m  
1 -2.3381 1 0.70121 -1.01879 
2 - 4.08795 -0.8031 1 - 3.24820 
3 -2.52056 0.86520 -4.82010 
4 -6.78671 -0.91085 -6.16331 
5 -7.94413 0.94734 -7.37218 
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As Im(p,) increases with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn the successive terms decrease exponentially provided that 

For poles near v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx this condition is precisely the condition that the field point should 
lie inside the shadow zone (see Fig. 2) so that the potential 4 is conveniently expressed 
as a rapidly decreasing series of residues in this zone. We may now use (32) and (34) 
to write: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ha * U 
4 = C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) exp(-Sni/12) ( ) * exp (ih [sl + s2 + ~ ( 8  -O0) ] )  

n = l  2nrr0 s1 s2 h3 sin 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(1) ha + ( - q n ( a ) +  y)] 1 

[I +O(x-*)] (36) 

(1 - 9) [Ai’(qn(X))]2 

with 
8, = COS - 1 (air) + COS- 1 (a/ro), 

s1 = (rZ-aa2)*, 

sz = (ro2-a2)*. 

This result is very similar to that given by Ansell for the liquid sphere, the only 
difference being in the expression for X. When (ha)* 9 1, X becomes large and the 
results for liquid and solid sphere become identical. 

It can be shown (Waechter 1966) that 

p,-+(-cose) 2 m 
= - c { ~ , - , ( e + 2 m A ) - ~ , _ ~ ( 2 A - e + 2 m ~ ) }  (37) 

cos nv 7I m = O  

Ev-+ is the Clemmow function (Clemmow 1960) given by 

(v-+)! eive i eie 
E,-,(e) = ~ ( 4 2 )  ein/4 - - F (+, +; v +  1; -) v !  j s i n 8  2 sin 8 

and which satisfies: 

E,_+(O+rnn) = imei’mvEv-,(8) 

Now E,-+(8)  is asymptotically given by 
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and since this form is valid for any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 (sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# 0) the please of the exponential shows 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,-+(8) is associated with a wave travelling round the sphere and passing 
repeatedly through its poles. Equation (37) has an interpretation as a sum of contribu- 
tions corresponding to waves which have circled the sphere m times in one direction 
or the other. The asymptotic expansion (25) is the same as the asymptotic result for 
(2/7c) E,-+(e)  when 0 < 8 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, so that (36) represents the contribution to q5 from the 
shortest diffracted path. This is in keeping with our aim, which is to calculate the 
diffracted wave produced by the discontinuity Q1 PI (Fig. 2) and not the waves which 
depend upon the complete geometry of the sphere. 

The poles of I, in the lower half-plane (Fig. 5) may be shown to give rise to creeping 
waves travelling backwards from the point of incidence on the sphere, along paths 
such as Q Qz Q1 PI P ,  P (Fig. 2). They suffer great attenuation as they traverse an 
angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8+8, on the surface of the sphere and give a negligible contribution to the 
diffracted wave. They are transmitted, along the circular part of their path, with the 
wave speeds of the inner material and suffer further attenuation if this material is 
dissipative. 

The contribution to the P-wave arising from poles in the neighbourhood of ka may 
also be evaluated and it is found that it corresponds to a wave which has traversed 
the spherical surface with speed close to the S-wave velocity, p, of the outer medium. 
It will have a later arrival time and will suffer slightly greater attenuation than the 
wave already calculated. 

By differentiating (36) and retaining only the first term of the expansion, we find 
that u is directed principally along the ray and that its component in this direction is 

where 

a2 

rro s t  s2 sin 8 
F =  ( (39) 

We shall see in the next section that the factor F accounts for the geometrical spreading 
of the rays. 

3. Simple ray theory 

In the previous section we have calculated the dominant term contributing to the 
diffracted field in the shadow of a spherical obstacle in a uniform elastic medium. 
We shall now find expressions for the amplitudes of waves which have been diffracted 
by an obstacle within an otherwise spherically symmetric Earth model. With the 
assumption that the P-wave velocity varies only radially outside the obstacle, simple 
ray theory (Jeffreys 1959; Bullen 1963) may be applied. The dominant contribution 
to the P-wave can be evaluated by imposing the condition that energy is conserved 
within a ray tube, a condition which has been given a mathematical foundation by 
Karal & Keller (1959). They also show that the principal displacement in the P-wave 
is directed along the ray, which we have already shown to be the case for the diffracted 
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wave calculated in Section 2. The ray paths are minimum time paths for a disturbance 
travelling with the local P-wave speed. Ray theory does not apply directly to the 
diffracted wave since neighbouring ray paths at the receiver correspond to the same 
ray path at the source, and because energy is radiated at each point by the creeping 
wave as it travels around the obstacle. Ray theory can, however, be applied along 
paths to and from the obstacle, and with the assumption that diffraction is a local 
phenomenon (Levy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Keller 1959), we may use the solution above to find the decay 
of the creeping wave. 

3.1 The geometrical coeficients for the canonical problem 
Following an approach similar to that of Levy & Keller (1959), we expect the 

following coefficient, accounting for the geometrical spreading of ray tubes, to appear 
in the expression for the diffracted wave (see Fig. 2): 

doQ is an element of solid angle, measured at Q, about the line QQ,. 
doQlis an element of area of the wavefront at Q1 (i.e. perpendicular to QQ,), 

dL,, is a line element at Q1 perpendicular to the plane of the rays. 
dLp,is a line element at P, perpendicular to the plane of the rays such that the 

endpoints of dLQ, and dL,, are connected by rays. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dlp,  is a line element at P, lying within the surface and also within the plane of the 

rays. 
dMpis a line element at P lying within the plane of the rays and also within the 

wavefront, such that the endpoints of dl,, and dM, are connected by rays. 
dLpis a line element at P, perpendicular to the plane of the rays, such that the 

endpoints of dLp, and dLp are connected by rays. 

subtending solid angle dmQ at Q. 

We have : 

dLp asiny, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI=- 
dLp r sine 

Using 

we find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 1  sin y, = - 
r0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a2 

rr,, s1 s2 sin 19 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF =  ( 
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This is precisely the geometrical coefficient F appearing in equation (38) and defined 
in (39). The remaining terms in (38) give the decay along the path zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ ,  P1 (Fig. 2) not 
accounted for by the spreading of the surface rays. From simple ray theory we expect 
that in more complicated situations we may replace F by the corresponding factor, 
accounting for geometrical spreading, together with a factor (pQ ap /pp  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaP)* to account 
for differing properties at P and Q. It is also possible to account for a non-circular 
diffraction path and for differing properties along such a path by the methods of 
Levy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Keller (1959). 

3 .2  Ray theory for a spherically symmetric Earth model 

We now consider the problem of the diffraction of body waves by a spherical 
inclusion within an otherwise spherically symmetric Earth. For simplicity we deal 
only with a ray whose path lies in a plane with the centre of the inclusion. 

For the geometry of the ray paths away from the inclusion we may use the methods 
of simple ray theory (Jeffreys 1959; Bullen 1963). A ray emanating from Q (see Fig. 7) 
is observed at P after traversing the path Q Q ,  P ,  P. 0 is the centre of the Earth, C the 
centre of the inclusion and r , ,  rz are the lengths OQ,, OP,. We do not, for the moment, 
assume symmetry of the ray path. The radius of the Earth is R. The tangent to the 
surface of the obstacle at Q ,  is also tangent to the ray and meets QO in N,. The line 
N i  C meets the tangent to the ray at P1 in X. The rays tangential to the sphere at Q ,  
appear to be diverging from N ,  and, assuming that the Earth is uniform in properties 
along the path Q ,  P,,  those at P ,  appear to be converging to X. 

Now, by reciprocity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
doQ - doQ~ 

daQ~ daQ 

FIG. 7. Geometrical constructions associated with a diffracted ray in the mantle. 
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and therefore: 

sin i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R2 sin el sin A1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ dAl 

Also 

di, dLP, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, sin b -- 
dLp, sin (y+yl)  ’ =I ’ dLp - R sin(6- A,) ’ 
dLQi - s i n y l  

Some rather involved geometry show that: 

dLp, 
dL, ’ dLp, 

dLQ, - a sin y1 sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy2 sin i2 
- -- 

R sin A2 sin 6 

so that 

a sin i, sin i2 sin y, sin y2 di, di2 t 
R2 sin el sine, sin At sin A, sin6 ’ - dAl -I dA, 

F = - - (  

and y y, are given by: 

rl sin A1 1, sin A, 
a sin ( i l+Al)  ’ a sin (i2+A2) ’ 

t any ,= - .  tany ,=- .  

If C coincides with 0 we have a symmetrical situation and F reduces to: 

The geometry for this case is shown in Fig. 8. 

FIG. 8. A specialized case of an inclusion in the mantle, used as a model to explain 
the observations of the Bukhara explosioa. 
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320 J. H. Woodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We now require expressions for dil/ddl etc. in terms of travel times. We have 

that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr sin i/u is constant along the ray and equal to d T/d A for the ray (i is the angle, at 
any point, between the ray and the radius of the Earth at the point and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALY is the local 
P-wave velocity). We find that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-5- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA" [ -- d2 Tdl l  ] when cosi, # 0 
di, 
dAl r,cosi, dA2 A = A ~  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, is the velocity at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ1 and Tdl is the travel time for an earthquake occuring 
at depth d,, the depth of Q1 beneath the Earth's surface. Similarly 

di2 a2 d2 Tdt when cos i2 # 0. 
= [ dA2 I A = A ~  

These formulae are not appropriate for the case shown in Fig. 8 where the centre of 
curvature of the discontinuity Q1 P, coincides with the centre of the Earth; in this 
case i, = i, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 2  and the above formulae are replaced by: 

The value of IUol is now given by taking the modulus of equation (38) where F is now 
given by (40) or (41). 

We may also calculate the amplitude I U1l of a ray traversing the path from Q to P 
in the absence of the inclusion. This is given by: 

1 uOcose d2 To + 
I U , l = - .  ~ - 

sin e /R3sinA ( dA2 )I 
where u0 is the P-wave velocity at Q and the angle e is as shown in Fig. 8. 

do not take into account dissipation in the mantle 
or inside the inclusion and to allow for such dissipation we assume average values of 
the quality factor, Qo in the upper mantle (outside the inclusion) and Q inside the 
inclusion. If the amplitudes, modified by dissipation, are denoted by IUo'l, IU1'l we 
may estimate: 

These results for lUol and 

Here t ,  is the combined travel time for the paths QS, TP 
t2 is the travel time for the path ST (Fig. 8) 
t3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the combined travel time for the paths QQ1, P1 P 
t4 is the travel time for the diffracted path Q1 PI 
T is the period of the wave under consideration. 

Thus 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= t3 + t4 - t ,  - 1,  is the time delay of the diffracted wave with respect to the 
direct wave. Therefore 

- 1 1  = - + --log"m. lull zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 Wo'l + - T 

Q Qo Ant4 Iui I AQo t4 

where A is defined by 

and depends upon the shape of the inclusion. 

3.3 Some calculations for the Bukhara explosion 

We now examine the possibility that certain aspects of complexity in seismic 
records may be produced by diffraction at a discontinuity in the Earth's mantle. The 
complexity of a signal received from an explosion near Bukhara, U.S.S.R., has been 
discussed by Douglas et al. (1971) in which they postulate that the direct wave has 
been attenuated in passing through a dissipative region. In this case the diffracted 
wave, travelling by a different path, may be comparable in amplitude with the direct 
wave. The arrival zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,, discussed in the paper appears to come from a distance 22" 
and with a time delay of some 4 s relative to the direct P-wave, while the distance of 
the source is 27.4". 

A possible model for these observations is that shown in Fig. 8. We assume that 
there exists an inclusion whose upper surface has centre of curvature at the centre of the 
Earth and also that the inclusion is dissipative. We examine the possibility that the 
arrival which appears to come from 22" is a diffracted arrival from the upper surface 
of the inclusion and that the direct wave has been attenuated in passing through the 
inclusion. The model is somewhat arbitrary but we wish to show that it provides a 
possible explanation of the observations. We do not allow for reflection and refraction 
coefficients at S and T; nor do we take into account the crustal structure at P and Q. 

The travel times used in this section are those given by Herrin (1968). The depth 
of the point Q1 (Fig. 8) is determined by: 

and using Herrin's velocity model we find that 

dl = 535 km. 

We need the following derivatives: 

D3 = - ",kr.127.p * -232.5 s. 
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and also take: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. H. Woodhouse 

ul zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 9.836kms-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
uo = 8 kms-' 

R = 6371 km. 

so that using the results of Section 3.2, we may write: 

lull - 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU o l  
-- 

where y is now measured in degrees. A set of values of IUII/IUol for different values of 
the period, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, is shown in Table 2; we see for instance, from the table that a wave of 
period 1 s is diminished in amplitude by a factor 6.2 in comparison with the wave we 
expect to observe at distance 27.4". The derivatives used above are liable to consider- 
able inaccuracy, especially zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD,, and the calculations are therefore rather approximate 
The time delay is approximately 4.6 s. 

Now using (42) we may estimate the values of Q needed inside the inclusion in 
order that the direct and diffracted waves should be approximately equal in amplitude 
(i.e. that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlUo'l N lUl'l). The calculated values of Q when Qo = 450 and A = 1, 2, 3 
are given in Table 2 and these values will be increased if there is appreciable loss by 
reflection as the transmitted wave enters and leaves the inclusion. If the surface of the 
inclusion continues to Y and 2 (Fig. 8) it may be estimated that A N 2-9. 

Table 2 

Values of IUII/IUol and values of Q needed to equate the amplitudes of transmitted and 
diffracted waves for a range of frequencies. Q,,  Q,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ3 were calculated with A = 1,2,3 

respectively and with Q, = 450. 

lull 
T(s) TGJ 
0.20 , 43-0 
0.40 16.7 
0.60 10-5 
0.80 7.72 
1.00 6.21 
1.20 5.24 
1.40 4-57 
1.60 4.08 
1.80 3.71 
2.00 3.41 
2.20 3-16 
2.40 2.96 
2-60 2.79 
2.80 2.64 
3.00 2.52 

Qi 

149 
113 
95.8 
85.4 
78-1 
72.9 
68.9 
65.7 
63.1 
61.1 
59.5 
58.0 
56.9 
55.9 
55.0 

Qz Q3 

224 269 
181 226 
158 202 
144 186 
133 174 
125 165 
120 158 
115 153 
111 148 
108 144 
105 141 
103 138 
101 136 
99.6 134 
98.0 133 
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