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The paper reports studies, both experimental and using numerical simulation, of
the Fresnel diffraction by recently introduced fractal zone plates associated with
triadic and quintic Cantor sets. The evolution of the intensity patterns at planes
transversal to the propagation direction is presented. A series of conventional and
doughnut-like foci are observed around the principal focus. The position, depth
and size of the foci depend on similarity dimensions and the fractal level of
the encoded fractal structures, both directly related to the number of the
corresponding Fresnel zones.

1. Introduction

After the introduction by Mandelbrot [1] two decades ago of the concept of fractal

geometry, the research on light interaction with fractals objects and the discovery of

fractal features of electromagnetic fields resulted in the development of fractal

electrodynamics and fractal optics [2–4]. Therefore it is useful to analyse the

diffraction in these types of fractal gratings. Theoretical and experimental research

on Fraunhofer and Fresnel diffraction by deterministic and random fractals has been

done [5–11]. Moreover, it has been shown that some optical fields have an intrinsic

fractal structure [12, 13]. In previous research the authors [9] studied diffraction by

particular gratings that exhibit a fractal structure in the domain of positional

coordinates. Nevertheless, the fractal behaviour can be observed with respect to

other parameters such as the square of the positional coordinates. This domain is of

interest in optics since it is related to the Fresnel zone domain.
Recently, fractal zone plates (ZPs) with a fractal structure along the square of the

transverse coordinates have been introduced [14–18]. These zone plates differ from

conventional Fresnel zone plates that have a periodic structure along the square of

the transverse coordinates. The focusing properties of the two-dimensional fractal

ZPs for the case of triadic Cantor set modulation have been analytically studied [15].
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In particular it has been shown, theoretically, that the intensity distribution along the
optical axis as a function of Fresnel number for the fractal ZP, exhibits fractal
behaviour. In a previous paper [17], the authors implemented for the first time,
triadic Cantor ZPs in a liquid-crystal display. The predicted focusing properties were
observed.

In this paper we consider not only the intensity distribution along the optical
axis, but we analyse as well the whole observation plane and the evolution of the
diffraction patterns as a function of the longitudinal coordinate z. In this study
we have discovered a peculiar property of the Cantor ZPs to focus light in the form
of doughnut-like structures.

This paper is organized as follows. First we discuss the Fresnel diffraction by
circular zone plates and the structure of particular class of fractal ZPs, the so-called
Cantor ZPs. In sections 3 and 4 we analyse the evolution of the intensity distribution
of the field diffracted by the triadic and quintic Cantor ZPs and the corresponding
Fresnel ZPs, considering a series of variable values for the propagation distance,
up to the position at which the far field operates In section 5 the previous
results obtained by numerical simulation are verified experimentally by encoding
the Cantor ZP onto an amplitude transmittance film. Finally, we discuss the findings
and present conclusions in section 6.

2. Background

Let us consider the diffraction of a monochromatic plane wave by a rotationally
symmetric zone plate with amplitude transmittance p(r0). The intensity distribution
of the diffraction pattern at the parallel plane I(r, z) situated at a distance z from the
zone plate plane and considering the Fresnel approximation is given by

I r, zð Þ ¼
2�

�z

� �2 ða
0

p r0ð Þ exp i
�

�z
r20

� �
J0

2�rr0
�z

� �
r0dr0

����
����
2

, ð1Þ

where a is the radius of the ZP pupil function and � is the wavelength of the
incoming light. The purpose of this paper is to study the evolution of diffraction
intensity patterns I(r, z) for the case of fractal ZPs as a function of the arbitrary
propagation distance z.

In particular, the intensity distribution along the z axis (r¼ 0) is described as

I 0, zð Þ ¼
2�

�z

� �2 ða
0

p r0ð Þ exp i
�

�z
r20

� �
r0dr0

����
����
2

: ð2Þ

For convenience we introduce new variables (the same as in [15]): s¼ (r0/a)
2
� 0.5;

q(s)¼ p(r0) and u¼ a2/2�z, we obtain:

I 0, uð Þ ¼ 4�2u2
ð0:5
�0:5

q sð Þ exp i2�usð Þds

����
����
2

: ð3Þ

For the particular fractal zone plate generated as a Cantor fractal structure and
defined in [14–18], the associated function q(s) exhibits fractal behaviour. In contrast,
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q(s) is a periodic function for the case of the conventional Fresnel zone plate. For the
fractal ZP from the family of the Cantor sets considered in this paper, q(s) is
generated applying an iterative procedure by dividing the initial segment into the
2N� 1 segments and eliminating the segments in the even positions. Then, after
a number S of iterations, we obtain a modulated Fresnel ZP exhibiting fractal
structure. The number S defines the so called fractal level, giving an idea of
the complexity of the fractal object. The number of the Fresnel zones of the
corresponding conventional Fresnel ZP is (2N� 1)S.

In this paper, we study the diffraction by the triadic (N¼ 2) and quintic (N¼ 3)
Cantor ZPs of levels S¼ 2 and S¼ 3. The fractal self-similarity dimensions of triadic
and quintic Cantor sets, used for the Cantor ZP construction, are readily calculated
by applying the standard definition: DS¼ logN/log (1/R), where N is the order of
the fractal (the number of segments is 2N� 1) and R the reduction factor, then we
obtain: log 2/log 3 and log 3/log 5, correspondingly [20].

The position of the principal focus is determined by the radius of the first Fresnel
zone of the ZP. Therefore, to preserve the position of the principal focus for zone
plates of various fractal level and dimension, we have to vary the outer radius aS,N of
the ZP pupil function according to the type of zone plate. In order to compare the
numerical simulation and our experimental results we have chosen a radius for the
first Fresnel zone of a0¼ 0.96mm that corresponds to focal length of f¼ (a0)

2/
�¼ 1.45m. Consequently, the outer radius aS,N takes the following values for the
fractal and Fresnel zone plates (figure 1):

Triadic Cantor ZP of level S¼ 2 and Fresnel ZP with 9 zones, a2,2¼ 2.88mm.
Triadic Cantor ZP of level S¼ 3 and Fresnel ZP with 27 zones, a3,2¼ 4.99mm.
Quintic Cantor ZP of level S¼ 2 and Fresnel ZP with 25 zones, a2,3¼ 4.8mm.

Quintic Cantor ZP of level S¼ 3 and Fresnel ZP with 125 zones, a3,3¼ 10.73mm.

3. Axial intensity distribution

In order to study the evolution of the diffracted field we are interested in defining the
axial intensity distribution. For the case of the Cantor ZPs, the intensity distribution
along the optical axis (r¼ 0) can be written [15] as a function of the normalized
variable u as

ICZP 0, u,N,Sð Þ ¼ 4 sin2
�u

2N� 1ð Þ
S

� �YS
k¼1

sin2 2�Nu= 2N� 1ð Þ
k

� 	
sin2 2�u= 2N� 1ð Þ

k
� 	 , ð4Þ

where S is the level of the fractal structure (number of iterations used to generate
q(s)) and N characterizes the different Cantor sets. It is easy to see that
ICZP (0, u,N,S ) is a periodic function of u with period (2N� 1)S. The principal
maximum inside the period (we consider u from the interval [0, (2N� 1)S]) is located
at the position u¼ (2N� 1)S/2. Meanwhile as the fractal level increases, new hole
points (with zero intensity at r¼ 0) and secondary maxima of the intensity appear
along the optical axis in a particular sequence determined by the self-similarity
dimensions.

Diffraction by Cantor fractal zone plates 2773
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For the case of the corresponding Fresnel zone plate, the intensity distribution as
a function of the Fresnel numbers can be written in the form:

IFZP 0, u,N,Sð Þ ¼
sin2 2�u= 2N� 1ð Þ

S

 �

M

 �

cos2 �u= 2N� 1ð Þ
S


 � , ð5Þ

where M¼ integer((2N� 1)S/2)þ 1. Note that IFZP (0, u,N,S ) is also a periodic
function of u. Its period and position of the principal maximum remain the

same as for ICZP (0, u,N,S ). The focused peaks form at positions corresponding
to z¼ f, f/3, f/5 etc.

Figure 1. Triadic Cantor ZP of level S¼ 3 (a) and the associated Fresnel ZP (b). Quintic
Cantor ZP of level S¼ 2 (c) and the associated Fresnel ZP (d). as is the pupil radius
corresponding to the fractal ZP of level S.
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For practical applications, we note that the focusing properties (focal lengths,

intensities, depth and size of the focused spots) are the main parameters for zone

plate characterization.
Based on equations (4) and (5), but representing the intensity distributions

ICZP (0, z,N,S ) and IFZP (0, z,N,S ) as a function of propagation distance z, we

have performed a comparative analysis of focus properties of the triadic (N¼ 2) and

quintic (N¼ 3) Cantor ZPs of different levels, and the corresponding Fresnel ZPs.

For practical reasons we limit ourselves to a region around the principal focus

since the regions around f/3, f/5 demonstrate similar behaviour but with some

scaling.
In figure 2 the intensity distribution along the optical axis for triadic Cantor ZPs

ICZP (0, z, 2,S ) (b) and the associated Fresnel ZPs IFZP (0, z, 2,S ) (a) are shown.

Figure 2(a) shows that, as the aperture of the ZP increases, the focus sharpens along

the axial direction. Figure 2(b) shows two effects. First as the order of the fractal

increases, the number of focus spots increases. Second, because the aperture

increases as the fractal order increases, each of these peaks becomes more sharply

focused along the axial direction.
The arrows in figure 2(b) indicate the distances of experimentally observed

secondary foci and hole points (zero intensity) for the triadic Cantor ZP of level 3,

which will be discussed in section 5.
Figure 3 shows analogous results for the quintic Cantor and Fresnel ZPs where

N¼ 3. In both cases, the dotted curves correspond to S¼ 2 and the continuous

curves correspond to S¼ 3. We notice various facts: figure 3(a) again shows that,

as the aperture of the ZP increases, the focus sharpens along the axial direction.

Figure 3(b) shows two effects as well. First as the order of the fractal increases, the

number of focus spots increases. Second, because the aperture increases as the fractal

order increases, each of these peaks becomes more sharply focused along the axial

direction. By comparing figures 2(b) and 3(b), we see that the number of focus spots

increases as the S parameter increases. The axial intensity distributions correspond-

ing to the ZPs of low level involve the curves of the upper ones. As the fractal level

increases, the number of focal points increases and the number of secondary foci and

hole points at the optical axis increases as well. We also note that the depth of focus

along the axial direction decreases as the fractal level increases for all of the principal

and secondary foci. This occurs because the aperture size increases as the fractal

order increases as discussed earlier.
We also note that the Cantor and Fresnel ZPs defined by the same N and S have

almost the same depth of the principal focus. The depth decreases with increasing

N or S; this is equivalent to increasing the number of Fresnel zones. Then, we

conclude that the depth of the principal focus depends on the number of Fresnel

zones (by parameter a) of the ZPs. Thus, for example, the depth of the principal

focus of the triadic Cantor ZP of level 3 – the number of corresponding Fresnel

zones is 27 – (see continuous curve in figure 2b) is almost the same as one of the

principal focus of the quintic Cantor ZP of level 2 – the number of corresponding

Fresnel zones is 25 – (see dotted curve in figure 3b) indicating that some similarities

are obtained with various types of fractal ZPs.

Diffraction by Cantor fractal zone plates 2775
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4. Structure of diffraction patterns for Cantor zone plates: numerical study

Let us now consider the evolution of the intensity profiles, taken along the diameter

(r-coordinate), of the optical field diffracted by the Cantor and corresponding

Fresnel ZPs with the distance z. For that we utilize the so-called propagation tree

or bifurcation levels, from which it is possible to observe if there is a hierarchical

Figure 2. Intensity distribution along the z axis for (a) Fresnel ZPs (N¼ 2): S¼ 2 (- - - - -)
and S¼ 3 (—), (b) triadic Cantor ZPs (N¼ 2): S¼ 2 (- - - - -) and S¼ 3 (—). Note: Arrows
indicate hole points and foci experimentally observed.
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structure on the propagation law associated to the fractal tree. The diffraction

patterns have been obtained by applying an algorithm developed by us for the

Fresnel regime and based upon the convolution theorem [22, 23].
In figures 4 and 5 we compare the evolution of the intensity profiles within a

range of 3m of propagation and 1 cm of transversal section. The intensity is

represented in a grey scale, as a function of the distance z for the triadic Cantor

Figure 3. Intensity distribution along the z-axis (a) Fresnel ZPs [N¼ 3]: S¼ 2 (- - - - -) and
S¼ 3 (—) (b) quintic Cantor Fractal ZPs [N¼ 3]: S¼ 2 (- - - - -) and S¼ 3 (—).

Diffraction by Cantor fractal zone plates 2777
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ZP ICZP (r, z, 2, 3) of level 3 (figure 4a), the quintic Cantor ZP ICZP (r, z, 3, 2) of

level 2 (figure 5a) and the associated Fresnel zone plates IFZP (r, z, 2, 3) (figure 4b)

and IFZP (r, z, 3, 2) (figure 5b), respectively. In each case the intensity distributions

were calculated for the diffraction of the plane monochromatic wave (�¼ 632.8 nm)

and zone plates with pupil radii that correspond to our experimental conditions as

discussed in section 2.
Note that for the conventional Fresnel ZPs (figures 4b and 5b) both

diffraction trees have self-affine structure related to the existence of several focal

points. Thus we can distinguish three regions located around the focal points

z¼ f¼ 1.45m, z¼ f/3 and z¼ f/5 which are similar.

Figure 4. Evolution of the intensity profiles corresponding to triadic Cantor ZP [N¼ 2,
S¼ 3] (a), and associated Fresnel ZP (b) obtained by means of numerical simulation.

Figure 5. Evolution of the intensity profiles corresponding to quintic Cantor ZP [N¼ 3,
S¼ 2] (a), and associated Fresnel ZP (b) obtained by means of numerical simulation.
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The intensity distributions for the fractal ZPs in figures 4(a) and 5(a) exhibit the

complex structure inside each of these regions, defining a chain-like structure which

can be better seen around the principal focus. In addition to the secondary fractal

foci, doughnut-like structures with zero intensity at the optical axis are observed

(see also figure 2). The doughnut-like structures are seen at the corresponding

distances in the form of a radial maximum concentrated around the hole.
In figure 6, the diffraction trees for the triadic Cantor ZPs of different levels

S¼ 1, figure 6(a), S¼ 2 figure 6(b), S¼ 3 figure 6(c) are displayed. We stress that the

depth of the foci decrease as the level S increases, since more Fresnel zones

participate in their formation, so that the chain-like structure is less defined for

low fractal level.

5. Experimental results

For experimental verification of the previous numerically simulated results we have

assembled a set-up as shown in figure 7. A collimated beam illuminates the object

plane where we located a fractal ZP with the amplitude transmittance of the triadic

Cantor ZP of level 3 and the quintic Cantor ZP of level 2, generated on the PC

(256� 256 pixels) and further printed on the corresponding transparency with

resolution 600 dpi. The diameter of the pupil function is 1 cm. The collimated

coherent monochromatic light interacts with the fractal ZP and the diffracted

pattern is registered by a CCD camera at the different propagation distances.

Figure 6. Evolution of the intensity profiles corresponding to triadic Cantor ZPs [N¼ 2] for
S¼ 1 (a), S¼ 2 (b), and S¼ 3 (c) obtained by means of numerical simulation.

Diffraction by Cantor fractal zone plates 2779
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In our experiments we use He–Ne laser (�¼ 632.8 nm) with 10mW of output power,
and a Hamamatsu ORCA-285 CCD camera.

We have studied the Fresnel diffraction by the Cantor ZPs in the region around
the principal focus (section of 1 cm). By displacing the CCD camera along the optical
axis in the region from 0.52m to 2m with a step of 1 cm, we obtain a sequence of 148
diffraction patterns for both the considered cases of triadic Cantor ZP [N¼ 2, S¼ 3]
and quintic Cantor ZP [N¼ 3, S¼ 2]. We perform the diffraction tree so that from
every diffraction pattern we select a section fitting the length of the diameter of the
ZP, so that the thickness of each section corresponds to one pixel of the CCD camera
(6 mm in the actual case). Then, placing them consecutively in growing order of z, we
build up the image representing a part of the diffraction tree of triadic Cantor ZP
(figure 8a) and quintic Cantor ZP (figure 9a), respectively. In figures 8(b) and 9(b)
the corresponding numerical simulation of the diffraction trees of similar resolution
are shown. The grey scale indicates the intensity levels. The diffraction trees
constructed from the experimental data (see figures 8a and 9a), depict the main

Figure 7. Experimental set up, where A is an attenuator, SF–spatial filter, CL–collimating
lens ( f¼ 1m), OP is the object plane, z variable distance of free propagation, and CCD
camera.

Figure 8. The comparison of the diffraction trees for triadic Cantor ZPs [S¼ 3, N¼ 2]
obtained experimentally (a) and by means of numerical simulation (b). Notice that experi-
mental main focus is saturated in order to enhance the contributions of the secondary foci.

2780 J. A. Rodrigo et al.
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features of the diffraction tree calculated numerically. Experimental results are in
reasonable agreement with theory.

Considering again the results in figure 2(b), one notices that secondary foci
around the principal one (indicated by the arrows) have been observed in our
experiments. Some of the corresponding images of the diffraction patterns on
triadic Cantor ZP, are displayed identically as they were recorded in the
experiments (transverse to the propagation plane) in figure 10(b), (c), (e), (g)
and (i), respectively.

The experimental diffraction patterns corresponding to the doughnut-like
intensity distribution are shown in figure 10(a), (d), (f ) and (h). The foci and
doughnut-like structures are also observed for the quintic Cantor ZP.

The size of the secondary focus spot and the radius of the doughnut-like focus and
their depth depend on their position z. The size and the depth of secondary foci and
doughnut-like structures located after the principal one are more extended than
their symmetrical counterparts located in front of it. The minimal diameter
(the distance between two intensity peaks) of the doughnut-like structure observed
in the experiment is about 0.32mm. It is located at the distance z¼ 1.24m
(see figure 10d).

6. Discussion and conclusions

The properties of standard Fresnel zone plates are very well known now, having
been studied for several decades [21]. Nevertheless, the study of modified Fresnel
zone plates obtained by including in their structure fractal behaviour is not yet well
covered in the literature nor have their possible applications been widely exploited.
This is mainly due to the difficulties in obtaining good quality experimental
fractal ZPs since high resolution is required to demonstrate their major
features. We have studied the focusing properties of the fractal Cantor ZPs both

Figure 9. Comparison of the diffraction trees for quintic Cantor ZPs [S¼ 2, N¼ 3] obtained
experimentally (a) and by means of numerical simulation (b).
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numerically and experimentally. We have shown that the number of the secondary
foci depends on the fractal levels and fractal self-similarity dimensions. The size and
the depth of the secondary foci are defined by the number of Fresnel zones in the
associated Fresnel ZP. The experimental results for the case of a triadic Cantor ZP of
level 3 and quintic Cantor ZP of level 2 are in good agreement with numerical
simulations, indicating the feasibility of these particular ZPs.

In addition to the spot foci, we found doughnut-like structures with zero intensity
distribution at the optical axis. The size and depth of the doughnut-like structures
depend on their position at the optical axis. Some of the experimentally observed
doughnut-like structures have radius 0.032a, where a is the pupil radius of the ZP.
At this point we have to add that chain-like structures in which one can observe
the formation of sequences of doughnut-like zones and secondary foci are not
exclusively observed with fractal ZPs. From results not displayed here for brevity
[19] such beams have been generated in other modulated zone plates. However, the
interest in pursuing the present study is related to the particular sequences and
moreover to the distribution of the diffracted energy, not only in the axial direction
but over the whole transverse plane. Thus a two-dimensional analysis is required.
Further research has to be devoted to the possible applications of these fractal
Cantor ZPs.

Figure 10. Experimental diffraction patterns corresponding to distances (a) z¼ 0.97m,
(b) z¼ 1.12m, (c) z¼ 1.17m, (d) z¼ 1.24m, (e) z¼ 1.45m, (f ) z¼ 1.57m, (g) z¼ 1.62,
(h) z¼ 1.71m, and (i) z¼ 1.92m.
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