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Diffraction by gratings with random fill factor
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In this work, we analyze the diffraction produced by Ronchi gratings where the fill factor is not constant,
but it presents random fluctuations around its nominal value. This effect can be produced during devel-
oping the grating with etchers since the process can be slightly unpredictable. We obtain the theoretical
formalism to describe the intensity produced by the grating at near and far field showing that smoothing
of the self-images is produced at the near field and, consequently, cancellation of higher diffraction orders
is obtained at the far field. In addition, different nominal fill factors produce different diffraction behav-
ior in terms of the randomness. We corroborate the analytical formalism by using a direct integration
method based on the Rayleigh-Sommerfeld formula concluding that the numerical results are in high
agreement with the theoretical predictions. © 2017 Optical Society of America
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1. INTRODUCTION

One of the most used optical elements is the diffraction grating.
It consists of a periodical pattern that modulates the incident
light. Diffraction gratings are useful elements in many different
branches of science and applications such as metrology, laser
array illumination, moiré interferometry, spectroscopy, phase
locking of laser arrays, etc, [1–4]. Particularly, in optics, the
most common kinds of diffraction gratings are amplitude-based
and phase-based gratings that modulate the amplitude and the
phase of the incident beam respectively, [5], but other types of
gratings such as polarization gratings or rough gratings have
been introduced in recent years. Rough gratings can be under-
stood as a modulation of the coherence state of the beam, [6–8].
Considering the shape or transmittance of the grating, diffrac-
tion gratings with fill factor being half of the period are more
common but other relationships between period and fill factor
are possible, [9].

Concerning fabrication methods, diffraction gratings are com-
monly manufactured by photo-lithographic methods, direct
laser writing, or laser ablation. The most adequate method
for fabrication depends on the substrate of the grating, the de-
sired grating type, the needed accuracy, the desired feature, and
so on. For example, gratings over glass substrates are usually
fabricated by photo-lithographic methods [10] and gratings over
steel substrates are commonly manufactured by laser ablation
[11]. Despite manufacturing processes have been improved year
after year, manufacturing errors are still present and become

more notorius when period of the gratings approaches the wave-
length of the incident light beam. The effect of different kinds of
imperfections in diffraction gratings such as rough edges of the
slits [12], random distribution of phase delays [13], roughness
on the surface, [14–16], missing slits, [17], random distributions
[18], random positioning of the slits forming the grating [19],
etc, have been analyzed in recent years. In this manuscript,
we analytically and numerically investigate the near and far
field diffraction pattern of Ronchi gratings formed by an en-
semble of transparent slits with random fill factor. As it has
been introduced previously, diffraction gratings behavior has
been studied from many points of view. Particularly, it is well
known that Talbot effect is produced at the near field, consisting
of the replication of the grating pattern at different distances
from the grating, called Talbot distances, [20–22]. The Talbot
distance is defined as zT = 2p2/λ, where p is the period of the
grating and λ is the illumination wavelength. In our case, as
we demonstrate following, the near field intensity produced by
the proposed grating is slightly different. Randomness affects
to the smoothness of the self-images of the grating, decreasing
the contrast in terms of the randomness level and producing the
disappearance of the self-images for high randomness. Conse-
quently, cancellation of high diffraction orders at the far field
is also produced. Numerical simulations made by means of
a numerical integration of the Rayleigh-Sommerfeld formula
corroborate the analytical results.
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Fig. 1. Example of amplitude diffraction grating proposed,
ω = p/10, (dashed line) versus periodical grating with con-
stant fill factor, τ = p/2, (solid line). The period of the grating
is p = 20 µm.

2. NEAR-FIELD APPROACH

Let us consider a one-dimensional diffraction grating whose
transmittance is defined as the summation of transparent slits
with random fill factor. It can be mathematically expressed as

tr(x′) = ∑
n

rect

(

x′ − np

τ + αn

)

, (1)

where n are integer numbers, p is the period of the grating,
τ is the nominal fill factor of the grating, and αn is a random
number following a certain probabilistic distribution. We show
in Figure 1 an example of the grating proposed (dashed line)
and a periodical grating of the same period with constant fill
factor, τ = p/2, (solid line). In the figure caption, ω defines the
width of the distribution of random αn, considering gaussian, as
we show in the following section.

Considering non-polarized monochromatic plane wave illu-
mination, the diffracted pattern at the near field is calculated by
using the Fresnel approach as

U (x, z) = A
exp (ikz)√

ikz

∫ +∞

−∞
tr
(

x′
)

exp

[

iπ

λz

(

x − x′
)2
]

dx′, (2)

where A is the amplitude of the incident field, z is the distance
from the grating to the observation plane, λ is the wavelength
of the incoming wave, and x is the transversal coordinate at the
observation plane. Applying Eq. (1) to Eq. (2), the field can be
rewritten as

U (x, z) = A
exp (ikz)√

ikz
∑
n

∫ np+(τ+αn)/2

np−(τ+αn)/2
exp

[

iπ

λz

(

x − x′
)2
]

dx′.

(3)
The integral is easily solved resulting

U (x, z, αn) = −1

2
A exp (ikz)∑

n
[er f (εn + µαn) + er f (θn + µαn)] ,

(4)
where

er f (χ) = 2/
√

π

∫ χ

0
exp

(

−t2
)

dt,

εn = − (1 + i) (np − x + τ/2)
√

π/ (2zλ),

θn = − (1 + i) (−np + x + τ/2)
√

π/ (2zλ),

µ = − (1 + i)
√

π/ (8zλ).

The random character of the diffraction grating forces to use
an averaging process to calculate the intensity distribution at

the near field. This averaging process can be understood as a
longitudinal displacement of the grating, as it occurs in linear
optical encoders, [23, 24], or as a result of the manufacturing
process. To obtain analytical results, we have chosen the random
probabilistic function as gaussian with null mean value

p
(

αj

)

=
1√

2πω
exp

(

−
α2

j

2ω2

)

; j = n, m, (5)

where ω is the standard deviation of the random fill factor with
respect to the nominal value [25]. Then, the average intensity
can be calculated as

< I (x, z) > = < U (x, z, αn)U∗ (x, z, αm) > (6)

=
∫ +∞

−∞

∫ +∞

−∞
p (αn, αm)U (x, z, αn)U∗ (x, z, αm) dαndαm,

where p (αn, αm) is the joint probabilistic function of both distri-
butions, [25]. Considering that the random variables are uncor-
related, p (αn, αm) = p (αn) p (αm), the average intensity can be
rewritten as

< I (x, z) > =
∫ +∞

−∞
p (αn)U (x, z, αn) dαn (7)

∫ +∞

−∞
p (αm)U∗ (x, z, αm) dαm.

Placing all terms into Eq. (7) and solving the integrals, the
average intensity results

< I (x, z) >= | A

2 ∑
n

[

er f

(

εn

1 + 2µ2ω2

)

+ er f

(

θn

1 + 2µ2ω2

)]

|2.

(8)
Substituting variables and simplifying, the average intensity can
be expressed as

< I (x, z) >=
A

2
|∑

n
{er f

[

√

2π

πω2 − 2izλ

(

np − x − τ

2

)

]

+er f
[

−
√

2π
πω2−2izλ

(

np − x + τ
2

)

]

}|2. (9)

It corresponds to the near field diffraction pattern produced by
a Ronchi grating with fill factor half of the period but corrected
by the term πω2, due to randomness. As it would be expected,
we recover the solution without randomness considering ω →
0. Following, we show in Figure 2 four examples of average
intensity at the near field calculated by using Eq. (9).

As can be observed, the self-images become smoother for
higher randomness but maintaining the period equal to the grat-
ing with nominal values. Besides, the contrast of the self-images
decreases in terms of the randomness. This fact is shown in
Figure 3, where we show the contrast of the first observable
self-image in terms of the randomness. It can be observed that
contrast decreases but the self-images are still measurable for
randomness around half the period of the grating. Usually, man-
ufacture errors are lesser but we extend the analysis to higher
randomness for completeness. The solid line in Figure 3 cor-
responds with the contrast following the definition given in
[26]

C (ω) =
< Imax > − < Imin >

< Imax > + < Imin >
, (10)

where < Imax >=
∫ +∞

−∞
g(x) < I(x, zT) > dx, < Imin >=

∫ +∞

−∞
[1 − g(x)] < I(x, zT) > dx, and g(x) is the grating trans-

mittance without considering randomness. Besides, we show as
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Fig. 2. Analytical self-images calculated using Eq. (9) with a
Ronchi grating of period, p = 20 µm, nominal fill factor τ =
p/2, and illuminated with a plane wave of wavelength, λ =
632.8 nm. Colormap corresponds to intensity. The amounts of
randomness in the fill factor are: (a) w = 0, (b) w = p/10, (c)
w = p/5, and (d) w = p/2.

dashed line the contrast calculated as

C′ (ω) =
(

I′max − I′min

)

/
(

I′max + I′min

)

, (11)

where I′max is the maximum average intensity and I′min is the
minimum average intensity. The contrast decreases and reaches
null contrast for ω ≈ p. We have tested this trend and it is
independent on the period of the grating and the wavelength.

Let us analyze now the effect of the nominal fill factor on
the self-images and its contrast in terms of the randomness. We
show in Figure 4 four examples of average intensity calculated
by using Eq. (9) with fill factor τ = 0.2p and different amounts
of randomness. In addition, we show in Figure 5 the contrast
dependence of the self-images in terms of the randomness for
different values of fill factor. In conclusion, smaller fill factor,
that is smaller dark slits in our case, results in higher contrast
for higher randomness.

3. FAR-FIELD APPROACH

To determine the far field diffraction pattern of the grating de-
picted in Figure 1 (dashed line), we consider the Fraunhofer
diffraction kernel for propagation of the light to the far field,

UF (x, z) ∝ A ∑
n

∫ np+(τ+αn)/2

np−(τ+αn)/2
exp

(

2iπ

λz
xx′
)

dx′, (12)

where we have included the random fill factor in the integration
limits.The average intensity is calculated in the same fashion as
for near field approach resulting in

IF (x, z) ∝ A2τ2sinc2

(

πτsin(θ)

λ

)

e
−
(

kωsin(θ)
2

)2

∑
n,n′

eikp(n−n′)sin(θ),

(13)
where sinc(φ) = sin(φ)/φ, and sin(θ) = x/z. It corresponds
to the classical diffraction of a periodic grating but corrected
by a term due to the randomness. We show in Figure 6 the
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Fig. 3. Contrast of the first observable self-image in terms
of randomness in the fill factor. The period of the grating
is p = 20 µm and the nominal fill factor is τ = p/2. An-
alytical calculated by using Eq. (10) (solid line), analytical
calculated by using the classical definition of contrast, Eq.
(11), (dashed line), and numerically calculated by using the
Rayleigh-Sommerfeld approach (dash-dotted line).
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Fig. 4. Analytical self-images calculated using Eq. (9) with a
Ronchi grating of period, p = 20 µm, nominal fill factor τ =
0.2 p, and illuminated with a plane wave of wavelength, λ =
632.8 nm. Colormap corresponds to intensity. The amounts of
randomness in the fill factor are: (a) ω = 0, (b) ω = p/10, (c)
ω = p/5, and (d) ω = p/2.
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Fig. 5. Contrast of the first observable self-image in terms
of randomness in the fill factor. The period of the grating is
p = 20 µm and three nominal fill factors. Analytical calculated
by using Eq. (10) (solid line) and analytical calculated by using
the classical definition of contrast, Eq. (11), (dashed line).

average far field intensity for different values of randomness in
the fill factor. As can be observed, the effect of the randomness
produces cancellation of higher diffraction orders. For complete-
ness, we show in Figure 7 the behavior of the diffraction orders
for different fill factors and fixed randomness, w = p/2. Higher
fill factors produce less powerful first diffraction order.

4. NUMERICAL SIMULATIONS

In this section, we perform a numerical validation of the ob-
tained theoretical formalism by using a fast-Fourier transform-
based direct integration method that uses the Rayleigh-
Sommerfeld formula as propagation kernel [27]. We define
the grating in a similar way as Figure 1. It is composed by
slits periodically displaced and each slit has random fill factor
around a nominal value that we establish as τ = p/2. In ad-
dition, we chose the random distribution Gaussian with null
mean value without loss of generality. To understand the prop-
agation process, we show in Figure 8 the near field intensity
produced by a Ronchi diffraction grating with different amounts
of randomness, (a) ω = 0, (b) ω = p/10, (c) ω = p/5, and (d)
ω = p/2. The damage of the self-images is clearly observed.
Anyway, since the theoretical intensity has been calculated as
an average, we need to perform also an average on the numeri-
cal simulations for comparison. We show in Figure 9 the mean
intensity corresponding to an ensemble of 1000 realizations of
Figure 8. Finally, we calculate the numerical contrast in terms of
the randomness of the fill factor by using Eq. 10, Figure 3 (dash-
dotted line). The similarity between analytical and numerical
formalisms is clear, validating the obtained theoretical approach.

5. CONCLUSIONS

Manufacture errors in diffraction gratings have to be taken into
account in many areas such as optical encoders or interferometry.
In this work, we analyze the effect on the diffraction pattern of
Ronchi gratings where the fill factor presents a certain random-
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Fig. 6. Analytical far field mean intensity calculated by using
Eq. (13). The period of the grating is p = 20 µm, the nominal
fill factor is τ = p/2, and the amounts of randomness in the
fill factor are: (solid line) ω = 0, (dashed line) ω = p/10, and
(dot line) ω = p/2.
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Fig. 7. Analytical far field mean intensity calculated by using
Eq. (13). The period of the grating is p = 20 µm, the amount of
randomness in the fill factor is ω = p/2, and the nominal fill
factors are: (solid line) τ = p/2, (dashed line) τ = p/5, and
(dot line) τ = p/10.
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Fig. 8. Numerical self-images (one realization) with a Ronchi
grating of period, p = 20 µm, nominal fill factor τ = p/2,
and illuminated with a plane wave of wavelength, λ = 632.8
nm. Colormap corresponds to intensity. The amount of ran-
domness in the fill factor are (a) ω = p/10, (b) ω = p/5, (c)
ω = p/2, and (d) ω = p.
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Fig. 9. Numerical self-images (average over 1000 realizations)
with a Ronchi grating of period, p = 20 µm, nominal fill fac-
tor τ = p/2, and illuminated with a plane wave of wave-
length, λ = 632.8 nm. Colormap corresponds to intensity. The
amounts of randomness in the fill factor are: (a) ω = p/10, (b)
ω = p/5, and (c) ω = p/2.

ness. This effect can be owed to etching processes or lithographic
errors. We develop an analytical formulation and corroborate it
with numerical simulations. The random fill factor produces a
decreasing of the self-images contrast in terms of the amount of
randomness and therefore, a cancellation of higher diffraction
orders at the far field.
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