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Abstract: We study propagation of light beams in two-dimensional

photonic lattices created by periodically curved waveguide arrays. We

demonstrate that by designing the waveguide bending, one can control not

only the strength and sign of the beam diffraction, but also to engineer

the effective geometry and even dimensionality of the two-dimensional

photonic lattice. We reveal that diffraction of different spectral components

of polychromatic light can display completely different patterns in the

same periodically modulated structure, e.g. one-dimensional, hexagonal,

or rectangular. Our results suggest novel opportunities for efficient self-

collimation, focusing, and reshaping of light beams in two-dimensional

photonic structures.
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1. Introduction

The physics of light propagation in photonic lattices such as arrays of weakly coupled parallel

optical waveguides is attracting increasing interest in recent years [1]. In these structures, the

classical light tunneling between the neighboring waveguides [2,3] closely resembles the quan-

tum electron dynamics in crystalline potentials. Whereas the monitoring of the electron motion

in crystals is a complicated problem, the optical beam reshaping can be observed directly in
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real space. This has stimulated the experimental studies of optical analogs for a variety of phe-

nomena originally predicted for quantum systems including Bloch oscillations [4–6], Zenner

tunnelling [7–9] and dynamic localization [10, 11]. These effects are associated with the pres-

ence of external driving field which can be represented by a special modification of the photonic

lattice by one of the following methods: (i) the transverse modulation of the photonic lattice,

such as the waveguide strength and spacing [5] or the background refractive index [4, 8], or

(ii) the bending of waveguides in the longitudinal direction [12]. An important advantage of the

second approach is that the structure remains ideally periodic in the transverse direction, such

that the beam propagation does not depend on the shift of the input location by several periods.

On the other hand, the longitudinal bending profile can be selected independently to manage

the strength and type of the beam diffraction [13–15].

The periodically curved waveguide arrays not only provide a means to study the fundamental

wave phenomena, but can also find applications for spatial-spectral shaping of ultra-broadband

optical signals, such as the supercontinuum radiation [16]. This possibility arises because the

strength of effective driving force experienced by the beam is proportional to the optical wave-

length, allowing one to observe different diffraction regimes in the same structure [10] with

potential applications for signal filtering [17]. The characteristic longitudinal bending periods

in such structures are of the order of millimeters, supporting adiabatic beam evolution along

the structure in a broad spectral region. This is different from the photonic crystals [18] featur-

ing two- and three-dimensional modulation of the optical refractive index on the order of the

wavelength, where the diffraction can only be optimized in a specific spectral window around

the resonant wavelength [19–21].

The effect of periodic bending has been only studied for one-dimensional arrays of optical

waveguides. On the other hand, fabrication of two-dimensional high-precision fiber waveguide

arrays for coherent light propagation has been recently reported [22]. Possibility to create var-

ious bended structures with optical fibers has been demonstrated experimentally, see e.g [23]

and references therein. Also, recent advances in waveguide fabrication with femtosecond laser

writing technique [24–27] make it possible to realize structures of arbitrary two-dimensional

geometry.

In this work, we study, for the first time to our knowledge, the effect of periodic waveguide

bending on beam propagation in two-dimensional waveguide arrays. We show that by an appro-

priate choice of bending geometry, one can control the beam shaping in novel ways. In particu-

lar, the beam diffraction and propagation along the different lattice directions can be controlled

independently. Moreover, the light evolution can be made significantly different depending on

the optical wavelength.

2. Beam evolution in periodically curved two-dimensional waveguide arrays

2.1. Generalized tight-binding approximation

We study propagation of optical beams in a two-dimensional array of coupled optical

waveguides [see Fig. 1(a)], where the waveguide axes are periodically curved in the longitudi-

nal propagation direction [see an example in Fig. 1(b)]. In the linear regime, the beam dynamics

is defined by the independent evolution of the complex envelopes E(x,y,z) of the electric field

at the different optical wavelengths λ . In the case of weak refractive index contrast, which is

satisfied for the laser-written structures in glass [26], the field evolution is governed by the

normalized paraxial equation,

i
∂E

∂ z
+

λ

4πn0

(
∂ 2E

∂x2
+

∂ 2E

∂y2

)
+

2π

λ
ν [x− x0(z),y− y0(z)]E = 0. (1)
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Fig. 1. (1.2MB) Sketch of modulated hexagonal photonic lattice. (a) Two-dimensional

cross-section. Shading marks the unit cell, each lattice site has six nearest neighbors. (b)

Schematic of the individual waveguide with the axis periodically curved in the z-direction.

(c) Couplings between the nearest neighbours in the hexagonal lattice. Lattice sites are

numbered along the n and m-axes.

Here x and y are the transverse coordinates, z is the propagation coordinate, λ is the vacuum

wavelength, c is the speed of light, and n0 is the average refractive index of the medium. The

functions x0(z) and y0(z) determine the transverse shift of the whole lattice depending on the

propagation distance z [see the lattice movement in the animations in Figs. 3-6]. The func-

tion ν(x,y) describes the refractive index modulation in the transverse cross-section. For the

waveguide array, ν(x,y) = ∑n,m ν0(x − xn,m, y− yn,m), where ν0(x,y) is the refractive index

profile of a single waveguide, (xn,m,yn,m) are the waveguide positions at the input facet, and n

and m are the discrete waveguide numbers [see Fig. 1(c)].

When the tilt of beams and waveguides at the input facet is less than the Bragg angle, the

beam propagation is primarily characterized by coupling between the fundamental modes of the

individual waveguides, and it can be described by the tight-binding coupled equations [10,15].

Specifically, we represent the field as a sum of individual waveguide modes,

E = ∑
n,m

Ψn,m(z)E0 [x− xn,m− x0(z), y− yn,m− y0(z), z]

exp{2ipẋ0(z)[x− xn,m − x0(z)]+ 2ipẏ0(z)[y− yn,m − y0(z)]}

exp

{
ip

∫ z

0
[ẋ0(ξ )]2 dξ + ip

∫ z

0
[ẏ0(ξ )]2 dξ

}
,

(2)

where Ψn,m are the mode amplitudes, the dots stand for the derivatives, E 0 is the mode of

individual straight waveguide, and p = πn0/λ . Following the standard procedure, we substi-

tute Eq. (2) into Eq. (1), multiply the resulting expressions by E ∗
0 [x− xn′,m′ − x0(z), y− yn′,m′ −

y0(z), z], and integrate over the transverse dimensions (x,y). Then, in the leading order approx-

imation we derive a set of coupled equations for the mode amplitudes,

i
dΨn,m

dz
+ ∑

n′,m′ �=n,m

C̃n,n′,m,m′Ψn′,m′ = 0, (3)

where C̃n,n′,m,m′ = exp[−2ipẋ0(z)(xn′,m′ − xn,m) − 2ipẏ0(z)(yn′,m′ − yn,m)]
∫ ∫

E0[x − xn,m −
x0(0), y− yn,m − y0(0), 0]E∗

0 [x− xn′,m′ − x0(0), y− yn′,m′ − y0(0), 0][ν(x, y)− ν0(x− xn,m, y−
yn,m)]dxdy/

∫ ∫ |E0[x− xn,m − x0(0), y− yn,m − y0(0), 0]|2 dxdy. These expressions show that
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z = 0 z = 2L z = 4L

Fig. 2. (1.2MB) Discrete diffraction in a hexagonal lattice of straight waveguides. Ani-

mation shows the patterns of the light-field distribution as the beam propagates over the

distance 4L = 84 mm. Wavelength is λ = 633 nm.

the effect of periodic bending appears through the modifications of phases of the coupling co-

efficients along the propagation direction z.

2.2. Discrete equations for hexagonal photonic lattices

In the case of a periodic hexagonal lattice, we take xn,m = d (n + m/2) and yn,m = dm
√

3/2,

where d defines the lattice period (see Fig. 1). When only the nearest-neighbor waveguide

coupling is taken into account, Eqs. (3) are reduced to the following form,

i
dΨn,m

dz
+ C̃∗

1Ψn−1,m + C̃1Ψn+1,m + C̃∗
2Ψn,m−1 + C̃2Ψn,m+1 + C̃∗

3Ψn−1,m+1 + C̃3Ψn+1,m−1 = 0,

(4)

where C̃1 ≡ C̃n,n+1,m,m = C1 exp[−iω ẋ0(z)], C̃2 ≡ C̃n,n,m,m+1 = C2 exp[−iω ẋ0(z)/2 −
iω ẏ0(z)

√
3/2], C̃3 ≡ C̃n,n+1,m,m−1 = C3 exp[−iω ẋ0(z)/2 + iω ẏ0(z)

√
3/2], and ω = 2πn0d/λ

is the dimensionless frequency. The real-valued coefficients C1, C2, and C3 define the coupling

strength between the neighboring waveguides along the different high-symmetry directions in

a hexagonal lattice [28] [see Fig. 1(c)], and they characterize diffraction in a straight hexagonal

waveguide array with x0 ≡ 0 and y0 ≡ 0 [29] [see an example in Fig. 2]. When the lattice is

composed of circular rods all coupling coefficients are the same, C1 =C2 =C3. However, in the

general case of non-symmetric waveguides, the transverse cross-section coupling coefficients

along different directions may be all different [27].

3. Diffraction management in modulated hexagonal lattices

In order to specifically distinguish the effects due to diffraction management, we consider the

light propagation in the waveguide arrays with symmetric bending profiles, since asymmetry

may introduce other effects due to the modification of refraction, such as beam dragging and

steering [30–32]. Specifically, we require that x0(z) = f1(z− za) and y0(z) = f2(z− za) for a

given coordinate shift za, where functions f1(z) and f2(z) are symmetric, f1(z) ≡ f1(−z), and

f2(z) ≡ f2(−z). Then, by analyzing the plane-wave solutions of Eqs. (4) using the approach

developed for one-dimensional periodically curved waveguide arrays [10, 15, 16], it can be

shown that after the full bending period [z → z+L, where x 0(z) ≡ x0(z+L) and y0(z) ≡ y0(z+
L)] the beam diffraction in the periodically curved hexagonal waveguide array is the same as in
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a straight hexagonal waveguide array with the effective coupling coefficients

C1eff = C1L−1
∫ L

0
cos [ω ẋ0(ζ )]dζ , (5)

C2eff = C2L−1
∫ L

0
cos

[
ω

2
ẋ0(ζ )+

√
3

2
ω ẏ0(ζ )

]
dζ , (6)

C3eff = C3L−1
∫ L

0
cos

[
ω

2
ẋ0(ζ )−

√
3

2
ω ẏ0(ζ )

]
dζ . (7)

Remarkably, the couplings along different high symmetry directions in a two-dimensional peri-

odically curved lattice [see Fig. 1(c)] can be controlled independently of each other by designing

appropriate bending profiles. Thus, it becomes possible to engineer not only the strength and

the sign of the diffraction in periodically curved two dimensional lattices, but to control also the

effective lattice geometry and even the dimensionality of the lattice, as we demonstrate below.

We explore possibilities for the diffraction management in curved hexagonal lattices with a

periodic waveguide bending profile which consists of alternating sinusoidal segments,

x0(z) =

{
A1{cos [2πz/z0]−1}, if 0 ≤ z ≤ z0

A2{cos [2π(z− z0)/(L/2− z0)]−1}, if z0 ≤ z ≤ L/2
(8)

y0(z) =

{
B1{cos [2πz/z0]−1}, if 0 ≤ z ≤ z0

B2{cos [2π(z− z0)/(L/2− z0)]−1}, if z0 ≤ z ≤ L/2,
(9)

and x0(z) = −x0(z−L/2), y0(z) = −y0(z−L/2), for L/2 ≤ z ≤ L. At each point z the lattice is

shifted as a whole in the transverse (x,y) plane along certain directions which are determined

by the relative values of the amplitudes A1 and B1, or A2 and B2. The effective couplings in

such structure can be calculated analytically in terms of Bessel functions

C1eff = 2C1L−1

[
z0J0

(
ξ̃1

)
+

(
L

2
− z0

)
J0

(
ξ̃2

)]
, (10)

C2eff = 2C2L−1

[
z0J0

(
ξ̃1

2
+

√
3

2
ξ̄1

)
+

(
L

2
− z0

)
J0

(
ξ̃2

2
+

√
3

2
ξ̄2

)]
, (11)

C3eff = 2C3L−1

[
z0J0

(
ξ̃1

2
−

√
3

2
ξ̄1

)
+

(
L

2
− z0

)
J0

(
ξ̃2

2
−

√
3

2
ξ̄2

)]
, (12)

where ξ̃1 = 2πωA1/z0, ξ̃2 = 2πωA2/(L/2−z0), and ξ̄1 = 2πωB1/z0, ξ̄2 = 2πωB2/(L/2−z0).
Below we consider the case of the planar waveguide bending, when either z 0 = L/2, or

A1 = B1 = 0. Then the direction in which the lattice shift occurs is the same along the whole

length of the array, which is easier to realize experimentally. We flip the signs of the shifts x 0(z)
and y0(z) within each bending period to make the bending profiles symmetric in order to avoid

asymmetric beam distortion due to higher-order effects such as third-order diffraction. Addi-

tionally, the waveguides are not tilted at the input, ẋ0(z = 0) ≡ 0 and ẏ0(z = 0) ≡ 0, in order to

suppress excitation of higher-order photonic bands by incident beams inclined by less than the

Bragg angle. The effect of Zener tunneling to higher bands [7, 8, 33] and associated scattering

losses can be suppressed irrespective of the waveguide tilt inside the photonic structure by se-

lecting sufficiently slow waveguide modulation in order to minimize the curvatures ẍ 0(z) and

ÿ0(z), and thereby achieve adiabatic beam shaping.

In the numerical simulations presented below, we consider the lattice where the individual

waveguides are cylindrical rods with the Gaussian refractive index distribution with radius r
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z = 0 z = 2L z = 4L

Fig. 3. (2.4MB) Self-collimation in a modulated hexagonal lattice. The field distribution is

shown at the input, and after the propagation for two and four bending periods. Animation

shows the beam propagation in a fixed viewpoint. Wavelength is λ = 633 nm.

within the rod cross-section. The refractive index contrast at the rod centers is δn, and the

lattice spacing is d. For Figs. 3-5, we use the following lattice parameters which are typical

for the experiments with waveguide arrays written in glass [26]: d = 16 µm, r = 5 µm, and

δn = 1.6 ·10−3. The lattice parameters in Fig. 6 are d = 8 µm, r = 2.5 µm, and δn = 6.4 ·10−3.

We take the refractive index of glass to be n0 = 1.46. Waveguides are excited at the input with

a Gaussian beam with the half width equal to the rod radius.

4. Self-collimation in modulated photonic lattices

First, we demonstrate the possibility for two dimensional self-collimation of light beams in

periodically curved hexagonal photonic lattices. Self-collimation regime is realized when the

diffraction is suppressed and all the effective coupling coefficients vanish,C 1eff =C2eff =C3eff =
0. We find that self-collimation becomes possible in a hexagonal lattice with a periodic bending

profile which consists of alternating straight and sinusoidal segments [see an example in Fig. 1

(b)] such that y0(z) ≡ 0, z0 = [1− 1/J0(ξ̃ )]−1L/2, A1 = 0, A2 = −z0ξ̃/πωJ0(ξ̃ ), where J0 is

the Bessel function of the first kind of zero order, and ξ̃ ≃ 2.61 is determined from the equation

J0(ξ̃ )= J0(2ξ̃ ). Then the lattice shift occurs along x-axis, and for the bending period L = 21 mm

the self-collimation is realized when z0 = 0.98 mm and A2 = 34 µm, see Fig. 3.

In Fig. 3 one can see that the beam profile is exactly restored after propagation through each

bending period [compare this figure with Fig. 2, where light beam spreads over many lattice

sites after propagation for the same distance in the exactly the same but straight hexagonal

waveguide array]. This effect is similar to the one dimensional self-collimation which was

previously observed in one dimensional waveguide arrays with zigzag [13] and sinusoidal [10]

bending profiles.

5. One-dimensional diffraction in two-dimensional lattices

Because couplings along different directions [see Fig. 1(c)] in a periodically curved hexagonal

photonic lattice can be controlled independently [Eqs. (5)-(7)], it becomes possible to com-

pletely cancel the diagonal couplings, C2eff = C3eff = 0, while not changing the coupling in

the horizontal direction, C1eff = C1. This can be realized with a simple sinusoidal bending of

waveguide axes in y-direction, x0(z) ≡ 0, z0 = L/2, and B1 = ξ1L/2
√

3πω , where ξ1 ≃ 2.40

is the first root of the Bessel function J0 [see Eqs. (10)-(12)]. For example, B1 = 20 µm for

L = 21 mm. Then, the light beam experiences a one dimensional discrete diffraction [13] dur-
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Fig. 4. One-dimensional diffraction in a modulated hexagonal lattice. The field distribu-

tion is shown at the input, and after the propagation for two and four bending periods. (a)

(2.3MB) Lattice shift occurs in the y-direction. (b) (2.3MB) Lattice shift occurs in the x-

direction. Animations show the propagation dynamics in a fixed viewport. Wavelength is

λ = 633 nm.

ing propagation in such a periodically curved two-dimensional photonic lattice [see Fig. 4(a)

where despite some coupling to the upper and lower lattice rows which is visible in the ani-

mation between the periods, the beam diffraction becomes exactly one dimensional after each

period of propagation].

Interestingly, the same diagonal couplings C2eff and C3eff, which determine essentially the

coupling in the vertical direction to the upper and lower lattice rows [see Fig. 1(c)], can be

canceled by the lattice shifts in only the horizontal x-direction as well. This is realized for

the bending profile such that y0(z) ≡ 0, z0 = L/2, and A1 = ξ1L/2πω . Then A1 = 35 µm for

L = 21 mm [see Fig. 4(b)]. In this case, the sign of the horizontal coupling is reversed, and it is

also reduced about four times, C1eff = C1J0(2ξ1) ≃−0.24C1. This results in a much less beam

diffraction after propagation the same length compared to the preceding case when the lattice

shift took place in the vertical direction [compare Fig. 4(b) with Fig. 4(a)].

6. Rectangular diffraction in hexagonal lattices

One can also cancel independently just one of the three couplings in a hexagonal lattice,

and thus obtain a coupling geometry which corresponds essentially to a rectangular lattice.

For example, the diagonal coupling C3eff can be canceled with the periodic sinusoidal bend-

ing profile such that the lattice is shifted along the direction of this coupling, z 0 = L/2,

A1 = Acos[60◦] = A/2, B1 = −Asin[60◦] = −
√

3A/2, and A = ξ1L/4πω . Then C3eff = 0,

while the two other couplings are reduced symmetrically, C1,2eff = C1,2J0(ξ1/2) ≃ 0.67C1 [see

Eqs. (10)-(12)]. Then, A = 17 µm, A1 = 8.7 µm, and B1 = −15 µm for L = 21 mm, see Fig. 5.
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Fig. 5. (2.5MB) Rectangular diffraction in a modulated hexagonal lattice. The field dis-

tribution is shown at the input, and after the propagation for two and four bending pe-

riods. Animation shows beam propagation dynamics in a fixed viewport. Wavelength is

λ = 633 nm.

In the movie in Fig. 5 one can see that despite the nontrivial beam evolution in between the

periods, the diffraction pattern after each bending period is “rectangular”, i.e. it is similar to

diffraction patterns which are characteristic of the discrete diffraction in square and rectangular

photonic lattices, where each lattice site is coupled to four nearest neighbors.

7. Propagation of polychromatic beams in modulated photonic lattices

Finally, we examine diffraction of multicolor light beams in modulated two-dimensional pho-

tonic lattices. In Eqs. (5)-(7) the value of the effective couplings depends not only on the

specific bending profile x0(z) and y0(z), but also on the frequency ω , similar to the bending-

induced coupling dispersion which appears in one-dimensional periodically curved waveguide

arrays [16]. This means that different frequency components may experience very different

types of diffraction in the same physical structure. This feature provides unique opportunities

for the control and reshaping of polychromatic light beams in two dimensional photonic lattices.

To illustrate this effect, we consider the propagation of light beams of different wavelengths

in the same modulated hexagonal lattice with a simple sinusoidal bending profile, y 0(z) ≡ 0,

z0 = L/2, which is similar to the bending profile that we used above for demonstrating one-

dimensional diffraction in a hexagonal lattice [see Fig. 4(b)].

Then from Eqs. (10)-(12) it follows that for the light wavelength such that the normalized

frequency is ω1 = ξ1L/2πA1, the diagonal couplings vanish, C2eff = C3eff = 0, while the hor-

izontal coupling is reduced, C1eff = C1J0(2ξ1) ≃ −0.24C1, and the beam at this wavelength

will experience a one dimensional diffraction, as shown in Fig. 6(a). In this example, some

coupling to upper and lower lattice rows also takes place. This is due to high-order coupling

and increased scattering effects, which are the strongest for the longest wavelengths. We ex-

pect that the high-order coupling can be suppressed in modulated lattices by a special design

of waveguide bending profiles, similar to results demonstrated for one-dimensional waveguide

arrays [11].

On the other hand, for the frequency ω 2 = ξ̃ L/2πA1, all three couplings are reduced si-

multaneously by the same factor C1,2,3eff = C1,2,3J0(ξ̃ ) ≃ −0.10C1,2,3, and the symmetry of

the original hexagonal lattice is exactly preserved, see Fig. 6(b) where the beam experiences

reduced hexagonal diffraction.

For the frequency ω3 = ξ2L/4πA1, where ξ2 is the second root of the function J0, the hori-

zontal coupling is canceled C1eff = 0, while the diagonal couplings are reduced symmetrically
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Fig. 6. Examples of different diffraction patterns in the same modulated hexagonal lattice.

(a) (2.2MB) One-dimensional diffraction for the wavelength λ = 633 nm. (b) (2.3MB)

Hexagonal diffraction for the wavelength λ = 583 nm. (c) (2.3MB) Rectangular diffraction

for the wavelength λ = 550 nm. Animations show the beam propagation dynamics in a

fixed viewport. The bending period and amplitude are L = 10.5 mm and A1 = 35 µm,

respectively.
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C2,3eff = C2,3J0(ξ2/2)≃−0.17C2,3. Accordingly, the beam at this frequency experiences a rec-

tangular diffraction [see Fig. 6(c)], similar to the case shown in Fig. 5.

8. Conclusions

We have studied theoretically the linear propagation and diffraction of light beams in two-

dimensional photonic lattices created by periodically-modulated waveguides. We have sug-

gested that a specific design of the waveguide bending would allow not only to control both

strength and sign of light diffraction but also to engineer the effective geometry and even

dimensionality of the photonic lattice. We have demonstrated that different spectral compo-

nents of polychromatic light beams can experience completely different types of diffraction,

e.g. one-dimensional, hexagonal, or rectangular, in the same structure. Our results provide a

solid background for the further experimental studies of modulated photonic lattices, and they

suggest novel opportunities for efficient reshaping of light beams in two-dimensional photonic

structures.
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