POERE N e e e Ty -
N YN , : . .

AL BEVIV L(\
Naval Research Laboratory —

Washington, DC 20375-5000

NRL Memorandum Report 6609

Diffraction Effects in Directed Radiation Beains

N
i
;)]
q B. HAF1Z1* AND P. SPRANGLE

Beam Physics Branch
Plasma Phyrics Division

*Science Applications Intl. Corp., Mclean, VA 22192

Ty
DTl
LN OCTE g# _‘

APR2 3 1290 B

April 3, 199C

4 4 oD ow

ES &

Approved for pubbc release, distnbution unhmited




“lﬂllummlmﬂHKmilnmIIHlIwIll1nHn!nuulnIllnnIHItnxxmunxumnm-unn-n-unumumump‘

v
Form Aoproved

REPORT DOCUMENTATION PAGE OMB No 0704-0138

s s .
Pfubhe reporting burden o this col~chon of itormation 1y estmated 1o averagn b ROur per raspOrs inrluding the Lrme {07 FevIewng INStruftions. searcning axating ddla sourdces iy

Gathering and MAaInta mng the darg needed, and completing and raviswing the collection ofinfarmannn Send comments ragarding (s burden estumat= o. any ciher aspect of thiy
collecuon ctintormauon. inciuding suggestics 10 caduang this aurde s L Washington Headauarten Servicey, Direrrorate for infarmation Oparations and Reperts, 1205 teterson B
Dans Highway, Sute 1204, Arhngton, VA 22202-4307. and to the Othes of Management and Budyet Paperwork Reduivion Project (3704-0188). washingron, DC 40503

1. AGENCY USE ONLY (Leave blank) | 2. REPORY DATE 3. REPORT TYPE AND DATES COVERED

1990 April 3 Interim

4. TITLE ANMD SUBTITLE ) 5. FUNDING NUMBERS

47~20C5-0-0 (JO#)

POe Contract #
AT05-83ER40117

Diffraction Effects in Directed KRadiation Beams

6. AUTHOR(S)

B, Haflzi* aud P. Sprangle

7. PERFORMING ORGANIZATION NAME(S) AND ADNRESS(ES) 8. PERFORMING QRGANIZATION
REPORT NUNMBER

Naval Research Laboratory

Code 4790

Washington, DC 20375~5000 NRL Memorandum Report 6600
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITGRING
DOE AGENCY REPORT NUMBER

Washington, DC 20545

11. SUPPLEMENTARY NOTES

*Scieunce Applications Intl. Corp., Mclean, VA 22102

F‘.I'Ia. DISTRIBUTION ) AVALABILITY STYTATEMENY 12b. DISTRIBUTION CODE

Approved for public release;
un'imiied.

13. ABSTRALT Maximum 200 words) ] o
A number cf proposed applicacioas of electromagnetic waves require that the

radiation beam maintain a high intensity over an appraciable propagation distance,
These applications include, among others, pow2r beaming, advanced radar, laser
acceleration of particles and directed--energy sources. The quest to achleve these
objectives has led to a resurgence of research on diffraction theory. This report
presents a survey and critique of the analyses and experimental tests of snlutious
of the wave equation iv connection witn so-called diffractionless and other directed
radiation beams. The examples discussed In this paper include electromagnetic
missiies, Bessel beams, electromagnetic directed energy pulse trains, and electro-
magnetic bullets,

14, SUBJECT TiRMS . 15, NUMIZER OF PAGES

Directed radiation beams Electromagnetic directed energy pulse trains 80

Electromagnetic missiies Electromagner:c bullets 16. PRICE CODE

Bessel beams Duffraction effects

17. SECURITY CIASSIFICATION | 18 SECURITY CLASSIFCATION } 39 SECURITY CLASSIFICATION |20 LIMITATION OF ABSTRAyY
OF REPORY OF THIS PAGE OF ABSTRACT ;
UNCLASSIFIED UNCLASSIFIED P UNCLASSIFIED SAR

NSN 7520-07 230 S50 Sraraae Foree 294 Rey 2 oM



Contents |

1. Introducticn and Samnary... .....c.coeun. e B |
11, Electronagnetic Wave Diffraction.. ..o irniniieiininnninneie e 4
ITI. Diffraction Zones (Huygens’ Principle). ... ... it a6 !
i) Fraunhofer Diffractiou (Far-¥Field or WVave-Zone Region)....... 6
ii)} Fresnel Diffraction (Near-Field Rogion)....ooiiiiiiiiieiivnes. D
Iv. Electromagnetic Missiles.....civiiinivnenn. et et e e veee.. B
i) THE O Y et it it it it e s it araetienoanstaerseasnssoseeesnsens 8
iil) Experiment (Flectromagnetic Missiles).......ciiviienvieeeaen. 10
V. Bessel BeamS. s vvsoenneocrnneiootasosssnssesoncrnsannsassecavss 12
1)  Theory.....cooevieninn. Ceveea P 3

i1) Fxperiment (Bessel BeamsS) ... vvvieicrireonionenasersrnarnanas 13

VI. Electrcmagnetic Directed Energy Pulse Trains.......vvvvevinennons 16
i) 182 1= o 2
ii) Modified Powor-Spectrum Pulse -- Numerical Study............. 19
iii) Mo-ified Power-Spectrum Pulse -- Experiment.............v.... 21
VII. Electromagnetic Bullefs.....iiiniiiiir i iiniioariarsesensssonancnns 23
i) Non-uniqueness of the Inverse Source Problem................. 2
ii) Sclutior of the Three-Dimensionul Wave Equation in the
HAVE 20N . o v s s vetnernesentonssvsossnsosessncssssssnsnnsanennse 27
iii) Exact Solution of the Wave Equation from the Solution in
the Wave-Zane (Radon Transforms). . vieeceeriorosasseroassrsacs 28
iv) Example of a Bullet...... .oty et e 29
VIII. Summary and Concluding Remarks....voveeriiri v ereinssncnscannsass 33
i) Electromagnatic Missiles.......... e e e 33

11) Bessel Beams.....ouiviinnreiuee snssinannn e e cv.. 33

Acknowledgment. .o .t i e e e e 36 g/

TR e Tk O Y 39 LJ

. ]
D S ET T UL 0T T 1S o v e v e e m e e m e e e e e e e e e e e e 49

Ly
Dttty i, g
~ o .
AMM‘“iV‘\ﬂmS
SR o
ICRENY

(| f

itl [




DIFFRACTION EFFECTS IN DIRECTED RADIATION BEAMS

I. Introduction ard Summary

Diffract.ion is a fundamental characteristic of all wave fields, be it
ohotons, electrons, etc. The effect of diftraction is typically manifested
vhen an obstacle is placed in the path of a beam. On an observation screen
some distance away from the obstacle one oubserves a rather complicated
modulation of the time-average intensity in the vicinity of the boundary
separating the illuminated region from the geometrical shadow cast by the
obstacle.

In many applications it would be highly desirable to propagate a beam
over a long distance without an appreciable drop in the intensity. As an
example we cite the possibiiity of accelerating particles to ultra-high
energies by utilizing high-power laser beams. Although the accelerating
gradient in many of these schemes is extremely large, the actual distance
over which the particle and laser beams maintain an appreciable overlap is
very limited. The overlap is reduced due to the diffraction of the laser
beam 2nd as a result the net gain in the particle energy is limited.

Vith the advent of high-power lasers and microwave sources,
diffraction of radiation beams with finite transverse dimensions has turned
into a problem c¢f special importance. As an example, consider laser
radiation nt frequency w emanating from a cavity oscillating in the
fundamental transverse Gaussian mede. How far will this beam propagate in
a turbulence-free atmosphere? More to the point, how fast iz the fall-off
in the intensity of this laser beam?

The answer to this question is \.1e},1--4l<n0\.1n..1 The scale length for the

fall-oft in intensity is given by the Rayleigh range, defined by

2,
Z’R & W/ A, (1)
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vhere vy is the minimum spot size, or radius, of the beam, and X\ = 2nc/w is
the wavelength. The minimum spot size v, is also known as the waist of the
radiation beam. The fall-off of the beam intensity as it propagates in
space is a consequence of the fact that initially the beam was constrained
to a finite waist, Vs Diffraction then causes the beam to spread in the
lateral direction and, from energy conservation, the intensity must drep
off correspondingly. In the limit of an infinitely wide beam, Vo P the
Rayleigh range is infinite, there is no diffraction and the intensity is
constant.

A natural way to propagate a beam over long distances is to increase
the Rayleigh range by employing a wider beam or shorter wavelength
radiation. Clearly the width of the beam iz limited by the energy source
available for pumping the lasing medium, and short wavelength lasers
(x~rays and beyond) are not presently available. As a result, over the
past several years there has been an upsurge in research on such
fundamental topics as propagation and diffraction properties of radiation
heams. (See Ref. 2 for an earlier discussion.) Briefly, the guestion
being asked is: "Can diffraction be overcome?" The fecllowing is a summary
of our review of diffractionless and other directed radiation beams.

i) Electromagnetic Missiles (Section IV)

Experiments indicate the possibility of generating wave packets with a
broad frequency spectrum. The high-frequency end of the spectrum
determines the furthest distance the miscile can propagate, in complete
accord with our understanding of diffraction.

11)  Bessel Beams {Section V)
A Bessel beam is a particular, menochrematic solution of the wave

equation. Beswel beams propagate no further than Gaussian beams or plane




waves with the same transverse dimensions and, contrary to previous
assertions, Bessel beams are not "resistant to the diffractive spreading
commonly associated with all wave propagation”.

iii) £lectromagnetic Directed Energy Pulse Trains (Section VI)

These are particular, broad-band solutions of the wave equation. Ve
show that the experi.ent and the numerical studies of these pulses are
consistent with conventional diffraction theory and, centrary to previous
assertions, these pulses do not "defeat diffraction.

iv) Electromagnetic Bullets (Section VII)

Electromagnetic bullets are solutions of the wave equation which are
confined to a finite region of space in the wave-zone. The ultimate goal
of the research has been to determine the source function which leads to a
prescribed torm for the bullet in the wave-zone. Although the mathematical
framewerk for this has been established, no concrete example has appeared
in the literature.

Sections II and III begin with a review of basic diffraction theory

and our findings and conclusions are summarized in Section VITII.




IT. Electromagnetic Wave Diffraction

Consider the radiation beam from a cavity of radius d. The wave
vector is given by k”éz, corresponding to propagation predominantly in the
z direction, and the magnitude of the spread in the wave vector in the
transverse direction is denoted by Akl’ with k” >> Aki‘ The angular spread

of the radiation relative to the z axis 1is

6 = Akl/k”. (2)

On an observation screen at a distance z, the radius of the illuminated

region is given by
v =d + Bz, (3

The first term on the right-hand side of this expression indicates the
width of the region illuminated according to geometrical optics. Beyond
this lies the region of the geometrical shadow, and the second term in
Eq. (3) indicates the extent to which this region is illuminated due tc
diffracticn of light. The distance Z over which the argular spread leads

to a fall-off in the intensity is given by d + 02 = 2d, or

Z = d/8. (4a)

The distance Z may be regarded as the scale-length for diffractive
spreading of the bean.

As a first example, suppose the transverse distribution of intensity
in the beam is uniform. This i3 the case when plane waves are apertured.
1f the radius of the aperture i: , "1om a undamental result of Fourier
analysis, Akld = 1. The angular spread is theretore given by
8 = AN2nd, where ) = 2n/k” is the wavelength., For this intensity

distributicn one thus finds




2. = 2nd2/n. (4b)

For the case when the trangsverse intensity distribution is a Gaussian,
exp(mrz/wi), of width v,y ve have AkL = 1/wo, and the angular spread of the

beam is on the order of 6 = X/2nwo. In thisz case d = wO and hence

Zg = 2nw§/x, (4e)

vhich isg twice the Rayleigh runge ZR defined in Eq. (1).

Clearly, diffraction is simply the physical manifestation of the well-
known result of Fourier analysis relating the spreads in wave vector space
with the corresponding widths in real space, AkiAxi =1 for i = 1,2,3. As
a result, Eq. (4a) expresses a fundamental relation which we shall make use
of repeatedly in order to interpret the results of theory and experiment on

so-called diffractionless radiation beams.




IITI. Diffraction Zones (Huygens’ Principle)

According to Huygens' principle each point on a given wavefront acts

as a source of secondary wavelets. The field at a point P is given by the

~1wt -
sum over the wavelets. If u(r)e wt is the amplitude on an aperture, an

approximate sclution of the scalar wave squation at P is given by3’a

bp(ri) = (N7H e Tasr wry mot MR/ (5)

aperture

2,172
z

is the d.stance between the area

]

element dS‘ on the aperture and the point P, as shown in Fig. 1.

wvhere R = [(x—x’)2 + (Y-Y')2 +

In the Fresnel approximation the binomial expansion of R may be used

to simplify Eq. (5) to

- 1w 2~ i
bp (ixz) 1 et ¥4 ct)/e de’ u(x’,y’) e ¢

aperture

g
x
+

H

e

For plane waves incident on an aper*ure with linear dimension d, there
are two physically interesting limits for approximating Eq. (6).

i) Fraunhofer Diffraction (Far-Field or Wave-Zone Region)

1f

z > d?/A, (7)

one may neglect the quadratic terms in the exponent of Eq. (6) and the
wvavelets from the entire wavefront at the aperture contribute te the field

at P. In the Fraunhofer region ¢, s simply the Fourier transtorm ot the

}\
Aawplitude at the dittracting aperture.

v

1i)  Fresnel Ditrraction (Near ¥Fielt

P Rigrton)

In the other limit,

6




it is necessary tc retain the quadratic terms in the exponent of Eq. (6)
and the wavelets from a limited portion of the wavefront at the aperture
make the dominant cortribution to the field at P. 1In this case, the
integration in Eg. (6) may be taken to be over the entire z = 0 plane.

For plane waves incident on a circular aperture of radius d, Fig. 2,
making use of Eq. (5), the exact field on the axis of symmetry is given by

2 2.1/2
+ 2z

vp = exp(-iwt) {exp(iwz/c) -~ expliw(d Y7 “/c]}, and the intensity

- * I3
I « waP is

2,1/2
z

I =1 - cos {w{(dz + ) - z]/c}. (9)

Figure 3 is a schematic plot of the intensity functio:, Eq. (9), indicating
in particular the transition between the Fresnel and the Fraunhofer
regions. Wote that the intensity drops off precipitously beyond
z = 2nd2/x, consistent with the scale-length defined by Eag. (4b).

Ve proceed now to examine the research on new solutions of the wave

equation, with particular emphasis on their diffraction properties,5‘20




IV. Electromagnetic Missiles

i) Theory
Consider first the case of a field, termed a issile", which falls

off more slowly than the usual 1/R law. The inventive step is the use of a

broad frequency spectrum. Depending on the spectrum, the fall-off with R

may be as slow as desired.7'8

To appreciate the nature of this field, note that for an arbitrary

source distribution within a region A as shown in Fig. 4, the energy

delivered to a screen S, integrated over all time, is

£(S,R) - J.dt jds A - (ExB)/4n,
-® screen
vhere A is a unit vector normal to the screen, and F and B are the :2lectric
and the magnetic field, respectively. For a source with a bounded
frequency spectrum, a screen of fixed area S, and for sufficiently large R,
£(S,R) -~ 1/'R2, according to well-known results.zl

The current density for the elc -omagnetic missile described in

Ref. 7, J(r,t) = B(Z)f(!)éx, r <d, is confined to a disk of radius d,

, 2 ) 2 . . , . .
wvhere r - (x° 4 y?)l/ is the radial coordinate and f(t) is a given
function of time. It g(w) and j(m) denote the Fourier transforms of the

vector potential and the current density respectively, then

- 1 - . ) . . 21

A(w) = Jd'r J(wyexp(iwR/c)/cR is a =solution of the wave equation. In the
, T VT A . < . o

present case, J(w) - 8(:’.)1((»)@\(. and the vector potential on the axis of

symmettry 15 given by

d . . .
~ o . I oo l;‘(Y (A
Afw) = 5 f(w) J- droo (17 0T e v
(8]

¢




Making use of this expression for g(w), the Poynting flux along the z axis

integrated over all time, U(z) = [dt Qz.(gxg)/An, is given by

2 2,172 )

U= ¢ 21 +2(2%s dz)““z]f dwif(w) (1 - cos {§1(22+ a2 .1

(o}

(10)

Note the resemblance between Eq. (9) and the integrand of Eq. (10).
Equation (9) is for a monochromatic field and is based on Huygens-Fresnel
principle while Eq. (10) is obtained from a rigorous solution of the full
wave equation.

In the limit z - = in Eq. (10), tor a fixed frequency w,

cos[(w/c)[(224-(12)1/2

-z]} = cos(wd2/2cz) + 1, and the integrand tends to
zero. Referring to Fig. 3, this means that the contribution of this
frequency lies in the far-tield region and is thus negligible. At a given
large z we can, therefore, write

® 9 o 2

U = =3 J dw If(w)l i1 - cos(oﬂz/Zcz)] = 25 J dw{f(w)
C

?.cz/d2 ?Cz/d2

We see that the most important contribution is from the high frequency end
of the spectrum, tor which the given pnint = lies in the near-field,
Fresnel, zone. The cont:iibutions fvom all the lower trequency components
will have decayed to negligible values hefore reaching the given ». While
the eventual fall off of any frequency component is as 1/z, the fall off ot

the time integrated Povonting tlux for the vave packet depends on how

1
. [ : " . - N .
tapidly [f(w) | decave ter w > Tezsd o As an example, consider o souree

with a frequency response

i’((:\) a ll N (W"(Aﬁ'n)A ] (1. f‘),;.'

G




vhere & > 0. For this spectrum the time-integrated Poynting flux falls off

as U « 1/228. The fall-off can thus be as slow as desired by taking the

limit £ » 0. The limit, however, corresponds to a frequeicy spectrum from
a source with infinite energy. The function f(t) is symmetric with respect
to t » -t. Evaluating the inverse Fourier transform of f(w), one finds

. (26-3)/4

that £(t) exp(mwot) for t >> l/w)n For € > 1/2 and t <X 1/wo,

f(t) - constant. However, for the more interesting case of € < 1/2, f(t) »
t& Y2 Uhen t << 1/w_, indicating a mild singularity.

ii) Experiment (Electromagnetic Missiles)

The difficulties involved in an experimental study of electromagnetic
missiles stem from the need to generate pulses with extremely short rise-
times and suitably-shaped wavefronts.9 An antenna was used to generate a
"pure" spherical wave which formed the primary pulse and the field
reflected from a parabolic dish of radius 2 ft formed the secondary pulse.
The pulses were detected by a specially-designed sensor. The primary pulse
vas found to fall off as 1/22, the energy decaying by 1/16 wvhen the sensocr
wvas moved fiom 4 ft to 16 ft from the source. This was because the
antenna, being a point source, generated spherical wavefronts. The pulse
reflected from the parabolic dish was found to resemble that of a circular
disk, simil~r to that studied earlier in this section. Over the same
distance, the energy in this electromagnetic missile was found to decay by
just under 1/2. Without a precise knowledge of the frequency spectrum it
is not possible to make a gquantitative analysis of this experiment. Rough
estimates indicate that the scale length {or the fall oif oif the intensity
of the missile 1e¢ indeed compatible with the ditfraction scale length
7 . BndR/A, where d = 2 ft 1s the radius of the reflecting dish and A is

the wavelength for the highest frequency (10 GHz) in the pulse.




These preliminary experimental results iIndicate that a suitably
tailored pulse-shape can be designed to have an energy-decay rate
essentially limited by the highest frequencies present in the pulse
generator, in complete accordance with the elementary notions of
diffraction of light. Propagation of a composite pulse in free space is a
As the beam propagates, the lowest frequency

dispersive process.

components diffract away first.

11




V. Bessel Beams

i)  Theory
An exaniple of a so-called diffractionless electronagnetic beam is a

Bessel beam. We note that a particular solution e¢f the scalar wvave

equation
9 2
(7 - <% 25) v (r,0 -0,
at
is
2n+90
i(k”z - wt) iki(xcose + ysin®)
V= e f 46 A’9)e , (11)
0
)

for arbitrary 90 and A(8), provided wz = cz(kﬁ + kf). Here, k“ and kl

dencte the magnitudes of the components of the wave vector parallel and

. . 2 2,172
orthogonal to the z axis, respectively, and X = 2n/(k“ + ki) is the
vavelength. Oince the z-dependence in Eyq. (11) is separated from the x-
and y-dependence, the solution is cleavly diffractionless in the sense that
the time-average intensity is independent of z. I~ fact, the intensity is
constany for all 2 and all t.

Durnin considers the case wheve A(0) = 1 (Ref. 10). 1In this case,
making use of the expasion exp(ilsin®) = £n Jn(C)exp(inQ), vhere Jn is the
ordinary Bessel tuncticen of the first kind of order n (Ref. 22;, Eq. (11)
¥ Cpe Yo i ¥ 2 2,172,
simplifies to ¢ = szO(xlx)expil(A”z - wt)], where r = (x° . %) iz the
radial varieble.

Haking use ol the properties of the Bessel function (Retf. 223, one can

show thar the "energy" content, [dr ¢ J ry, integrated over any

o

transverse period, or lobe, ig approximately the vame as that in the




central lobe. This point will be important in our interpretation ¢f the
diffractive properties of Bessel beams.

ii) Experiment (Bessel Beans)

A Bessel beam has an infinite number of lobes and, therefore, has
intinite energy. In the laboratory an approximation to this ideal beam is
realized by clipping the beam beyond a certain radius. The question is,
given the finite transverse size, how well is the diffractionless property
preserved.

Te answer this question Durnin et al. compared the propagation of a
clipped Bessel beam with a Gaussian beam.11 The full width at half-maximum
(FWHM) of the Gaussian was taken tc be equal to the FWHM of the central
lobe of the Bessel beam. In the experiment the on-axis intensity of each
beam was measured along the axis of symmetry. The Bessel beam was claimed
to be "resistant to the diffractive spreading commonly associated with all
wvave propagation™ since its intensity was observed to remain approximately
constant for a much longer distance than the Gaussian beam. The idea of a
diffraction-free beam was further reinforced by using a geometrical optics
argument to obtain a formula for the propagation distance of central lebe
of the Bessel beam.

We shall now reconsider this comparison. The wavelength of the
radiation was A = 6328 Xu For rhe Gaussian beam, exp(—rzlwg), v, was equal
to 0.042 mm, corresponding to a FWHM of 0.07 mm. For the Bessel beam,
vas equal to 41 mmvl, ceorresponding to a rWHM for the central

.J. [

iobe of 0.Q7 mm. The besams were apertured to a radius d = 3.5 mm. The

Jo(kir)’ k

folloving order-of -magnitude discussion ig bascd on Eqs. (2)-£4); a more
rigorovs analysis Is presented in the Apvendix. The angular spread due to

the natuaral width of the Gauszian beam iv 8 - A/?nw” and Eq. (3) taves ihe




form w = Vo * (A/?nwo)z, where the first term in this expression is L
rather than d, since the energy of the Gaussian is concentrated in the
central peak. The scale length for diffrzction is the same as that given

i

by Eq. (4c¢), namely ZC = 297 /N = 1.73 ¢m. The natural angular spread of

Z
0
the Dessel beam is € = klk/Zu, and Eq. (3) takes the furm w = d +
(le/Zn)z, where the first term represents the radius of the aperture since
the energy in each lobe is approximately the same and they all affect the
propagation of the Bessel beam. The scale length for diffraction is,
therefore, given by d + (klk/Zn)ZB = 2d, or ZB = 2nd/klx = 85 cm, which is
censistent with the experimental observation.

In the transverse plane the lobes of the Bessel beam diffract awvay
sequentially starting with the cutermost one. The outermost lobe diffracts
in a distance on the order of an/kkf, vhich is approximately equal to ZG.
Tre next lobe diffracts awvay after a distance on the order of ZZG. This
process continues until the central lobe, which diffracts away after a
distance - NZG, wvhere N denotes the number of lobes within the aperture.

In the experiment N = 50, implying a propagation distance on the order of
SOZG for the central lobe of the Bessel beam, which is consistent with the
measured value. Measurements of the on-axis intensity obviously fail to
reveal the gzradual deterioration of the transverse beam profile, but the
numerical plots in Fig. 2 of Ref. 10 are consistent with this scenario.
Therefore, the Bessel beam is not "resistant to the diffractive spreading
commonly associated with all wave propagation”. Our interpretation points
out the significance of each successive lobe having about the sama energy.
The central lobe persists as long as there are off-azis lobes compensating
for i1s enerpgy loss and hence the comparison with the narrover Gaussian

beam in Ref. 11 is of little significance.




Ve note that utilizing the full width of the aperture a Gaussian beam
propagates a distance on the order of NZB; i.e., N times further than the
Bessel beam. Additionally, by appropriately curving the wavefront, nearly
ail the pover of the Gaussian beam can be focussed on a target of dimension
v in a distance Z,. Hence, for this purpose a Gaussian beam would be

B
significantly better than the Bessel beam employed by Durnin et al. (See

also Ref. 12)




VI. Electromagnetic Directed Energy Pulse Trains

i)  Theory
Electromagnetic directed energy pulse trains are particular solutions
of Haxwell’s equations.13 To discuss these, we make the change of

variables &£ = z - ¢t and T = t, and transform the wave equation
(% - a*/at )Y = 0,

into the form

Making the assumption

¥ - w(E,r,vel®e, (12)

leads to the an equation for the complex envelope ¥,

2 2
2 . -2 3 2 9 -2 9
(Vl +21imc T + c -a—{—é‘z - C ;;i)ll/ = 0.

Here, r denotes the radial variavle and Vl is the differential operator in
the plane 2z = constant. If ¢(&,r,t) varies slowly compared to the
characteristic scales 1/w and ¢/w, the second derivative of the envelope

function may be neglected anc the wave equation reduces to
(7 + 2i0 <™ &)y = 0. (13)

Equation (13) is an extremely useful approximation to the full wave
equation in a vacuum. Note that the ftull wave operator is of the

hynerbolic type, where.: the reduced wave operator is of the parabolic

type. For this r¢ son, Eq. (13) is sometimes referred to as the parabolic
3 I

appioximation to the wave equation.

16




A particular solution of Egq. (13) is given by

_ I‘2
v itan N/t - (1-iv/t,)rl/w
o} R R
w:c_'e ’

where C is a constant,

97172
LA [1 + (T/TR) ] .

is the spot size, v is the waist and

is related to the Rayleigh range ZR = wwi/Zc by TR = ZR/c.

kilB_lS makes use of the variables transformation

Ziolkows
§ =z - ct, n=2z+ ct,

in the wave equation to reduce it to the form

2

(vz v 4 ]Y - 0.

1 N3,
Representing Y in the form

Y = “‘(nrr)elwa/cr

leads, without any approximation, to an equation for ¥,

(v2 . 4i Y

1

‘QJ

}w - 0.

-8

n

A particular solution of Eq. (16) is given by

v ~itan'](ﬂ/hR) - (1“ih/YtR)12/\’2
¢y = C — e ,

vhere C is a congtant,

(l4a)

(1l4b)

(lé4c)

(15)

(16)

(17a)
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vos v [1 . (n/uR)z] , (171)

and

ne = wvl/e, (17¢)

C : I -
is related to the Rayleigh range ZR = UNO»ZC by Mg = ZZR.

Some remarks on the sclutions in Egs. (14) and (17) are in order.
First, Egq. (14) is a solution of the parabolic approximation to the full
vave equation. On the other hand, Eq. (17) is an exact solution of the
full equation. Second, there iz a factor-of-two difference between the
scale length ch in Eq. (l4c) and the scale length nR in Eq. (17c¢). Third,
the solution in Eq. (17) has infinite energy. Finally, the exact solution
in Eq. (15) consists of a pulse traveling to the left which is modulated by
a plane wave moving to the right.

To examine the last two points, Eqs. (15) and (17) may be cowbined to

form a fundame:ntal Gaussian pulse Yk vith parameter k = w/c

ikn e-krz/V
Yoo JuuiUUPVY P
Yk(r,z,t, = € TR (18)
wvhere

1 1 i

vV A R’

A=z 4 &2/2 , R =& + 22/5,

0 0 0
Co . 13-15 o o, » . .

ant z is a constant. o conform 1o Ziolkowski’s example, Eg. (18)

represents a pulse traveling te the right vhich 1s modulated by a plane

wvave moving to the lefr. With an appropriare veight function, it van be

IX




shown that the YP for all k form a complete set or basis functions, each
. . 3 2 . !

with total energy proportional to Jd EIYkl + o, Just as in the case of

Fourier synthesis with plane waves, a general, finite-energy pulse may be

obtain ' by superposing the various Yk according to a weight function F(k),

that is,
F(r,z,t) = ‘[dk ¥ (r,2,t) Fik)
(o]
1 " ~-ks
- WD [ dk Fae) ek, (19a)
0
vhere
¥
S = -1N + TV IE (19b)

o]

0

Equation (19a) indicates that f(r,z,t) is proportional to the Laplace

transform of F(k).

ii) Modified Power-Spectrum Pulse -- Numerical Study

Ziolkowski has examined in detail the pulse corresponding to a
modified power-spectrum (MPS):

n, 0 <k < b/g
{ . Lol -a{pk-b)

s (Bl - by € '
nig S ,

F(k)
kK > b/B

(20a)
vhere I'(a) is the Gamma function (Ref. 22) and a, o, and B ave arbitrary

constants. Upon substicuting By, (20a) into Eq. (19) one obtains

ths /b{zn*li) EJii)n/ﬁ

{ ( T, e, t ) . ( ,r’] _1.;5_ A L

ol T fa s PB(R 0 1E) invgpps o
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The real part of this function defines the MPS pulse. The radial profile

of the MPS pulse at the pulse center, & = 0, has the form

ibn/g —brz/ﬂzo
e . (20c¢)

1
f(r,Z) o
%0 (a + r2/620 - in/g)*
In the numerical studies the pulse was replicated by superposing the
fields from a planar array of discrete points, each of which was driven by
a function specified by the MPS form on some z = constant plane.15 The

. . . 10 -1 1%
parameters were: a = 1.0 ¢cm, b = 1.0x10 cm 7, B =6.0x10"7, zo =

1.667x10'3, and o = 1. The spectrum was approximately flat up to 200 Giz,
becoming negligible beyond 15 TPz. The pulse generated in this manner was
propagated forward and compared with the exact form in Eq. (20b) at several
locations along the z axis. The minimum radius of the array required to
replicate the exact pulse form at 1, 10, 100, and 1,000 km was determined.
From Ziolkowski’s results we estimate the corresponding radii of the
antenna to be approximately 0.5, 5, 50, and 500 m, respectively.

Ve shall oxamine these results by asking: What is the scale-length for
diffraction of the MPS$ pulse? The pulse has a Gaussian radial profile, as
indicated in Eq. (20c¢), with a width Vo, = (Bzo/b)l/2 = 31.6 cm and,
therefore, Ziolkowski calculates a Rayleigh range nwi/x = 0.21 km for the
200 GHz componenz.15 This, howvever, is not the apprepriate scale-length
for diffraction of the MPS pulse. The correct scale-length is given by

2nw0d/X, vhere the antenna dimension, d, always exceeds o The point here

is that the Payleigh range based on the waist w , as calculated by
y ¥ 14 o )

14,15

Zivlkowski, is only valid at the pulse center, & . U. Away {rom the
plane & - 0 the effective walst increases, as andicated by Fg. (20b), and
. 4 8
the actual diftraction length ia, therctore, lougetr than e 7h. This
. [}
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explains why the pulse propagates further than the Rayleigh range defined
in terms of Vo To calculate the actual diffraction length, we note that
the perpendicular wave number (kl) spertrum given in Ref. 15 indicates that
the smallest ki is on the order of l/wo. Hence, an estimate for the
diffraction angle is X/ano. The width of the radiation beam given by Eq.

(3) can be written as w = d «+ (A/2nw0)z, where d is the radius of the array

or "antenna." The scale-length for diffraction is then simply

ZMPS = 2nw0d/k. (21)

Note the similarity between the diffraction lerngth in Eq. (21) and the
scale-length for diffracticn of the Bessel beam, ZB - ?nd/klk, derived in
Section V, subsection ii). The resemblance is a reflection of the fact
that in both cases the pulse energy is spread over the entire radius, d, of
the aperture, which is much larger than the nominal waist of the beam, v
According to Eq. (21) the larger the radius of the array is, the
longer the distance of propagation of the pulse, consistent with the
numeyical results. From the numerical results, the ratio ZMPS/d is equal
te 2,000 wvhich is the same as that given by Eq. (21) provided the frequency
is 300 GHz. Since this frequency is well within the cutoff of the pulse
spectrum, this constitutes a persuasive indication that the MP5 pulse does

not Y"defeat diffraction" as claimed by Ziolkowski.lé

iii) Modified Power-Spectrum Pulse -- Experiment
Ziolkowski et al. have pertormed a wvater-tank experiment to

. . . 16
demonstrate the properties of a MPS acoustic pulse. The pulse was
prog acoustic I

)

generated by a 6x6 cm” square array. The MPS pulse parameters were
1 W 1 ;o 4 .
a s« 1.0m, b o 600.0m , g - 300.0, 2z H.0R10 m, and o 1. From
0
these parameters one finds that the pulve width v o 10 equal to 1.5 om.




The experiment indicated that a Gaussian pulse with an initial width equal
to 1.5 cm suffered a greater transverse spreading than the MPS pulse,

This experiment may be examined in the light of the discussion leading
to Eq. (21). The expression in Egq. (21) gives the scale-length for the
fall-off in the intensity of a pulse which is generated by an array (i.e.,
antenna) of radius d. Since the square array is 6x6 cmz, ve take the
parameter d to be equal to 3 ecm. Noting that the speed of sound in water
is 1.5x103 m/s, the wavelength of the dominant frequency in the pulse, 0.6
MHz, is X = 2.5 mm. From this, the actual diffraction scale-length ZMPS is
1.1 m. This is in good agreement with the experimental observation that
the MPS pulse propagated a distance of 1 m without significant spreading.
Comparing the MPS pulse generated by a 6x6 cm2 array with a Gaussian pulse
having a waist of 1.5 c¢m is inappropriate. A Gaussian beam with spot size
equal to the array radius used in the experiment would prop.gate a distance

2

nd“ /X = 2 i.e. as far as the MPS pulse.

MPS’

Ve note from Eq. (21) that, in general, a Gaussian beam with an
appropriately curved wavefront and an initial spot size equal to the
antenna dimension transfers nearly all the power onto a target of dimension
w in a distance on the order of ZMPS‘ Such a Gaussian bheam, therefoere,

O

transfers move power on the target than the corresponding MPS pulse.




VII. Electromagnetic Bullets

In this section we shall discuss solutions of the wave equation which
are confined to a finite region of space in the wave zone and are termed

"electromagnetic bullets". We consider solutions of the wave equation
(¢ - < ?a%rat?) e, 0 = - o(r, ), (22)

where the source term p(E,t) is assumed to be non-zero for a finite time
interval -T < t < T. In this problem there are two cases of interest:

Case (a) is the direct source problem (initial value problem). In
this case the solution for t < T is given and the solution for t > T is
sought.

Case (b) is the inverse source problem. Here, the solution of the
homogeneous wave equation for |t| > T is known and one seeks the source
term appropriate to this solution. This case is of particular interest
since it would enable one to find the time-dependent source tor a
prescribed radiation field.

The tollowing four subsections summarize the extensive research of
Moses and Prosser on this subject. For a brief description of the
properties of a bullet, the reader is referred to subsection iv).

1) Non unigueness o! the Inverse Source Problem

In this subscction we indicate the reason for the non-uniqueness of
the inverse source pxohl(rm.l7 By making use ot the eigenf. 1ctions of the
curt 1 operator, the electiemagnetic vector tield wave equation may be solved
along essentially the same lines ags the one dimensional problem.  The
discunsion in this subsection ia, theretore, contined to the one
dimensional wave equation ty avoid the complicoations ot multi dimensional

etfect.




Let f+(x,t) = f(x,*) Jenote thc solution of Eq. (22) for t > T, and
t(x,t) = f(x,t) denote the solution for t < -T. 1t is well-knowa that the
solution of the soirce-free initiai value problem for t > T in terms of the
values of the function f+(x,t) ar * = T and the "velocity" (3/8t)f+(x,t) at

t = T is expressible in terms of a prupagator G(x;t;:

) e O ,
f+(x,t) = Jﬁx' [G(x—x';t»T)s?f+(x’,t=T) + f+(x',t=r)5YG(x—x st-T)].
(23a)

Similarly, the solution of the source-free final value problem for t < -T

in terms of £ (x,t) at t = -T and (d/91)f (x,t) at t = -T is given by

@

f_(x,t) = de' [G(x-x';t+T)%?f“(x’,t=—T) + f»(x’,t=~T}- (x-x";t+T)}.

(=3

t
(23b)

The propagator G can be written in terms of the Heaviside function n as

follows

|-

G(x;t) = %sgn(t) neelt?s %%y = L nexect) - nix-ct)]. (24)

N2

That is, G may be expressed as the ditference between the advanced and the
retarded Green funciions. As a result, f+(x,t) is influenced conly by
points x at t = T which lie in the backward light cone of the cbservation
instant; simiiarly, f (x,t) is influenced only by points x at t = -T which
lie in the forward light cone of the observation instant, as indicated in
Fig. 5.

Let us now consider the effect. of the source on the solution of the

vave equation. Ve detine two auxiliary functions,

- ‘ Ve . - ‘ -
o(k,t)y = (2n) [ dx p(x,t) o y {25




F(k,o,t) = E(k,0,-Tye  toelkli(r+ D)

¢
. 3 r - . -C." ¢ .
+ _%?ET oioe k]t | odr Bk, elocfiltr (26}
T

vhere o = +1 or -1 distinguishes the two dirvections of propagation along
the x axis. Note that p(k,t) is simply the spatial Fourier transform of
p(x,t). In terws of the two auxiliary functionsg, it is simple to¢ show that

®

f(x,t) - eny" 2 T j dk E(k,0,t) e

e - 10

*

ikx

is a solution of the inhomogeneous wave equation in Eq. {22). The
solutions for t < ~T and for t > T are then given by

. * : .
oot - eo T | s grioc k(T = ) g oy a7y

5 -
Equation (27) expresses the solution of the wave equation in terms f
evaluated at +T. This function is related to the source p by Egs. (25) and
(26). Equation (23), on the other hand, expresses the same solutions in
terms of f and (3/3t)}f evaluated at +T. Hence, cne would expect to be able
to relate 1(k,o0,+4T) vith f and (3/93*)f evaluated at +T. Indeed, the the

£

formula connecting f(k,v,T) and ) is

. PR U N PR R VRN B ,
fk,o,T) = (8n) [ CRERE IR o i - CTAE O3 ICTI EL)

and ©(k,o,-T) ix obrained in terms of £ by Fourier inversion of Fg. (27)
evaluated av t = T. Thug, in the direct source problem, § (x,*t) i«

.
obtuained by specitying either f (x,t) and {3/ I’H){‘(‘x,z‘) evaluated at v - T,

or T{x,~T) and p(x,t).

Pr
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Ve nov turn to the inverse source problem. Inverse problems, in
geneval, have been the subject of extensive research in many branches of
physics. In our case we wish to determine the source from a knowledge of
the field generated by that source. Supposing that fi(x,t) and T are
known, we can determine f(k,o,+T) from Egs. (27) and (28). Letring the
upper limit of integration in Egq. (26) equal T, it appears that cne can

then oltain the temporal Fourier transform, s(k,w), of p(k,t), where

T
S(k,w) = (:’_n)_l/z Jdt' S(kyt') elwt’.
T

The source functiecn is then given by

o o

wor—=1 T I L _ikx-iwt
p(x, 58} = (Zn) J dk J do s(k,w) e k t .
. .} . - }
Thus, if s(k,w) were known for all k and all w, we coulc determine p(x,t}.
However, referring to fg. (26), we notice that sfk,w) is only knowr for
W = + c]k|, which is not sufficient to reconstruct p(x,t). This

complication is intimately connected with the non-uniqueness of the inverse

problem.
Moses has shown that specification of the time-dependence of the
. .. . N 17
source is sufficient t¢ guarantee a unigque solution. As a cuncrete
example, 1f p(r,t) = pe(r)he(t) + po(r)hn(t), vhere he is an even function

of t and h  is an odd function of t, and both sssentially arbitrary, then a

complete solution of the inverse problem for po(l) and po(r) iz pos=ible.
It must Le =stressed, however, that this asoumed tarm for the sovvcwe
function is a sufficient but not necessary condition Yor the zolvability of

the inverse problem.
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Without going into details we cite the example given in Ref. 17. For
simplicity tsking the time dependence to be of the form he(t) = &(t), ho(t)

= &' (t}), where ' = d/dt, and assuming the field to be ¢f the form

f+(x,t) = sin[k(x - ct)], -a < x - ¢t < a, ka = nn,
the source function is found to be given by

p(x,t) = -k &(t) cos(kx) - c"lé’(t) sin(kx}], -a ¢ x € a.

Note that in this case the source is confined to a finite region »f space,
which is an inportant attribute for any physically realizable snurce
function. {We should point ocut that the sourcz function given by Moses is
erroreous due to a sign error in evaluating the Fourier transiorm of ho(t)
[his Eq. (2.367)].}

ii) Solution of the Three-Dimensional Wave Equation in the Wave Zone

The general solution of the source-free three-dimensional wave

. !
equation 1is

ik.r -jockt

=372 ,
Brn= eoF T fak e Fik,c, (29)
o
where o = 41, and k = I&i. Making use of the method of staticnary phase,
it can be shown that
. r _—
13 = ol ik ; ,
lTiw e s R TaTme 1fa 8O 8 (e - 4 )

[ ®
e e yae - o], 130
- § » N X7 y .= K

whore (Gy, $ 3 are the angies in the core along sz axin, and 6., «1>X’ are
g b ) X

oy
the auples an the cone along -y avis.' Wi shall daefine coper more

N

o




precisely in the follewing. Upon substituting Egq. (30) into #q. (29), the

field in the wave 2zone is found (o be given by

172 -1 o ik(r_ct)ﬁ ik(r+et) ‘ , ,
f(r,1) = (8n) r TIm Iodk[e t(k,ex,¢x) - e ?(kvex ?¢x)]'

(31)
Renmarkably, Eq. (37) shows that the general solution of the three-
dimensional wave equation in the wave zone is, apart from the factor 1l/r, a
superposition of one-dimensional wave motion, expressed as functions of
r -~ et and r + cv. Moveover, if initially f{(r,t) is confined to a given
solid angle, f(k,6,4) vill be significant for k lying within that angle
and, from Eq. (31), the solution in the wave zone will also be confined to
the same angle. For the purposes of interpretation it is convenient to
consider propagation in cones, as indicated in Fig. 6. In particular, an
electromagnetic field in a cone is defined as one that is rompletely
confired to a cone in the vave zone.

iii) Exact Solution of the Wave Equation from the Solution in the

Vave Zone (Radon Traassforms)

The purpese of this subsection is to point ocut that, given the

soluti.  of the wave equation in the wave-zone region, it is possible to

18,19

determine the solution everyvhere. In particular, one seeks the

initial conditions f(r,t) and (¥/3t)f{(r,t) at v = T. This is reterred to
as the inverse initial value problem.
The solution of the inverse initial value problem is discussed in Ref.
1B for a particularly simple case. A systematic treatment of the general
; h o . 19
piroblem is possible by asing Radon transforms
3

ey A . . N .
The Radon tvansform F(,n) of a function t{r}y i obtained hy

. : : £
inteqrating f over all planes r.n = const.




F(k,fB) = Jd3£ £(r) 8(c-h - k),

where Q is a unit vector.24 The usual Radon transform is defined as an
integral over planes whose normals vary over a unit sphere. In general,
the function f£(r) defines some internal distribution (such as density) of
an object and F(k,é) is the projected distribution, or the profile, of the
object on the plane E'A = constant. The Radon transform is a very useful
tool in image reconstruction from projections, with applications in
computer-assisted tomography (CAT)-scan, radio astronomy, remote sensing,
etc.

A refinement of the usual definition of the Radon transtorm shows that
only the transform over a hemisphere, which may consist of disjointed
parts, is sufficient to reconstruct the original function. It can then be
shown that the task of obtaining an exact solution of the three-dimensional
wave equation from the solution in the wave zone reduces to tak’ng the
inverse of the refined Radon transform of the solution in the wave zone.

From Eq. (31) it is known that in the wave zone the solution of the
wave equation is, apart from a factor 1/r, a function of only r-ct or r+ct,
representing propagation along rays confined to a cone. The field in the
vave znne, therefore, cefines the range of the unit vector Q and the
amplitude. This information is essentially equivalent to knowing the
projections in different dirvrections. The exact field may then be
reconstructed from the set of projections.

iv) Example of a Bullet

Ve close Section VIl by discussing an explicit example of a bullet
N , : .20 .
vhich is a soluvtion of the scalar wave eguation. An example of an

electromagnetic bullet is given in Ref. 20.




A bullet which is confined to a finite volume in the wave-zone is

given by

f(r,t) = n(o - 0) [n(r-a-ct) - N(r-b-ct)}/r, r » =, (32)

vhere n is the Heaviside function, a and b, with b > a, denote the
boundaries of the bullet along the radius, and 20 is the vertex angle of
the cone containing the bullet. Note that this solution is causal and of
finite energy, and has a form which is consistent with the remarks
following Eq. (31). It represents a packet of energy "shot" through a cone
whose axis coincides with the z axis.

This solution can be easily verified by letting f = g(r,8,t)/r and

noting that
2 2 2
-2 3 3 -2 103 (o).
(@ - )i By e % [sine 35) &

or” at™ rzsine

Assuming g(r,8,t) = h(r—ct-rO)Y(e), one finds

(- L) e g foin 5 0), (33

which tends to zero for all continuous Y(0) as r » ». For the case when

Wi
V2, with & » 0.

Y(8) - n(o - 8), we let -dY/d® = expl-(0-8)2/28%]1/(2n)
Note that as & » 0, dY/d@ + -8(0-6) = dn{o-6)/d6. Upon substituting this
form into Eq. (33), we notice that as A is made to approach zero, r must
increase indefinitely in order for the right-hand side of Eq. (33) to
approach zero. This shows very clearly that Eq. (37) is indeed a solutiocn
in the wave zone.

The spot size may be detined by:

2 n 2 9
1& : fdrded¢e f r7sin® (Zrsin®)’ / Jdrd®d¢ t v sing, (34)
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vhere 2rsin® is the width of a cone of half-angle 6. Substituting Eq. (32)

into Eq. (34), one obtains
1/2
ry 2 [(B - 9cosc + cos36)/3(1 - coso)] ct, t 2 o, (35)

indicating a linear increase with time for the spot size, as in the case of
the Gaussian pulse in Eq. (14b), although the constants of proportionality
are different. We mention in passing that the solutions given by Moses and
Prosser are distinguished from the other solutions reviewed here by not
having an explicit dependence on the frequency or the wave number.

As mentioned in the previous subsection, to obtain the exact solution
everywhere one has merely to evaluate the inverse Radon transferm of the
solution in the wave zone, Eq. (32). Since the derivation is lengthy we

shall simply quote the result The exact solution is given by

f(Evt) = fa(E’t) - fb(E’t)’ (363)
wvhere
fa(f,t) = N(o-€) (n[a+ct-rcos(6-0)} - n(a+ct-r)}/r
+ va{n[a+ct~rcos(9+o)j - n{a+ct-recos(B8-v)]}/nr, (36b)
with
21 ) y L
v, = ros | (coso - cosﬂacose)/51nﬂa51n6], 0 < va< hi
and
2
B = cos "|(a+ct)/r}, 0O < 61 < n/?,

a

and vhere *h(r,t) is identical to fq(r,t) except that a 1s replaced by b.
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The field in Eq. (36) is identically zero for all r downstream of the
bullet, i.e., for all r < a + ct. The wave-zone limit is obtained by
taking r, t - . Then, since Eg. (36) corresponds to propagation in the
positive cone (Fig. 6), taking r - ¢t = constant Eq. (32) is recovered.

The requirement r - ¢t = constant is equivalent to observing the bullet in
a co-moving frame. Close to the origin the exact solution in Eq. (36)
spreads out of the cone significantly. However, in the wave zone the
solution is confined to the cone and is independent of the angle € therein.
Finally it has been shown in Ref. 20 that the difference between the exact
solution in Eq. {36) and the wave-zone solution in Eqg. (32) becomes smail
quite rapidly as r, ct increase, with r - ct held fixed.

In principle, one can now use the inverse source method to determine
the souices that lead to the bullet described by Eq. (32). To cur

knowledge, hovever, this computation has yet to be performed.




VIIX. Summary and Concluding Remarks

The motivation for much of the research reviewed herein stems from
the need to propagate a beam of radiation over long distances without an
appreciable decrease in the intensity. Possible applications would
include: power beaming, advanced radar, laser acceleraticen of particles
and directed energy sources. This need has led to a great deal of interest
in such fundamental subjects as diffraction and new soluticns of the wave
equation.

It has been reiterated that the physical basis for diffraction of
waves is the well-known relation Akiﬂxi =1, for i =« 1,2,3. By virtue of
this, it is simple to determine the scale length for the diffractive
spreading of a beam with an arbitrary transverse profile. Thus, a
knoviedge of the spectrum is sufficient to determine the maximum
propagation distance of the beam. Since diffraction is unavoidable, by
concentrating the energy in the high frequencies one can only delay the
spreading of the beam.

Four examples of the research effort on the subject of beam

propagation have been reviewed herein. The conclusions are as follows.

i) Electromagnetic Missil:>s

Experiment indicates that a suitably tailored pulse-shape can be
designed to have an energy decay rate limited by the highest frequencies
present in the pulse. This ig fully consistent with our understanding of
diffraction.

i) Dessel Beams

it is shown that as far as propagation i< concerned Beusel hoams are
not "resistant tn the diffractive spreading commonly associated with 4l
vave propagation”. These beams propagate no tur ther than Gaussian beams o

plane waves with the same transverse dimencion:s.

RR




i1ii) Electromagnetic Directed Energy Pulse Trains

The diffractive properties of the pulse form studied most intensively
under this general heading are described by diffraction theory. These
pulse trains do not "defeat diffraction”.

iv) Electromagnetic Bullets

Given a radiation wave packet in the wave-zone which is confined to a

suitable solid angle and extends over a finite radial extent, one can
determine the source required to generate the wave packet. As of this

wvriting, however, this problem haz not been solved for a practical case.
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Appendix
The purpose of this appendix is to examine the transition from the
Fresnel to the Fraunhofer region for a clipped Bessel beam and & clipped
Gaussian bzam within the context of the Huygens-Fresnel approximation.25
The clipping is assumed to be caused by a finite-size aperture.

In the case of the Bessel beam the field distribution at the aperture

has the form u(r,z=0)

it

Jo(klr) within a circular aperture of radius d.

Making use of Eg. ¢{6) the amplitude at a point on the axis of symmetry is

given by
d 2
- ? i 4 - .
v o= 2 1J dr’ r’ Jo(kir') e1kr /2‘. {Al)
)
The limit k, = O corresponds to the case of plane waves incident on a

1

circular aperture, as in Section II1. The intensity, given by Eq. (9),

falls off monotonically for z > 2 wvhere

P’

Z, - 2nd2/\. (12)

For kl > 0, the escillatory behavior of the Bessel function in Eq. (Al)
tends to phase mix the integrand, effectively reducing the upper limit of
the integration. Consequently, the boundary ot the Fresnel region, beyond
vhich the radiation appears to be emitted essentially from a point source,
is reached prior to ZP = 2ﬂd2/k.

Since there is no simple analytical approximation to the integral in
Eq. (A1), consider the case of a cosine beam u(x,y,z-0) coa(kxx)vox(kvy),
vhich is the cartesian equivalent of a Bessol bheam.  The aperture 1o a
rectangular opening in the =y plane defined by {(x,v), I):] < X, l\| <Y}

In terms of




o= (k22)Y 8 4 k, z/k), (A3)

+

the amplitude on the z axis has the form ¢ « IxIv’ where

~ikz/2k
I - e [CCE)) + iS(E) + C(E) + iS(E))], (Ad)
and
t t
s - /m'2[ at sint?, ct) = @/m'/?[ de cost?,
o (o}

are the Fresnel integrals.22 The expression for Iy is obtained from that
for IX by making the replacements k - ky’ X - VY.
Ve are interested in the intensity well within a nominul Fresnel

region defined by the width of the aperture

z << k(x%,v%y/2, (AS5)

but sufficiently far from the aperture so that the radiation diffracted

from one edge can reach the z axis:

7 o= k(X/kX,Y/ky;. (A6)

Taking the appropriate limits of the Fresnel integrals, the intensity is
I = 10/1(}, wvhere I) is the intensity at the aitiracting aperture. This
] S

analysis indicates that Eq. (A6) defines the boundary of the true Fresnel
region.  The terms proportional to L’\:T'(k in Eq. (A1) represent

i o1 , . 4
piopagation at an angle + s1in (kv/k) to the o axis.  As a conveguonce the
drop in intensity characteriving the transition to the Fraunhoter repion

takes place at the location indicated by Eg. (A6) 1ather than by the right

hand gide of Eg.o (AD).
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Returning to the Bessel beam with d >> lfkl, in the region of
significant phase mixing in the integrand of Eq. (Al) the Bessel functicen
has the asymptotic form22 Jo(z) ~ (2/nz)1/2cos(z - n/4). Substituting this
into Eq. (Al) and comparing the phases, it follows that the Fraunhofer
region for the Bessel bheam commences at ZB = 2nd/klk. From the definition
of ZP in Eq. (A2) we note that ZB/ZP = 1/kld << 1 for the experimental
parameters in Ref. 11. Thus, we see that a Bessel beam is not optimum as
far as the diffractive fall-off of the intensity is concerned.

For the Gaussian beam, substituting u(r)exp(—rz/wg) into Eq. (6) and
performing the integral, the intensity on the axis of symmetry is found tc
be given by

—2(d/wo)2 —(d/w0)2 ,
1 - 2 > kd“/2
+ e e cos(} z)’ (A7)

U (22

wvhere ZR is the Rayleigh range defined in Eq. (1). For the parameters in
Ref. 11, d/wo >> 1, and the scale-length for the intensity to drop to a
quarter of its initial value is on the order of ZZR, as in Eq. (4c). This
same scale length is roughly applicable to the case of a wider Gaussian
beam with W, © d. For an infinitely wide beam, v, T and Eq. (A7) goes
over to the case of plane wvaves, Eq. (9).

For the off axis intensity of the cosine beam we limit the discussion

to the case where the observation point is an integral number of half

periods oft of the z axis. 1In analogy with Eq. (A3) we define
. 177 , , . .
‘, (k/22) [X + (k =k n_nck g,
172
3! (k20 [X 4 (k ! nonsk |

‘J..&




vhere nxn/kx, with n an integer, is the x-coordinate of the observation
point. We assume nxn/ky < X. In terms of these variables, the amplitude

has the form ¢ « I I , where
Xy

Io= [C(E) + 15(E ) + C(5)) + iS(&)
v + C(n) + iS(N)) + €(n) + i8(n)], (A8)

vhere C and § are the Fresnel integrals defined earlier and the expression
for I_ is obtained from that for Ix by making the substitution kx » ky’ X -

Y, and n. * n .
y

e X
:;: For plane waves (kx,y » 0) and on the symmetry axis (nx,y -+ 0) the
transition from the oscillatory to the monotonically falling behavior of
,Tf' the Fresne'l integrals in Eq. (AB) take:r place at z = k(Xz,YZ)/Z. This
; marks the boundary between the Fresnel and Fraunlhicfer regions. For the
;; cocine beam and on the symmetry axis (nx,y » 0) Eq. (A8) reduces tv Eq.
‘ib (A4) and hence Eq. (A6) defines the hLoundary bziween the twr regions. Awvay
» from the symmetry axis (nx,y > 0) the behavior is somewhat more
ft cumplicated. On the aperture, z = 0, and {+, ni + o yhence Ix = 2(1 + 1).
i{ For z sufficiently large so that 0 < n <1, but E+; Ew, n+ >> 1, the last
j{ﬁ two terms in Eq. (A8) are small and lx 4 31 + 1)/z. From the definition
;} of N ve note that as the ‘bservation point approaches the edge of the
.2 aperture (n _n/k =+ X) this reduction in the value of i, 1is obtained at
g smaller values of z, according to the formula 2z = k{¥X - nxn/kx)kx' Figure
/. which plats §Ix|? as a functisn of z, confirms this behavior fov
. parameters similar to that in Rel. 11,
&
RY
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