Naval Research Laboratory

Washington, DC $20375 \cdot 5000$

45
0
r AD-A220

Diffraction Effects in Directed Radiation Beams

B. Hafizi* and P. Sprangle

Beam Physics Branch
Plasma Physics Division
*Science Applications Intl. Corp., Mclean, VA 22102

Contents

I. Introduction and Sumnary 1
II. Electromagnetic Wave Diffraction 4
III. Diffraction Zones (Huygens' Principle) 6
i) Fraunhofer Diffraction (Far-Field or Wave-Zone Region) 6
ii) Fresnei Diffraction (Near-Field Region) 0
IV. Electromagnetic Missiles 8
i) Theory 8
ii) Experiment (Electromagnet: 2 Missiles) 10
V. Bessel Eeams $1 ?$
i) Theory 12
ii) Fxperiment (Bessel Beams) 13
VI. Electrmagnetic Directer Energy Pulse 'Xrains 16
j) Theory 16
ii) Modified Dowar-Spectrum Pulse --- Numerical Study 19
iii) Modified Power--Spectrum Fulse -. - Experiment 21
VII. Electromagnetic Rullets 23
i) Non-uniqueness of the Inverse Source Problem 23
ii) Solution of the Three-Dimensional Wave Equation in the Wave-. Zone 27
iii) Exact Solution of the Wave Equation from the Solution in the Wave-Zone (Radon Transforms) 28
iv) Example of a Eullet 29
VIIT. Suminary and Concluding Remarks 33
i) Electromagnetic Missiles. 33
ii) Bessel Beams 33
iii) Fi..ectromagnetic Directed Energy Pulse Trains 34
iv) Electromagnetic Bulleis 34
Acknowledgmer.t 34
Appendix 35
Referoncer 30
Discribution list 49

DIFFRACTION EFEECTS IN DIRFCTED RADIATION BEAMS

I. Introduction and Summary

Diffraction is a fundamental characteristic of all wave fields, be it photons, electrons, etc. The effect of diffraction is typically manifested when an obstacie is placed in the path of a beam. On an observation screen some distance away from the obstacle one observes a rather complicated modulation of che time-average intensity in the vicinity of the boundary separating the illuminated region from the geometrical shadow cast by the obstacle.

In many applications it would be highly desirable to propagate a beam over a long distance without an appreciable drop in the intensity. As an example we cite the possibijity of accelerating particles to ultra-high energies by utilizing high-power laser beams. Although the accelerating gradient in many of these schemes is extremely large, the actual distance over which the particle and laser beams maintain an appreciable overlap is very limited. The overlap is reduced due to the diffraction of the laser beam end as a result the net gain in the particle energy is limited.

With the advent of high-power lasers and microwave sources, diffraction of radiation beams with finite transverse dimensions has turned into a problem cf special importance. As an example, consider laser radiation of frequency ω emanating from a cavity oscillating in the fundamental transverse Gaussian mode. How far will this beam propagate in a turbulence-free atmosphere? More to the point, how fast is the fall-off in the intensity of this laser beam?

The answer to this question is well known. The scale length for the fall oft in intensity is given by the Rayleigh range, defined by

$$
\begin{equation*}
z_{R}=\pi w_{0}^{2} / \lambda, \tag{1}
\end{equation*}
$$

[^0]where w_{0} is the minimum spot size, or radius, of the beam, and $\lambda=2 \pi c / \omega$ is the wavelength. The minimum spot size w_{o} is also, known as the waist of the radiation beam. The fall-off of the beam intensity as it propagates in space is a consequence of the fact that injtially the beam was constrained to a finite waist, W_{0}. Diffraction then causes the beam to spread in the lateral direction and, from energy conservation, the intensity must drop off correspondingly. In the limit of an infinitely wide beam, $W_{0} \rightarrow \infty$, the Rayleigh range is infinite, there is no diffraction and the intensity is constant.

A natural way to propagate a beam over long distances is to increase the Rayleigh range by employing a wider beam or shorter wavelength radiation. Clearly the width of the beam is limited by the energy source available for pumping the lasing medium, and short wavelength lasers (x-rays and beyond) are not presently available. As a result, over the past severail years there has been an upsurge in research on such fundamental topics as propagation and diffraction properties of radiation beams. (See Ref. 2 for an earlier discussion.) Briefly, the question being asked is: "Can diffraction be overcome?" The following is a sumary of our review of diffractionless and other directed radiation beams.
i) Electromagnetic Missiles (Section IV)

Experiments indicate the possibility of generating wave packets with a broad frequency spectrum. The high-frequency end of the spectrum determines the furthest distance the miscile can propagate, in complete accord with our understanding of diffraction.
ii) Bessel Beams (Section V)

A Bessel beam is a particular, monochromatic solution of the wave equation. Bescel beams propagate no fur ther than baussian beams or plane
waves with the same transverse dimensions and, contrary to previous assertions, Bessel beams are not "resistant to the diffractive spreading commonly associated with all wave propagation".
iii) Electromagnetic Directed Energy Pulse Trains (Section VI)

These are particular, broad-band solutions of the wave equation. We show that the experiment and the numerical studies of these pulses are consistent with conventional diffraction theory and, contrary to previous assertions, these pulses do not "defeat diffraction".

iv) Electromagnetic Bullets (Section VII)

Electromagnetic bullets are solutions of the wave equation which are confined to a finite region of space in the wave-zone. The ultimate goal of the research has been to determine the source function which leads to a prescribed torm for the bullet in the wave-zone. Although the mathematical framework for this has been established, no concrete exanple has appeared in the literature.

Sections II and III begin with a review of basic diffraction theory and our findings and conclusions are summarized in Section VIII.

IT. Electromagnetic Wave Diffraction

Consider the radiation beam from a cavity of radius d. The wave vector is given by $k_{11} \hat{e}_{2}$, corresponding to propagation predominantly in the z direction, and the magnitude of the spread in the wave vector in the transverse direction is denoted by $\Delta k_{\mathcal{L}}$, with $k_{1 \mid} \gg \Delta k_{1}$. The angular spread of the radiation relative to the z axis is

$$
\begin{equation*}
\theta \simeq \Delta k_{\perp} / k_{11} \tag{2}
\end{equation*}
$$

On an observation screen at a distance z, the radius of the illuminated region is given by

$$
\begin{equation*}
w=d+9 z \tag{3}
\end{equation*}
$$

The first term on the right-hand side of this expression indicates the width of the region illuminated according to geometrical optics. Beyond this lies the region of the geometrical shadow, and the second term in Eq. (3) indicates the extent to which this region is illuminated due to diffacticn of light. The distance Z over which the angular spread leads to a fall-off in the intensity is given by $d+\theta Z=2 d$, or

$$
\begin{equation*}
\mathrm{Z}=\mathrm{d} / \theta \tag{4a}
\end{equation*}
$$

The distance Z may be regarded as the scale-length for diffractive spreading of the beam.

As a first example, suppose the transverse distribution of intensity in the beam is uniform. This j s the case when plane waves are apeltured. If the radius of the aperture is \quad fon a undamental result of fourier analysis, $\Delta k, d=1$. The angular spread is therefore given by $\theta=\lambda / 2$ rid, where $\lambda=2 \pi / k_{11}$ is the wavelength. For inis intensity distribution one thus finds

$$
\begin{equation*}
z_{p}=2 \pi d^{2} / \lambda . \tag{4b}
\end{equation*}
$$

For the case when the transverse intensity distribution is a Gaussian, $\exp \left(-r^{2} / w_{o}^{2}\right)$, of width w_{0}, we have $\Lambda i_{l} \simeq 1 / w_{0}$, and the angular spread of the beam is on the order of $\theta \simeq \lambda / 2 \pi w_{0}$. In this case $d=w_{o}$ and hence

$$
\begin{equation*}
z_{G}=2 \pi w_{o}^{2} / \lambda, \tag{4c}
\end{equation*}
$$

Which is trice the Rayleigh range Z_{R} defined in Eq. (1).
Clearly, diffraction is simply the physical manifestation of the wellknown result of Fourier analysis relating the spreads in wave vector space with the corresponding widths in real space, $\Delta k_{i} \Delta x_{i} \simeq 1$ for $i=1,2,3$. As a result, Eq. (4a) expresses a fundamental relation which we shall make use of repeatedly in order to interpret the results of theory and experiment on so-called diffractionless radiation beams.

III. Diffraction Zones (Huygens' Principle)

According to Huygens' principle each point on a given wavefront acts as a source of secondary wavelets. The field at a point F is given by the sum over the wavelets. If $u(\underline{r}) e^{-i \omega t}$ is the amplitude on an aperture, an approximate solution of the scalar wave equation at P is given by ${ }^{3,4}$

$$
\begin{equation*}
\psi_{p}(\underline{r}, \pm)=(i \lambda)^{-1} e^{-i \omega t} \int_{\text {aperture }} d S^{\prime} u\left(\underline{r}^{\prime}\right) R^{-1} e^{i \omega R / c} \tag{5}
\end{equation*}
$$

Where $R=\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+z^{2}\right]^{1 / 2}$ is the distance between the area element $d S^{\prime}$ on the aperture and the point P, as shown in Fig. 1.

In the Fresnel approximation the binomial expansion of R may be used to simplify Eq. (5) to

$$
\begin{equation*}
\psi_{p} \propto(i \lambda z)^{-1} e^{i \omega(z-c t) / c} \int_{\text {aperture }} d S^{\prime} u\left(x^{\prime}, y^{\prime}\right) e^{\left.i \frac{\omega\left(x^{\prime 2}+y^{\prime 2}\right.}{2 z}-\frac{x x^{\prime}+y y^{\prime}}{z}\right)} \tag{6}
\end{equation*}
$$

For plane waves incident on an aper ure with linear dimension d, there are two physically interesting limits for approximating Eq. (6).
i) Fraunhofer Diffraction (Far-Field or Wave-Zone Region)

If

$$
\begin{equation*}
z \gg d^{2} / \lambda \tag{7}
\end{equation*}
$$

one may neglect the quadiatic terms in the exponent of Eq. (6) and the wavelets from the entire wavefront at the aperture contribute to the field at P. In the Framhofes agyon ψ_{p} is simply the Fourien tanstorm of the amplitude at the diftracting apettme.
ii) Eresnel Ditfraction (Neay fitu Rigion)

In the othen limit,

$$
\begin{equation*}
z<d^{2} / \lambda, \tag{1}
\end{equation*}
$$

it is necessary to retain the quadratic terms in the exponent of Eq. (6) and the wavelets from a limited portion of the wavefront at the aperture make the dominant contribution to the field at P. In this case, the integration in Eq. (6) may be taken to be over the entire $z=0$ plane.

For plane waves incident on a circular aperture of radius $d, F i g .2$, making use of Eq. (5), the exact field on the axis of symmetry is given by $\psi_{P} \propto \exp (-i \omega t)\left\{\exp (i \omega z / c)-\exp \left[i \omega\left(d^{2}+z^{2}\right)^{1 / 2} / c\right]\right\}$, and the intensity $I \propto \psi_{P} \psi_{P}^{*}$ is

$$
\begin{equation*}
I \approx 1-\cos \left\{\omega\left[\left(d^{2}+z^{2}\right)^{1 / 2}-z\right] / c\right\} \tag{9}
\end{equation*}
$$

Figure 3 is a schematic plot of the intensity functio:, Eq. (9), indicating in particular the transition between the Fresnel and the Fraunhofer regions. Vote that the intensity drops off precipitously beyond $z=2 \pi d^{2} / \lambda$, consistent with the scale-length defined by Ea. (4b).

We proceed now to examine the research on new solutions of the wave equation, with particular emphasis on their diffraction properties. $5-20$

IV. Electromagnetic Missiles

i)
 Theory

Consider first the case of a field, termed a issile", which falls off more slowly than the usual $1 / R$ law. The inventive step is the use of a broad frequency spectrum. Depending on the spectrum, the fall-off with R may be as slow as desired. ${ }^{7,8}$

To appreciate the nature of this field, note that for an arbitrary source distribution within a region A as shown in Fig. 4, the energy delivered to a screen S, integrated over all time, is

$$
\varepsilon(S, R)=\int_{-\infty}^{\infty} d t \int_{\text {screen }} d S \hat{n} \cdot(\underline{\operatorname{ExB}} \underline{B}) / 4 \pi,
$$

where \hat{n} is a unit vector normal to the screen, and $\underset{\sim}{E}$ and $\underset{\sim}{B}$ are the electric and the magnetic field, respectively. For a source with a bounded frequency spectrum, a screen of fixed area S, and for sufficiently large R, $\varepsilon(S, R)-1 / R^{2}$, according to well-known results. ${ }^{21}$

The current density for the el, omagnetic missile described in Ref. $7, J(r, t)=\delta(z) f(t) \hat{e}_{x}, r<d$, is confined to a disk of radius d, where $r-\left(x^{2}+y^{2}\right)^{1 / 2}$ is the radial coordinate and $f(t)$ is a given function of time. If $\tilde{A}(\omega)$ and $\tilde{J}(\omega)$ denote the Four ier transforms of the vector potential and the current density respectively, then $\tilde{A}(\omega)=\int d^{3} \tilde{J}(\omega) \exp (i \omega R / c) / c R$ is a solution of the wave equation. ${ }^{21}$ In the present case, $\tilde{J}(\omega)-\delta(z) \bar{f}(\omega) \hat{e}_{x}$, and the vector potential on the axis of symmetry is given by

Making use of this expression for $\tilde{A}(\omega)$, the Poynting flux along the z axis integrated over all time, $U(z) \equiv \int d t \hat{e}_{z} \cdot(E \times B) / 4 \pi$, is given by

$$
\begin{equation*}
\left.u=c^{-2}\left[1+z\left(z^{2}+d^{2}\right)^{-1 / 2}\right] \int_{0}^{\infty} d \omega|\tilde{f}(\omega)|^{2}\left(1-\cos \left(\left.\frac{\omega}{c} \right\rvert\,\left(z^{2}+d^{2}\right)^{1 / 2}-z\right]\right]\right) . \tag{10}
\end{equation*}
$$

Note the resemblance between Eq. (9) and the integrand of Eq. (10). Equation (9) is for a monochromatic field and is based on Ruygens-Fresnel principle while Eq. (10) is obtained from a rigorous solution of the full wave equation.

In the limit $z \rightarrow \infty$ in Eq. (10), for a fixed frequency ω, $\cos \left\{(\omega / c)\left[\left(z^{2}+d^{2}\right)^{1 / 2}-z\right]\right\} \rightarrow \cos \left(\omega d^{2} / 2 c z\right) \rightarrow 1$, and the integrand tends to zero. Referring to Fig. 3, this means that the contribution of this frequency lies in the far ficld region and is thus negligible. At a given large z we can, therefore, write

$$
u=\frac{2}{c^{2}} \int_{2 c z / d^{2}}^{\infty} d \omega|\tilde{f}(\omega)|^{2}\left[1-\cos \left(\omega d^{2} / 2 c z\right)\right]=\frac{2}{c^{2}} \int_{2 \mathrm{cz} / \mathrm{d}^{2}}^{\infty} d \omega|\tilde{f}(\omega)|^{2} .
$$

We see that the most important contribution is trom the high frequency end of the spectrum, for which the given point z lies in the near-field, Fresnel, zone. The contributions from all the lower trequency components will have decayed to negligible values hefore reaching the given z. While the eventual fall of of any frequency component is: as $1 / 2$, the fall off of the time integated poynting flux for the wave packet depend: on how
 with a frequency te:ponse

$$
\left.\tilde{f}(\omega) \quad \therefore \quad 11 \cdot\left(\omega^{\prime} \omega_{0}\right)^{?}\right)(1+? \varepsilon) / 4 .
$$

where $\varepsilon>0$. For this spectrum the time-integrated Poynting flux falls off as $U \propto 1 / z^{2 \varepsilon}$. The fall-off can thus be as slow as desired by taking the $\operatorname{limit} \varepsilon \rightarrow 0$. The limit, however, corresponds to frequency spectrum from a source with infinite energy. The function $f(t)$ is symmetric with respect to $t \rightarrow-t$. Evaluating the inverse Fourier transform of $f(\omega)$, one finds that $f(t) \sim t^{(2 \varepsilon-3) / 4} \exp \left(-\omega_{0} t\right)$ for $t \gg 1 / \omega_{0}$. For $\varepsilon>1 / 2$ and $t \ll 1 / \omega_{0}$, $f(t) \rightarrow$ constant. However, for the more interesting case of $\varepsilon<1 / 2, f(t) \rightarrow$ $t^{\varepsilon-1 / 2}$ when $t \ll 1 / \omega_{0}$, indicating a mild singularity,

ii) Experiment (Electromagnetic Missiles)

The difficulties involved in an experimental study of electromagnetic missiles stem from the need to generate pulses with extremely short risetimes and suitably-shaped wavefronts. ${ }^{9}$ An antenna was used to generate a "pure" spherical wave which formed the primary pulse and the field reflected from a parabolic dish of radius 2 ft formed the secondary pulse. The pulses were detected by a specially-designed sensor. The primary pulse was found to fall off as $1 / z^{2}$, the energy decaying by $1 / 16$ when the sensor was moved fiom 4 ft to 16 ft from the source. This was because the antenna, being a point source, generated spherical wavefronts. The pulse reflected from the parabolic dish was found to resemble that of a circular disk, simil?r to that studied earlier in this section. Over the same distance, the energy in this electromagnetic missile was found to decay by just under $1 / 2$. Wjthout a precise knowledge of the írequency spectrum it is not possible to make a quantitative analysis of this experiment. Rough estimates indicate that the scale length for the fall off of the intensity of the missile is indeed compatible with the diffraction scale length $z=2 \pi d^{2} / \lambda$, where $d=2 \mathrm{ft}$ is the radius of the reflecting dish and x is the wavelengh for the highenk frequency (10 GHz; in the pulse.

These preliminary experimental results indicate that a suitably tailored pulse-shape can be designed to have an energy-decay rate essentially limited by the highest frequencies present in the pulse generator, in complete accordance with the elementary nutions of diffraction of light. Propagation of a composite pulse in free space is a dispersive process. As the beam propagates, the lowest frequency components diffract away first.
V. Bessel Beams
i) Theory

An example of a so called diffractionless electronagnetic beam is a Bessel beam. We note that a particular solution of the scalar wave equation

$$
\left(\nabla^{2}-c^{-2} \frac{\partial^{2}}{\partial t^{2}}\right) \psi(\underline{r}, t)=0
$$

is

$$
\begin{equation*}
\psi=e^{i\left(k_{\|} z-\omega t\right)} \int_{\theta_{0}}^{2 \pi+\theta_{0}} d \theta A^{\prime}(\theta) e^{i k_{1}(x \cos \theta+y \sin \theta)} \tag{11}
\end{equation*}
$$

for arbitrary θ_{0} and $A(\theta)$, provided $\omega^{2}=c^{2}\left(k_{11}^{2}+k_{\perp}^{2}\right)$. Here, k_{11} and k_{\perp} denote the magnitudes of the components of the wave vector paral?el and orthogonal to the z axis, respectively, and $\lambda=2 \pi /\left(k_{11}^{2}+k_{1}^{2}\right)^{1 / 2}$ is the wavelength. Since the z-dependence in Eq. (11) is separated from the x and y-dependence, the solution is clearly diffractionless in the sense that the time-average intensity is independent of z. In fact, the intensity is constant for all 7 and all t.

Durnir considers the case where $A(O)=1$ (Ref. 10). In this case, making use of the expasion $\exp \left(i(\sin \theta)=\Sigma_{n} J_{n}(\zeta) \exp (i n \theta)\right.$, whare J_{n} is the ordinary Bessel Lunction of the first kind of order n (Ref. 22), Eq. (11) simplifies to $\psi=2 \pi J_{o}\left(k_{1} r\right) \operatorname{expli}\left(k_{1} z-\omega t\right) l^{2}$ wherer $:\left(x^{2}, v^{2}\right)^{1 / 2}$ is the radial variable.
hak ing use of the pteperties of the Bersel function (Ref. 22), one can show that the "Energy" content, fder $\mathrm{J}_{\mathrm{n}}^{2}(\mathrm{k}, \mathrm{r})$, integrated over any transverse period, or lohe, is approximately the same as that in the
central lobe. This point will be important in our interpretation of che diffractive properties of Bessel beams.

ii) Experiment (Bessel. Beams)

A Bessel beam has an infinite number of lobes and, therefore, has infinite energy. In the laboratory an approximation to this ideal beam is realized by clipping the beam beyond a certain radius. The question is, given the finite transverse size, how well is the diffractionless property preserved.

To answer ihis question Dumnin et al. compared the propagation of a clipped Bessel beam with a Gaussian beam. ${ }^{11}$ The full width at half-maximum (FWHM) of the Gaussian was taken to be equal to the FWHM of the central lobe of the Bessel beam. In the experiment the on-axis intensity of each team vas measured along the axis of symmetry. The Bessel beam was claimed to be "resistant to the diffractive spreading commonly associated with all wave propagation" since its intensity was observed to remain approximately constant for a much longer distance than the Gaussian beam. The idea of a diffraction-free beam was further reinforced by using a geometrical optics argument to obtain a fomula for the propagation distance of central lebe of the Bessel beam.

We shall now reconsider this comparison. The wavelength of the radiation was $\lambda=6328 \AA^{\circ}$. For the Gaussian beam, $\exp \left(-r^{2} / w_{0}^{2}\right), w_{0}$ was equal to 0.042 mm , corresponding to a FWHM of 0.07 mm . For the Bessel beam, $J_{0}\left(k_{\perp} r\right), k_{\perp}$ was equal to $41 \mathrm{~mm}^{-1}$, corresponding to a rUHM for the central iobe of 0.07 mm . The beams were apertured to a radius $\mathrm{d}=3.5 \mathrm{~mm}$. The following ordex-of magritude discussion is based on Eqs. (2) (4); a mone rigorous amatysis is presented in the Apoendix. The angular spread due to the natural width of the Gaussian bean is $6 \rightarrow \lambda / 2 \pi w_{0}$ and Eq. (3) takes the
form $w=w_{0}+\left(\lambda / 2 n_{w_{0}}\right) z$, where the first term in this expression is w_{0}, rather than $d_{\text {, }}$ since the energy of the Gaussian is concentrated in the rentral peak. The scale length for diffraction is the same as that given by $\mathrm{Eq} .(4 \mathrm{c})$; namely $Z_{G}=2 \pi{ }_{\mathrm{o}}{ }^{2} / \lambda=1.75 \mathrm{~cm}$. The natural angular spread of the Jessel beam is $\theta=k, \lambda / 2 \pi$, and Eq. (3) takes the furm $w=\alpha+$ ($k_{\perp} \lambda^{\prime} 2 \pi$) z, where the first term represents the radius of the aperture since the energy in each lobe is approximately the same and they all affert the propagation of the Bessel beam. The scale length for diffraction is, therefore, given by $d+\left(k_{\perp} \lambda / 2 \pi\right) Z_{B}=2 d$, or $Z_{B} \simeq 2 \pi d / k_{\perp} \lambda \simeq 85 \mathrm{~cm}$, which is consistent with the experimental observation.

In the transverse plane the lobes of the Bessel beam diffract away sequentially starting with the cutermost one. The otermost lobe diffracts in a distance on the order of $2 \pi^{2} / \lambda k_{1}^{2}$, which is approximately equal to Z_{G}. Tre next lobe diffracts away after a distance on che ordex of $2 Z_{G}$. This process continues until the central lobe, which diffracts away after a distance .. $N Z_{G}$, where N denotes the number of lobes within the aperturc. In the experiment $N=50$, implying a propagation distance on the order of $50 Z_{G}$ Eor the central lobe of the Bessel beam, which is consistent with the measured value. Measurements of the on-axis intensity obviously fail to reveal the gradual deterioration of the transuerse bean profile, but the numerical plots in Fig. 2 of Ref. 10 are consistent with this scenario. Therefore, the Bessel beam is not "resistant to the diffractive spreading commonly associated with all wave propagation". Our interpretation points out the significance of each successive lobe having about the same energy. The central lobe persists as long as thete are of t axis lobes compensating for its energy loss and hence the comparison with the narrower Gausoian beam in Ref. 11 is of little significance.

Ve note that utilizing the full width of the aperture a Gaussian beam propagates a distance on the order of $N Z_{B}$; i.e., N times further than the Bessel beam. Additionally, by appropriately curving the wavefront, nearly ail the power of the Gaussian beam can be focussed on a target of dimension W_{c} in a distance Z_{B}. Hence, for this purpose a Gaussian beam would be significantly better than the Bessel beam employed by Durnin et al. (See also Ref. 12)

VI. Electromagnetic Directed Energy Pulse Trains

i) Theory

Electromagnetic directed energy pulse trains are particular solutions of Maxwell's equations. ${ }^{13}$ To discuss these, we make the change of variables $\xi=z-c t$ and $\tau=t$, and transform the wave equation

$$
\left(\nabla^{2}-c^{-2} \partial^{2} / \partial t^{2}\right) \psi=0,
$$

into the form

$$
\left(\nabla_{\perp}^{2}+\frac{2}{c} \frac{\partial^{2}}{\partial \xi \partial \tau}-c^{-2} \partial^{2} / \partial \tau^{2}\right) \psi=0 .
$$

Making the assumption

$$
\begin{equation*}
\psi=\psi(\xi, r, \tau) e^{i \omega \xi / c}, \tag{12}
\end{equation*}
$$

leads to the an equation for the complex envelope ψ.

$$
\left(\nabla_{\perp}^{2}+2 i \omega^{-2} \frac{\partial}{\partial \tau}+\frac{2}{c} \frac{\partial^{2}}{\partial \tau \partial \xi}-c^{-2} \frac{\partial^{2}}{\partial \tau^{2}}\right) \psi=0 .
$$

Here, r denotes the radial variable and ∇_{\perp} is the differential operator in the plane $z=$ constant. If $\psi(\xi, r, \tau)$ varies slowly compared to the characteristic scales $1 / \omega$ and c / ω, the second derivative of the envelope function may be neglected anc the wave equation reduces to

$$
\begin{equation*}
\left(\nabla_{1}^{2}+2 i \omega c^{-2} \frac{\partial}{\partial \tau}\right) \psi=0 . \tag{13}
\end{equation*}
$$

Equation (13) is an extremely useful approximation to the full wave equation in a vacuum. Note that the full wave operator is of the hymerbolic type, where ; the reduced wave operator is of the parabolic type. For this reson, Eq. (13) is sometimes referted to as the parabolic approximation to the wave equation.

A particular solution of Eq. (13) is given by

$$
\begin{equation*}
\psi=C \frac{w_{o}}{w^{\prime}} e^{-i \tan ^{-1}\left(\tau / \tau_{R}\right)-\left(1-i \tau / \tau_{R}\right) I^{2} / w^{2}}, \tag{14a}
\end{equation*}
$$

where C is a constant,

$$
\begin{equation*}
w=w_{0}\left[1+\left(\tau / \tau_{R}\right)^{2}\right]^{1 / 2} \tag{14b}
\end{equation*}
$$

is the spot size, w_{o} is the waist and

$$
\begin{equation*}
\tau_{R}=\omega w_{o}^{2} / 2 c^{2} \tag{14c}
\end{equation*}
$$

is related to the Rayleigh range $Z_{R}=\omega w_{0}^{2} / 2 c$ by $\tau_{R}=Z_{R} / c$.
ziolkowski ${ }^{13-15}$ makes use of the variables transformation

$$
\xi=z-c t, \quad \eta=z+c t
$$

in the wave equation to reduce it to the form

$$
\left(\nabla_{1}^{2}+4 \frac{\partial^{2}}{\partial \eta \partial \xi}\right) \psi=0
$$

Kepresenting ψ in the form

$$
\begin{equation*}
\psi=\psi(\eta, r) e^{i \omega \xi / c} \tag{15}
\end{equation*}
$$

leads, wirhout any approximation, to an equation for ψ,

$$
\begin{equation*}
\left(\nabla_{1}^{2}+4 \mathrm{i} \frac{\omega}{c} \frac{\partial}{\partial r_{1}}\right) \psi=0 . \tag{16}
\end{equation*}
$$

A particular solution of Eq. (16) is given by
where C is a constant,

$$
\begin{equation*}
w=w_{0}\left[1+\left(n / \eta_{R}\right)^{2}\right]^{1 / 2} \tag{17b}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{\mathrm{R}}=\omega \mathrm{w}_{0}^{2} / \mathrm{c} \tag{17~s}
\end{equation*}
$$

is related to the Rayleigh range $Z_{R}=\omega w_{0}^{2}, 2 c$ by $\eta_{R}=2 Z_{R}$.

Some remarks on the solutions in Eqs. (14) and (17) are in order. First, Eq. (14) is a solution of the parabolic approximation to the full wave equation. On the other hand, Eq. (17) is an exact solution of the full equation. Second, there is a factor-of-two difference between the scale length $c r_{R}$ in Eq. (1.4c) and the scale length η_{R} in Eq. (17c). Third, the solution in Eq. (17) has infinite energy. Finally, the exact solution in Eq. (15) consists of a pulse traveling to the left which is modulated by a plane wave moving to the right.

To examine the last two points, Eqs. (15) and (17) may be combined to form a fundame:ital Gaussian pulse Ψ_{k} with parameter $k=\omega / c$

$$
\begin{equation*}
\Psi_{k}(r, z, t)=e^{i k \eta} \frac{e^{-k r^{2} / V}}{4 \pi i V} \tag{18}
\end{equation*}
$$

where

$$
\begin{aligned}
& \frac{1}{V}=\frac{1}{A}-\frac{1}{R} \\
& A=z_{0}+\varepsilon^{2} / z_{0}, \quad R=\varepsilon_{0}+z_{0}^{2} / E
\end{aligned}
$$

arm π_{0} is a constant. ${ }^{13-15}$ To conform to Riolkowskis exarple, Eq. (18) repesents a pulse iraveling to the right which is modulated by a plane wave moving to the left. With an appoptiate weight function, it an be
shown that the Ψ_{k} for all k form a complete set on basis functions, each with total energy proportional to $\int d^{3} \underline{v}\left|\Psi_{k}\right|^{2} \rightarrow \infty$. Just as in the case of Fourier synchesis with plane waves, a general, finite-energy pulse may be obtain ! by superposing the various Ψ_{k} according to a weight function $F(k)$, that is,

$$
\begin{align*}
f(r, z, t) & =\int_{0}^{\infty} d k \Psi_{k}(r, z, t) F(k) \\
& =\frac{1}{4 \pi \dot{(}\left(z_{0}+j \xi_{0}\right)} \int_{0}^{\infty} d k F(k) e^{-k s} \tag{19a}
\end{align*}
$$

where

$$
\begin{equation*}
s=-i n+\frac{r^{2}}{z_{0}+i \xi} \tag{19b}
\end{equation*}
$$

Equation (19a) indicates that $f(r, z, t)$ is proportional to the Laplace transform of $\mathrm{F}(\mathrm{k})$.

ii) Modified Power-Spectrum Pulse .- Numerical Study

Ziolkowski has examined in detail the pulse corresponding to a modified power-spectrum (MPS):

$$
F(k)= \begin{cases}0, & 0<k<b / \beta \tag{20a}\\ 4 \pi i \beta \frac{\beta k-b)^{\alpha-1} e^{-a(\beta k-b)}}{\Gamma(\alpha)}, & k>b / \beta\end{cases}
$$

Where $\Gamma(\alpha)$ is the Gamat function (Ref. 22) and a, α, and β ate arbitrary conctants. Upon substiouting Eq. (20a) into Eq. (19) one obtaims

The real part of u ilis function defines the MPS pulse. The radial profile of the wps pulse at the pulse center, $\xi=0$, has the form

$$
\begin{equation*}
f(r, z)=\frac{1}{z_{0}} \frac{e^{i b n / \beta}}{\left(a+r^{2} / \beta z_{0}-i n / \beta\right)^{\alpha}} e^{-b r^{2} / \beta z_{o}} \tag{20c}
\end{equation*}
$$

In the numerical studies the pulse was replicated by superposing the Eields from a planar array of discrete points, each of which was driven by a function specified by the MPS form on some $z=$ constant plane. ${ }^{15}$ The parameters were: $a=1.0 \mathrm{~cm}, b=1.0 \times 10^{10} \mathrm{~cm}^{-1}, \beta=6.0 \times 10^{15}, z_{0}=$ 1.667×10^{-3}, and $\alpha=1$. The spectrum was approximacely flat up to 200 GHz , becoming negligible beyond 15 THz . The pulse generated in this manner was propagated forward and compared with the exact form in Eq. (20b) at several locations along the z axis. The linimum radius of the array required to replicate the exact pulse form at $1,10,100$, and $1,000 \mathrm{~km}$ was determined. From Ziolkowski's results we estimate the corresponding radii of the antenna to be approximately $0.5,5,50$, and 500 m , respectively.

We shall rxamine these results by asking: What is the scale-length for diffraction of the mps pulse? The pulse has a Gaussian radial profile, as indicated in Eq. $(20 \mathrm{c})$, with a width $\mathrm{w}_{\mathrm{o}}=\left(\beta z_{\mathrm{o}} / \mathrm{b}\right)^{1 / 2}=3.1 .6 \mathrm{~cm}$ and, therefore, Ziolkowski calculates a Rayleigh range $\pi w_{0}^{2} / \lambda=0.21 \mathrm{~km}$ for the 200 GHz componeni. ${ }^{15}$ This, however, is not the appropriate scale-1ength for diffraction of the MPS pulse. The correct scale-length is given by $2 \pi w_{0} d / \lambda$, where the antenra dimension, d, always exceeds w_{0}. The point here is that the Payleigh range based on the waist wo, as calculated by Ziokowski, 14,15 is onky valid at the pulse center, s A. Andy fom the plane \langle. O the offertive waist increcsise, as indicated by Eq. (?Oh), and

explains why the pulse propagates further than the Rayleigh range defined in terms of w_{0}. To calculate the actual diffraction length, we note that the perpendicular wave number (k_{1}) spertrum given in Ref. 15 indicates that the smallest k_{\perp} is on the order of $1 / w_{0}$. Hence, an estimate for the diffraction angle is $\lambda 2 \pi w_{0}$. The width of the radiation beam given by Eq. (3) can be written as $w=d+\left(\lambda / 2 \pi w_{o}\right) z$, where d is the radius of the array or "antenna." The scale-length for diffraction is then simply

$$
\begin{equation*}
z_{\mathrm{MPS}}=2 \pi \omega_{0} d / \lambda . \tag{21}
\end{equation*}
$$

Note the similarity between the diffraction length in Eq. (21) and the scale--length for diffraction of the Bessel beam, $Z_{B}=2 \pi d / k_{1} \lambda$, derived in Section V, subsection ii). The resemblance is a reflection of the fact that in both cases the pulse energy is spread over the entire radius, d, of the aperture, which is much larger than the nominal waist of the beam, w_{o}.

According to Eq. (21) the larger the radius of the array is, the longer the distance of propagation of the pulse, consistent with the numerical results. From the numerical results, the ratio $\mathrm{Z}_{\mathrm{MPS}} / \mathrm{d}$ is equal to 2,000 which is the same as that given by Eq. (21) provided the frequency is 300 GHz . Since this frequency is well within the cutofy of the pulse spectrum, this constitutes a persuasive indication that the MPS pulse does not "defeat diffraction" as claimed by Ziolkowski. ${ }^{14}$
iii) Modified Power-Spectrum Pulse -- Experiment

Ziolkowski et al. have performed a water tank experiment to demonstrate the properties of a MPS acoustic pulse. ${ }^{16}$ The pulse was; generated by a $6 x 6$ cfil 2 squate array. The MPS pulse parameters were $a=1.9 \mathrm{mi}, \mathrm{h}-600.0 \mathrm{~m}^{\mathrm{l}}, \mathrm{B}=300.0, z_{0} 4.5010^{4} \mathrm{~m}$, and a 1 . Fiom

The experiment indicated that a Gaussian pulse with an initial width equal to 1.5 cm suffered a greater transverse spreading than the MPS pulse.

This experiment may be examined in the light of the discussion leading to Eq. (21). The expression in Eq. (21) gives the scale-length for the fall-off in the intensity of a pulse which is generated by an array (i.e., antenna) of radius d. Since the square array is $6 \times 6 \mathrm{~cm}^{2}$, we take the parameter d to be equal to 3 cm . Noting that the speed of sound in water is $1.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$, the wavelength of the dominant frequency in the pulse, 0.6 $M H z$, is $\lambda=2.5 \mathrm{~mm}$. From this, the actual diffraction scale-length $Z_{\text {MPS }}$ is 1.1 m . This is in good agreement with the experimental observation that the MPS pulse propagated a distance of 1 m without significant spreading. Comparing the MPS pulse generated by a $6 \times 6 \mathrm{~cm}^{2}$ array with a Gaussian pulse having a waist of 1.5 cm is inappropriate. A Gaussian beam with spot size equal to the array radius used in the experiment would prop.gate a distance $\pi d^{2} / \lambda=Z_{M P S}$; i.e. as far as the MPS pulse.

We note from Eq. (21) that, in general, a Gaussian beam with an appropriately curved wavefront and an initial spot size equal to the antema dimension transfers nearly all the power onto a target of dimension w_{0} in a distance on the order of 'MPS. Such a Gaussian beam, therefore, transfers mote power on the target than the corresponding MPS pulse.

VII. Electromagnetic Bullets

In this section we shall discuss solutions of the wave equation which are confined to a finite region of space in the wave zone and are termed "electromagnetic bullets". We consider solutions of the wave equation

$$
\begin{equation*}
\left(\nabla^{2}-c^{-2} \partial^{2} / \partial t^{2}\right) f(\underline{r}, t)=-\rho(\underline{r}, t), \tag{22}
\end{equation*}
$$

where the source term $\rho(\underline{r}, t)$ is assumed to be non-zero for a finjte time interval $-T<t<T$. In this problem there are two cases of interest:

Case (a) is the direct source problem (initial value problem). In this case the solution for $t<T$ is given and the solution for $t>T$ is sought.

Case (b) is the inverse source problem. Here, the solution of the homogeneous wave equation for $|t|>T$ is known and one seeks the source term appropriate to this solution. This case is of particular interest since it would enable one to find the time-dependent source for a prescribed radiation field.

The following four subsections summarize the extensive research of Moses and Prosser on this subject. For a brief descripiion of the properties of a bullet, the reader is referred to subsection iv).
i) Non uniqueness of the lnverse Source problem

In this subsection we indicate the reason fot the non uniqueness of the inverse source problef. ${ }^{17}$ By making use of the eigenf ictions of the cur operator, the electomagnetic vector lifeld wave equation may be solved along essentially the same lines as the one dimensional poblem. The discussion in this subsertion is, thomene cont ined to the one dimentional wave equation th avod the complications ot malti dimensimal etferts.

Let $I_{+}(x, t)=f(x,+)$ ienote the solution of Eq. (22) for $t>T$, and $f(x, t)=f(x, t)$ denote the solution for $t<-r$. It is well-known that the solution of the sorce-free initial value problem for $t>T$ in terms of the values of the function $f_{d}(x, t) a t t=T$ and the "velocity" $(\partial / \partial t) f(x, t)$ at. $t=T$ is expressible in terms of a pxopagator $G(x ; t):$

$$
\begin{equation*}
\tilde{I}_{+}(x, t)=\int d x^{\prime}\left[G\left(x-x^{\prime} ; t-T\right) \frac{\partial}{\partial t}-f_{+}\left(x^{\prime}, t=T\right)+f_{+}\left(x^{\prime}, t=T\right) \frac{\partial}{\partial t} G\left(x-x^{\prime} ; t-T\right)\right] \tag{23a}
\end{equation*}
$$

Similarly, the solution of the source-free final value problem for $t<-T$ in terms of $f_{-}(x, t)$ at $t=-T$ and $(\partial / \partial t) f_{-}(x, t)$ at $t=-T$ is given by

$$
\begin{equation*}
f_{-}(x, t)=\int d x^{\prime}\left[G\left(x-x^{\prime} ; t+T\right) \frac{\partial}{\partial t} f\left(x^{\prime}, t=-T\right)+f_{-}\left(x^{\prime}, t=-T^{\prime}\right)^{3} \frac{\partial t}{} G\left(x-x^{\prime} ; t+T\right)\right] \tag{23b}
\end{equation*}
$$

The propagator G can be written in terms of the Heaviside function η as follows

$$
\begin{equation*}
G(x ; t)=\frac{1}{2} \operatorname{sgn}(t) n\left(c^{2} t^{2}-x^{2}\right)=\frac{1}{2}[n(x+c t)-n(x-c t)] \tag{24}
\end{equation*}
$$

That is, G may be expressed as the difference between the advanced and the retarded Green funciions. As a result, $f_{f}(x, t)$ is influenced only by points x at $t=T$ which lie in the backward light cone of the observation instant; similarly, $f(x, f)$ is influenced only by points x at $t=-T$ which lie in the for sard light cone of the observation instant, as indicated in Fig. 5.

Let us now consider the effect of the source on the solution of the wave equation. le define two auxiliary functions,

$$
\begin{equation*}
\ddot{n}(k, 1)=(2 \pi)^{-1 / 2} \int^{\infty} \mathrm{i} x p(x, 1) \because i k x \tag{25}
\end{equation*}
$$

$$
\begin{align*}
\tilde{f}(k, \sigma, t) & =\tilde{E}(k, \sigma,-T) e^{-i \sigma c|k|(t+T)} \\
& +-\frac{i \sigma}{2|k|} e^{\cdots i \sigma c|k| t} \int_{-T}^{t} d t^{\circ} \ddot{\sigma}\left(k, i^{\prime}\right) e^{i \sigma \varepsilon / k \mid t} \tag{26}
\end{align*}
$$

where $\sigma=+1$ or -1 distinguishes the two directions of propagation along the x axis. Note that $\tilde{p}(k, t)$ is simply the spatial Fourier transfoxm of $p(x, t)$. In terms of the two auxiliary functions, it is simple to show that

$$
f(x, t)=(2 n)^{-i / 2} \sum_{\sigma} \int_{-\infty}^{\infty} d k \tilde{f}(k, \sigma, t) e^{i k x}
$$

is a solution of the inhomogeneous wave equation in Eq. (22). The solutions for $t<-T$ and for $t>T$ are then given by

$$
\begin{equation*}
f_{ \pm}(x, t)=(2 \pi)^{-1 / 2} \sum_{\sigma} \int_{-\infty}^{\infty} d k e^{i k \ddot{i}} e^{-i \sigma c|k|(\pm T-t)} \tilde{f}(k, \sigma, \pm T) \tag{27}
\end{equation*}
$$

Equation (27) expresses the solution of the wave equation in terms $\underset{f}{7}$ evaluated at $\pm T$. This function is related to the source ρ by Eqs. (25) and (26). Equation (23), on the other hand, expresses the same solutions in terns of f and (a/at)f evaluated at $\pm T$. Hence, one would expect to be able to relate $\boldsymbol{f}(k, \sigma, \pm T)$ with f and $\left(\partial / \partial^{+}\right) f$ evaluated at $\pm T$. Indeed, the the formula connecting $\tilde{f}(k, v, T)$ and \hat{i}, is

$$
\begin{equation*}
f(k, \sigma, T)=(B n)^{-1 / 2} \int_{-\infty}^{\infty} d x\left[f_{+}(x, 1=T)+i \frac{o}{|k|} \frac{\partial}{\partial t} f_{+}(x, t-T)\right] e^{-i k x}, \tag{28}
\end{equation*}
$$

and $7(k, o, T)$ is obtained in terns of f by fouriex inversion of fq. (27) evaluated ar $t=T$. Thus, in the direct sotice problem, $f_{4}(x, y)$ is obianed by specitying either $f(x, t)$ and (a/at)f, (x, y) evaluated at $t=T$, or (x, \cdots) and $p(x, t)$.

We now turn to the inverse source problem. Inverse problems, in geseral, have been the sulject of extensive research in many branches of physics. In our case we wish to determine the source from a knowledge of the field generated by that source. Supposing that $f_{ \pm}(x, t)$ and T are known, we can determine $\tilde{f}(k, o, \pm T)$ from Eqs. (27) and (28). Let ing the upper limit of integration in Eq. (26) equa) T, it appears that cne can then oltain the temporal Fourier transform, $s(k, \omega)$, of $\tilde{\varphi}(k, t)$, where

$$
s(k, \omega)=(2 \pi)^{-1 / 2} \int_{--T}^{T} d t^{\prime} \tilde{p}\left(k, t^{\prime}\right) e^{i \omega t^{\prime}} .
$$

The source function is then given by

$$
p(x, t)=(2 \pi)^{-1} \int_{-\infty}^{\infty} d k \int_{-\infty}^{\infty} d \omega s(k, \omega) e^{i k x-i \omega t}
$$

Thus, if $s(k, \omega)$ were known for all k and all ω, we could determine $p(x, t)$. However, referring to 2 q . (26), we notice that $s(k, \omega)$ is only knowr for $\omega= \pm c|k|$, which is not sufficient to reconstruct $\rho(x, t)$. This complication is intimately connected with the nor-uniqueness of the inverse problem.

Moser has shown that specification of the time-depenrence of the source is sufficient to guarantee a unique solution. ${ }^{17}$ As a concrete example, if $\rho(\underline{r}, \mathrm{t})=p_{\mathrm{e}}(\underline{r}) \mathrm{h}_{\mathrm{e}}(r)+p_{o}(\underline{y}) p_{o}(\mathrm{r})$, where h_{e} is an even function of t and h_{o} is an odd function of t, and both sssentially arbitrary, ther a complete soitition of the inverse problem for $p_{e}(\underline{r})$ and $p_{o}(r)$ is poscible. It musi be stressed, however, that this assumed form for the somee function is a sufficient but not necessary condision for the solvability of the inverse protlen.

Without going into details we cite the example given in Ref. 17. For simplicity taking the time dependence to be of the form $h_{e}(t)=\delta(t), h_{0}(t)$ $=\delta^{\prime}(t)$, where ${ }^{\prime}=d / d t$, and assuming the field to be cf the form

$$
f_{+}(x, t)=\sin [k(x-c t)], \quad-a<x-c t<a, \quad k a=n n
$$

the source function is found to be given by

$$
\rho(x, t)=-\left[k \delta(t) \cos (k x)-c^{-1} \delta^{\prime}(t) \sin (k x)\right], \quad-a<x<a
$$

Note that in this case the source is confined to a finite region of space, which is an important attribute for any physicaliy realizable source function. \{We should point out that the source function given by Moses is erroneous due to a sign error in evaluating the fourier transform of $h_{o}(t)$ [his Eq. (2.36')].)
ii) Solution of the Three-Dimensional Wave Equation in the Wave Zone The general solution of the source-free three-dimensional wave equation is ${ }^{18}$

$$
\begin{equation*}
f(\underline{r}, t)=(2 \pi)^{-3 / 2} \sum_{0} \int d^{3} \underline{k} e^{i \underline{x}-j o c k t} \tilde{f}(k, o) \tag{29}
\end{equation*}
$$

whers $o= \pm!$, and $k=|k|$ Making use of the method of stationary phase, it can be shown that

$$
\begin{align*}
& \lim _{r \rightarrow \infty} e^{i k \cdot r}=\frac{2 n i}{k i} \frac{\sin }{}\left[e^{i k r} \delta\left(\theta \ldots \theta_{y}\right) \delta\left(\phi \cdot 木_{y}\right)\right. \\
& \left.+e^{i k r} \dot{\partial}\left(-\quad \theta_{X}^{\prime}\right) \delta\left(\phi-\phi_{X}^{\prime}\right)\right],
\end{align*}
$$

 the ateges in the cone alone -2 axis. ${ }^{2}$ we shall define cone mote
precisely in the following. Jpon substituting Eq. (30) into in. (29), the field in the wave zone is found to be given by

$$
\begin{equation*}
f(\underline{r}, 1)=(8 \pi)^{-1 / 2} x^{-1} \operatorname{Im} \int_{0}^{\infty} d k\left[e^{i k(x-c t)} \tilde{f}\left(k, \theta_{x}, \phi_{x}\right)-e^{i k(r+c t)} \tilde{f}\left(k, \theta_{x}^{\prime}, \phi_{x}^{\prime}\right)\right] . \tag{31}
\end{equation*}
$$

Kenarkably, Eq. (3:) shows that the general solution of the threedimensional wave equation in the wave zone is, apart from the factor $1 / r$; a superposition of one..dimensional wave motion, expressed as functions of 2 - et and $r+c i$. Moreover, if initially $f(\underline{r}, t)$ is confined to a given solid angle, $\tilde{f}(k, \theta, \phi)$ will be significant for k lying within that angle and, from Eq. (31), the solution in the wave zone will also be confined to the same angle. For the purposes of interpretation it is convenient to consider propagation in cones, as indicated in Fig. 6. In particular, an electromagnetic. field in a cone is defined as one that is completely confired to a cone in the wave zone.
iii) Exact Solution of the Wave Equation from the Solution in the

Wave Zone (Radon Transforms)
The purpose of this subsection is to point out that, given the soluti. of the wave equation in the wave-zone region, it is possible to determine the solution everywhere. ${ }^{18,19}$ In particular, one seaks the initial conditions $f(r, t)$ and $(\partial / \partial t) f(r, t)$ at $t=T$. This is reterred to as the inverse initial vaiue problem.

The solution of the inverse intial value problem is discussed in kef. 18 for a particularly simpie case. A systematic treatment of the getietal problem is possibie by asing Radon transforms ig

The Radon transform $F(x, \hat{f})$ of a function $f(r)$ is obtained by integrating f over all planses $r . f=$ const.

$$
F(k, \hat{n})=\int d^{3} \underline{r} f(\underline{r}) \delta(\underline{r} \cdot \hat{n}-k)
$$

where \hat{n} is a unit vector. 24 The usual Radon transform is defined as an integral over planes whose normals vary over a unit sphere. In general, the function $f(\underline{r})$ defines some internal distribution (such as density) of an object and $F(k, \hat{n})$ is the projected distribution, or the profile, of the object on the plane $\underset{r}{r} \hat{n}=$ constant. The Radon transform is a very useful tool in image reconstruction from projections, with applications in computer-assisted tomography (CAT)-scan, radio astronomy, remote sensing, etc.

A refinement of the usual definition of the Radon transform shows that only the transform over a hemisphere, which may consist of disjointed parts, is sufficient to reconstruct the original function. It can then be shown that the task of obtaining an exact solution of the three-dimensionai wave equation from the solution in the wave zone reduces to tak'ng the inverse of the refined Radon transform of the solution in the wave zone.

From Eq. (31) it is known that in the wave zone the solution of the wave equation is, apart from a factor $1 / r$, a function of only $r-c t$ or $r+c t$, representing propagation along rays confined to cone. The field in the wave zone, therefore, defines the range of the unit vector \hat{A} and the amplitude. This information is essentiaily equivalent to knowing the projections in different directions. The exact field may then be reconstructed from the set of projections.
iv) Example of a Bullet

We close section vil by discussing an explicit example of a bullet which is a solution of the scalar wave equation. ${ }^{20}$ An example of an electromagnetic bullot is given in kef. ?O.

A bullet which is confined to a finite volume in the wave-zone is given by

$$
\begin{equation*}
f(\underline{r}, t)=n(\sigma-\theta)[\eta(r-a-c t)-n(r-b-c t)] / r, \quad r \rightarrow \infty, \tag{32}
\end{equation*}
$$

where n is the Heaviside function, a and b, with $b>a$, denote the boundaries of the bullet along the radius, and 2σ is the vertex angle of the cone containing the bullet. Note that this solution is causal and of finite energy, and has a form which is consistent with the remarks following Eq. (31). It represents a packet of energy "shot" through a cone whose axis coincides with the z axis.

This solution can be easily verified by letting $f=g(r, \theta, t) / r$ and noting that

$$
\left(\nabla^{2}-c^{-2} \frac{\partial^{2}}{\partial t^{2}}\right) f=\left(\frac{\partial^{2}}{\partial r^{2}}-c^{-2} \frac{\partial^{2}}{\partial t^{2}}\right) g+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right) g .
$$

Assuming $g(r, \theta, t)=h\left(r-c t-r_{0}\right) Y(\theta)$, one finds

$$
\begin{equation*}
\left(\nabla^{2}-c^{-2} \frac{\partial^{2}}{\partial t^{2}}\right) E=\frac{h}{r^{2} \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d}{d \theta} Y\right), \tag{33}
\end{equation*}
$$

which tends to zero for all contimous $Y(\theta)$ as $r \rightarrow \infty$. For the case when $Y(\theta)=\eta(\sigma-\theta)$, we let $-d Y / d \theta=\exp \left[-(\sigma-\theta)^{2} / 2 \Delta^{2}\right] /(2 \pi)^{1 / 2} \Delta$, with $\Delta \rightarrow 0$. Note that as $\Delta \rightarrow 0, d Y / d \theta \rightarrow-\delta(\sigma-\theta)=d \eta(\sigma-\theta) / d \theta$. Upon substituting this form into Eq. (33), we notice that as Δ is made to approach zero, r must increase indefinitely in order for the right-hand side of Eq. (33) to approach zero. This shows very clearly that Eq. (32) is indeed a solution in the wave zone.

The spot size may be defined by:

$$
\begin{equation*}
r_{s}^{2}=\int d r d \theta d \phi f r^{2} \sin \theta(2 r \sin \theta)^{2} / \int d r d \theta+\phi r^{2} \sin \theta, \tag{34}
\end{equation*}
$$

where $2 r \sin \theta$ is the width of a cone of half-angle θ. Substituting Eq. (32) into Eq. (34), one obtains

$$
\begin{equation*}
r_{s} \rightarrow[(8-9 \cos \sigma+\cos 3 \sigma) / 3(1-\cos \sigma)]^{1 / 2} c t, \quad t \rightarrow \infty \tag{35}
\end{equation*}
$$

indicating a linear increase with time for the spot size, as in the case of the Gaussian pulse in Eq. (14b), although the constants of proportionality are different. We mention in passing that the solutions given by Moses and Prosser are distinguished from the other solutions reviewed here by not having an explicit dependence on the frequency or the wave number.

As mentioned in the previous subsection, to obtain the exact solution everywhere ore has merely to evaluate the inverse Radon transform of the solution in the wave zone, Eq. (32). Since the derivation is lengthy we shall simply quote the result The exact solution is given by

$$
\begin{equation*}
f(\underline{r}, t)=f_{a}(\underline{r}, t)-f_{b}(\underline{r}, r), \tag{36a}
\end{equation*}
$$

where

$$
\begin{align*}
f_{a}(\underline{r}, t) & =n(\sigma-\theta)\{n[a+c t-r \cos (\theta-\sigma)]-n(a+c t-r)\} / r \\
& +v_{a}\{n[a+c t-r \cos (\theta+\sigma) j-n[a+c t-r \cos (\theta-\sigma)]\} / \pi r, \tag{36b}
\end{align*}
$$

with

$$
v_{a}=\cos ^{-1} l\left(\cos \sigma-\cos \beta_{a} \cos \theta\right) / \sin \beta_{a} \sin \theta \mid, \quad 0<v_{a}<\pi,
$$

and

$$
\beta_{\bar{a}}=\cos ^{-1}|(a+c t) / r|, \quad 0<\beta_{a}<\pi / 2,
$$

and where $f_{b}(r, t)$ is identical to $f_{a}(r, t)$ except that a is replaced by b.

The field in Eq. (36) is identically zero for all r downstream of the bullet, i.e., for all $r<a+c t$. The wave-zone limit is obtained by taking $r, t \rightarrow \infty$. Then, since Eq. (36) corresponds to propagation in the positive cone (Fig. 6), taking $\mathrm{r}-\mathrm{ct}=$ constant $\mathrm{Eq} .(32)$ is recovered. The requirement $r-c t=$ constant is equivalent to observing the bullet in a co-moving frame. Close to the origin the exact solution in Eq. (36) spreads out of the cone significantly. However, in the wave zone the solution is confined to the cone and is independent of the angle θ therein. Finally. it has been shown in Ref. 20 that the difference between the exact solution in Eq. (36) and the wave-zone solution in Eq. (32) becomes smail quite rapidly as r, ct increase, with $r-c t h e l d$ fixed.

In principle, one can now use the inverse source method to determine the sources that lead to the bullet described by Eq. (32). To our knowledge, hovever, this computation has yet to be performed.

VIII. Summary and Concluding Remarks

The motivation for much of the research reviewed herein stems from the need to propagate a beam ot radiation over long distances without an appreciable decrease in the intensity. Possible applications would include: power beaming, advanced radar, laser acceleration of particles and directed energy sources. This need has led to a great deal of interest in such fundamental subjects as diffraction and new solutions of the wave equation.

It has been reiterated that the physical basis for diffraction of waves is the well-known relation $\Delta k_{i} \Delta x_{i}=1$, for $i=1,2,3$. By virue of this, it is simple to determine the scale length for the diffactive spreading of a beam with an arbitrary transverse profile. Thus, a knowledge of the spectrum is sufficient to determine the maximum propagation distance of the beam. Since diffraction is unavoidable, by concentrating the energy in the high Erequencies one can only delay the spreading of the beam.

Four examples of the research effort on the subject of beam propagation have been reviewed herein. The conclusions are as follows. i) Electromagnetic Missil ss

Experiment indicates that a suitably tailored pulsewshape can be designed to have an energy decay rate limited by the highest frequencies present in the pulse. This is tully consistent with our understanding of diffraction.

```
ii) Bessel Beams
    It is shown that as tat as propagatjon is concerned Bessem boams ate
not "resistant to the diffractive spteadimg commorly associated with all
Wave propagation". These beams propagate mo fun they than Gauseian beams os
plame waves with the same tramsverse dimensions,
```

iii) Electromagnetic Directed Energy Pulse Trains

The diffractive properties of the pulse form studied most intensively under this generai hoading are described by diffraction theory. These pulse trains do not "defeat diffraction".
iv) Electromagnetic BuIlets

Given a radiation wave packet in the wave-zone which is confined to a suitable solid angle and extends over a finite radial extent, one can determine the source required to generate the wave packet. As of this Writang, however, this problem has not been solved for a practical case.

Acknovledgment
This work was supported by the Office of Naval Research and the Department of Energy.

The purpose of this appendix is to examine the transition from the Fresnel to the Fraunhofer region for a clipped Bessel beam and a clipped Gaussian baam within the context of the Huygens-Fresnel approximation. 25 The clipping is assumed to be caused by a finite-size aperture.

In the case of the Bessel beam the field distribution at the aperture has the form $u(r, z=0)=J_{0}\left(k_{1} r\right)$ within a circular aperture of radius d. Making use of Eq. (6) the ampiitude at a point on the axis of symmetry is given by

$$
\psi a z^{-1} \int_{0}^{d} d r^{\prime} r^{\prime} J_{o}\left(k_{1} r^{\prime}\right) e^{i k r^{\prime} / 2 z}
$$

The limit $k_{j}=0$ corresponds to the case of plane waves iricident on a circular aperture, as in Section III. The intensity, given by Eq. (9), falls off monotonically for $z>Z_{p}$, where

$$
\begin{equation*}
Z_{p}=2 \pi d^{2} / \lambda \tag{1,2}
\end{equation*}
$$

For $k_{1} \geqslant 0$, the oscillatory behavior of the Bessel function in Eq. (A1) tends to phase mix the integrand, effectively reducing the upper limit of the integration. Consequently, the boundary of the Fresnel region, beyond which the radiation appears io be emitted essentially from a point source, is reached prior to $Z_{p}=2 \pi d^{2} / \lambda$.

Since there is no simple analytical appoximation to the integral in Eq. (Al), consider the case of a cosine beam $u\left(x, y, z=0\right.$ (os $\left(k_{x} x\right) \cos (?, y)$, which is the ratesian equivalent of a Besssal beam. The apetture is a Iectangular opeaing in the $x y$ plate derined $b y\{(x, y),|x|<x,|y|<\gamma\}$. In ternes of

$$
\begin{equation*}
\xi_{ \pm}=(k / 2 z)^{1 / 2}\left(X \pm k_{x} z / k\right), \tag{A3}
\end{equation*}
$$

the amplitude on the z axis has the form $\psi \in I_{x} I_{y}$, where

$$
\begin{equation*}
I_{x}=e^{-i k_{x}^{2} z / 2 k}\left[C\left(\xi_{+}\right)+i S\left(\xi_{+}\right)+C\left(\xi_{-}\right)+i S\left(\xi_{-}\right)\right] \tag{A4}
\end{equation*}
$$

and

$$
S(t)=(2 / \pi)^{1 / 2} \int_{0}^{t} d t \sin ^{2}, \quad C(t)=(2 / \pi)^{1 / 2} \int_{0}^{t} d t \cos t^{2},
$$

are the Fresnei integrals. ${ }^{22}$ The expression for I_{y} is obtained from that for I_{X} by making the replacements $\mathrm{k}_{\mathrm{y}} \rightarrow \mathrm{k}_{\mathrm{y}}, \mathrm{X} \rightarrow \mathrm{Y}$.

We are interested in the intensity well within a nominal fresnel region defined by the width of the aperture

$$
\begin{equation*}
z \ll k\left(X^{2}, Y^{2}\right) / 2 \tag{A5}
\end{equation*}
$$

but sufficiently far from the aperture so that the radiation diffracted from one edge can reach the z axis:

$$
\begin{equation*}
z=k\left(X / k_{x}, Y / k_{y}\right) \tag{A6}
\end{equation*}
$$

Taking the appropriate limits of the Fresnel integrals, the intensity is $1=I_{0} / 16$, where I_{0} is the intensity at the ciffracting aperture. This analysis indicates that Eq. (A6) defines the boundary of the true fresnel legion. The terms proportional to k_{x} ak in Fif. (AB) tepresont propagation at an angle $\sin ^{1}\left(k_{\mathrm{x}} / k\right)$ to the $:$ axis. A:S a consequence the dop in intensity chataterieing the tamsition to fhe Ftaminoter beyion dakes phace at the locatan indiated by fil. (ati) wher than by the tight hand side of Fq. (A) .

Returning to the Bessel beam with $d \gg 1 / k_{\perp}$, in the region of significant phase mixing in the integrand of Eq. (A1) the Bessel function has the asymptotic formi ${ }^{22} \mathrm{~J}_{\mathrm{o}}(z) \sim(2 / \pi z)^{1 / 2} \cos (z-w / 4)$. Substituting this into Eq. (A1) and comparing the phases, it foliows that the Fraunhofer region for the Bessel heam commences at $Z_{B}=2 \pi d / k_{1} \lambda$. From the definition of Z_{P} in Eq. ($A 2$) we note that $Z_{B} / Z_{P}=1 / k_{\perp} d \ll 1$ for the experimental parameters in Ref. 11. Thus, we see that a Bessel beam is not optimum as far as the diffractive fall-off of the intensity is concerned.

For the Gaussian beam, substituting $u(r) \exp \left(-r^{2} / w_{o}^{2}\right)$ into Eq. (6) and performing the integat, the intensity on the axis of symmetry is found to be given by

$$
\begin{equation*}
I \propto \frac{1+e^{-2\left(d / w_{0}\right)^{2}}-2 e^{-\left(d / w_{0}\right)^{2}}}{1+\left(z / Z_{R}\right)^{2}} \cos \left(k d^{2} / 2 z\right), \tag{A7}
\end{equation*}
$$

where Z_{R} is the Rayleigh range defined in Eq. (1). For the parameters in Ref. 11, $d / w_{0} \gg 2$, and the scale-lengtil for the intensity to drop to a quarter of its initial value is on the order of $2 Z_{R}$, as in Eq. (4c). This same scalo length is roughly applicable to the case of a wider Gaussian beam with $w_{0}=d$. Fot an infinitely wide beam, $w_{0} \rightarrow \infty$, and Eq. (A7) goes over to the case of plane waves, Eq. (9).

Fot the off axis intensity of the cosine beam we limit the discussion io the case where the observation point is an integral number of half periods of of the axis. ln analogy with Eq. (AS) we define

$$
\begin{aligned}
& k_{+}\left(k / ?_{n}\right)^{1 / \theta_{n}} \mid x+\left(k_{x} n_{x} n k_{n}\right) ; \\
& n_{1}\left(k \because_{n}\right)^{1 / \theta^{\prime}}\left|x+\left(k_{x} \therefore k+n_{x} n k_{x}\right)\right|
\end{aligned}
$$

where $n_{x} \pi / k_{x}$, with n_{x} an integer, is the x-coordinate of the observation Doint. We assume ${ }^{n} x / k_{x}<x$. In terms of these variables, the amplitade has the form ψ or $I_{x} I_{y}$, where

$$
\begin{align*}
& I_{x} \propto I C\left(\xi_{+}\right)+i S\left(\xi_{+}\right)+C\left(\xi_{-}\right)+i S\left(\xi_{-}\right) \\
& \left.\quad+C\left(\eta_{+}\right)+i S\left(\eta_{+}\right)+C\left(n_{-}\right)+i S\left(n_{-}\right)\right]_{1} \tag{A8}
\end{align*}
$$

where C and S are the Fresnel integrals defined earlier and the expression
 Y, and $n_{x} \rightarrow n_{y}$.

For plane waves $\left(k_{x, y} \rightarrow 0\right)$ and on the symmetry axis $\left(n_{x, y} \rightarrow \eta\right)$ the transition Erom the oscillatory to the monotonically falling behavior of the Fresne ${ }^{7}$ integrals in Eq. (A8) take. place at $z \simeq k\left(X^{2}, Y^{2}\right) / 2$. This marks the boundary between the Fresnel and Fraunhofer regions. For the cosine beam and on the symmetry axis $\left(n_{x, y} \rightarrow 0\right) ~ E q . ~(A 8)$ reduces to Eq. (A4) and hence Eq. (A.6) defines the toundary between the t wr regions. Away from the symmetry axis $\left(n_{x, y}>0\right)$ the behavior is somewhat more complicated. On the aperture, $z=0$, and ${ }_{ \pm}{ }_{ \pm}, \eta_{ \pm} \rightarrow \infty$, whence $I_{x}=2(1+i)$. For z surficiently large so that $0<\eta_{-}<1$, bat ξ_{+}: $\xi_{-}, \eta_{+} \gg 1$, the last (wo terms in Eq. (A8) are small and $I_{x} \rightarrow 3(1+i) / 2$. From the definition of n - we note that as the bservation point approaches the edge of the aperture $\left(n_{x} \pi / k_{x} \rightarrow X\right)$ this reduction in the valle of f_{x} is obtained at smaller values of z, according to the formula $z=k\left(x-n_{x} m / k_{x}\right) k, \quad$ Figure
 parameters similar to that in Rol. 11.

References

1. A. E. Biegman, An Introduction to Lasers and Posers, (McGraw-Hill, New York, 1971), chap. 8.
2. G. Toraldo di Francia, Nuovo Cimento, Suppl. 9, 426 (1952).
3. W T. Welford, Optics, (Oxtora University Press, New York, 1981), chap. 3.
4. C. J. Boukamp, Kep. Prog. Phys. 17, 35 (1954).
5. I. N. Brittingham, J. Appl. Phys. 54, 1179 (1983).
6. P. A. Belanger, J. Opt. Sor, Am. A1, 723 (1.984).
\% T. T. Wu, J. Appl. Phys. 57, 2370 (1985).
7. T. T. Wu, R. M. Shen, and J. H. Myers, in Proceedings of the SPTE Conference 1061 on Microwave and Particle Beam Sources and Directed Energy Concepis, Los Angeles 1989, edited by H. E. Brandt (Society of Photo-Optical Inscrumentation Engineers, Bellingham; WA, 1939), p. 370.
8. H. M. Shen, in Proceedings of the SPIE Conference 873 on Microwave and Taricle Beam Sources and Propgation, Los Angeles 1988, edited by N . Rostoker (Society of Photo-Opt cal instrumentation Engineers, Bellingham, WA, 1938), F. 338.
9. J. Durnin, J. Opt. Soc. Am. A4, 651 (1987).
10. J. Durnin, J. J. Miceli and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
11. J. Durnin, J. J. Miceli and J. H. Eberly, Opt. Lett. 13, 79 (1968).
12. R. W. Ziolkowski, J. Math. Phys. 26, 861 (1995).
13. R. W. Ziolkowski, in Ref. 9, p. 312.
14. R. W. Ziolkowski, Phys. Rev. A 39, 200' (1989).
15. R. W. Ziulkowski, D. K. Lewis and B. D. Gook, Phys. Rev. Lett. 62, 147 (1989).
16. H. E. Moses, J. Math. Phys. 23,1905 (1985).
17. H. E. Moses and R. T. Prosser, IEEE Trans. Bntennas Propag. AF. 34, i88 (1986).
18. K. E. Moses and R. T. Prosser, Proc, R. Soc. Lond. A 422, 343 (1989); Froc. R. Soc. Lond. A 422,351 (1989).
19. H. E. Moses and R. T. Prosser, tu be published in the J of the Society for rodustrial and Applied Mathematios, Slam J. Appl. Math. (1990).
20. J. D. Jackson, Classical Electrodynanics, (Wiley, New York, 1975), chap. 9.
21. I. S. Gradshteyn and I. M. Ryzhik, Table of inizgrals, Series, and Products (Academic, San Diego, 1980).
22. I. W. Kay and H. E. Moses, Nuovo Cimento 22, 689 (1961).
23. S. R, Dears, The Radon Transform and Some of Its Applications, (Wiley, New York, 1983).
24. W. H. Southwell, J. Opt. Soc. Am. 71, 7 (1981).

Figure 1

Figute 2

Figure 3

Figure 4

FORWARD LIGHT CONE

CAUSAL PROPAGATION

Figure 5

Figure 6

Figure 7

DISTRIBUTION LIST

Naval Research Laboratory
4555 Overlook Avenue, S.W.
Washingten, DC 20375-5000
Attn: Code 1000 - Commanding Officer, CAPT John J. Donegan, Jr.
1001 - Dr. T. Coffey
1005 - Head, Office of Management \& Admin.
1005.1 -Deputy Head, Office of Management \& Admin.
1005.6-Head, Directives Staff

1200 - CAPT R. W. Michaux
1201 -- Deputy Head, Command Support Division
1220 - Mr. M. Ferguson
2090 - Director of Technical Services
2604 - NRL Historian
3000 -- Director of Business Operations
4000 - Dr. W. R. Ellis
0124 - ONR
4500 - Dr. D. Nage?
4603 - Dr. W. W. Zachary
4700 - Dr. S. Ossakow (2.6 copies)
4707 - Dr. H. M. Manheimer
4730 - Dr. R. Elton
4770 - Dr. G. Cooperstein
4780 - Dr A. W. Ali
4790 - Dr. C. M. Tang
4790 - Dr. G. Joyce
4790 - Dr. M. Lampe
4790 - Dr. Y. Y. Lau
4790 - Dr. A. Ting
4790 - Dr. E. Esarey
4790 - Dr. J. Krall
4790A- B. Pitcher (20 copies)
4790 - Dr. P. Sprangle
4793 - Dr. W. Black
4793 - Dr. S. Gcld
4793 - Dr. D. L. Hardesty
4793 - Dr. A. K. Kinkead
4794 - Dr. A. W. Fliflet
4794 - Dr. M. Rhinewine
4795 - Dr. C. A. Kapetanakos
4795 -- Dr. J. Mathew
$5700-\mathrm{Dr}$. L. A. Cosby
5745 - Dr. J. Condon
6840 - Dr. S. Y. Ahn
6840 - Dr. A. Ganguly
6840 - Dr. R. K. Parker
0843 - Dr. R. H. Jackson
6843 - Dr. N. R. Vanderplaats
6843 - Dr. C. M. Armstrong
6875 - Dr. R. Wagner
2628 - Documents (22 copies)
2634 - D. Wilhanks
Notr: Every name listed on distribution fets one copy except for those where extra copies are roted.

Dr. R. E. Aamodt
Lodestar Research Corp. 2400 Central Ave., P-5
Boulder, CO 80306-4545
Dr. J. Adamski
Boeing Aerospace Company
P.0. Box 3959

Seattle, WA 98124
Dr. T. M. Antonsen
University of Maryland
College Park, MD 20742
Assistant Secretary of the
Air Force (RD\&L)
Room 4E856, The Pentagon
Washington, D.C. 20330
Dr. W. A. Barletta
Lawrence Livermore National Lab.
P. 0. Box 808

Livermore, CA 94550
Dr. W. Becker
Univ. of New Mexico
Institute for Mod. Opt.
Albuquerque, NM 8713 i
Dr. Robert Behringer
9342 Balcon fve.
Northridge, CA 91325
Dr. G. Bekefi
Mass. Institute of Tech.
Room 36-213
Cambridge, MA 02139
Dr. Steren V. Benson
Physics Building
Duke University
Durham, NC 27706
Dr. I. B. Bernstein
Mason Laboratory
Yale Universicy
400 Temple Street
New Haven, Cr 06520
Dr. Amitava Bhat tacharjee
Columbia lniversity
S. U. Mudd 210

Dept. of Afplied Phys.
New York, NY 1002?

Dr. Anup Bhowmik
Fockwell International/Rocketdyne Div.
6633 Canoga fvenue, FA․ 40
Canoga Park, CA 91304
Dr. G. Bourianoff
1901 Rutland Drive
Austin, TX 78758
Dr. Charles Brau
Vanderbilt University
Nashville, TN 37235
Dr. R. Briggs
SSC Laboratory
Stoneridge Office Park
2550 Beckleymeade Ave.
Suite 260
Dallas, TX 75237
Prof. William Case
Dept. of Physics
Grinnell College
Girinnell, IA 50112
Dr. R. Center
Spectra Tech., Inc.
2755 Northup Way
Bellevue, WA 98004
Dr. K. C. Chan
Los Alames National Laboratory
P. O. Box 1663

Los Alamos, NM 87545
Prof. Frank Chen
School of Eng. \& Applied Sciences
Univ. of Calif. at Los Angeles
7731 K Boelter Hall
Los Angeles, CA 90024
Dr. S. Chen
MIT Plasma Fusion Center
NW16-176
Cambridge, MA 01890
Dr. D. P. Chermin
Science Applications Intl. Corp.
1720 Goodridge Drive
melean, va 22102
Dr. Williami Coison
Naval Posigraduate Schood
Physics Dept.
Monterey, CA 93940

Dr. Richard Cooper
Los Alamos National Scientific
Laboratory
P.0. Box 1663

Los Alamos, NM 87.545
Dr. R. A. Cover
Rockwell International/Rocketdyne Div. 6633 Canoga Avenue, FA-38
Canoga Park, CA 91304
Dr. Bruce Danly
MIT
NW16-174
Cambridge, MA 02139
Dr. R. Davidson
Plasma Fusion Center
Mass. Institute of Tech.
Cambridge, MA 02139
Dr. John Dawson
Physics Department
University of California
Los Angeles, CA 90024
Dr. David A. G. Deacon
Deacon Research
2440 Embarcadero Road
Palo Alto, CA 94303
Dr. Philip Debenham
Center for Radiation Research National Bureau of Standards Gaithersburg, MD 20899

Director
National Security Agency
Fort Meade, MD 20755
ArTN: Dr. Richard Foss, $A 42$ Dr. Thomas Fandei, A243 Dr. Robert Fadden, R. SA

Director of Researoh (2 copies)
U. S. Naval Academ;

Annapolis, MD 21402
Dr. A. Drobot
Soience Applications Intl. Corp. 1710 Goodridge Road
Mclean, VA 22102

Dr. Duight Duston
SDIO/IST
The Pentagon
Washington, DC 20301-7100
Dr. Luis R. Elias
Creol-FEL Research Pavillion
Suite 400
12424 Research Parkway
Orlando, FL 32826
Dr. C. James Elliot
X1-Division, M.S. 531
Los Alamos Natl. Scientific Lab.
P. O. Box 1663

Los Alamos, NM 87545
Dr. Anne-Marie Fauchet
Brookhaven National Laboratories Associated Universities, Inc.
Upton, L.I., NY 11973
Dr. R. Gajewski
Div. of Advanced Energy Projects
U. S. Dept of Energy

Vashington, DC 20545
Dr. J. Gallardo
Brookhaven National Laboratory Associated Universities, Inc. Upton, L.I., NY 11973

Dr. B. B. Godfrey,
Chief Scientist
WL/CA
Kiriland AFB, NM 87117-6008
Dr. John C. Goldstein, X 1
Los Alamos Na! . Scientific Lab. P.O. Box 1663

Los Alamos, NM 87545
Dr. V. L. Granatstein
Dopt of Flect:ical Enginereting University of Maryland College Park, itl 2074 ?

D1. F. Halbach
Lawtence Be:keley Labordiony Haversity ot California, lieskeley Berkoley, (A qua)

Dr. R. Harvey
Hughes Research Laboratory
3011 Malibu Canyon Ruad
Malibu, CA 90265
Prof. Herman A Haus
Mass. Institute of Technology
Rm. 36-351
Cambridge, MA 02139
Dr. B. Hui
Defense Advanced Research Erojects Agency 1400 Wils on Blvd.
Arlington, VA 22209
Prof. V. Jaccarino
Univ. of Calif. at Santa Barbara
Santa Barbara, CA 93106
Dr. B. Carol Johnson
Ctr. for Radiation Researen
National Inst. of Standards and rech.
Gaithersburg, MD 20899
Dr. Ron Johnsun
Ctr. for Radiatiuon Research
Natl. Inst. of Standards and Tech.
Gaithersburg, MD 20899
Dr. Shayne Johnston
Physics Departmert
Jackson State University
Jackson, MS 39217
Dr. R. A. Jong
Lawrence Livermore National Laboratory P. O. Box $908 / 1.626$

Livermore, CA 94550
Dr. Howard Jory
Varim Associates, Bldg. 1
611 Harsen Way
Palo Alto, CA 94303
Dr. C. Joshi
Unirersity ot California
los; Angeles, CA 90024
[1. K. J. Kim, MS 101
Lawtence Berkeley Lab.
Rm 2? 1 , 80
Berkeley, 'A 14.700

Dr. Brian Kincaid
Lawrence Berkeley Laboratory
University or California, Berkeley
Berkeley, CA 94720
Prof. N. M. Kroll
Department of Physics
B-019, UCSD
La Jolla, CA 92093
Dr. Thomas Kvan
Los Alamos National Scientific
Laboratory, MS608
Y. O. Boi 1663

Los Alamos, NM 87545
Dr. J. LaSala
Physics Dept.
U. S. M. A.

West Point, NY 10996
Dr. Michael Lavan
U.S Ariny Strategic Def. Command

ATTN: Code CSSD-H-D
P. O. Box 1500

Huntsviale, AL 35807-3801
Dr. R. Levush
Dept. of Physics \& Astronomy
Uni . irsity of Maryland
College Park, MD 20742
Dr. Anthony T. Lin
Dept. of Physics
University of California
Los Anreles, CA 90024
Dr. Chuan S. Liu
bept. of Physics \& Astronomy
Unjversity of Maryland
College Park, MD 20742

Dr . N. C. Lahmanm, Jr.
UCLA
770 Boeltar hall
los; Angeles, (A oono:
Dr. A. lincoio
Brookhaven Natioma! !abomatory
Acreperator bept
HION, NY 119;

Prof. J.M.J. Madey
117 Fhysics Bleig.
Dule University
Dux ram, NC 27700°
Dr. R. Mako
205 Snuth Whiting Swreet
Alexandria: VA 22304
Dr. Joseph Mangano
Science Research laboratory
1600 Wilson Blvd.
Suite 1200
Arlington. VA 2220°
Dr. Siva A. Mani
Science Anplications In:J. Vorp.
1040 Wal ham Sireet
Lexington, MA 02173-80\%7
Dr. T. C. Marshail
Applied Physics Deparement
Columbia University
New York, NY 1.0027
Dr. Xavier K. Maiuyama
Dep.. of Physics
Nava! Fostgiaduate School
Monterey, CA 93943
Dr. B. McVey
Les Alamos National Laboratory
P. O. Box 1663

Los Alamos, NM 87545
Dr. David Merrite
Space \& Naval Warfare Command
Attn: EMW 145A
Washington, DC 20363-5100
Dr. A. Mondelli
Science , licalions Intl. Carp.
1/10 Goodr dge orive
P.O. Box 1303

McLean, VA 22101
Dr. Mel Month
Brookhaven Nationa: Labotatories
Asgociated Universities, Inc.
Up+on, L. Y. NY 11973
Dr. Geraid T. Moore
University of New Mexico
Albuquerque, !dm 87131

Dr. Fhilip Mortor.
Stanford Linex. Accesmato Center P.G. Box 4349

Stanfora, CA 94305
Prof J, Nation
226 Phillips Hall
Scrool of rilec. Eng.
Cornell baivensiry
ithaca, NY 148.50
Dr. Gecrge Neil
TRW
One Space Fark
Fedurido Beach. UA 90270
Dr. Relvin Neil
Lawence Livermore Nationni tab.
Code L-321, P, O. Box 808
Livarmore, CA 94550
Or. Brian Newtam
MSS 564
Los Alamos National Scientifir Lab.
P.O. Bnx 1663

Los Alames, AM 27545
Dr. T. Orzechowsiki
L-4. 26
Lawrence Livermore Natioral Lab.
P. (3. Box 808
l.ivermore, CA 94-50

Prof. B. Ott
Department of Physics
Uriversity of Maryland
College Park, MJ 20.42
UUSDRE (RdAT)
Roon 301067, The Pentagon
Uachington, J.C. 20301
Er. Robert B. Palmer
Brookhaven National Laboratories
Associated Universities, Inc.
lipton, L. 1., NY 11973
Dr . 2. Palmer
Hughes Research Labolatory
Malibu, CA 90266
Dr Kichard H. Panceil
Stanford University
Staniord, CA 54365

Dr. Denmis Papadoparlos
Astronomy Department Unjversity of Maryland
College Park, Md. 20i42
Dr. John A. Pasour: Missirn Research Laboratory Q560 Cirderbed Road Suite TOC
Newretore, VA 2212%
Pr. C. K. N. Pate?
Beil laturatories
Merway Hill, N3 07974
Di. Claudio Dellegrini

B:oukhzven National Laboratory
Acsociated Universjties, Inc.
Uptor, L..I., NY 1:973
Dr. S. Penner
Center for Radiation Research
Nati. Inst. of Standards and Tech.
Gaithersiorg, MD 20899
Dr. P. Pacstrup
Adelpri Tecimology
13800 Skyline Blyd. No. 2
Woodsicie. CA 9406?
Dr. 5. 3. Pistoresi
Soeinc srospace Company
F. O. B6: 3969

Seatile. WA 98124-2499
Major E. d. Pogue
SDIO
The Pentagon, T-DE Re: 1EiBO
Washington, DC 20301-7100
Major Donald Tonikvar
U. S. mrmy SLC
P. O. Bor: 15280

Arlington, VA 22245-0280
Dr. Donald Paosnitz
Lawrence Livermore National iab.
Bos 5511 L-626
Iivermore, CA 94550
Dr. D. C. Quimby
Srectra Technology
2755 Nor thup Way
Bellevte, HA 98004

Gr. G. Ramian
Quantun Trstitute
Universiry of California
Santa Barbara, CA 93106
Dr. M. Reiser
University of Maryland
Department of Physics
College Park, MD 20742
Dr. S. Ride
Arms Control
Sianford University
Sranford, CA 94305
Di. C. I'. Roberson

Dfrice of Naval Research
Code 112 S
800 N. Quincy Street
Arlingion, VA 22.217
Dr. K. Robinson
Spertra Technology
2755 Northup Way
Bellevue, WA 98004
Br. Marshall N. Rosenbluth
Dept. of Physics
B-019
liniv. of Calif., San Diego
Lajolla, CA 92093
Dr. N. Eostoker
Department of Physics
University of California at Irvine
Trvine, CA 92717
Dr. A. Saxman
Les Alamos National Scientific Lai.
P. O. Box 1663, MSE523
i.os Alamos, NM 87545

Dr. E. T. Scharlemann
L626
Lawrence Livermore National Laboratory P. 0. Box 808

Livermore, CA 94550
Prof. S. P. Schlesinger
Dept. of Electrical Engineering
Columbia University
New York, NY 10027

Dr．Howard Schlossbeg g
AFOSR
lolling AFB
Washington，L．C． 20332
Mr．George Schn：idt．
Stevens Institut＂of Technolezy
Physics Depar iment
Hoboken，NJ 07030
［土．M．J．Schmatt
Los Elamos Nasional latomenry
P．O．Box 1653
L．os Alatios，NM 37545
Dr．H．Schwettmanh
Phys．Dept．\＆High Energs
Physics Laboratory
Stanford Uriversicy
Stanfora，CA 94305
Dr．Marlan U．Scully
Dept．of Physics \＆Astronomy
Unis．of New Mexico
800 Yale Blvd．NE
Alouguerque，NM 8．7．31．
Dr．S．B．Segall
KME Fusion
3941 Research Perk Dr．
P．O．Erk j 567
Anr．Arbor，MT 4816 i
Prof．P．Serafim
Noxtieastern iniversity
Boston，MA 12115
Dr．A．M．Cessler
Lamence Berkency Iaboratory University of Califernia
l Cyclotron Road
Berkeley，CA 9420
Dr．W．Sharp
L． 626
Lawrence Livermore National Labonatory
P．0．Box BO8
Livermore，CA 94550
Dr．Earl D．Shaw
Se：l haburatories
600 Mountain Averive
Murray Hill，N．S 07974

Dr．R．.. Sheffield
Los Alamos National Labotatory P．O．Eox 1663
Les A．amos，NH 87545
Dr．D．Shoffstall
Boeing Aeruspace Company
F．O．gox 3399
Seattle，110 98224
Di．Jack Slater
Gpectra Tectin？logy
$2755 \mathrm{~N}:$ thup way
Pellevie，WA 58004
コー．Todd 5nith
Hansen Labs
Stenfor \＆University
Stanford，CA 94305
Dr．K．Sudan
Lat． \mathcal{F} Plasma Gtudies
Cornc］．Universisy
ithaca，NY 14850
Dr．David F．Sutcer
ER 22．，GTN
Deparimant of Ena－gy
Wastington，D．C． 20.545
（）r．i．Tajima
Insiitute ror rustion Studies University of Texas at fustir Austin，TX 78712

DL ，P．Tembin
Mass．Instituke of Tecinology
Plasnc．Pusion Cenrer
Cambridge．MA 92：30
Dr．L．．Thode
Los Ailamos Narional Laboratoxy P．O．Box 1663
Los Alamos．At：87545
Di ．Norman H．Toik
Hhysies Department
Vanderbilt University
Nashville，TN 37240
Dr．Pane Tsane
Stence Applications Intl．Corp．
\because＂U Cocdridge Dr
melean，VA 22102

Dr. H. S. Uinm
Nerva: Su face Warfare Center:
White opk tab
Silver Spring, MD 20903-5000
Under Secretary of Defense (R\&D)
Of $\begin{gathered}\text { ice of the Geraetary of befense }\end{gathered}$
Room 3Eluog, The pentagon
Yasaingtnt, D.C. 2030?
ne. John E, Wal.sh
Wilder Laboratory
Department of Physics (HB 612i)
Lartmouth College
Hanover NH 03755
Dr. Jiunn-Ming Vang
Brookhaven National Laboratories
Associated Universities, Inc.
Upton, L.I., NY 11973
Dr. Roger W. Warren
Los Alamos National Scientifis lah. P.A. Box 1663

Los Alamos, NM 87545
Dr. \therefore Watson
Los Alanos National Laboratory
P. O. Box 1663

Los Alemos, NH 87545
Dr. Maik Wilson
Natl. Inst. of Etandards and Tech. Bldg. 245, Rm. B-119
Gaithersburg, MD 20899
Dr. J. Wurtele
M.I.T.

NW 16-234
Plasme rusion Center
Cambridge, Min 02\%39
Wr. Ming Xie
Dept. of Physics
Stanterd University
Stanford. CA 94705
Dr. Simor. S. Yu
Laurence Livermore Nationel Laboratory
\because O. Mox 808
+7wrmore, C6 94550

Naval fiesearch Latarajory
Washirigtor, DC 2037E-EOOO
Code 43Su
rim Calderwood

Do NuT inate labeis for Fecards-C.....(OI cy)

[^0]: Mam rupt appoved fehrmary 10 , 100.

