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Abstract

Computation of the diffraction field from a given set of arbitrarily distributed data points in space is an important signal

processing problem arising in digital holographic 3D displays. The field arising from such distributed data points has to be

solved simultaneously by considering all mutual couplings to get correct results. In our approach, the discrete form of the

plane wave decomposition is used to calculate the diffraction field. Two approaches, based on matrix inversion and on

projections on to convex sets (POCS), are studied. Both approaches are able to obtain the desired field when the number of

given data points is larger than the number of data points on a transverse cross-section of the space. The POCS-based

algorithm outperforms the matrix-inversion-based algorithm when the number of known data points is large.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Holographic three-dimensional television (3DTV)
systems will consist of several parts fulfilling
different functions: capturing the 3D scene, repre-
senting it in abstract form, its transmission, and
finally display. Once the abstract representation of
the scene arrives at the display end, it is necessary to
first compute the diffraction field that the scene
would have created, in order to drive the display
device in a manner so that the same field will be
e front matter r 2006 Elsevier B.V. All rights reserved
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recreated. This paper deals with the solution of the
problem of computing the diffraction field from the
sampled abstract representation of the scene. This
sampled representation consists of known values of
the optical field over an irregularly distributed,
arbitrary array of discrete points.

Diffraction problems are most commonly for-
mulated such that the optical field at one plane is
computed in terms of the field at another plane. This
paper deals with computation of the field over all of
space in terms of a set of given data points
distributed arbitrarily over the space. It is not
correct to calculate the optical field arising from
such distributed data by means of straightforward
superposition. This fact is often ignored and
straightforward superposition is employed, which
.
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amounts to assuming that each data point repre-
sents a source [12,10]. Here we properly formulate
the problem and consider its solution using two
approaches. The first utilizes a direct matrix
inversion while the second one is iterative and
utilizes the projections onto convex sets (POCS)
method [1,9], which has been successfully used for
various restoration problems in image processing
and holography [7,20,5].
2. Review of diffraction theory

The computation of the light field in a desired
region, based on the knowledge of the field in some
other region, is the subject of diffraction theory,
which is a mature area of knowledge [8,3,17,16].
Despite this, there are gaps in the efficient numerical
application of the theory and there seems to be
considerable scope for application of signal proces-
sing techniques such as sampling, numerical linear
algebra, fast transformations, iterative projections,
and decomposition algorithms towards obtaining
better computation methods.

In most cases, monochromatic (single wave-
length) light is used in holography. Moreover, the
medium we are interested in is linear, isotropic, and
homogeneous. Under these conditions, the optical
field on one plane can be accurately related to that
on another plane through the Rayleigh–Sommerfeld
diffraction integral, which is a linear and shift-
invariant relationship [8,3,17].

In this study, we work with fields consisting of
propagating waves; hence the input and output
fields do not contain any evanescent wave compo-
nents. Moreover, we assume that the distances
involved are rbl, where l is the wavelength. Also,
we use plane wave decomposition to compute scalar
optical diffraction field, because plane wave decom-
position and Rayleigh-Sommerfeld diffraction in-
tegral are equivalent [18,11]. For simplicity, we
restrict our discussions to only one transverse
dimension; extension to two transverse dimensions
is straightforward. The diffraction integral over 2D
space arising from the plane wave decomposition
approach is

uaðx; zÞ ¼

Z 2p=l

�2p=l
AðkxÞ exp½jðkxxþ kzzÞ�dkx, (1)

where uaðx; zÞ is the field over 2D space, and AðkxÞ

gives the complex amplitudes of the harmonic
components (Fourier coefficients) of the field
uaðx; 0Þ over the input line. (The relationship
between ð2pÞAðkxÞ and uaðx; 0Þ is the 1D Fourier
transform (FT) relation.) The variables kx and kz

are the spatial frequencies of the propagating
plane waves along the x- and z-axis, respectively.
The x-axis is the transverse axis and the z-axis
is the optical axis along which the field propagates.

The variable kz is related to kx by kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� k2

x

q
where k ¼ 2p=l. The expression in Eq. (1) can be
rewritten as

uaðx; zÞ ¼F�1fF½uaðx; 0Þ� expðj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� k2

x

q
zÞg, (2)

where F denotes the FT and F�1 is the inverse FT.
The input field is a bandlimited spatial function,

whose bandlimit is within �k. This is because a
propagating monochromatic wave with wavelength
l cannot have a harmonic component in the
transverse plane with higher frequency. In certain
cases, it may be desirable to further restrict the
bandwidth along the transverse direction x. For
instance, we may restrict kx such that �BpkxoB,
where Bpk. So far, kx may assume any real value in
this interval. To arrive at a feasible numerical
framework, we must restrict ourselves to a finite
number N of possible values of kx. These may be
chosen as kx ¼ lð2B=NÞ where l ¼ �N=2; . . . ;
N=2� 1 for even N and a similar formula for odd
N. Discretizing the transverse frequency will result
in a field which is periodic along the transverse
direction x, with a fundamental period X ¼ pN=B.
Therefore, a careful choice of simulation parameters
is necessary if the consequences of this periodicity
effect are to be minimized. Therefore, the field
becomes

uaðx; zÞ ¼
XN�1
m¼0

Am expðj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� k2

x

q
zÞ exp j

2B

N
mx

� �
,

(3)

where

kx ¼

2p
m

X
; m ¼ 0;

N

2

� �
;

2p
ðm�NÞ

X
; m ¼

N

2
;N

� �
:

8>>><
>>>:

(4)

Sampling this periodic and bandlimited function
with a sampling period X s ¼ p=B, which is its
Nyquist rate, yields N samples per period, as
expected. Restricting our attention to these samples,
x ¼ nX s and z ¼ pX s, where n is an integer
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spanning one period, and p is the distance between
the lines along the longitudinal direction z, we can
write

uaðnX s; pX sÞ

¼
XN�1
m¼0

Am expðj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
� k2

x

q
pX sÞ exp j

2p
N

mn

� �
. ð5Þ

Each frequency component m, determines the
propagation direction of the corresponding plane
wave. The angle f, which is shown in Fig. 1, denotes
the angle between the z-axis and the propagation
direction:

fm ¼

sin�1
lm

NX s

� �
; m ¼ 0;

N

2

� �
;

sin�1
lðm�NÞ

NX s

� �
; m ¼

N

2
;N

� �
:

8>>><
>>>:

(6)

Thus m 2 ½0;N=2Þ corresponds to the positive f
angles, and m 2 ½N=2;NÞ corresponds to the nega-
tive f angles. The relation between kz and m is

kz ¼

2p
NX s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �m2

q
; m ¼ 0;

N

2

� �
;

2p
NX s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ðm�NÞ2

q
; m ¼

N

2
;N

� �
;

8>>><
>>>:

(7)

where b ¼ NX s=l. Therefore, the discrete kernel
corresponding to the plane wave decomposition
becomes,

HpðmÞ ¼

exp j
2p
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �m2

q
p

� �
; m ¼ 0;

N

2

� �
;

exp j
2p
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ðm�NÞ2

q
p

� �
; m ¼

N

2
;N

� �
8>>><
>>>:

(8)
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Fig. 1. The vectors k1 and k2 are the wave vectors of the plane

waves.
and the resultant form of the discrete representation
of the plane wave decomposition is

uðn; pÞ ¼
XN�1
m¼0

AmHpðmÞ exp j
2p
N

nm

� �
, (9)

where N � Am is the DFT of the sampled input field.
The variable n is restricted to the range ½0;NÞ.
Therefore, the discrete diffraction field can be
expressed as

uðn; pÞ ¼ DFT�1fDFTfuðn; 0ÞgHpðmÞg. (10)

This completes the proper discretization of the
diffraction formula.

3. Computation of diffraction patterns from

distributed data points over 2D space

Computation of the diffraction pattern at the
output arising from a distributed set of points can
be time-consuming, due to the z dependency of the
kernel. The diffraction relation between the dis-
tributed data set and a given line cannot be
represented as a shift-invariant system. As already
described, calculation of the diffraction field from
one line to another is relatively straightforward
since the corresponding system is linear and shift-
invariant. The distributed points we wish to deal
with may represent samples over a curved line, a
tilted line, or another shape in 2D space. An
illustration is given in Fig. 2. There are several fast
methods which can be used to compute the
diffraction field between parallel and tilted lines
[15,19,4,14,13,6]. However, these methods cannot be
used to compute the diffraction field from arbitra-
rily-distributed data points. In such a case, a simple
and naive approach, i.e., calculation of the diffrac-
tion field by direct superposition assuming each
Fig. 2. An illustration of 1D object illumination and the

diffraction pattern of the object over 2D space. Dots on the

corresponding diffraction pattern represent the locations of a set

of distributed known data points over 2D space.
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data point as a source of light, would yield erroneous
results. Two simple examples clarify this fact: In
Fig. 3, black squares represent given samples while
circles represent the missing ones. In the first example,
the input and output lines are parallel to each other
with no missing points (Fig. 3(a)). The relationship
between the fields on these lines can be represented as
a linear shift-invariant system, given by Eq. (10). In
the second example (Fig. 3(b)), the field at one of the
sample points on the input line is not known. Instead,
the field at another sample point Q, not located on
the input line, is given in order to compensate the
missing data. Each point on the input line contributes
to the field at Q, and in turn, the field at Q affects the
field in other places. Therefore, it is not possible to
write a proper superposition including the point Q for
the field at unknown regions.

Let us assume a hypothetical straight line, referred
to as the reference line, and compute the diffraction
field on it. We rewrite Eq. (10) in matrix form:

g ¼ Af, (11)

where the vectors f and g represent the discrete
diffraction fields uðn; 0Þ and uðn; pÞ of the reference
line and some other line, respectively. The rows of A
are obtained from Eq. (10) as

A ¼W�1HpW, (12)

where the matrix W is the N-point DFT matrix. The
matrix Hp is the diagonal matrix

Hp ¼

Hpð0Þ 0 . . . 0

0 Hpð1Þ 0

..

. . .
. ..

.

0 0 . . . HpðN � 1Þ

2
666664

3
777775. (13)
The matrix A is unitary. Furthermore, Ak represents
the diffraction field at a distance pk. Proofs of these
properties are given in the Appendix.

3.1. Calculation by matrix inversion

Our first approach calculates the diffraction field
on the reference line by directly solving the system
of linear equations (direct matrix inversion).

Let the vector g0 denote the diffraction data over s

distributed data points,

g0 ¼

g01

g02

..

.

g0s

2
666664

3
777775. (14)

Each g0i is a function of both pi, the index in the z

direction, and ni, the index in the x direction. The
relation between the vector g0 and the reference
vector f is given by

g0 ¼ ABFf, (15)

where ABF is an s by N matrix:

ABF ¼

rðp1; n1Þ

rðp2; n2Þ

..

.

rðps; nsÞ

2
666664

3
777775, (16)

where rðpi; niÞ is a 1 by N row vector from the matrix
A with p ¼ pi. This row vector provides the
diffraction field relation between the field on the
reference line and the field on the point specified by
pi and ni. The vector f is obtained by

f ¼ AþBFg
0, (17)

where AþBF is the pseudo-inverse of the matrix ABF:

AþBF ¼
ðAH

BFABFÞ
�1AH

BF; s4N;

AH
BFðA

H
BFABFÞ

�1; soN:

(
(18)

Here AH
BF is the conjugate transpose of ABF.

Knowing the diffraction field on the reference line,
we can compute the diffraction field on any other
line in the 2D space using Eq. (11).

3.2. Calculation by using projections onto convex

sets

Our second approach utilizes an iterative techni-
que, based on the POCS method [1,9]. POCS has
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been applied to various problems in holography and
image restoration where a priori information is used
to constrain the size of the feasible solution set
[7,20,5]. It is a computational approach for finding
an element of a feasible region defined by the
intersection of a number of convex constraints,
starting with an arbitrary infeasible point [1,9].
Fig. 4 shows how convergence to the intersection is
achieved by iterative projections onto the individual
convex sets. In our problem, the constraints are the
known data points on consecutive lines. In addition,
the data points are known to belong to the same
diffraction field and therefore Eq. (10) has to be
satisfied among all lines. Therefore, the convex set
Cl ; l ¼ 1; . . . ;M (number of lines), can be defined as
all possible diffraction fields having the given data
points on a certain line z ¼ zl :

Cl ¼ f8f ðx; zÞ : f ðxil ; zlÞ ¼ vl ,

f ðx; zjÞ ¼ Aj�l f ðx; zlÞ;8j;xg, ð19Þ

where vl is the vector of known values on the line
z ¼ zl and il is the vector with the indices of their
positions. A is the diffraction matrix given by
Eq. (12) written for two consecutive lines, and its
ðj � lÞth power Aj�l , is the diffraction matrix from
the line z ¼ zl to the line z ¼ zj . A closed form
expression for f ðx; zjÞ can be written with the help of
an arbitrary function qðxÞ:

f ðx; zjÞ ¼ A
j�l
il

vl þ A
j�l

īl
qðxīl
Þ, (20)

where īl is the vector with the indices of the
unknown values on the line z ¼ zl , and A

j�l
il

and
A

j�l

īl
are submatrices of Aj�l obtained by taking

columns with indices il and īl .
It is straightforward to show that the sets Cl

defined by Eq. (19) are convex. Let us assume that
the functions f 1ðx; zÞ and f 2ðx; zÞ belong to the set
Cl , and F ðx; zÞ ¼ af 1ðx; zÞ þ ð1� aÞf 2ðx; zÞ; 0oao1
is their convex combination. Then for every line z ¼
intersection

Set A

S
et

 B

p
ro

je
c
ti
o
n

projection

starting
point

Fig. 4. Projections onto convex sets (POCS).
zj we have

F ðx; zjÞ ¼ aAj�l
il

vl þ aAj�l

īl
q1ðxīl

Þ

þ ð1� aÞAj�l
il

vl þ ð1� aÞAj�l

īl
q2ðxīl

Þ

¼ A
j�l
il

vl þ A
j�l

īl
Qðxīl
Þ, ð21Þ

where QðxÞ ¼ aq1ðxÞ þ ð1� aÞq2ðxÞ. Since qðxÞ in
Eq. (20) can be an arbitrary function, the last line of
Eq. (21) becomes of the form of Eq. (20) and
therefore F ðx; zÞ belongs to the set Cl . This fact
shows that Cl is convex, because a convex combina-
tion of any two functions which belong to Cl also
belongs to Cl .

A POCS-based algorithm requires iterating from
set to set using projections. A straightforward
strategy is to propagate from line to line using
Eq. (10). Unknown points are generated by the field
from the previous line and the known points are
kept. Let us assume gðx; zÞ 2 Cl�1 and f ðx; zÞ 2 Cl .
Then,

f ðxīl
; zlÞ ¼ gðxīl

; zlÞ

and

f ðxil ; zlÞ ¼ vl , (22)

while projecting from the set Cl�1 to the set Cl . With
this choice, f ðx; zlÞ differs from gðx; zlÞ in the
restricted values at positions xil only, and therefore
the distance from gðx; zlÞ to f ðx; zlÞ is minimized
with respect to all functions in Cl . Moreover, the
distance taken for any other line z ¼ zj is minimized
since

d ¼ kf ðx; zjÞ � gðx; zjÞk
2

¼ kAj�l
ðf ðx; zlÞ � gðx; zlÞÞk

2

¼ kf ðx; zlÞ � gðx; zlÞk
2 ð23Þ

and Aj�l is unitary for any j and l. Hence, the
squared distance between gðx; zÞ and f ðx; zÞ is also
minimal for all the functions from the set Cl because

kf ðx; zÞ � gðx; zÞk2 ¼
X

j

kf ðx; zjÞ � gðx; zjÞk
2.

Therefore, the choice for f ðx; zÞ given by Eq. (22)
corresponds to the orthogonal projection of gðx; zÞ
onto the set Cl and hence the iterative method will
converge [20].

At the first line z ¼ 0, iterations are initiated by
setting the missing points to arbitrary values. After
passing through all lines, the unknown points on the
first line are computed using the data on the last
line.
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The algorithm can be summarized as follows:
 a

1.
 initialize the first line of the desired field

f ðxil
; 0Þ ¼ v0; f ðxīl

; 0Þ ¼ qðxīl
Þ, for any qðxÞ
2.
 for i ¼ 1 to nit
(a) for l ¼ 2 to M
i. f ðx; zlÞ ¼ Af ðx; zl�1Þ
ii. f ðxil ; zlÞ ¼ vl
(b) end
(c) f ðx; 0Þ ¼ A�Mþ1f ðx; zMÞ
b c
(d) f ðxil ; 0Þ ¼ v0;

3.
 end
d e

Fig. 5. Initial diffraction field over the entire 2D space; N ¼ 256

samples per line (a) and reconstructed diffraction fields from s

known data points (b)–(e); (b) matrix inversion method with

s ¼ 230; (c) matrix inversion method with s ¼ 282; (d) POCS

algorithm with s ¼ 230; (e) POCS algorithm with s ¼ 282.
where nit is the number of iteration.

3.3. Results

For purposes of illustrating and evaluating the
two approaches outlined above, we choose a simple
function as the optical field on the reference line.
Then, the diffraction field at other lines is calculated
using Eq. (10). The computation is conducted with
M ¼ 256 lines with N ¼ 256 samples per line and
the range of p is ½129; 384�. The function on the
reference line is a unit-magnitude square pulse of 32
samples located at the center of the line. The
generated initial data pattern is depicted in Fig. 5(a).

Assessment of the results is based on the normal-
ized error between the original and reconstructed
diffraction patterns uðn; pÞ and u0ðn; pÞ, respectively,PN�1

n¼0

P384
p¼129ju

0ðn; pÞ � uðn; pÞj2PN�1
n¼0

P384
p¼129juðn; pÞj

2
. (24)

The error has been tabulated for different
numbers s of known data points, as shown in
Tables 1 and 2. For each value of s, 15 diffraction
patterns have been reconstructed using s randomly
selected data points from the initial simulated field.
Each reconstructed diffraction pattern corresponds
to a different random choice of the positions of the s

known data points within the field. The final error
reported for each value of s is the average of the
error over all 15 choices.

The numerical implementations of the proposed
algorithms utilize the complex arithmetic operations
such as multiplication and addition. Computation
times of these operations depend on many imple-
mentation details including hardware properties and
operating system behavior. Implementations of the
described digital algorithms need the execution of
large amount of complex arithmetic operations;
furthermore, large amount of data fetch and write
operations are needed. The actual resultant compu-
tation time naturally depends on the specifics of the
computer architecture and the operating system
behavior. Though incomplete, a comparison of the
required total number of multiplications may give
an idea about the computational complexity of the
algorithms.

The numerical results for the matrix inversion
method are summarized in Table 1. Higher number
of initial given samples yields better reconstruction
of the original diffraction pattern, as expected.
When this number is equal to or higher than N, the
diffraction field is reconstructed perfectly. This
approach involves computation of the diffraction
field on a reference line by taking the pseudo-inverse
of ABF and computation of the entire diffraction
field from that line. Forward and inverse DFTs are
required to calculate the diffraction from between
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consecutive lines. We chose to implement the DFT
using common FFT algorithms. The diffraction
field computation on a line requires two FFT
algorithms and to implement FFT algorithm,
ðN=2Þ log2 N complex multiplications are used. As
a result of this, the total number of complex
multiplications are needed to calculate the diffrac-
tion pattern over 2D space from the input field on a
line is MN log2 N þMN, where M is the number of
lines and the additional term MN is the multi-
plication of the discrete kernel by the DFT
Table 2

Normalized error for different numbers of iterations nit and given kno

s Number of iterations nit

10 20 30 50 100

77 0.7312 0.7312 0.7312 0.7312 0.7312

128 0.5336 0.5328 0.5328 0.5328 0.5328

179 0.3392 0.3288 0.3272 0.3264 0.3264

205 0.2357 0.2183 0.2133 0.2101 0.2087

230 0.1590 0.1304 0.1194 0.1098 0.1023

256 0.1022 0.0708 0.0575 0.0441 0.0307

282 0.0606 0.0311 0.0200 0.0104 0.0033

307 0.0369 0.0127 0.0058 0.0017 0.0002

333 0.0201 0.0048 0.0015 0.0002 0.0000

512 0.0001 0.0000 0.0000 0.0000 0.0000

1024 0.0000 0.0000 0.0000 0.0000 0.0000

2048 0.0000 0.0000 0.0000 0.0000 0.0000

4096 0.0000 0.0000 0.0000 0.0000 0.0000

8192 0.0000 0.0000 0.0000 0.0000 0.0000

16 384 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1

Normalized error of the matrix inversion method for different

numbers of given data points over 2D space

Number of given samples ¼ s Ave. norm. error

77 0.6928

128 0.5112

179 0.3104

205 0.2176

230 0.2240

256 0.0000

282 0.0000

307 0.0000

333 0.0000

512 0.0000

1024 0.0000

2048 0.0000

4096 0.0000

8192 0.0000

16 384 0.0000

Each normalized error is obtained by averaging the results of 15

simulations.
coefficients of the input field. An efficient method
for computing the pseudo-inverse of ABF should be
used; we chose the pseudo-inversion based on
Householder transformations. According to [2], its
number of complex multiplications is estimated as

sN2 �N3=3, (25)

and therefore, the total number of complex multi-
plications for the matrix inversion method is

:sN2 �N3=3þMN log2 N þMN. (26)

For the POCS-based algorithm, the impact of the
number of iterations has been investigated. For
different values s of the number of known data
points, the algorithm is applied for different
numbers of iterations nit. Again, 15 different
random selections of s known data points have
been used and the errors averaged. The numerical
results are summarized in Table 2. As expected, the
error decreases with increasing number of given
points. A sufficient number of given points is crucial
for the performance of the algorithm. For a certain
number of iterations, there is a number of given
points (drop-off value) providing the desired accu-
racy (error below a small threshold). Fig. 6
illustrates this behavior for 200 iterations. One
would expect that the drop-off value is reached for
values of s equal or higher than N. For such values,
the sets Cl should intersect at a single point. When s

is lower than N, the error takes higher values and
cannot be reduced much by undertaking more
iterations. This is expected since we have an
wn data points s

200 300 500 1000 3000

0.7312 0.7312 0.7312 0.7312 0.7312

0.5328 0.5328 0.5328 0.5328 0.5328

0.3264 0.3264 0.3264 0.3264 0.3264

0.2084 0.2084 0.2083 0.2083 0.2083

0.0991 0.0984 0.0981 0.0980 0.0980

0.0216 0.0177 0.0138 0.0099 0.0053

0.0007 0.0002 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000



ARTICLE IN PRESS

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

s / N

N
o
rm

a
liz

e
d
 E

rr
o
r

nit = 200

Fig. 6. Normalized errors for different numbers of known

samples at 200 iterations.
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underdetermined system where the intersection of
the sets Cl is a region rather than a point. Therefore,
successive projections yield a solution rather far
from the original diffraction field. In general, the
error decreases by the number of iterations and after
a certain number of iterations is reached, the error
saturates. The algorithm converges much faster for
larger values of s.

The computational complexity of the POCS-
based algorithm is determined by the number of
iterations nit, the number of parallel lines M, and
the number of sample points per line N. For each
iteration, M lines are computed by Fourier domain
operations (cf. Eq. (10)). N log2 N þN complex
multiplications are required for calculation of the
diffraction field on a line when FFT is used, because
FFT algorithm is used twice. This results in a total
number of complex multiplications:

nitðMN log2 N þMNÞ. (27)

Note that the number of given points s is not
present in the complexity measure given by (27).
However, this number influences the complexity
indirectly, as it determines the number of iterations
needed for achieving the desired accuracy. As
shown in Fig. 7, more given points result in less
iterations to achieve the same accuracy. The curve
drops right after s ¼ N and after that point the
desired error can be reached in a reasonable number
of iterations. For example, less than 10 iterations
are sufficient if starting with s ¼ 2N given points. In
contrast, the matrix inversion algorithm gets more
complex for higher s. To relate the computational
complexity of the POCS-based algorithm with that
of direct matrix inversion, a second curve (the
dashed line) is constructed in Fig. 7. For each s, it
gives the number of iterations so that the computa-
tional complexity of the two algorithms is the same.
Any number of iterations below that curve positions
the POCS approach as the more preferable method.
In Fig. 7, these iterations become less for sX1:4N.
Direct comparison of the number of the multi-
plications that both approaches require for different
values of s are presented in Table 3. The values for
the matrix inversion method are calculated using
Eq. (26). The values for POCS method are found
from Eq. (27). The parameter nit, in Eq. (27), is
determined by the POCS method that yields
normalized error below 0.0005. Again, Table 3
shows that the POCS algorithm is less computa-
tionally costly when sX1:4N. An additional pecu-
liarity of the POCS approach is that, being an
iterative algorithm, it is more robust to computa-
tional errors than direct matrix inversion, especially
for high values of N.

Fig. 5 shows simulations for values of s close to
N, with no visual difference between the results of
the two methods.
4. Conclusion

In this work, the computation of the diffraction
field from a set of distributed data points which may
represent the abstract structure of an object has
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Table 3

Comparison between the number of complex multiplications of POCS method and pseudo-inversion method (PINV) for different numbers

of known samples s

s 256 282 358 384 410 512 1024 2048 4096 8192 16 384

PINV 1:18eþ 7 1:35eþ 7 1:85eþ 7 2:02eþ 7 2:19eþ 7 2:86eþ 7 6:21eþ 7 1:29eþ 8 2:63eþ 8 5:32eþ 8 1:07eþ 9

POCS 8:55eþ 9 1:29eþ 8 1:61eþ 7 1:13eþ 7 9:17eþ 6 4:72eþ 6 1:77eþ 6 1:18eþ 6 1:18eþ 6 1:18eþ 6 1:18eþ 6

The costs are shown in number of complex multiplications needed to achieve error below 0.0005.
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been investigated. First, a discrete formulation of
the relevant diffraction theory has been presented.
In this formulation, fictionally periodic fields have
been used where the period of the field is determined
by the size of the field along the transverse direction.
Two approaches for obtaining simultaneous solu-
tion of the diffraction field have been studied. The
first attacks the problem by a direct matrix inversion
approach while the second utilizes the POCS method
to recover the desired diffraction field iteratively.
Both algorithms converge to the desired field when
the number of given samples is equal to or larger
than the period but they may not converge to the
desired field if the number of given data points is
lower than the period. Computational complexity
which is determined by the number of complex
multiplications is another issue addressed in this
work. The matrix inversion enjoys lower computa-
tional complexity for small numbers of initially given
points while POCS is beneficial when there are more
given points, when a few number of iterations
becomes sufficient to achieve the desired accuracy.

Appendix

The proof that the matrix A is unitary is given
below by showing that AHA ¼ I as follows:

AHA ¼ AAH
¼ I

¼ ðW�1HpWÞðW
�1HpWÞ

H

¼ ðW�1HpWÞðW
HHH

p W�H Þ

¼W�1HpNHH
p W�H

¼W�1NW�H

¼ I. ð28Þ

Another property of A is that

AlAj
¼ ðW�1HlpWÞðW

�1HjpWÞ

¼W�1HlpHjpW

¼W�1HðlþjÞpW, ð29Þ
where HðlþjÞp represents the kernel of the discrete
system which is used to calculate the diffraction field
at pðl þ jÞ.
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